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Abstract: Alkaloids are nitrogenous compounds with various biological activities. Alkaloids with
anti-inflammatory activity are commonly found in terrestrial plants, but there are few records of the
identification and characterization of the activity of these compounds in marine organisms such as
fungi, bacteria, sponges, ascidians, and cnidarians. Seaweed are a source of several already elucidated
bioactive compounds, but few studies have described and characterized the activity of seaweed
alkaloids with anti-inflammatory properties. In this review, we have gathered the current knowledge
about marine alkaloids with anti-inflammatory activity and suggest future perspectives for the study
and bioprospecting of these compounds.
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1. Introduction

Since the early days of medicine, civilizations have used plants, herbs, and their derivatives for the
treatment of numerous diseases. According to the World Health Organization, the use of traditional
and complementary medicines, among which herbal medicines, is extensive and involves about 80% of
member states’ population [1]. The scientific community has turned to medicinal plants as one of the
largest sources of biologically active substances [2] in order to identify, characterize, and understand the
mechanisms of action of numerous compounds found in these species. Many studies have shown the
anti-inflammatory potential of substances found in plants and seaweeds that act on major inflammation
control pathways [3,4]; however, it appears that pharmacological activities have been elucidated for
only a few of these species [5].

The ocean, which hosts the largest concentration of species on the planet, became the target of
scientific interest around the middle of the 20th century. Since then, tens of thousands of new substances
with pharmacological potential have been described [6]. Among all species living in the oceans,
seaweed is a promising source of new bioactive and pharmacological compounds [7]. Seaweeds are
photosynthetic autotrophic organisms classified into different taxonomic groups, which produce a range
of chemically distinct compounds [8]. Some of these compounds are not present in plants and have
bioactive potential, of interest for pharmaceutics, cosmetics, and nutrition [9–12]. Seaweeds are sources
of many biochemical compounds such as lipids, vitamins, proteins, polysaccharides, fibers, minerals,
and others [11,13–16]. In addition to these compounds, seaweed produce a number of secondary
metabolites with remarkable biological activity, such as phenolic compounds, polysaccharides,
carotenoids, lectins, steroids, polyketides, and many others [17]. Several studies have shown that
seaweed contain a range of bioactive substances with diverse pharmacological potential, such as
antiviral [18], antibiotic and antiendotoxic [19], antifungal [20], antiparasitic [21], antioxidant [22],
anti-ageing [23], antinociceptive [24], anti-tumor [25], anti-diabetic [26], anti-inflammatory, and
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immunomodulatory [27,28] effects. Among all, the anti-inflammatory activity of compounds derived
from seaweed is one of the largest bioprospecting areas in marine natural products.

Several studies have already demonstrated the activity of compounds of different chemical
nature from those of seaweed in different experimental models, with a precise characterization of
their structures, activities, and mechanisms of action. Compounds such as phenols and polyphenols,
carotenoids, proteins and peptides, and polysaccharides have well-characterized anti-inflammatory
activity [29]. In addition to these compounds, other classes of molecules have raised interest in this
area of bioprospecting. Alkaloids, for example, are nitrogenous compounds derived from amino
acids that have a wide range of biological activities [29,30]. Some chemical characteristics of these
molecules, such as ionization profile and capacity to form stable salts, may indicate their higher
potential as drug candidates, when compared with other compound classes. Around 95% of drugs are
estimated to have an ionizable group (75% weak bases, 20% weak acids, and 5% non-ionic molecules,
ampholytes, and alcohols) [31]. For a given compound to be considered drug-like (or even lead-like),
its ability to ionize is pivotal, as ionization is important in various phases of the drug optimization
process [32]. Ionizable groups are key to fine-tuning the aqueous solubility, or hydrophilicity [33], and
CNS permeability [34] of a molecule and to enhancing its activity [35]. Because of their ionization
profile, alkaloids (which are largely weak bases) are good drug candidates better than substances with
a non-ionization profile. In addition, basic groups, such as amines, amides, amidine, and guanidine,
can form salts in biological media. The incorporation of these groups yields molecules with low
hydrophobicity. Many drugs containing basic groups perform their activities by ionic hydrogen
bonds (when salts) or induced dipoles. In this case, alkaloids can form stable salts that have better
pharmacokinetic properties than non-basic drugs [36].

Alkaloids from plants are an important class of molecules with anti-inflammatory activity [37,
38], demonstrating inhibition of expression of several pro-inflammatory factors, such as cytokines,
lipid mediators, histamine, and enzymes involved in the inflammatory response [39]. Although
most commonly found in plants, alkaloids can also be obtained from marine organisms. Trabectedin,
for example, is an alkaloid obtained from a marine ascidian with a well-documented antitumoral
activity and actually used as a treatment against many types of cancer [40,41]. Another example
is pyridoacridines, a class of marine alkaloids obtained from different organisms, for which many
biological activities have already been identified and characterized [42]. Several studies have also
described the ability of marine alkaloids to inhibit proinflammatory factors in in vitro and in vivo
experimental models [43]. However, the characterization of the anti-inflammatory activity of seaweed
alkaloids is still understudied and underdeveloped and thus requires great efforts in the field of
bioprospecting marine natural products.

In this review, we have gathered the current knowledge about the anti-inflammatory activity of
alkaloids from marine organisms. More specifically, we have focused on seaweed, reviewing their
mechanisms of action and discussing the state of the art and future perspectives for identification and
characterization studies involving these compounds.

2. Anti-Inflammatory Alkaloids of Marine Organisms: Sources and Bioactivity

Marine alkaloids originating from marine organisms are described in the literature, presenting
different biological and pharmacological activities. Several studies describe the presence of alkaloids
in Alcyonacea coral species, with antiviral, antitumor, antibiotic, and immunomodulatory activities [44].
Similarly, many sponge alkaloids have been identified, and their potential antibiotic, antifungal,
antitumor, antileukemic, and antidepressant activities have been described [45–49]. Similar effects
were observed for alkaloids obtained from genera of marine fungi [50]. Other biological activities
described for marine alkaloids involve anti-parasitic, enzymatic, anti-serotonergic, and antiretroviral
effects [51,52]. Despite all these potential therapeutic activities, bioprospecting of marine alkaloids
with anti-inflammatory activity is still an open study field.
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2.1. Marine Fungi- and Bacteria-Derived Alkaloids

Marine microorganisms such as fungi and bacteria are also sources of primary and secondary
metabolites with anti-inflammatory activity. The major classes of molecules found in these organisms
are peptides and proteins, lipids, polyketides, organic acids, and terpenoids [53–55]. Fungi, for example,
are the source of a large number of marine alkaloids with known biological activity [50,56]. In addition,
a large fraction of the nitrogenous compounds found in ascidians are alkaloids [57], and some of them
exhibit anti-inflammatory activity.

Asperversiamides B (1), C (2), F (3), and G (4), indole alkaloids derived from the marine
fungus Aspergillus versicolor, reduced NO levels by inhibiting iNOS activity in lipopolysaccharide
(LPS)-stimulated RAW 264.7 macrophages [58]. Two N,N’-ketal quinazoline alkaloids, the enantiomers
(±)-penicamide A [5: (+)-penicamide A; 6: (-)-penicamide A], extracted from the fungus Penicillium
canescens isolated from the ascidian Styela plicata, also reduced NO levels produced by LPS-stimulated
macrophages [59]. The two diketopiperazine alkaloids 5-prenyl-dihydrovariecolorin F (7) and
5-prenyl-dihydrorubrumazine A (8), extracted from Aspergillus spp. found in seaweed, showed an
inhibitory effect on iNOS and COX-2 activity, reducing NO and PGE2 levels produced by LPS-stimulated
RAW 264.7 and BV2 cells [60]. Neoechinulin A (9), an indolic alkaloid extracted from marine
fungi Eurotium spp., was able to reduce NO and PGE2 production by inhibiting iNOS and COX-2
expression and reduced the production of IL-1β and TNF-α in LPS-stimulated RAW 264.7 cells [61].
These anti-inflammatory effects were associated with the inhibition of IκB-α phosphorylation and
degradation and the inhibition of NF-κB p65 subunit binding to nuclear DNA, which blocked the
NF-κB pathway-mediated pro-inflammatory response. Neoechinulin A was also able to inhibit MAPK
p38 phosphorylation, also involved in inducing a pro-inflammatory response.

Chaetoglobosin Fex (10), the chytocalasan-based alkaloid extracted from the fungus Chaetomium
globosum, was able to reduce the production of TNF-α, IL-6, and MCP-1 and also inhibited IκB-α
degradation, the translocation of the NF-κB p65 subunit to the cell nucleus, and the phosphorylation
of p38, ERK1/2, and JNK MAPKs by LPS-stimulated macrophages [62]. This study also showed that
Chaetoglobosin Fex was also able to reduce CD14 expression in LPS-stimulated cells. CD14 plays an
important role in LPS recognition and in the initiation of a proinflammatory response by activation
of the TRL4/MD-2 recognition complex [63]. Finally, the quinoline alkaloids actinoquinolines A (11)
and B (12) extracted from bacteria Streptomyces spp. found in marine sediment were able to inhibit
COX-1 and COX-2 activity in vitro [64]. Chemical structures of the alkaloids described in this section
are shown in Figure 1.

2.2. Sponge-Derived Alkaloids

Most of the biologically active marine compounds already identified between 2001 and 2010
came from sponges [65] and, in the past decade, more than 1900 new bioactive compounds were
obtained from these organisms, which thus appear as a major source of marine natural products [66–72].
Anti-inflammatory sponge compounds have an inhibitory effect on inflammatory mediators, such
as cytokines and chemokines, and are able to modulate several enzymatic pathways involved in the
synthesis of pro-inflammatory factors, such as COX-2, and cellular signaling pathways, such as the
MAPK and NF-κB pathways [73–76]. Some studies also describe the anti-inflammatory activity of
alkaloids from sponges and their derivatives, as discussed below.

Barettin (13), the brominated alkaloid extracted from the sponge Geodia barretti, showed in vitro
anti-inflammatory and antioxidant activity, reducing both TNF-α and IL-1β levels in LPS-stimulated
THP-1 cells [77]. In this study, barettin also showed a potent antioxidant effect, reducing lipid
peroxidation (risk factor associated with chronic inflammation) in HepG2 cells. Halichlorine (14),
an alkaloid extracted from the sponge Halichondria okadai, inhibited the expression of VCAM-1, ICAM-1,
and E-selectin in LPS-stimulated aortic endothelial cells, inhibiting macrophage adhesion to cultured
cell monolayers and exerting an anti-inflammatory effect associated with NF-κB pathway inhibition [78].
The pyrrole alkaloid (10Z)-debromohymenialdisine (15), extracted from a sponge of the genus Stylissa,
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was able to reduce the expression of IL-1β, IL-6, TNF-α, iNOS, and COX-2, reducing also the levels of
NO and PGE2 in co-cultures of LPS-stimulated Caco-2 and THP-1 cells [79]. In this study, it was also
observed that treatment of the cells with the alkaloid reduced the phosphorylation of p38, ERK1/2,
JNK, and NF-κB p65 subunit in the cytoplasm, also reducing the translocation of phosphorylated p65
to the cell nucleus. Interestingly, in addition to the inhibitory effect on enzymes and proinflammatory
factors, the alkaloid (10Z)-debromohymenialdisine induced an increase in HO-1 expression and the
translocation of the transcription factor Nrf-2 to the cell nucleus; these are protein factors associated
with both suppression of oxidative stress and inflammation in LPS-activated macrophages.
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Stylissadines A (16) and B (17), two alkaloids obtained from the sponge Stylissa flabellata, showed a
specific antagonistic effect on P2X7 receptors in THP-1 cells, with no signs of cytotoxicity to cells [80].
P2X7 receptors are ATP receptors involved in the activation of inflammatory response mechanisms,
such as the activation of NLRP3 inflammasomes, the synthesis of proinflammatory cytokines and
chemokines, the activation of MAPK and phospholipase C, and the activation of transcription factors
involved in the expression of inflammatory genes, like NF-κB and NFATc1 [81]. The activity of
these alkaloids as P2X7 receptor antagonists may therefore have broad therapeutic possibilities for
inflammatory and immune-mediated diseases. The 6-bromoindole derivatives geobarettin B (18) and C
(19), the 6-bromoindole alkaloids 6-bromoconicamin (20), and barettin (13), obtained from the sponge
G. barretti, showed an anti-inflammatory effect on LPS-, TNF-α-, and IL-1β-stimulated dendritic cells,
reducing IL-12p40 secretion [82]. Geobarettin C was also able to increase the levels of IL-10 secreted by
these cells. In this study, dendritic cells (DCs) matured by treatment with geobarettin B and C were
subsequently co-cultured with CD4+ T cells, and a reduction in IFN-γ levels produced by these T cells
was observed. The data suggest an extended anti-inflammatory effect not only on innate immunity
mechanisms but also on adaptive immune responses. A synthetic tricyclic guanidine (21), similar to
guanidine alkaloids from marine sponges, also showed an inhibitory effect on IFN-γ and MCP-1/CCL2
levels in an in vitro model of macrophage infection by Leishmania infantum [83]. Chemical structures of
the alkaloids described in this section are shown in

2.3. Other Invertebrate Animals as Sources of Marine Alkaloids

Alkaloids with anti-inflammatory activity have also been found in several other invertebrate
marine organisms. The alkaloids tubastrine (22) and orthidines A (23), B (24), C (25), E (26), and
F (27), isolated from the ascidian Aplidium orthium, were able to reduce superoxide synthesis in
phorbol-12-myristate 13-acetate (PMA)-stimulated neutrophils in vitro and, in an in vivo study,
reduced superoxide levels in a gouty arthritis model [84]. Also, tubastrine and orthidine F
showed an inhibitory effect on neutrophil infiltration in this in vivo model. Ascidiathiazones A
(28) and B (29), two thiazone-containing quinolinequinone alkaloids obtained from Aplidium spp.,
had a similar effect on superoxide production by PMA-stimulated neutrophils in vitro and in an
in vivo murine gout model [85]. Kottamide D (30), the imidaloze-containing alkaloid obtained
from the ascidian Pycnoclavella kottae, was also able to reduce superoxide synthesis by PMA and
N-formylmethionyl-leucyl-phenylalanine (fMLP)-activated neutrophils in vitro [86]. Aqueous extracts
from the anemones Anemonia sulcata and Actinia equina, whose major detected constituent was the
methylpiridinium alkaloid homarine (31), were able to reduce NO and reactive oxygen species
(ROS) production in LPS-stimulated RAW 264.7 cells and had an inhibitory effect on the activity of
PLA2, one of the enzymes involved in the activation of the arachidonic acid pathway during the
inflammatory response [87]. The compound 5α-iodozoanthenamine (32), a zoanthamine alkaloid from
the cnidarian Zoanthus kuroshio, showed an anti-inflammatory effect on fMLP-stimulated neutrophils,
reducing superoxide anion generation and elastase release by these cells [88]. The molecules
3-hydroxinorzoanthamine (33), norzoanthamine (34), and zoanthamine (35), additional zoanthamine
alkaloids extracted from Zoanthus cf. pulchellus, promoted the reduction of ROS and NO produced by
LPS-stimulated BV-2 cells [89]. Convolutamydine A (36), an oxindole alkaloid commonly found in
marine bryozoans, and two synthetic analogous molecules, ISA147 and ISA003, were able to reduce
leukocyte migration to the lesion site and the levels of IL-6, TNF-α, NO, and PGE2 in a model of
carrageenan-induced inflammation in a subcutaneous air pouch [90]. Chemical structures of the
alkaloids described in this section are shown in Figure 3. Figure 2.
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3. Anti-Inflammatory Alkaloids in Marine Algae

As previously shown, seaweed are a source of numerous anti-inflammatory compounds already
described. However, there are few studies on alkaloids. Most biologically active alkaloids described
so far are from plants, while few studies describe the isolation and biological activity of seaweed
alkaloids [29].

Among the algae with identified anti-inflammatory compounds, those of the genus Caulerpa are
well studied and described in the literature [91–93]. Studies from our group showed anti-inflammatory
activity of compounds extracted from green algae of the genus Caulerpa. Caulerpa mexicana aqueous and
methanolic extracts were able to reduce IL-6, IL-12, and TNF-α production by LPS-stimulated
macrophages and leukocyte migration in murine zimosan-induced peritonitis and air pouch
inflammation models and decreased xylene-induced ear edema [27]. Subsequently, we observed the
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anti-inflammatory activity of a C. mexicana methanolic extract in a murine model of dextran sulfate
sodium (DSS)-induced ulcerative colitis, with the attenuation of the clinical signs of the disease and a
significant reduction of IFN-γ, IL-6, IL-12, IL-17A, and TNF-α levels, together with the preservation of
the morphological structure of the colon and a reduction of inflammatory tissue infiltrates [28]. In fact,
in another study, different extracts of C. mexicana and Caulerpa sertularioides showed anti-inflammatory
activity in a murine model of carrageenan-induced peritonitis, reducing leukocyte migration to the
lesion site [94].

Algae extracts of the genus Caulerpa are rich in caulerpin (37), an indolic alkaloid with proven
anti-inflammatory activity. Caulerpin has been described in different species of the genus Caulerpa,
such as Caulerpa peltata, Caulerpa racemosa, Caulerpa cupressoides, Caulerpa paspaloides, Caulerpa prolifera,
C. sertularioides, C. mexicana, and Caulerpa lentillifera, besides being found in the red algae Chondria
armata [95]. The analysis of C. peltata and C. racemosa ethanolic extracts showed caulerpin as one of
the main products [96,97]. Other indolic alkaloids of the genus Caulerpa found in algae and already
identified are racemosin A (38) [98], B (39) [99], and C (40), and caulersin (41) [100]. The first alkaloid
showed protective activity on SH-SY5Y cell viability, the second one can give rise to alkylamide
derivatives capable of inducing cell death in the breast cancer cell line MDA-MB-231, and the last two
showed inhibitory activity on PTP1B; however, anti-inflammatory activity of these compounds has
not been registered to date. On the other hand, the anti-inflammatory activity of caulerpin has been
described by some studies. Caulerpin treatment was able to decrease the plasma extravasation in a
murine model of capsaicin-induced ear edema and reduce total leukocyte migration and neutrophil
migration in a murine model of carrageenan-induced peritonitis [101]. We also demonstrated the
anti-inflammatory effect of caulerpin in a murine model of DSS-induced ulcerative colitis. Treatment of
the animals with caulerpin attenuated the clinical signs of the disease, reduced inflammatory infiltrates
and the levels of the proinflammatory cytokines IL-6, IL-12, TNF-α, and IFN-γ, and increased the
levels of the anti-inflammatory cytokine IL-10 in the colon of the affected animals. Caulerpin treatment
also reduced NF-κB p65 expression in the affected tissue, suggesting a central modulating effect on
NF-κB activation [102].

Red algae of the genus Gracilaria have also been described as important sources of anti-inflammatory
compounds and alkaloids with elucidated biological activity [103]. The aqueous extract of Gracilaria
tenuistipitata showed anti-inflammatory activity in an in vitro Hepatitis C Virus (HCV)-induced
inflammation model [104]. Treatment of HCV-infected cells with this extract was able to inhibit
COX-2 activity and PGE2 synthesis, as well as NF-κB p65 translocation to the cell nucleus and TNF-α,
IL-1β, and iNOS gene expression. On the other hand, a Gracilaria changii methanolic extract reduced
TNF-α levels and TNF-α and IL-6 gene expression in PMA-stimulated U937 cells [105]. An azocinyl
morpholinone alkaloid (42) extracted from Gracilaria opuntia showed anti-inflammatory activity in a
murine model of carrageenan-induced paw edema, reducing edema formation by 6 h and exhibiting a
selective inhibitory effect on COX-2 and 5-LOX activity [106]. Other red algae of the genus Laurencia
are also sources of alkaloids with known biological activities and already elucidated antimicrobial
potential [107–109]. On the other hand, a methanol/dichloromethane extract of Laurencia obtusa showed
an anti-inflammatory effect on LPS-stimulated THP-1 cells, reducing TNF-α production by these cells,
and decreased in vivo the inflammatory exudate in a murine model of carrageenan-induced paw
edema [110]. The anti-inflammatory effect of the extract was attributed to the presence of secondary
metabolites such as alkaloids and terpenoids. Chemical structures of the alkaloids described in this
section are shown in Figure 4.



Mar. Drugs 2020, 18, 147 9 of 17

Mar. Drugs 2020, 18, 147 9 of 17 

 

carrageenan-induced paw edema [110]. The anti-inflammatory effect of the extract was attributed to 
the presence of secondary metabolites such as alkaloids and terpenoids. Chemical structures of the 
alkaloids described in this section are shown in Figure 4. 

 

 
Figure 4. Anti-inflammatory marine alkaloids derived from algae. 

4. Bioprospecting of Marine Anti-Inflammatory Alkaloids and Future Perspectives 

The marine biome is currently one of the largest sources of biologically active compounds, 
offering a great possibility of bioprospecting for new pharmacological treatments [6]. Micro- and 
macroalgae are organisms with great potential for bioprospecting marine natural products and are 
rich sources of compounds with already characterized antimicrobial, antitumor, anticoagulant, and 
anti-inflammatory activity [111–114]. Among these compounds, alkaloid have great biological 
potential. Despite this potential, until the last decade, no alkaloid identified from seaweed was used 
as a therapeutic resource in modern medicine [115]. 

Many alkaloids have already been identified in seaweed species, and algae of the genus Caulerpa 
are known sources of alkaloids with already described biological activities [98–100,102,116]. 
However, while numerous studies elucidate the anti-inflammatory activity of other seaweed 
compounds such as phenols and polyphenols, carotenoids, proteins and peptides, and sulfated 
polysaccharides, very few studies have addressed the anti-inflammatory activity of seaweed 
alkaloids. Further investment in the bioprospecting of these compounds is needed, and there is 
evidence of the unexplored anti-inflammatory potential of these molecules. 

Figure 4. Anti-inflammatory marine alkaloids derived from algae.

4. Bioprospecting of Marine Anti-Inflammatory Alkaloids and Future Perspectives

The marine biome is currently one of the largest sources of biologically active compounds, offering
a great possibility of bioprospecting for new pharmacological treatments [6]. Micro- and macroalgae
are organisms with great potential for bioprospecting marine natural products and are rich sources of
compounds with already characterized antimicrobial, antitumor, anticoagulant, and anti-inflammatory
activity [111–114]. Among these compounds, alkaloid have great biological potential. Despite this
potential, until the last decade, no alkaloid identified from seaweed was used as a therapeutic resource
in modern medicine [115].

Many alkaloids have already been identified in seaweed species, and algae of the genus
Caulerpa are known sources of alkaloids with already described biological activities [98–100,102,116].
However, while numerous studies elucidate the anti-inflammatory activity of other seaweed compounds
such as phenols and polyphenols, carotenoids, proteins and peptides, and sulfated polysaccharides,
very few studies have addressed the anti-inflammatory activity of seaweed alkaloids. Further
investment in the bioprospecting of these compounds is needed, and there is evidence of the unexplored
anti-inflammatory potential of these molecules.

Seaweed alkaloids with distinct biological activities may have an indirect impact on inflammatory
mechanisms. This is the case for alkaloids with antioxidant activity, and the antioxidant mechanisms
impacting proinflammatory signaling pathways are well described in the literature [117,118].
For example, dictyospiromide (43), an antioxidant alkaloid obtained from the brown algae Dictyota
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coriacea, had a potent antioxidant effect on neuron-like PC12 cells, activating Nrf2/ARE signaling
pathway and increasing HO-1 cell expression [119]. The Nrf2/ARE pathway regulates the expression
of antioxidant and anti-inflammatory genes, inhibiting the migration of proinflammatory cells and
activating a cytoprotective redox state, which is well characterized in chronic and neurodegenerative
disease models [120,121]. HO-1 also participates in macrophage polarization to the M2 phenotype,
inducing the expression of anti-inflammatory genes and modulating the production of proinflammatory
factors such as ROS and proinflammatory cytokines [122]. Thus, alkaloids such as dictyospiromide with
antioxidant activity need to be studied further in order to elucidate their anti-inflammatory potential.

PTP1B inhibitor alkaloids also have well-described biological activity, as reported in studies
bioprospecting marine natural products with anti-tumor activity [123]. However, some studies
have also demonstrated the participation of PTP1B as a regulator of proinflammatory signaling
pathways. PTP1B -/- mice showed reduced eosinophilia in lung tissue and bronchoalveolar lavage in
a mouse model of ovalbumin-induced respiratory allergy [124]. The interaction between VCAM-1
and PTP1B is necessary for ERK1/2 activation and is one of the regulatory pathways for leukocyte
migration [125], which explains the observed anti-migratory effect. Inhibition of PTP1B also induces
macrophage polarization to the M2 phenotype, with reduced levels of IL-1β, IL-12p70, IL-17, IL-21,
IL-23, and M-CSF, in addition to increasing IL-10 production in LPS-stimulated RAW264.7 cells [126].
Alkaloids with PTP1B inhibitory activity, such as racemosin C (40) and caulersin (41), found in algae
of the genus Caulerpa, need to be investigated as potential compounds affecting PTP1B-mediated
anti-inflammatory activity.

5. Conclusions

Marine alkaloids with anti-inflammatory activity are compounds with great potential for
pharmacological and medical use but are still a subject of bioprospecting in marine natural products
that needs to be explored further. These compounds can be found in sponges, microorganisms,
ascidians, and cnidaria. Very few studies have identified and characterized these molecules. Studies on
seaweed alkaloids, in particular, need to be stimulated in order to elucidate the full range of biological
activities of these compounds, especially their anti-inflammatory potential.
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