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Bayesian Framework to Augment Tumor Board

Decision Making

Stefano Pasetto, PhD?; Robert A. Gatenby, MD*?; and Heiko Enderling, PhD*-

PURPOSE Ideally, specific treatment for a cancer patient is decided by a multidisciplinary tumor board, inte-
grating prior clinical experience, published data, and patient-specific factors to develop a consensus on an
optimal therapeutic strategy. However, many oncologists lack access to a tumor board, and many patients have
incomplete data descriptions so that tumor boards must act on imprecise criteria. We propose these limitations
to be addressed through a flexible but rigorous mathematical tool that can define the probability of success of
given therapies and be made readily available to the oncology community.

METHODS We present a Bayesian approach to tumor forecasting using a multimodel framework to predict
patient-specific response to different targeted therapies even when historical data are incomplete.

RESULTS We demonstrate that the Bayesian decision theory’s integrative power permits the simultaneous
assessment of a range of therapeutic options.

CONCLUSION This methodology proposed, built upon a robust and well-established mathematical framework,
can play a crucial role in supporting patient-specific clinical decisions by individual oncologists and multi-

specialty tumor boards.
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INTRODUCTION

The treatment or treatment combinations for individual
patients with cancer are often determined by a tumor
board of physicians from different specialties such as
surgery, pathology, medical oncology, and radiation
oncology. The doctors’ knowledge and experience,
available published studies, and facilities accessibility
in the treatment center or hospital or clinic guide the
decisional process. Expertise and opinions converge to
form, in a collective decisional effort, the optimal
treatment. Although the combined clinical and em-
pirical knowledge of tumor board members yields
improved outcomes, the decision-making process is
often imprecise, particularly when a patient’s status
does not match cohorts in prior clinical investigations.
Furthermore, many physicians do not have access to
the multidisciplinary expertise of a tumor board.

With the growing amount of data collected for indi-
vidual patients and cancer populations, a general and
robust mathematical framework may contribute to a
reproducible clinical decision using a reliable deci-
sional algorithm. Ideally, such an algorithm would
systematically and rigorously integrate patient-specific
data with published cohort studies and large-scale

population data from multiple institutions to predict
treatment response with potentially adverse effects
from all available clinical options. Such algorithms are
not built to replace the oncologists and medical ex-
pertise; instead, they are proposed to help integrate
and rigorously analyze the ever-increasing amount of
data on highly heterogeneous diseases with significant
interperson and intraperson heterogeneity for in-
formed clinical decision making.

Historical examples in this direction are available al-
ready since late 1980s.1? Nowadays, artificial intelli-
gence is used in evidence-based learning to support
the decision-making process.® The most notable ex-
ample of this approach is probably the IBM Watson
Health Program,* although less complicated online
applications based on statistical indicators inclusive or
not of past or modern genomic tests (eg, Oncotype DX,
but see also Mamma/BluePrint) such as Adjuvant! or
PREDICT became available much earlier,>” not
without skepticism.®2 However, mechanistic mathe-
matical modeling akin to clinical decision making in-
volves many degrees of freedom, or variables and
parameters, such that models with different biologic
assumptions can simulate the selfsame data sets.
When applied to patient-specific clinical data, this
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CONTEXT

Key Objective

How to decide on the optimal treatment for a patient? Our approach aims to rate tumor-board-preselected optimal treatments
with a Bayesian statistical tool rather than determine optimal treatment through externally specific indexes.

Knowledge Generated

We highlight the importance of the Bayesian model comparison as a useful statistical framework in the tumor board decisional
process. Its ability to naturally weigh a patient’s state and medical doctors’ knowledge represents critical complementary
support to oncology work.

Relevance

The tool is designed to support a tumor board decisional process. Throughout the access to the proposed cloud-computing
system, an oncologist will be able to insert the patient’s information and receive the most successful therapeutic path that
has already been applied in the literature.

assortment of models and model predictions complicates
decision making.

We propose to exploit Bayesian statistics to provide well-
developed principles and frameworks to recapitulate the tu-
mor board decisional process in terms of probability. The
tumor board discussions can be formalized as an optimization
process, acting on a suitably defined fitness function for the
patient. Here, we propose a flexible decisional framework
inclusive of several clinical solutions from both the literature
and the clinical tumor board expertise such that by having a
fully comprehensive view on the possibilities of outcomes of
cancer therapy, ie, a panoptic view on the problem, it can
attempt to rank available solutions by the likelihood of success
and therefore suggest a best one within the uncertainties.

Inthis approach, each patient is a set of clinical data points in
multidimensional parameter space, including demograph-
ics, clinical diagnosis, laboratory values, histologic features,
comorbid conditions, current medications, and so on (Fig 1)
upon which the best (combination of) therapies need to be
identified. The model examines available treatments, in-
cluding surgeries, radiotherapy, chemotherapy, immuno-
therapy, or psychologic support in the context of the desired
outcome (tumor control, palliation, etc). For example, the
model formulates the probability that a treatment X; or
perhaps a series of treatments X; combined with X5, X3, ...,
will produce some outcome Y, eg, the tumor burden,
relapse-free survival, tumor control for 12+ months, and
similar. Mathematically and clinically, both the existence and
uniqueness of a successful solution are not always available,
and the tumor board needs to identify suboptimal solutions.
In Figure 1, the optimal solution shifts the life expectation line
intercept with the time axis to the right as much as possible
with additional output on that prolonged life quality.

METHODS

Bayesian Decision Making

The attempt to model decisional processes starting from
logic deductions finds its natural setting in the Bayesian
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framework.® We refer to Sas a clinical hypothesis of interest
(eg, S = radiotherapy can control tumor burden, or the
S =drug X will increase time to progression compared with
drug Y) and [ as the proposition representing prior or
previously acquired information (eg, / = the tumor is an
early-stage breast cancer without lymph node or distant
metastases). The plausibility of the sentence S given
(conditional on) the truth of the information /is called prior
probability and labeled as Pr(S|/). What is the patient-
specific likelihood that the tumor burden is controlled,
eg, by radiation therapy? The patient-specific probability is
obtained once patient-specific data D are acquired (eg,
D =the patient tumor is 3 cm in diameter), and we will label
this probability as Pr(D|S, /). Then, the posterior probability
of interest, ie, the probability that the tumor burden can be
controlled by radiotherapy provided that the tumor is early-
stage and positive for a molecular biomarker, is given by the
Bayes theorem?®:

Pr(SI/)Pr(DIS, /)

Pr(SID. ) =—=F o

(N

where Pr(D|/) is the normalization constant.

To identify the treatment with the highest likelihood of
success requires the ability to grade different treatment
models, frequently dealing with non-Gaussian or skewed
error likelihood, which can interpret the same data rig-
orously in a patient-specific way. Inherent to the
Bayesian framework is a natural way to rank diverse
model solutions. Here, we discuss Bayesian decision
making on this model of models (MoM) for oncologic
decision theory.

Bayes theorem, Equation 1, encodes previous knowledge
that can influence an outcome. In the Bayesian interpre-
tation, the probability is a (real number) measure of a
proposition or hypothesis plausibility, given the truth of the
patient-specific information acquired. Most textbooks on
Bayesian statistics introduce a comparison between
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FIG 1. Every patient of a trial is located in a point in the space of parame

ters of the model considered. For example, the patient under

consideration, a BW, has coordinates {p; = p1,sw, p2 = p2,ew} in model M;(O,p1, po), and coordinates {p; = p1gw, P2 = P2,8w,

psew = 0} in model Mo(O,p1, p2, p3). The common origin O of the

defining set of parameters travels on the timeline: we are

considering dynamical systems of equations; hence, the only parameter common to all the models is the time t (here represented
ideally with a black curve with a direction passing through O). In the figure on the right, for each patient, the BW-specific life

expectancy function is considered, = = #(t). The Gompertz-Makeham la

w of mortality (GM-law, black dashed line) is sketched. At t,

the BW receives the diagnosis of cancer. We assume a negative slope for 7 at ¢, and we assume the patient-specific life expectation
7ps () to be penalized under the GM-law by a penalizing factor 57,5 because of geographic, ethnic, or social factors, eg, the BW patient
is a former smoker. The red curve is the optimal trajectory of life expectancy as a function of time for a patient predicted by the optimal
patient-specific treatment identified by the tumor board. The suboptimal trajectories, ie, the temporal evolution of a decisional curve,
eg, yellow-dashed curves labeled 1, 2, or 3, are located below the optimal path with curve 3 to be preferred over 2 and 2 to be
preferred over 1 because its intercept with the y-axis (ie, the death of the individual) is farther on the right (ie, the life is longer). The
evolutionary tumor board is the taskforce act to choose the optimal red curve. BW, blue woman.

models. We refer the interested reader to the many ex-
cellent extended reviews on this topic.!%1?

We assume that a set of models is available to work in
synergy to achieve the optimization problem introduced
above. Let different treatments represent the set of models,
eg, a combination of different chemotherapeutics, surgical
procedures, radiation therapies, or immunotherapies. For
simplicity, we assume that they are all available in the
hospital, but see considerations on Discussion section. We
identify a patient as a point in a multidimensional space,
p={p1, ..., pn}, Where each value py, po, ..., py IS some
clinically available measurement (eg, age, sex, tumor
burden size, prostate-specific antigen [PSA] level, WBC
count, etc) at the time of the diagnosis t = t, (Fig 1). The
decision support framework must then establish each
variable’s role, according to its clinical significance for the
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cancer treatment, based on historical literature and other
available clinical trial outcomes. For example, in prostate
cancer treatment, metastatic sites and initial Gleason
scores are relevant, but the sex is fixed, and specific blood
cell counts are probably not prognostic unless abnormal.
Once the treatment response model is identified, patient-
specific disease trajectories can be simulated to optimize
and adapt therapy following the model forecasting.'® Such
a framework would then have to dynamically analyze and
switch between different solutions (ie, treatment ap-
proaches or protocols) when new data (such as clinical
response measurements) or treatments become available.

RESULTS

Bayesian Oncology MoM

We require all the models to be able to be compared in
some output, ie, in some clinically relevant metric such as a
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tumor marker (eg, PSA), or the tumor volume V;, or survival
7. We then score different therapies on that scale, eg, the
effects of radiation therapy or chemical or immunological
treatment with or without surgery on overall survival. Thus,
highly different therapeutic strategies can be fit into the
same patient-specific set of data.

An essential ability of a probabilistic descriptive or pre-
dictive framework is its ability to deal with continuous (eg,
PSA values) and discrete variables (eg, disease-free or
disease progressed). Furthermore, since virtually all
clinical data are collected at discrete intervals (eg, com-
puterized tomography scan every 3 months), the model
accommodates discontinuous neoplasia volume reduc-
tion or, as in surgical resection, with simple step-
functions. Finally, if we consider each model with its
prior distribution over a joint likelihood, the model with the
highest probability (global-likelihood or evidence) natu-
rally leads to model selection.

For each model considered, M, we start by encoding the
prior state of knowledge, /, into a prior probability distri-
bution Pr(p;|/), with p; ={p1, ..., pn}; being the set of pa-
rameters for the model M,. The first step is to establish a
prior distribution of credibility for the /""-model parameter
values p,. By training, validating, and testing over many
clinical cases, we build a library of examples that shape the
prior distribution and increase the MoM prediction effi-
ciency. In this way, when new drugs or techniques or data
become available, they can be added to the library of
models or model parameters, reshaping priors’ predictive
power (after eventual retraining of MoM). For illustration
purposes, we can assume little or null prior knowledge of
the success rate that a specific model (ie, treatment; model
M) has on a particular type of cancer. Thus, a model
descriptive of a brand-new drug or illustrative of a new
theoretical framework to explain the disease and weak
knowledge of the parameter value has a broad probability
that would span a wide range of the parameter space
(Fig 2B).

The Bayesian analysis provides a precise redistribution of
the probability over the model parameter range once data,
say the j"-data set considered D; become available
through the likelihood terms Pr(Dj\p,, /). In the assumption
of identical and independent distributed errors for D;, we
can advocate the central limit theorem?© or the maximum
entropy principle® to combine testable information / with
Shannon’s entropy (or Shannon-Jaynes or Kullback en-
tropies) and measure the uncertainty in a unique posterior
distribution function through the use of the likelihood
Li(h = Pr(Dj|p,-, /). Under quite a broad general hypothe-
sis, these principles assert that unless some information
justifies the use of other sampling distributions, Gaussian
likelihood for the error distribution makes the fewest as-
sumptions possible about unavailable information on the
collected data. Hence, this approach yields the most
conservative estimate because no model is assumed a
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priori to be better than another. Instead, all models M; are
considered correct, and each single data value d is related
to a model value mthrough an error e, which represents the
unknown error counterpart in the measurement of the data
d. Here, a Gaussian distribution describes the source of
errors (a noise with finite variance) for the error e. A new
patient at the beginning of treatment, ie, with a few data
constraining his or her treatment or model, can be encoded
with much fewer specificities, ie, an extremely broad
likelihood (Fig 2A).

Once the posterior is obtained from the previous two steps
for each of the models M, i=1, ..., ny, with N = N(t) the
number of models considered (not necessarily constant),
the patient-specific-fitness function

Pr(p,|/)Pr(Dlp,, /)V/

Pr(pi|D, 1) = PrD|]) '

2)

needs to be maximized. The topology of a nonlinear model
posterior can be very intricate with many hills and valleys.
Fortunately, the past 20 years have seen considerable
advancement in algorithms to perform Bayesian calcula-
tions, although there is no general solution available to the
global optimization problems.'%!1141% Roughly speaking,
the most common search approach is based on asymptotic
normal (ie, truncated) approximations for a small number of
parameters as the Bayesian Information Criterion approx-
imation to the log-marginal Pr(D]p,», 1), or on the Laplace
approximation to the posterior Pr(p;|D, /) around the mode,
together with more numerical approaches based on ran-
dom search techniques such as Monte Carlo, Simulated
annealing, genetic algorithms for a more substantial
number of parameters, or a combination of the above. In
most cases, each model is built upon a large number of
parameters with only a subset being of interest for clinical
decision making or, likely more prominently, several pa-
rameters that have to be included cannot be validated by
data. Still, these parameters must be quantitatively
accounted for without knowing their hidden probability
distribution function because of their influence on fitting the
model to the available data. These so-called nuisance
parameters can be integrated out or marginalized.

As introduced above, a beneficial aspect of Bayesian
statistics is the ability to efficiently couple discrete and
continuous variables. This feature stands at the basis of the
model comparison. When two different models explain
the same data set equally well (eg, by producing compa-
rable y2 values or comparable log-evidence in a fitting
procedure!®!’) a rigorous and reproducible approach
needs to select one model, or treatment, over the other. The
possibility of labeling the models lets us consider the model
index itself as an independent parameter. The selection
process, hence, results from an inference problem on the
(discrete) model number. For example, the celebrated odd
ratio of the probability of M; over M, simplifies as
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FIG 2. Schematic for two significantly different
cases where the generic model achieves similar
conditional probability distribution (posterior,
lower row) M; encoding the information /, with
very different prior and likelihood probability
distribution function (upper row). The multiple
parameter space is represented with a single axis
p=1{p1, po Pa, ..., pa}. (A) The likelihood dis-
tribution (light blue) is flat, and the prior prob-
ability distribution (gray) is highly peaked. The
resulting posterior distribution function is sharply
peaked because of the prior distribution (lower
left panel). (B) The likelihood distribution (light
blue) is peaked, and a flat prior distribution (gray)
is assumed. The low likelihood reflects missing
patient-specification of the therapy as in a not yet
calibrated model. The resulting posterior prob-
ability might still result in a very peaked but not
patient-specific shape.
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with By, the Bayes factor of model 1 over model 2. Note that
the model-index probability is sensitive to the entire pa-
rameter space, not only to the single model’s prior distri-
bution at its best-fitting parameters position. More peaked
prior distribution on well-fitting data will result in a higher
probability density function (PDF) and, vice versa, when the
prior distribution of a model flattens the PDF over a more
extensive parameter range that does not fit the data well, the
posterior PDF will tend to be small. This characteristic is
advantageous in the MoM approach, where models of dif-
ferent complexities may be simultaneously considered. The
more complex models will always be able to fit data better
than restricted models. MoM balances data fit and model
complexity (ie, degrees of freedom provided by the number
of parameters) and can select simpler models with fewer
degrees of freedom over more complex models. By diluting
the prior probability over larger areas, the more complex
model assigns a lower chance for any parameter value that
fits the data, resulting in a downweighed PDF. However, a
more complex model will be selected if parameter values and
model dynamics that are not accessible by a more restricted
model provide a sufficiently better fit to the data.

512 © 2021 by American Society of Clinical Oncology

If new data or a full new data set D;,; is acquired (eg, a new
value of a biomarker for the patient or clinical trial results
published elsewhere), MoM does not need to be (re)
trained, including the original data set. (We do not exclude
that there are obvious situations where retraining is un-
avoidable, eg, because some clinical options are not
available because of geographical constraints, economical
constraints, psychologic constraints, availability of a new
vaccine etc. We will comment briefly on this point and its
relation with Bayesian priors in the Discussion section.)
Bayes theorem is applied to compute each model’'s new
posterior to redistribute the latest knowledge state. The
most recent prior, /', is the posterior derived from D, |, ie,
=D, I. Then, the new posterior is

Pr(p;|Dj1, ') Pr(p;| ') Pr(Djs1|pi, 1) (4)

This iterative process can shift the weights, and thus op-
timal selection, from a model to another (Data Supplement
and Fig 3). Vice versa, the inclusion of a significant new
paradigm, treatment, or approach (eg, the discovery of a
vaccine) might, of course, have such an impact to require
MoM retraining to include availability factors (eg, distri-
bution factors and geographic factors).

Finally, superseding the global optimization problem
mentioned above, it is worth stress that, a priori, we do not
always expect MoM to provide a usable or meaningful full
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FIG 3. (A) Schematic representation of the MoM approach. One of the models considered, say M;, represented here as a prior distribution (gray manifold)
in the system of reference with the axis p1, po, ps, -.., pn (Fig 1), outputs a probability distribution function of interest, Pr. A generic parameter p; results in
marginal benefit from the fit hence marginalized as a nuisance parameter from the PDF (dashed corresponding axis). The likelihood accounting for the
set of data, Pr(Dlp — p;, M), is represented with a blue manifold. A combination of prior and likelihood is used to obtain the model posterior distribution
function (ie, a patient-specific fitness function, orange manifold). A fit to the data might evidence the relevance of the parameters previously discarded,
eg, p, thus suggesting reconsidering the model (gray dashed arrow). Fit-dependence and the marginalization of nuisance parameters lead to the PDF
that we consider in the model comparison. The optimal posterior distribution function from the best fitting model (named generically M; in the figure) is
used to forecast the evolution of a patient-specific treatment. The bottom part of the panel shows the patient-specific timeline. (continued on following page)
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answer to the therapy selection problem. The approach
proposed is a data-driven approach, both in the use of the
priors, built on literature or trial results, and in patient-
specific data. Data are provided with errors that inevitably
propagate on the model selection process. The global-
likelihood or evidence of models M; and M, are deter-
mined at the best of uncertainties that affect the Bayes
factor By, determination. Therefore, MoM might determine
the best clinical path to follow but not outside any rea-
sonable doubt, ie, not outside the errors because of the
available data quality. For this reason, the instrument we
propose to introduce in this oncologic contest (the tumor
board) should be considered as a suggestion in the hands,
and under the control, of the medical oncologist in charge.

MoM Decision Making

Before presenting an example of decision-theory applied to
tumor forecasting, we first address the mathematical
mechanism that leads to the decision. In the Data Sup-
plement, we detail the principle-of-operation of this
mechanism with the help of an example, ie, a hypothetical
situation where the Bayesian decisional theory introduced
above is crucial in helping a tumor board deciding which
clinical path to follow. Despite the case being elementary
and meant to match a situation with a well-known deci-
sional output, it is pedagogical in its attempt to show how a
tumor board opinion is mathematically coded and treated
in the present formalism. The example is inspired by the
Laplace approximation mentioned above. Still, it does not
require the use of Gaussian approximation or the knowl-
edge of information theory. Instead, it focuses on trans-
mitting how the decisional process happens, ie, it proposes
an exemplification of the MoM model selection.

Model Forecasting and Decision Theory

What happens after data analysis has suggested the best
model available outside any reasonable doubt? How can
inference be used in making a final decision? One of the
statistical analysis’ aim is undoubtedly to aid a decision
process. We assumed implicitly above that our goal is to
estimate the probability of medical treatment to prevent or
delay disease progression and death.

Leading health informatics and medical informatics jour-
nals cover the Bayesian approach to model forecasting (eg,
Journal of the American Medical Informatics Association,
Journal of Medical Internet Research, and Medical

Decision Making) together with numerous bestseller
books.'*151820  Nevertheless, autoregressive moving
average,®! vector autoregressive models,?? together with
the broad class of regressive neural network,?® eg, the long-
short time memory,?* are mainly focused on predicting the
future data of a time series from the sequence of data
collected rather than from a model comprehensive of the
biologic mechanisms involved as we assume for MoM.

Here, we aim to advance a framework able to engage the
cancer description over its biologic multiscale, robust in
forecasting the evolution of the disease, and readily
available to give us a biologic interpretation of the results. In
the following section and the Data Supplement, we will limit
ourselves to review the basics of such methods by
extending the context of the example sketched above with
simple Bayesian considerations, but focusing on the
forecasting problem, whence medical decisions depend on
data gathered after the first decision at t; has already been
taken.

Tumor Board Evolution: MoM Decision Process

Classically, from the posterior probability of the best model,
the expectation value E[*] of a suitable defined function
can be determined as the life expectancy = from the evi-
denced best model at the medical screening time, con-
ditional to the decision we take d, Elzld]. With additional
data and tumor dynamics becoming available from a pa-
tient on the clinical response to therapy, MoM exploits its
flexibility to relocate the probability over the entire pa-
rameter space, including the model index, to evaluate
treatment adaptations. If a patient does not respond to a
drug or drug change, the new information provides new
prior data to recalculate posteriors for the remaining
treatment options. The MoM approach automatically pro-
ceeds to this modal PDF’s reallocation, suggesting (when
existing) the best combination of treatments available
within the errors (Data Supplement and Fig 3).

In the section above and the dedicated clinical example,
the Data Supplement, we dug deeper into where and how
the decisional process happens. In the Data Supplement,
we focus on a more classical result of the Bayesian
framework: the frame’s forecasting character and its ability
to include new information. Again, in the Data Supplement,
we will develop the concepts elaborating over an example of
clinical interest. Many self-similar exercises are available in

FIG 3. (Continued). The patient-specific set of data represents the status of the patientin their timeline. Once new data are acquired (blue dot) establishing the
patient’s location in the parameter space, the difference between the above-predicted model forecast and the newly acquired data represents the residual
difference between the model prediction and the current state the patient. (B) The residual is used to reiterate the model procedure to obtain the best model
representing the patient. In the upper part of the panel, the scheme of (A) is reiterated several times with new incoming data. Starting from the patient-specific
data set available at the time of the diagnosis Dy,, the model selection is performed (see the bottom part of the panel). Once a new data set is obtained, Dy, a
new model selection is performed, iterating the MoM procedure. The sequence proceeds similarly once new data points or a new set of data, graphically
represented by Ds, Ds, ..., are collected. Note how the best fit model never generally matches all the data sets available entirely: a residual is never null.
Nevertheless, we assume to have a library of models that contains at least a model that the more data are acquired, the better approximate the patient-
specific data, the smaller the residuals are as time passes. MoM, model of models; PDF, probability density function.
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FIG 4. Schematic logic flow of a clinical
treatment augmented by the MoM
framework. MoM is offered as a cloud
computing service: it does not store pa-
tient generalities; instead, it outputs the
optimal solution available to an inputted
patient data point under discussion in a
tumor board. The same service can be
made accessible to a qualified medical
doctor as a consultation-dynamical-library
of treatment outcomes. Afterward, they
might eventually defer the patient to a
clinical structure where the suggested
treatment is available. MoM, model of

Bayesian Framework to Augment Tumor Board Decision Making
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the literature or on the web, especially concerning medical
research.®

DISCUSSION

Here, we advanced the idea of a framework to support the
decisional theory modeled on tumor boards’ function to
identify patient-specific clinical pathways. Cancers are
highly heterogeneous diseases with significant interperson
and intraperson heterogeneity and high variability in clinical
categorizations, definitions, and delivery of treatments, and
outcome determination. For any clinical decision making, it
is essential to rely on medical doctor (MD) experiences and
the most accurate data and account for uncertainty and
probabilities—for which Bayesian approaches are strongly
suited. The proposed MoM is a fully comprehensive eco-
system able to account for patient-specific data, data un-
certainty, different data-driven biologic models, various
treatment approaches, and, most importantly, it is a way to
include human expertise represented by the tumor board.
MoM'’s strength is its panoptic view on the different aspects
contributing to optimal therapies with reproducible un-
certainties and confidence measurements. Exploiting the
coexistence of opinions, equations, and techniques
resulting from diverse expertise (chemistry, physics, and
biology), MoM aims to offer a reproducible framework to
compare and upgrade knowledge on cancer therapy.

Despite being transparent to the clinician’s perspective,
MoM is intended to be a freely accessible library of posterior
probabilities of already-actioned (both successfully and
unsuccessfully) clinical path on specific tumors. Any tumor

JCO Clinical Cancer Informatics

board, or clinician-oncologist, might want to access it, eg,
through a webpage. Once the clinical parameter of a
patient-specific case of interest is inserted, MoM will rate
the relative merits of the therapeutics paths. One of the
strengths of the MoM approach is that the largest the
number of points is in the database (or inputted by on-
cologists spread worldwide), the more useful and efficient
this instrument turns out to be, not only in a tumor board
setting (ie, in an in-person meeting) but also, outscoping, as
rapid informative clinician instrument. Nevertheless, this
very same approach might also hide a weakness. If MoM
builds up its prior on a larger and larger database, its re-
sponse might be closer and closer to the optimal clinical
pathways to follow. Influential priors might be extremely
sensitive to the locoregional constraints: many therapeutic
solutions immediately available in large cities might vice-
versa require patients living in smaller towns to face long
trips that might not be possible because of their clinical
conditions. We need to evaluate software design that might
include retraining options if we see this become necessary
to make MoM useful. A workflow of the MoM concept can
be evicted from Figure 4. Note how MoM is a logic-
probabilistic tool for informative purposes only. It is not
intended by any means to indicate the treatment pathway: it
is only intended to rate the therapeutic options whose
selection is left first and only to the patients through their
MDs. This concept is represented in the figure as a con-
nection between MoM patients and MDs. Furthermore,
MoM'’s development as a computational tool (eg, in a cloud
computing service) instead of a patient database is aimed
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to stress that no patient generalities need to be stored and
only their correspondent data-point needs to be inputted.

In conclusion, the MoM framework is conceptually designed
to identify optimal treatments based on patient-specific data-
points in the context of information from published studies
and the institutional (or multi-institutional) databases. Here,
we present MoM's concept as a decision support tool and
provide the initial clinical translation step. To be used in
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