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Convergent evolution is a central concept in evolutionary theory but the
underlying mechanism has been largely debated sinceOn the Origin of Species.
Previous hypotheses predict that developmental constraints make some mor-
phologies more likely to arise than others and natural selection discards those
of the lowest fitness. However, the quantification of the role and strength of
natural selection and developmental constraint in shaping convergent pheno-
types onmacroevolutionary timescales is challenging because the information
regarding performance and development is not directly available. Accord-
ingly, current knowledge of how embryonic development and natural
selection drive phenotypic evolution in vertebrates has been extended from
studies performed at short temporal scales. We propose here the organization
of the tetrapod body-axis as a model system to investigate the developmental
origins of convergent evolution over hundreds ofmillions of years. The quanti-
fication of the primary developmental mechanisms driving body-axis
organization (i.e. somitogenesis, homeotic effects and differential growth)
can be inferred from vertebral counts, and recent techniques of three-dimen-
sional computational biomechanics have the necessary potential to reveal
organismal performance even in fossil forms. The combination of both
approaches offers a novel and robust methodological framework to test com-
peting hypotheses on the functional and developmental drivers of phenotypic
evolution and evolutionary convergence.
1. Introduction
Charles Darwin described the process of evolution as a source of endless forms [1],
but the skeletal resemblance among some biological designs (e.g. ichthyosaurs–
dolphins–sharks or pterosaurs–bats–birds) demonstrates that some forms are
more prone to evolve than others [2]. These morphologies evolve independently
in many groups, over and over again and such convergent designs suggest limits
on morphological diversity, but the factors responsible for those limits are not
fully understood. A key approach to address this issue is to reveal the origins
of convergent evolution.

Convergent evolution is a quasi-ubiquitous phenomenon but its origin has
been largely debated in evolutionary theory [3,4]. Most surveys distinguish two
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Figure 1. Body-axis macroevolution in marine tetrapods. (a) phylogenetic relationships of tetrapod lineages that include marine taxa, from [12]. (b) Primary devel-
opmental factors governing presacral axial organization [13]. (c) Changes in selective regimes from land-to-sea. Drag is minimized by streamlining the body (and
appendages). Thrust and efficiency are increased by swimming strategies that use a lift-based oscillating hydrofoil [14].
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different views for explaining convergence. The externalist view
claims that convergent evolution is the result of the unfettered
ability of natural selection to produce optimal solutions to
repeated environmental problems, and the internalist view
argues that convergence is the result of ‘constraints’ that
hamper the production of phenotypic variants, hence leading
to themore likely evolution of similar features [5–7]. The ‘adap-
tive’ view proposes that phenotypic variants of low fitness are
produced during development but eliminated by selection,
and the ‘constraint’ view proposes a limited number of variants
due to rare (or impossible) developmental outcomes. More
recent hypotheses predict that developmental constraints
cause some morphologies to arise more frequently than others
but natural selection discards those of the lowest fitness [8].

Although both views present evidence that the diversity
of Life is not endless, quantifying the strength of natural selec-
tion and developmental constraints in shaping convergent
phenotypes over hundreds of millions of years is challenging
because the information regarding performance and embryo-
nic development is not directly available. As a consequence,
although some studies have used an approach bridging
palaeontology and developmental biology [9–11], our current
knowledge of how developmental constraints and natural
selection drive phenotypic evolution at geological timescales
has been extrapolated from studies on laboratory organisms
or from studies performed over short temporal scales. Here,
we propose the organization of the tetrapod body-axis as
a model system to decipher the relative contributions of
developmental constraints and natural selection in shaping
convergent body-plan configurations using the fossil record.
We use the body-axis of tetrapods secondarily adapted to a
marine lifestyle as a study case (figure 1a).
2. Developmental mechanisms of body-axis
organization

The diversity of tetrapod body-axis proportions is enormous
even for taxa adapted to the same physical environment.
Surprisingly, this diversity results from the combination of
three variables that are easily quantifiable in both recent [15]
and fossil taxa [13,16], which are associated with the primary
developmental mechanisms governing body-axis organization
(figure 1b):

(i) The total number of vertebrae informs about the speed
of the budding of the presomitic mesoderm in the
formation of the new somites during the process of
somitogenesis [17]. As the speed of new somite differen-
tiation varies across lineages, somitogenesis is a
compelling source of variation in body proportions
across tetrapod phylogeny [18].

(ii) The relative numbers of vertebrae present in each region
inform about changes in the Hox gene expression
patterns [19–21] across species, which provide to
somites their regional identities (i.e. cervical, thoracic,
lumbar, sacral and caudal). The role forHox genes in pat-
terning axial skeletal regions has been demonstrated not
only in mammals but also in other tetrapods [22–27], as
well as in other vertebrates [28,29]. A major source of
body-axis diversity among vertebrate clades is due to
shifts in the expression boundaries of Hox genes (and
other patterning genes) leading to variation in the distri-
bution of vertebrae among morphological regions [18].

The axial skeletons of fishes are simply subdivided
into trunk and tail regions [28,29], and the association
of this regionalization with Hox-expression in Actinop-
terygii is well known [30]. Recent findings on the Hox-
code expression and regionalization in the cartilagi-
nous fish, Leucoraja erinacea [31] and in early ray-
finned fish [32] predict an origin of Hox-based ver-
tebral regionalization at the common ancestor of
jawed vertebrates.

(iii) Finally, vertebral lengths inform about differential
post-patterning growth of somites among axial regions,
which determines the relative lengths of vertebrae
within regions. Differential growth of somites among
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regions can result in evolutionary change in body
proportions in the absence of other changes [13].

Therefore, the vertebral formula (number of vertebrae per
region [33]) is a suitable proxy to investigate the main develop-
mental mechanisms governing the macroevolution of axial
column organization using fossils. During the evolution of
amniotes, development can potentially respond to the same
selective agent by at least three different pathways in the gener-
ation of adaptive body-plan configurations [13,33]. Marine
reptiles had higher presacral numbers than their terrestrial
close relatives, and this could be coupled with having long or
short necks [16].However, longnecks canbeacquiredbyaltering
somitogenesis (e.g. derived plesiosaurs), by homeotic changes
(e.g. thalattosaurian crocodiles) or by increasing somatic
growth (e.g. the archosauromorph reptile Tanystropheus) [16].

The response of the thoracic region of cetaceans and sire-
nians (all short-necked) to selective agents is similar to that
of short-necked reptiles; the number of presacrals increases
while retaining the ancestral cervical count. The axial system
of pinnipeds and close terrestrial taxa is similar, as in placo-
dont reptiles, suggesting that marine adaptations do not
need to be coupled with changes in vertebral number [16].

Despite the low meristic variation of mammals [33], their
vertebral formula may also vary. For example, while baleen
whales have an increased body size retaining low vertebral
counts, small oceanic dolphins possess a high number of
short vertebrae [34].
3. The developmental potential and the tetrapod
body-axis

The three variables that account for developmental changes
in axial organization of the tetrapod axis could be analysed
using theoretical morphology [35] to investigate the develop-
mental potential [4]. An empirical morphospace depicted
from actual combinations of the three developmental vari-
ables of body-axis organization (figure 2a) allows testing for
developmental triggers of body-plan diversity at large-tem-
poral scales. This can also manifest theoretical combinations
of developmental variables with the potential to answer
how much variation in the organization of the tetrapod
body-axis has been explored by organic evolution
(figure 2a). Different methods have been developed to
study and quantify patterns of morphospace occupation
[37–39] and phylomorphospaces [40] allowing to ascertain
the evolutionary path of target lineages, including morpho-
logical convergence [41].
4. Adaptive performance in the tetrapod axis of
living and extinct tetrapods

A direct consequence of body-axis organization is the shape
of the external body, which has profound implications for
locomotion [42]. Aquatic tetrapods have usually acquired
efficient morphologies and propulsive mechanics for swim-
ming, dictated by the need to increase speed, reduce drag,
improve thrust output, enhance efficiency and control man-
oeuvrability in a neutrally buoyant environment [14]
(figure 1c). Accordingly, they experienced profound morpho-
logical (and physiological) changes in their body plans,
including the acquisition of streamlined bodies with fusi-
form shape, characterized by a rounded front and a
tapered end [14]. This design effectively decreases the
adverse pressure of the water column and minimizes flow
separation, thereby reducing drag [43]. Streamlining of
bodies and flattening of limb cross-sections are character-
istics of the most specialized living aquatic tetrapods [14]
because these changes minimize the energetic demands of
swimming [44].

Computational fluid dynamics (CFD) is increasingly
being used to investigate the relationship between body
shape and locomotory performance in both living [45] and
extinct [36,46,47] taxa. The results derived from CFD simu-
lations allow the quantification of the forces exerted by the
fluid on the three-dimensional model such as drag—forces
opposing the relative motion of an object in fluid—or lift—
forces acting perpendicular to motion direction, caused by
flow deflection around the body or appendages. The deri-
vation of dimensionless coefficients allows the comparison
of the hydrodynamic efficiency among different models
(e.g. lift-to-drag ratio).

CFD has been applied to infer swimming performance in
extinct taxa such as in ichthyosaurs [36], plesiosaurs [42] and
stem-gnathostomes [46]. For example, CFD has allowed to
quantify the impact of body-plan evolution in ichthyosaurs
on the energy demands of swimming [36]. This has revealed
that ichthyosaurs produced low levels of drag for a given
volume and their large bodies, as well as their efficient
swimming modes, lowered the cost of steady swimming
[36]. Troelsen et al. [47] used CFD to investigate the hydro-
dynamics of neck length and thickness in plesiosaurs, a
group of Mesozoic marine reptiles with a unique body
plan characterized by two pairs of flippers and an elongated
neck. They [47] demonstrated that while neck elongation
does not affect to drag during forward-swimming in plesio-
saurs, thicker necks is a factor that substantially reduces
drag.

Alternatively, analyses of osteological maximum range of
motion (oROM) of virtually assembled vertebral columns in
a specific pose [48,49] can be performed to quantify the
degree of flexion and extension deployed by marine taxa
which can reveal the swimming strategy deployed by
extinct forms. Molnar et al. [48] investigated changes in
oROM and intervertebral joint stiffness of thoracic and
lumbar vertebrae with increasing aquatic adaptation
through the evolution of crocodylomorphs. They concluded
that joint stiffness in mediolateral flexion tended to decrease
with adaptation to aquatic locomotion in thalattosuchians,
but the trend seems to have reversed somewhat in other
aquatic specialists [48].
5. Disentangling the developmental origins of
convergent evolution in Deep Time

The combination of morphospaces obtained from the three
developmental parameters that account for the diversity of
the tetrapod axis (figure 2a) can be combined with those par-
ameters that account for (hydrodynamic) efficiency—e.g.
drag and lift obtained from CFD—(figure 2b) into perform-
ance landscapes [50] to quantify whether morphological
convergence have occurred towards the functional optimum
(figure 2c). Performance landscapes allow testing for
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functional drivers of morphological convergence quantifying
the functional optimality of both occupied and unoccupied
regions of the morphospace [51,52]. For example, Ferrón et al.
[41] investigated the functional component of morphological
convergence in the headshield of stem-gnathostomes using
performance landscapes derived from CFD. They revealed
similar hydrodynamic performances among species that
converged towards the same regions of the morphospace, sup-
porting that the evolution of similar morphologies in these
groups may relate to functional drivers and the acquisition of
similar ecologies.

Optimal designs are usually constrained by the existence of
trade-offs between more than one task/function [53], imposs-
ible to infer from adaptive landscapes. To this regard, Pareto
efficiency theory (PET) can assess optimality between two
traits or more [54]. Tendler et al. [55] used PET to quantify
shape variation in ammonoid shells and concluded that they
fall within a square pyramidal region of the morphospace
whose vertices correspond to five putative tasks, including
hydrodynamic efficiency, shell economy, compactness and
rapid shell growth [55]. Moreover, the distance from each
species to each vertex, indicates the relative importance of
each task to the lifestyle of that species. The investigation of
how these patterns of morphospace occupation changed
across different mass extinctions led Tendler et al. [55] to
investigate ammonoids’ ecological responses to these
catastrophic events.

The combination of adaptive landscape evaluation and
PET (figure 2c) can be used to explicitly test whether evol-
ution has explored all functional optimal morphologies,
whether many species are functionally suboptimal, whether
unrealized morphologies are functionally poor and whether
some optimal morphologies have never been achieved in
evolutionary history.
6. Future directions
The developmental mechanisms governing the tetrapod axis
have been already studied in living and fossil taxa [13,16,34]
and three-dimensional functional analyses (e.g. CFD and
oROM) have been applied for inferring swimming
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performance in extinct marine vertebrates [36,46,47]. We
emphasize that the combination of both types of analyses
for the study of vertebrate body-axis using our proposed
approach (figure 2) could be a new avenue for future research
to disentangle the developmental origins of convergent evol-
ution in Deep Time.

Our proposed approach could be of potential application
to decipher the relative contributions of development and
adaptation in the generation of convergent body-axis in a
wide variety of taxa beyond marine tetrapods. For example,
this could be the case of putatively convergent tetrapods
towards an airborne locomotion such as birds, pterosaurs
and bats or secondarily adapted species of mammals and rep-
tiles towards specific locomotory demands (e.g. arboreality,
cursoriality, etc.). Beyond tetrapods, the investigation of
developmental changes in the body-axis of fish as a response
of different aquatic adaptations (sensu [28]) could be also a
potential avenue for future research.

Altogether, this approach offers a novel methodological
framework to test competing hypotheses about the functional
and developmental drivers of phenotypic evolution and
morphological convergence, using the body-axis as a model
system.
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