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Objective. This study is to explore key immune markers and changes of immune microenvironment in neuropathic pain (NeuP).
Method. The data sets of GSE145199 and GSE145226 in Gene Expression Omnibus (GEO) database was used to analyze, and the
key immune markers were verified by GSE70006 and GSE91396, and the infiltration degree of immune cells in different samples
were analyzed by CIBERSORT analysis package. Results. In this study, we found a key immune marker, namely, LANCLI.
Regulatory axis closely related to LANCLI has also been found, namely, miR-6325/LANCLI axis. In the immune infiltration
analysis, we also found that the LANCLI is positively correlated with T cells CD4 naive (r =0.880, p < 0.05). Conclusion. In
this study, we found that LANCLI may be a protective factor for NeuP, and the miR-6325/LANCLI1 axis may be involved in
the occurrence and development of NeuP. Cascade reactions including mast cells, macrophages, and T cells may be an

important reason for the aggravation of nerve damage.

1. Introduction

Neuropathic pain (NeuP) is a type of pain caused by injury
or disease of the nervous system. Its clinical manifestations
are hyperalgesia, paresthesia, and spontaneous pain. It is
often complicated with sleep disorders, depression, and anx-
iety [1, 2]. It is estimated that at least 1% -5% of the popula-
tion suffer from NeuP throughout the year [3]. Because of
the diversity of pathogenic factors and the complex patho-
logical mechanism in NeuP, the clinical treatment effect is
not satisfactory, which can cause patients to appear serious
physiological and psychological disorders, and seriously
reduce the quality of life [4, 5]. Therefore, it is of great signif-
icance to explore the pathogenesis and prevention of NeuP.
Current studies suggest that, imbalance between excitatory
and inhibitory somatosensory signals [6], changes in ion
channels [7], and variability of pain signals in the central
nervous system all have been related with the NeuP. How-

ever, the above mechanisms cannot fully explain the occur-
rence and development of NeuP, and further exploration is
needed.

In recent years, researchers have suggested that inflam-
mation and immune mechanisms in the peripheral and cen-
tral nervous systems play an important role in NeuP [8].
Infiltration of inflammatory cells and activation of innate
immune cells activated in response to nervous system dam-
age lead to subsequent production and secretion of various
inflammatory mediators. These mediators promote neu-
roimmune activation and can sensitize primary afferent neu-
rons and cause hypersensitivity to pain [9]. It is well known
that nerve injury leads to activation of mast cells and recruit-
ment of neutrophils and macrophages. Tumor necrosis fac-
tor (TNF) and interleukin 1 and 6 (IL-1, IL-6) released by
immune cells are believed to be closely related to hyperalge-
sia of NeuP and play an important role in the occurrence
and development of NeuP [10]. Some of the molecules
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FIGURE 1: DEGs in the data set: (a) Heatmap of 8 immune DEGs; (b) volcano map of the immune genes; blue represents downregulated

immune DEGs, and red represents upregulated immune DEGs.

expressed in gene translation are closely related to immune
infiltration and are defined as immune genes [11]. Several
immune genes or immune molecules have been shown to
play a role in NeuP, such as miRNA-23a/CXCR4 axis [12]
and miR-136/IL6R axis [13]. At present, the research on
the pathway mechanism of NeuP mainly relies on the verifi-

cation analysis of the discovered factors, and there is still a
lack of screening for the key immune markers of NeuP, lead-
ing to the possible omission of the signal axis. Therefore, in
order to obtain immune factors closely related to NeuP, we
included all immune genes that had been confirmed in the
previous studies [14] for screening. At the same time, we
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F1GURE 4: Results of ROC verification: (a) ROC curve of LANCLI in verification data set of GSE70006; (b) ROC curve of LANCLI1 in

verification data set of GSE91396.
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FIGURE 5: Results of correlation analysis and online database prediction: (a) Venn diagram of miRNA prediction; (b) the binding site of

miR-6325/LANCLI axis.

also included immune infiltration analysis to obtain the infil-
tration degree of immune cells in different samples to under-
stand the changes in the immune microenvironment of
NeuP. It is of great significance to explore the role of key
immune markers in immune infiltration and the changes
of immune microenvironment from the perspective of
immune cell infiltration to reveal the mechanism of NeuP.
CIBERSORT [15] is based on immune infiltration data,
which allows the use of a transcriptome expression matrix
to estimate the abundance of immune cells and other stro-
mal cells in tissue infiltration. CIBERSORT was first used
in the analysis of cancer-associated immune infiltration
[16] and is now being used in other immune-related studies
of nontumor inflammatory responses [17].

In this study, in order to improve the reliability of the
research results, we analyzed and estimated mRNA and
miRNA data sets sequenced from the same sample set from
the Gene Expression Omnibus (GEO) database. Previous
studies have shown that neuropathic pain behaviors corre-
late with synaptic plasticity and limbic cortex alteration
[18]. However, the previous screening of key markers of

neuropathic pain mostly focused on the inflammatory
changes of spinal cord neurons and paid less attention to
the inflammatory changes of limbic system. Therefore, we
selected the gene data set from limbic cortex for exploration.
Key immune markers were obtained through immune gene
extraction, differential gene analysis, least absolute shrinkage
and selection operator (LASSO) regression model [19]
screening, and receiver operating characteristic (ROC) anal-
ysis verification. Correlation analysis of mRNAs (key
immune markers) and miRNAs was then performed, and
online databases (mirWalk and TargetScan) were used to
predict the miRNAs likely to bind to key immune markers,
and the key miRNA/mRNA signaling axis were obtained
after the intersection. Finally, the CIBERSORT analysis
package was used to analyze the degree of immune cell infil-
tration in matrix data and obtain the correlation information
between the key immune markers and the immune infil-
trated cells. Through this research, we hope to obtain the
key immune markers of NeuP and increase the understand-
ing of the immune microenvironment changes in NeuP, so
as to provide ideas and help for future research.



Neural Plasticity

200 7 Enrichment plot: KEGG_RIBOSOME
175
2
=1
150 1 o
I
g .
3 125 E N . . B
El i ,§ - : .
z 10 2 o :
S g o . . .
75 7 . | | )
50
25 1
04
o
N N I © N e ooy Sy R ) 2
S8 558578 IESSSFSS8S3 /§§53885 2% £3
SSSNSFTSSEST SIS LIITLEE S £3
S S S S S 88 &858 S S S oL S S S S S &8 S S & 5 = £
SSSS8SS§SS85§ [§SSSSSSSs/ [§§S§SSS Z8
ST IIF F I TS T I TP I I I 5 E
[CRCECRCIICECRCIICECRS [CICIICEICIICINCIICIC e [CHCARCHECIICRCINS 3
ER2
£ 4
& \ Contml’ (Negauvelycorrelated)
T T T
0 2,000 4,000 6000 §000 10,000 12,000 14,000 16,000
Rank in ordered dataset
Bl
Enrichment plot:
KEGG_PENTOSE_AND_GLUCURONATE_INTERCONVER
SIONS
; 0.7 4 -
Biological process Cellular component Molecular function 2 o6d -
° o
. pp s 057
. CC Z 04
= MF g 037
€ 02
£ o1
0.0
g 4
T3
£g 2 oy
z 5 0 : Zero exqssat 7578
SE o4l eerie
28 .
5@ -4 7 X . 7Comml’(Negdnvelycom:lated)
;
2,000 4000 6,000 8000 10,000 12,000 14,000 16,000

0
Rank in ordered dataset

— Enrichment profile

— Hits
Ranking metric scores

(b)

B2

(a)

Enrichment score

|i|||nm|c mluu H\I\‘II\I‘II wum V)l " ¥ 'y 1
Lid \ W I \'u‘

} v R
i ||I|\‘i:\ ! WJIJ\“I‘IV‘\\\"N‘\I‘\Q\:F i\:!;hm‘\’\’u‘wn i ’\‘\’HI\::HH\‘H'I‘: \‘\H\: ‘\H!m ! Mw k.{!‘m

NeuP € — — = — — >Control
M4410 == M9139

= M4418 == M9445

= M4531 M9757

= M5300 = M9901

= M5602 M9907

()

FIGURE 6: Results of GSEA enrichment analysis: (a) GO term plot of GO enrichment analysis; (bl) enrichment plot of ribosome pathway in
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plot in IC analysis.
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FiGure 7: Correlation analysis results between genes and immune infiltrating cells: (a) correlation analysis of immune infiltrating cells; (b)

correlation curve between LANCL1 and T cells CD4 naive.

2. Methods

2.1. Data Source. In this study, we used the GSE145199 data
set (miRNA) [20] and GSE145226 data set (mRNA) [20] in
the GEO database as the training set for estimation and anal-
ysis and used the data sets GSE70006 and GSE91396 as the
verification set to verify the results.

2.2. Data Preprocessing. In this step, we used the R (V4.0.4)
software (https://www.r-project.org/) to preprocess the data,
including correction and normalization.

2.3. Immune Gene Extraction. In this step, we used the
immune gene data provided in the online database ImmPort
[14] (https://www.immport.org) to extract the matrix data.

2.4. Differential Expressed Genes (DEGs) Analysis. In this
step, we used limma analysis package [21] to perform differ-
ential gene analysis on the immune gene data matrix. DEGs
with p <0.05 and [log2FC| >0.5 were considered statistically
significant. Then, we used the impute [22] and pheatmap
[23] analysis packages to draw the volcano map and heat-
map of the DEGs.

2.5. LASSO Analysis Screen. In this step, we performed
LASSO regression analysis on immune genomic matrix data
using the glmnet [24] analysis package to screen for hub-
genes that may be closely associated with NeuP. After that,
we intersected the screened hubgenes with DEGs to obtain
the key immune markers. And the online website bioinfor-
matics (https://www.bioinformatics.com.cn) was used to
draw the Venn diagram.

2.6. ROC Verification of Key Immune Markers. In this step,
we used the bioinformatics to perform ROC analysis and
draw ROC curve in the verification data sets of GSE70006
[25] and GSE91396 [26]. Hubgenes with p <0.05 and AUC
> 0.7 were considered statistically significant; these hub-
genes were considered to be key gene markers.

2.7. Correlation Analysis of mRNAs (Key Immune Markers)
and miRNAs. In this step, we used the reshape2 [27], dplyr
(https://dplyr.tidyverse.org/), and tidyr (https://tidyr
tidyverse.org) analysis packages for the correlation analysis
between mRNA and miRNA. According to the binding reg-
ulation principle of mRNA and miRNA, correlations with
correlation coefficient <-0.4 and p <0.05 were considered
statistically significant.

2.8. miRNA Prediction. In this step, we used the online web-
site mirWalk [28] (http://mirwalk.umm.uni-heidelberg.de)
and TargetScan (http://www.targetscan.org) to predict miR-
NAs that may bind to key immune markers. The predicted
miRNA/mRNA binding axis was intersected with the
miRNA/mRNA correlation axis estimated in the previous
step to obtain the key miRNA/mRNA signal axis. The bioin-
formatics was used to draw the Venn diagram. The miRNA/
mRNA signal axis binding sites were also plotted.

2.9. Gene Set Enrichment Analysis (GSEA). In this step, we
used the GSEA software [29] to perform Gene Ontology
(GO) enrichment analysis, Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis, and immuno-
logical characteristics (IC) analysis on the matrix data. The
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results with p < 0.05 were considered significant enrichment.
The bioinformatics was used to draw the GO term plot,
GSEA software was used to draw the GSEA enrichment plot
in KEGG, and the ggplot2 [30] analysis package was used to
draw the multiGSEA enrichment plot in IC.

2.10. Immune Infiltration Analysis. In this step, we used the
CIBERSORT [15] analysis package to estimate the immune
infiltration of the data set, and the expression matrix of
immune infiltrating cells in different samples was obtained.
Then, we used the estimate [31] analysis package to estimate
the immune microenvironment of the transcriptome matrix,
and the immune scores in different samples was obtained.
The corrplot [32] analysis package was used to visualize
the correlation between immune infiltrating cells involved
in immune microenvironment.

2.11. Correlation Analysis between Key Immune Markers and
Immune Infiltrating Cells. The tidyverse [33] analysis pack-
age and ggstatsplot [34] analysis package were used to ana-
lyze the correlation between the key immune markers and
immune infiltrating cells. The correlation coefficient plot
was generated. The results with p < 0.05 were considered sta-
tistically significant.

3. Results

3.1. Results of Data Processing Process. In this study,
GSE145199 data set and GSE145226 data set were used for
analysis. Firstly, a total of 976 immune genes were extracted
from the transcriptome matrix data; secondly, 8 immune
DEGs were obtained by differential gene analysis
(Figure 1); thirdly, 21 hubgenes were screened by LASSO
regression analysis. After crossing with immune DEGs, 1
key immune marker was obtained, namely, LANCLI;
fourthly, after correlation analysis and online database pre-
diction, a miRNA/mRNA axis was obtained, namely, miR-
6325/LANCL1 axis, and included in the final analysis
(Figure 2).

3.2. Results of LASSO Screening. A total of 21 hubgenes were
screened out by the LASSO model; the fitted regression
curve was shown in Figure 3(a); after the intersection, 1
key immune marker was obtained, namely, LANCLI, as
shown in Figure 3(b).

3.3. Results of ROC Verification in Key Immune Marker. The
ROC analysis results showed that LANCL1 has good pre-
dictability in GSE70006 (AUC=0.870, p<0.05) and
GSE91396 (AUC = 0.806, p < 0.05) (Figure 4).

3.4. Results of Correlation Analysis and Online Database
Prediction. A total of 13 miRNAs were found to be nega-
tively correlated with LANCLI. Meanwhile, mirWalk data-
base predicted that 390 miRNAs might be bind to
LANCLI. TargetScan database predicted that 215 miRNAs
might be bind to LANCLI. After intersection, 1 miRNA/
mRNA axis was obtained, namely, miR-6325/LANCLI1 axis
(Figure 5).

Neural Plasticity

3.5. Results of GSEA Analysis. The results of GO enrichment
analysis showed that NeuP genes were mainly related to
ribosomal small subunit assembly, nuclear-transcribed
mRNA catabolic process, nonsense-mediated decay, protein
localization to endoplasmic reticulum, establishment of pro-
tein localization to endoplasmic reticulum, cotranslational
protein targeting to membrane, positive regulation of cyclase
activity, protein targeting to membrane, nuclear-transcribed
mRNA catabolic process, translational initiation, and posi-
tive regulation of cholesterol efflux in biological process
(BP); mainly related to polysomal ribosome, cytosolic small
ribosomal subunit, cytosolic ribosome, small ribosomal sub-
unit, ribosomal subunit, cytosolic large ribosomal subunit,
large ribosomal subunit, ribosome, and polysome in cellular
component (CC); and mainly related to nucleotide receptor
activity, fibronectin binding, signaling adaptor activity, mod-
ified amino acid transmembrane transporter activity, struc-
tural constituent of ribosome, phospholipase A2 activity,
laminin binding, and signaling receptor complex adaptor
activity in molecular function (MF) (Figure 6(a)). The
results of KEGG analysis showed that NeuP genes were
mainly related to ribosome pathway (Figure 6(b1)) and pen-
tose and glucuronate interconversions pathway (Figure 6
(b2)). The results of IC analysis showed that NeuP genes
were mainly related to CD4+ T regulatory cells functions,
CD4+ T follicular helper cells functions, dendritic cells
(DCs) functions, endogenous retroviruses (ERVs)-related
immune response, naive and effector CD8+ T cells func-
tions, and macrophages functions (Figure 6(c)).

3.6. Correlation Analysis Results between Genes and Immune
Infiltrating Cells. Correlation analysis results showed that B
cells naive was negatively correlated with T cells memory
activated; B cells memory was positively correlated with T
cells follicular helper and macrophages M2; plasma cells
was negatively correlated with T cells CD4 naive; T cells
CD8 was positively correlated with macrophages M1; T cells
CD4 naive was negatively correlated with immune score; T
cells CD4 memory resting was negatively correlated with
dendritic cells resting; T cells follicular helper was positively
correlated with macrophages M2; T cells regulatory (Tregs)
was positively correlated with Mast cells resting; NK cells
resting was positively correlated with macrophages MO
(Figure 7(a)). LANCLI1 was positively correlated with T cells
CD4 naive (r =0.880, p < 0.05) (Figure 7(b)).

4. Discussion

Because of the characteristics of the easily recurrent and dif-
ficult treatment of NeuP, it seriously affects the quality of life
of the population. Therefore, it is very important to find out
the mechanism of NeuP. At present, the mechanism of
inflammatory response and the imbalance of immune
microenvironment of NeuP has been paid more and more
attention by researchers [35]. In this study, we screened
the immune genes closely related to NeuP, and estimated
the infiltrating degree of immune infiltrating cells in the
immune microenvironment. In this study, we found
LANCLLI as a key immune marker of NeuP and also found
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a miRNA/mRNA axis that closely related to LANCLI,
namely, miR-6325/LANCLI axis. We found the LANCL1
was positively correlated with T cells CD4 naive. In addition,
T cells, B cells, NK cells, macrophages, and dendritic cells
have obvious correlation, suggesting the changes of immune
microenvironment in NeuP.

In the IC analysis results, we found that the NeuP gene
was mainly related the biological process of T cell and mac-
rophages. In the results of immune infiltration analysis, we
also found a positive correlation between T cells and macro-
phages. After peripheral nerve injury, an increase in the
number of T cells has been found in the dorsal root ganglia
and spinal cord, which suggests that they may play a role in
NeuP [36]. After nerve injury occurs, mast cells will be acti-
vated first and release too much histamine [37] and TNF
[38] and other cytokines, which will lead to nociceptor sen-
sitivity and help the recruitment of neutrophils and macro-
phages. Both neutrophils and macrophages can produce
and release cytokines such as TNF and prostaglandin E2
(PGE2) [39], which can further sensitize nociceptors. The
aforementioned cellular activities promote the recruitment
of T cells, and T cells can release a variety of cytokines
according to their subtypes [40]. The recruitment of
immune cells and the release of cytokines aggravate the
inflammatory response of nerve injury, leading to NeuP. In
our results, T cells, macrophages, and mast cells have an
obvious positive correlation, which verifies the important
role of the above-mentioned immune cascade in the mecha-
nism of NeuP. The cascade reaction started by the activation
of mast cells continuously recruits macrophages and T cells
and releases excessive cytokines, leading to the continuous
enhancement of the inflammatory response.

CD4+ T cells are helper cells among T cells, which are
divided into two subtypes, namely, T helper 1 (Thl) and
Th2 cells [41]. Previous studies have shown that Th1 cells
produce interleukin-1 (IL-2) and interferon gamma (IFN-
y), which are involved in cell-mediated inflammation; Th2
cells produce IL-4, IL-6, IL-9, IL-10, and IL-13, which are
involved in antibody and allergic reactions, and inhibit
Thl cells from synthesizing proinflammatory cytokines
[42]. Our results showed that CD4 + T cells were negatively
correlated with immune score, suggesting that some CD4 +
T cells had protective effect on nerve injury. At the same
time, our results also found that LANCLI was positively cor-
related with CD4 + T cells, and the expression of LANCLI
was downregulated in NeuP, suggesting that LANCL1 may
be a protective factor in the neuroinflammatory response,
and LANCL1 may participate in the immune-related signal
regulation process. Previous studies have found that
LANCLLI has the function of resisting oxidative stress and
protecting nerve cells [43, 44]. Decreased expression of
LANCLLI affects the protective effect of related pathways
on damaged nerves. Downregulation of the miR-6325/
LANCLI axis may be involved in the progression of NeuP.
The role of miR-6325 is still unknown, but this gene has also
been found in previous NeuP sequencing screening [45],
suggesting that miR-6325 may be involved in some regula-
tory pathways of NeuP. Whether it is only involved in the
miR-6325/LANCL1 axis still needs further exploration.

Our results also found a negative correlation between B cells
and CD4+ T cells. At present, the role of B cells in NeuP is
still unclear and needs further exploration [8, 9].

5. Conclusion

In this study, we found that LANCL] may be a protective
factor for NeuP, and the miR-6325/LANCLI1 axis may be
involved in the occurrence and development of NeuP. Cas-
cade reactions including mast cells, macrophages, and T cells
may be an important reason for the aggravation of nerve
damage.
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