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Abstract

There is a growing realization that multi-way chromatin contacts formed in chromosome

structures are fundamental units of gene regulation. However, due to the paucity and com-

plexity of such contacts, it is challenging to detect and identify them using experiments.

Based on an assumption that chromosome structures can be mapped onto a network of

Gaussian polymer, here we derive analytic expressions for n-body contact probabilities (n >
2) among chromatin loci based on pairwise genomic contact frequencies available in Hi-C,

and show that multi-way contact probability maps can in principle be extracted from Hi-C.

The three-body (triplet) contact probabilities, calculated from our theory, are in good correla-

tion with those from measurements including Tri-C, MC-4C and SPRITE. Maps of multi-way

chromatin contacts calculated from our analytic expressions can not only complement

experimental measurements, but also can offer better understanding of the related issues,

such as cell-line dependent assemblies of multiple genes and enhancers to chromatin hubs,

competition between long-range and short-range multi-way contacts, and condensates of

multiple CTCF anchors.

Author summary

The importance of DNA looping is often mentioned as the initiation step of gene expres-

sion. However, there are growing evidences that ‘chromatin hubs’ comprised of multiple

genes and enhancers play vital roles in gene expressions and regulations. Currently a

number of experimental techniques to detect and identify multi-way chromosome inter-

actions are available; yet detection of such multi-body interactions is statistically challeng-

ing. This study proposes a method to predict multi-way chromatin contacts from pair-

wise contact frequencies available in Hi-C dataset. Since chromosomes are made of poly-

mer chains, the pairwise contact probabilities are not entirely independent from each

other, but certain types of correlations are present reflecting the underlying chromosome

structure. We extract these correlations hidden in Hi-C dataset by leveraging theoretical

argument based on polymer physics.
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Introduction

Recent advances in experimental techniques [1–6] offer unprecedented glimpses into the chro-

mosome structures inside cell nuclei, in the form of pairwise distances and contact frequencies

between genomic loci. Gene expressions are, however, realized when multiple genomic loci,

e.g., promoters and enhancers separated over large genomic distances, are brought together to

form a regulatory element [7–10], which underscores the importance of resolving chromatin

interactions beyond pairwise two-body contacts. In particular, the transcriptional regulation is

fine-tuned via a complex network of cooperative and competitive interactions among nearby

genes mediated by transcription factors [11, 12].

A plethora of experimental methods have recently been developed to detect multi-way con-

tacts in chromosome [13], which include super-resolution chromatin tracing [14], and both

ligation-based (3way-4C [15], COLA [16], Tri-C [17], MC-4C [18, 19], Pore-C [20] and sin-

gle-cell techniques [21–24]) and ligation-free methods (GAM [25] and SPRITE [26]). Detec-

tion of multi-way chromatin contacts using these experimental methods, however, are

statistically limited due to the paucity of such contacts. The probability of detecting a particular

n-body contacts from a genomic region of interest consisting of N statistical segments is

approximately pn �
N
n

� �� 1
hcinV (n� 2), where hci* N/V is the effective concentration of the

segments in the volume V which can be approximated using the Flory radius [27] (RF* Nν)

to V � R3
F � N3n with ν(� 1/3) being the Flory exponent [28, 29]. Since N

n

� �
� Nn=n! for N�

n, it is expected that the n-body contact probability scales as pn* n!/N3ν(n−1), which makes

experimental detection of n-body contacts with larger n statistically more demanding. To get

around the detection problem, one usually either conducts a genome-wide study at low resolu-

tion (a small N), or performs a high-resolution experiment by focusing only on the contacts

formed at a few prescribed sites [16, 30].

Since the polymer physics idea was first used to explore the physical characteristics of chro-

mosomes as long polymer chains confined in a small nuclear space [28, 31–38], computational

strategies of incorporating genomic constraints from experimental measurements and epige-

nomic information into polymer-based modeling of 3D chromosome structure have recently

gained much traction [39–54]. Many studies, which generate an ensemble of 3D chromosome

structures, highlight the heterogeneous and probabilistic nature of chromosome structure [45,

47, 50, 51, 54]. Once an ensemble of structural models of chromosomes are obtained from

computational approaches, it is straightforward to count the multi-way chromatin contacts

directly from them and to quantify the corresponding contact probabilities. Specifically, recent

studies, which have generated 3D chromosome structures based on the strings and binders

switch (SBS) model, have shown that the probabilities of triplet chromatin contacts for HoxD

and α-globin regions calculated from the structures are in good agreement with those from

3way-4C and Tri-C experiments, respectively [55, 56]. CHROMatin mIXture (CHROMATIX)

model was used to address the functional relevance of many-body contacts among genomic

elements enriched at transcriptionally active loci [30].

In this study, we calculate n-body contact probabilities from Hi-C data by using analytic

expressions derived from the formalism of Heterogeneous Loop Model (HLM) [50, 51, 57].

Although the original aim of HLM was to reconstruct 3D chromosome structures from Hi-C

[50, 51], it is still possible to calculate the map of n-body contact probabilities without explicitly

counting those contacts from the generated chromosome structures. Through comparisons

between the multi-way chromatin contacts derived from HLM and those from three separate

measurements from Tri-C, MC-4C, and SPRITE, we will show that the n-body contact proba-

bility maps are in good agreement with experimental measurements (Results). We also explore

the relation between pairwise and higher-order contacts and discuss how to avoid the most
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evident false-positiveness in the analysis of multi-way chromatin contacts experiments (Dis-

cussions). Finally, the numerical details of training HLM based on Hi-C and the mathematical

derivations for contact probabilities are provided in the Methods section.

Results

Polymer theory of n-body chromatin contacts

The chromatin fiber in a genomic region of interest is modeled as a coarse-grained polymer

chain composed of N monomers (or sites), each representing a chromatin segment of a pre-

scribed genomic length. We assume that the chromatin effective energy landscape can be

described by a summation of harmonic restraints on the spatial distances between all mono-

mer pairs,

UKðrÞ ¼
XN� 1

i¼0

XN� 1

j¼iþ1

kij

2
ð~ri � ~rjÞ

2
¼

3

2
rTKr; ð1Þ

where r ¼ ð~r0;~r1;~r2 � � � ;~rN� 1Þ specifies the 3D structure of the polymer chain, and K is a N-

by-N symmetric stiffness matrix of elements kij. The so-called Kirchhoff matrix is defined by

K � D � K, where D is a diagonal matrix with elements Dii ¼
P

jkij. We assume that the

probability of the chromatin to a adopt a particular structure is given by

PðrÞ ¼
1

X
e� UKðrÞ=ðkBTÞ; ð2Þ

where kBT is our energy unit (the Boltzmann constant times the temperature) and X ¼

ðdetðKÞ=ð2pÞNÞ3=2
is a normalization constant such that the integration of Eq 2 over all possi-

ble structures equals to 1.

The primary assumption of HLM (Eq 1) results in a probability distribution of the physical

distance between any (i, j) monomers, rij [50, 58]

PðrijÞ ¼ 4p
gij

p

� �3=2

r2
ije
� gijr2

ij ; ð3Þ

where γij is a function of K-matrix with a positive value. More specifically, γij = (σii + σjj

− 2σij)
−1/2 for i> 0 and gij ¼ s

� 1
jj =2 for i = 0, in which σij denotes the (i, j)-th element of the

inverse matrix of K. To assess our assumption, we compare Eq 3 with the fluorescence in situ
hybridization (FISH) data recently reported by Takei et al [24]. By using DNA seqFISH+

method, they measured the 3D coordinates of 2,460 loci spaced approximately 1 Mb apart

across the whole genome, together with additional 60 consecutive loci at 25 kb resolution on

each chromosome, in 446 mouse embryonic stem cells (Fig 1A).

At 1 Mb resolution (Fig 1C), the distribution of the physical distances between four loci

pairs on chromosome 3 (distinguished by markers of different colors) can be well fitted by Eq

3. When we replot the experimental data with a scaled distance (
ffiffiffiffi
gij
p rij), all rescaled data are

distributed around a master curve

Pð ffiffiffiffigij
p rijÞ
ffiffiffiffi
gij
p ¼ y ¼ f ðxÞ ¼

4x2

ffiffiffi
p
p e� x2

; ð4Þ

which is shown as the black solid line in the inset of Fig 1C. Taking all 151 imaged loci on chr3

as a test case, we analyzed the distance distributions of all intra-chromosome loci pairs (i.e.,

151 × 150/2 = 11, 325 pairs), calculated γ for each pair, and plotted the rescaled data. As shown
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in Fig 1D, regardless of the genomic distance between these loci (labeled by different colors of

the dots), data collected over the whole chromosome lie around the master curve, lending sup-

port to the validity of Eq 3. This also holds when analyzing the distance distribution of loci at a

finer resolution of 25 kb (Fig 1E and 1F).

Next, the cross-linking probability function F(r), describes how likely two chromatin frag-

ments are captured by cross-linking agents if they are spaced by a distance of r. Based on F(r),
one can count the contact frequency for any monomer pair in a given structural ensemble, as

well as the higher-order contact frequency among any group of n monomers (2 < n� N). The

higher-order n-body contact is formed when n monomers (genomic segments) are simulta-

neously in spatial proximity and within a capture radius of cross-linking agent. The n-body

contact probability, e.g., 3-body (n = 3, triplet) contact probability between i, j, and k mono-

mer, pijk, can thus be calculated by integrating the probability of a particular chromatin

Fig 1. Chain organization of chr3 of mouse ES cells measured in the DNA seqFISH+ experiment [24]. (A) 3D

positions of 151 imaged loci spaced about 1 Mb apart (large empty dots) and 60 consecutive loci with an equal space of

25 kb (small solid dots) in one of 446 sample cells. (B) Angular correlation of the chromatin segments at 25 kb

resolution. (C) Distribution of the physical distance of four loci pairs at 1 Mb resolution (markers) with their fittings to

our theory (lines, Eq 3), which are rescaled by using the fitting parameter (γij) and plotted in the inset. (D) Rescaled

pairwise distance distributions of all loci pairs, which are colored by their genomic lengths. (E, F) Similar as (C, D) but

at 25 kb resolution.

https://doi.org/10.1371/journal.pcbi.1009669.g001
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structure (Eq 2) multiplied by the chance to form simultaneous cross-linking among the n
monomers in that structure over all possible chromatin structures. Thanks to the special form

of the energy function (Eq 1), HLM yields analytic formulae. Specifically, when the effective

capture radius of the cross-linking agent is denoted by rc, we obtain the following results:

• The pairwise contact probability pij can be written as

pij ¼ 1þ
3

2gijr2
c

 !� 3=2

; ð5Þ

with γij defined in Eq 3.

• The triplet contact probability pijk is

pijk ¼ 1þ
6ðaþ bþ cÞ

r2
c

þ
27z
r4
c

� �� 3=2

; ð6Þ

where a = σii + σjj − 2σij, b = σij + σjk − σik − σjj, c = σjj + σkk − 2σjk, and z = ac − b2.

• The 4-body contact probability pijkl is

pijkl ¼ ½detðW4ÞdetðW
� 1

4
þ Λ4Þ�

� 3=2
ð7Þ

where W4 is a 3 × 3 matrix of the form

a b f

b c d

f d e

0

B
@

1

C
A with d = σjk + σkl − σjl − σkk, e = σkk + σll

− 2σkl, f = σik+ σjl − σil − σjk, and Λ4 ¼
3

r2
c

3 2 1

2 4 2

1 2 3

0

B
@

1

C
A. The parameters a, b, c are identical to

those in Eq 6.

Readers are referred to the Methods section for detailed derivations. As briefly descried

above, these results are equivalent to reconstructing an ensemble of 3D chromatin structures

followed by counting explicitly n-body contact frequencies in the ensemble.

The stiffness matrix K has to be determined before calculating the n-body contact probabil-

ity and predict specific multi-way chromatin interactions. As illustrated in Fig 2, K-matrix can

be determined from K� ¼ arg min
K

LðKÞ, i.e., by minimizing LðKÞ—a cost function that quan-

tifies the difference between the K-dependent pairwise contact probabilities of the model

(pijðKÞ) and those from pairwise contacts experiment (pHi� C
ij ) (see the Methods section for the

details). We next compare our predictions of many-body chromatin contacts with those from

measurements found in the literature. Detailed information on which genomic region are

modeled, the cell types, the model resolutions and the experiment sources are provided in

Table A in S1 Appendix.

Comparison with Tri-C

Our first case study for our HLM-based theoretical predictions (see Eq 6) concerns the mouse

α-globin locus, an extensively studied model system [61], whose three-body contacts are avail-

able from Tri-C measurement [17]. The globin genes are flanked by several CTCF-binding

sites (the 3rd row in Fig 3A) in both erythroid and embryonic stem (ES) cells. The Capture-C

heatmaps of the two cell types (Fig 3B. The top and bottom panels are for the ES and erythroid
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cells, respectively) show that the erythroid cell display more frequent contacts (stronger inter-

actions) between the α-globin genes (Hba-a1/2) and the five upstream enhancer elements (R1,

R2, R3, R4 and Rm).

The K-matrices of HLM, obtained separately for both cell lines based on Hi-C data, are not

only used to calculate pij that captures the variation of local pairwise contacts upon ES-to-ery-

throid cell differentiation (Fig 3B), but also to predict triplet contacts (pijk) at different genomic

locus in a cell-type specific manner (Fig 3C and 3D). We calculated the two maps of triplet

contact probability (i) at the genomic locus of the strongest enhancer R2 (Fig 3C) and (ii) at

the upstream CTCF-binding site HS-39 (Fig 3D). The Pearson correlations (PC) between the

HLM-predicted triplet contacts and those from Tri-C data are generally high (PC� 0.75

− 0.89. See the caption of Fig 3 for details). In particular, for the triplet contact probability map

calculated at the HS-39 viewpoint, the correlations are comparable to those reported by a sim-

ulation study using the SBS model (PC� 0.8) [56]. We further calculated three correlation

coefficients specifically designed to compare contact matrices, namely the distance-corrected

Pearson correlation [46], stratum-adjusted correlation [62] and stratified Pearson correlation

(S1 Fig). As summarized in Table B in S1 Appendix, overall, HLM matches better with Tri-C

experiment than SBS model.

The comparison between triplet contact probabilities in ES cells over all sites of interest

(SOIs) and those in erythroid cells underscores the change in higher-order contacts upon cell

differentiation (Fig 3E). Upon the activation of α-globin gene (ES! erythroid cell), R2 simul-

taneously interacts with the gene promoters and its nearby enhancers especially R1 more fre-

quently, which suggests the formation of a regulatory hub. HS-39, HS-38 and distal

downstream CTCF binding sites are not involved in this hub, but form diffuse interactions in

between. These findings from the HLM-predicted triplet contacts are consistent with the Tri-

C analyses conducted at R2 and HS-39 [17] (see S2 Fig).

We made additional comparisons at the globin gene promoter Hba-a1 and the downstream

CTCF boundary element HS+44, whose triplet contact probabilities have not yet been mea-

sured (Fig 3F). At the viewpoint Hba-a1, the promoter interacts with upstream enhancers in a

cooperative manner, which supports the above analyses. By contrast, in the presence of contact

with a downstream boundary element, Hba-a1 becomes less likely to interact with another

downstream boundary site in erythroid cells.

Fig 2. Flow chart of HLM that is enclosed by the dashed orange box. It takes two-body contacts from Hi-C as input,

and calculates n-body (n> 2) contact probability. The stiffness matrix K is updated until the algorithm finds K� that

minimizes the cost function L ¼ LðKÞ which quantifies the difference between pairwise contact probabilities of Hi-C

data and those determined from K matrix.

https://doi.org/10.1371/journal.pcbi.1009669.g002
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Comparison with multi-contact 4C sequencing (MC-4C)

Next, we study the formation of higher-order contacts among CTCF binding sites in the cohe-

sin release factor (WAPL) lacking cells [63]. According to the loop extrusion model [64–66],

the ring-shaped protein complex, cohesin, binds to DNA and progressively enlarges chromatin

loop until the dynamics is hindered by two convergently orientated CTCF-bound sites.

Knockout of the WAPL promotes the chromatin loop extension [63].

We carried out HLM calculation for a 1.28-Mb genomic region on chromosome 8, which

contains 13 CTCF-binding sites, for both wild-type (WT) and WAPL-deficient (ΔWAPL)

human chronic myeloid leukemia (HAP1) cells, whose triplet contacts were measured with

MC-4C [18]. Although the Hi-C dataset (Fig 4A, top) is noisier than that used in the first case

study (Fig 3B, top), the HLM-predicted triplet contacts at the CTCF binding sites E (Fig 4B)

Fig 3. Three-body contacts predicted with HLM versus those from Tri-C. (A) Gene notation, DNase hypersensitive

sites, CTCF-binding sites [59, 60] and genomic regions of interest (sites of interest, SOI) at mouse α-globin locus on

chr11. (B) log10(pij) from Capture-C (top triangle) and HLM (bottom triangle) at 2-kb resolution. (C, D) log10(pijk)

from Tri-C (top) and HLM (bottom) at k = R2 and k = HS-39, whose positions are labeled with black strips. The

Pearson correlations between Tri-C and HLM are 0.80 (ES) and 0.75 (erythroid) for k = R2, and 0.89 (EC) and 0.85

(erythroid) for k = HS-39. (E) Cell-line difference of the predicted three-body contacts, pErythroid
ijk � pES

ijk , among the SOIs

with respect to the viewpoints R2, HS-39 and (F) Hba-a1, HS+44.

https://doi.org/10.1371/journal.pcbi.1009669.g003
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and K (Fig 4C) show patterns similar to those from the MC-4C measurement [18]. To account

for the enrichment of long-range triplet contacts comprised of distal CTCF binding elements

(e.g., the triplet A, H and K) in the WAPL-lacking cells, Allahyar et al. [18] put forward a “traf-

fic jam” of CTCF roadblock-trapped cohesin complexes.

Examining the WAPL knockout-induced change in triplet contacts among CTCF binding

sites, we plot the changes of pijk (Dpijk ¼ pDWAPL
ijk � pWT

ijk ) at four viewpoints, k = E, K and A, H

in Fig 4D and 4E, respectively. While the site A is colocalized more frequently with the distant

downstream sites K and L in ΔWAPL cell, its interaction with the nearby loci (sites B-G) is

reduced significantly (e.g., pABC is reduced by more than 60% from 1.1 × 10−3 to 4.2 × 10−4).

Similar patterns of “long-range enrichment and short-range depletion of triplet contacts” are

identified for those from other upstream and downstream viewpoints (e.g., the sites E and K).

Although the MC-4C measurement [18] did not highlight the short-range depletion of triplet

contacts, our finding is consistent with the contact frequencies measured with respect to the

sites E and K (S3(A) Fig). In fact, the two Hi-C datasets, one for WT and the other for ΔWAPL

cell, show that the pairwise contact frequencies of ΔWAPL cells in the domains flanked by

short-range CTCF binding sites are smaller than those of the WT (S3(B) Fig), which directly

Fig 4. Comparing many-body contact predictions with MC-4C. (A) Comparing log10(pij) from Hi-C and HLM at

10-kb resolution of a 1.28 Mb region on chr8, where there are thirteen CTCF-binding sites labeled from A to M. The

genomic position of forward- and backward-oriented CTCF sites are marked with red and blue sticks, respectively. (B,

C) Comparing log10(pijk) from MC-4C and HLM at a viewpoint of site E and K, respectively. From the viewpoint of E

(K), the values of PC between the model and the MC-4C experiment are 0.83 (0.81) and 0.71 (0.73) for the WT and

ΔWAPL cells, respectively. (D) Cell-line difference of the predicted three-body contacts, namely pDWAPL
ijk � pWT

ijk , among

the CTCF-binding sites from the viewpoint of A, E and (E) H, K, respectively. (F, G) Cell-line difference of four- and

five-body contacts from double- and triple-anchored viewpoints, whose positions are marked with the black strips.

The numbers label the maximum amplitudes of changes.

https://doi.org/10.1371/journal.pcbi.1009669.g004
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confirm the short-range depletion of contacts. The observation of long-range enrichment and

short-range depletion of triplet contacts does not always hold; the central sites H and I are the

two exceptions that do not demonstrate depletions of short-range triplet contacts.

The aggregation of cohesin molecules has been identified in ΔWAPL cells with super-reso-

lution imaging [18]; however, it has not been known whether or not a similar type of aggrega-

tion occurs in CTCF-bound chromatin sites. To explore the possibility of condensation of

CTCF-bound chromatin sites, we calculate higher-order chromatin contacts in both condi-

tions of WT and ΔWAPL cells. The changes in 4-body and 5-body contacts among CTCF-

bound sites from WT to ΔWAPL cells from double- and triple-anchored view points are all

positive, namely, pDWAPL
ijkl � pWT

ijkl > 0 (Fig 4F) and pDWAPL
ijklm � pWT

ijklm > 0 (Fig 4G), which lends sup-

ports to the picture surmising the clustering of domain boundary in ΔWAPL cells. Although

their probabilities are small, up to 4-fold increases of 4-body and 5-body contacts are identified

among the SOIs (see S4 Fig).

Comparison with SPRITE

Lastly, we model a 0.45 Mb genomic region of GM12878 cell (Fig 5A and 5B), which contains

transcriptionally active genes BCL2 and multiple super-enhancers, annotated in Ref. [30] by

Perez-Rathke et al., and compared the predicted triplet contacts with the results from SPRITE

Fig 5. Comparing triplet contact predictions with SPRITE. (A) Genes, RNA-seq and H3K27ac ChIP-seq signals [60,

67] in a 0.45 Mb region on human chr18 with the positions of three types of SOIs (Enhancers, Promoters and Super-

enhancers). (B) log10(pij) from Hi-C compared with that from HLM at 5-kb resolution. (C) The triplet contact

frequency from SPRITE is compared with log10(pijk) from HLM anchored at an active promoter site. (D) SPRITE

frequency of triplets which are divided into four quantiles based on ascending order of pijk. (E) For three sites, i< j< k,

along a polymer chain, the minor and major sections denoted by m and t, respectively, are depicted with dashed lines.

(F) The expected three-body contact probability �pijk, and (G) the specificity Z-score Zijk � ðpijk � �pijkÞ=sijk. (H) The

mean specificity Z-score of triplet contacts with respect to all possible combinations of annotations (E: Enhancers, P:

Promoters, S: Super-enhancers, #: sites without any annotation). The error bars are the standard deviations.

https://doi.org/10.1371/journal.pcbi.1009669.g005
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[26]. The human BCL2 gene encodes a membrane protein which blocks the apoptotic death in

B-lymphoblastoid cells.

We expect that the similarity between the model and the experiment is not so high as the

foregoing two case studies, because the data from SPRITE, designed for a genome-wide study,

is sparse with 5-kb resolution, and the chromatin fragments cocaptured by SPRITE are not

necessarily in spatial proximity since SPRITE does not distinguish between direct and indirect

cross-linkings. Indeed, a weak correlation is found in the triplet contacts anchored at the active

BCL2 gene promoter (PC = 0.18; see Fig 5C). To validate our models against the measure-

ments, we sort the triplets in an ascending order of their predicted contact probabilities, and

divide them into four quantiles. Then the frequency of the quantilized triplets in SPRITE

increases with the predicted probability, pijk (Fig 5D).

To identify the specificity in a single cell type, we defined an expected triplet contact probabil-

ity �pijk (i< j< k) as the mean contact probability of all triplets in the “sections” of interest along

the chain (Fig 5E). The minor and major sections are determined as m = min(|j − i|, |k − j|) and

t = |k − i|, respectively. �pijk depends only on m and t (Fig 5F), which reflects the chain connec-

tivity and the global compactness of chromatin. The ratio of the difference between the

observed and expected probabilities scaled by the standard deviation is then defined as the spec-
ificity Z-score, Zijkð� ðpijk � �pijkÞ=sijkÞ, for each triplet (Fig 5G). The triplet contacts are deemed

specific if Zijk> 1.

Zijk averaged over all possible combinations of functional annotations in the region of inter-

est are shown in Fig 5H. The concurrent triplet contacts between two super-enhancers with a

promoter (PSS) or with a third super-enhancer (SSS) are specifically enriched at this loci. This

finding comports well with the Perez-Rathke et al’s finding that multiple super-enhancers are

involved in higher-order chromatin contacts more frequently than other elements [30]. We

confirm similar results from modeling at another active locus (S5 Fig).

Discussions

Relation between pairwise and triplet contacts

For a given polymer chain, is there any simple relation to associate two-body contacts with

three-body contacts? Through both experimental and theoretical studies, there has been much

effort to address this question and related issues in the context of concurrent chromatin inter-

actions [14, 15, 18, 19, 68].

Here, we address this issue in a principled way by considering a Gaussian polymer chain

without any specific interaction as a reference system. In the heatmaps of n-body contact prob-

ability of the Gaussian polymer chain consisting of N monomers, the enrichments of many-

body contacts are observed near the diagonal part of N × N matrix as well as around the view-

points (Fig 6A–6C). For any triplet, ijk (i< j< k), the contact probability reads (see Eq 26 for

the derivation)

pijk ¼ pðm; tÞ ¼ 1þ
6t
g
þ

27mðt � mÞ
g2

� �� 3=2

; ð8Þ

where m = min(|j − i|, |k − j|) is the minor section, t = |k − i| is the major section of the triplet

(Fig 5E), and γ is the stiffness constant which restrains the consecutive sites. For t�m, it fol-

lows that pijk* t−3/2, the scaling exponent of which is identical to that of the two-body contact

probability [28, 29]. For a fixed t, p(m, t) changes non-monotonically as a function of m, hav-

ing its minimum and maximum at m = t/2 and m = 1, respectively (Fig 6B). According to Eq 8
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the specificity Z-score defined in the subsection Comparison with SPRITE satisfies Zijk = 0

for all triplets in a Gaussian chain, as anticipated.

An enhancement of triplet contact compared to two independent pairwise loops was dis-

cussed by Polovnikov et al. [68], who used the delta function for the cross-linking probability

between genomic sites, such that sites were considered in contact only if they overlapped with

each other. It was found that pijk/pij pjk� 1 with a maximum at m = t/2. This finding, however,

is not universally held if one considers other types of cross-linking probability. When Gaussian

and Heaviside step functions are used as the cross-linking probabilities, triplet contact proba-

bilities are always suppressed in comparison with the product of two binary contact probabili-

ties, i.e., pijk/pij pjk� 1, and the largest suppression occurs at m = t/2 (Fig 6D and S6(D) Fig).

No clear-cut relation exists between pairwise (pij) and triplet contact probabilities (pijk),

which however was the underlying presumption of the data processing in several experiments.

For example, a hub score was calculated to identify synergistic interaction hubs in the analysis

of 3way-4C data [15], which was defined by Hijk = 3pijk/(pij pjk + pij pik + pjk pik) approximately,

whereas our Gaussian chain model clarifies that the hub score is not a constant (Fig 6E). In

fact, as discussed in the experiment [15], enrichment of the score is always found at the triplets

close to any viewpoint (e.g., Figs 3 and 4 in Ref. [15]).

To detect cooperative (competitive) contacts, an association Z-score, defined as

Aijk ¼ ðCþijk � EðC�ijkÞÞ=sðC�ijkÞ, were computed in the analyses of MC-4C measurements [18,

19]. Cþijk is the number of reads cocapturing the genetic sites i, j and k (the viewpoint). EðC�ijkÞ
and sðC�ijkÞ are the mean and standard deviation of C�ijk, the number of reads capturing the sites

j and k but not i. A positive (negative) Aijk, which implies that the chance of site j being in asso-

ciation with k and any other third site is (dis)favored when site i is interacting with k, was

interpreted as a measure of cooperative (competitive) triplet contacts. However, the calculation

based on Gaussian polymer chain shows that adjacent monomer pairs along the chain display

Fig 6. Many-body contacts in a Gaussian polymer chain consisting of 20 sites. (A) Two-body contact probability

log10(pij). (B) Three-body contact probability log10(pijk) anchored at the 7-th site (k = 7). (C) Four-body contact

probability log10(pijkl) double anchored at the 6-th and 15-th sites (k = 6, l = 15). (D-F) Boost factor pijk/pij pjk, hub-

score Hijk, and association z-score Aijk from the viewpoint of the 7-th site.

https://doi.org/10.1371/journal.pcbi.1009669.g006

PLOS COMPUTATIONAL BIOLOGY Identification of many-body chromatin contacts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009669 December 6, 2021 11 / 24

https://doi.org/10.1371/journal.pcbi.1009669.g006
https://doi.org/10.1371/journal.pcbi.1009669


a greater association z-scores Aijk (Fig 6F). This issue of false-positiveness in the short-range

cooperativity among the multiple sites has been noticed in Ref. [18].

A recent super-resolution imaging study on chromatin fibers in IMR90 cells has explored

whether or not the association between two genetic loci facilitates the contact with a third site

[14]. For triplets ijk satisfying i< j< k, two conditional probabilities pjkjrij�rc
and pjkjrij>rc

(pjkjrij�rc
is the contact probability between the k-th and j-th sites under the condition that i-th

and j-th sites are in contact, and pjkjrij>rc
is similarly defined) were compared with the uncondi-

tioned contact probability pjk. It was found that regardless of cell types and other chemical

treatments, a relation pjkjrij>rc
< pjk < pjkjrij�rc

was always satisfied among three probabilities, for

most triplets of genomic loci [14]. Our theoretical framework allows us to validate this relation

for any triplet in a polymer chain (see S7 Fig). The generic characteristics of multi-body con-

tacts of Gaussian chain mentioned above do not depend on the specific form of cross-linking

probability (S6 Fig).

As a further test, we counted the average, maximum, and minimum pairwise contact proba-

bilities of the triplets anchored at R2 in the α-globin locus of mouse erythroid cells (S8(B)–S8

(D) Fig). They have dissimilar patterns with respect to the results from Tri-C experiment (S8

(A) Fig), which is also reflected by their overall lower Pearson correlations than HLM calcu-

lated at two different viewpoints in two different cell types (S8E Fig). The relation between

pairwise and multi-way contacts is more complicated than intuition.

Miscellaneous

The prediction of HLM is not always consistent with experiments. For example, when scruti-

nizing the WAPL knockout-induced change of triplet contacts at viewpoint of the CTCF bind-

ing site E, an enrichment involving site G can be found in MC-4C (see the left panel of S3 Fig)

which is not in agreement with our model prediction (Fig 4D). Many factors can contribute to

this discordance, such as the quality of the Hi-C dataset at the locus of interest. Despite much

effort devoted in processing raw Hi-C data, bias which remains in the Hi-C contact matrix

after normalization will propagate to the model and subsequent predictions on higher-order

contacts.

Another apparent missing component of our approach is the excluded volume interaction,

which plays an indisputable role in determining polymer behavior. However, as shown in Fig

1, chromatin segment pairs have non-zero probabilities at small physical distances, in contrast

to the expectation that segments are not allowed to overlap with each other. We explain the

absence of excluded volume by using a polymer melt, which contains 125 polymer chains each

composed of 641 monomers (S9 Fig). The system was simulated considering only chain con-

nectivity and Weeks-Chandler-Anderson type exclude volume interactions [69]. The latter

manifests itself as the zero-valued probability of the bond length (ri,i+1) and intra-chain pair-

wise monomer distance (rij) when r< 1 in units of the monomer diameter (the circular black

dots in S9(C) and S9(D) Fig). However, when the melt is coarse-grained such that we model 8

or 64 consecutive segments as a coarse-grained center, the coarse-grained segments overlap

with each other. Together with the results shown in Fig 1B, it is justified to ignore the excluded

volume and bending penalty beyond certain scales.

As a further test of the general applicability of HLM for the prediction of n-body contacts,

we modeled the β-globin locus of mouse ES cells (S10 Fig) and the Pcdhα locus of mouse neu-

ral progenitor cells (S11 Fig) by using the Hi-C data reported by Bonev at al [70]. The pairwise

and predicted triplet contact probabilites at multiple viewpoints are well correlated with the

experiments (see detailed PC coefficient in the figure caption and Table A in S1 Appendix).
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Conclusions

To recapitulate, we have derived analytic expressions of n-body contact probabilities (for any

n> 2) based on a recent chromatin polymer model (HLM) [50] and developed a method to

predict multi-way chromatin contacts from Hi-C data.

First, the predicted triplet chromatin contacts are in reasonable correlation with the results

of two independent measurements (i) Tri-C [17] and (ii) MC-4C [18], also in accordance with

the genome-wide study using (iii) SPRITE [26]. Besides confirming the experimental findings,

the suggested method was used to explore the multi-way chromatin contacts at any viewpoint

of genomic locus of interest, which allowed us to discover some of key features not previously

underscored in each measurement. (i) For the mouse α-globin locus, a cell-line dependent

interaction pattern for the promoter is found when the viewpoint is anchored at the gene pro-

moter. (ii) Although the previous study highlighted only the enrichment of long-range triplet

contacts among CTCF binding sites in the ΔWAPL cells, we find that depletion of short-range

contacts occurs for some triplets to compensate the enrichment. Our calculations also lend

support to the aggregates of CTCF-bound boundary elements by explicitly showing the enrich-

ments of four- and five-way chromatin contacts. (iii) Lastly, our analysis captures the enrich-

ment of triplet contacts involving super-enhancers at transcriptionally active loci.

With an increasing contact order n, the probability of forming multi-way contacts decreases

by orders of magnitude (see how the range of scale bars changes with increasing n in Fig 6A–

6C). Our theoretical approach can be used to circumvent this statistical limitation inherent to

experimental detection of multi-way chromatin contacts. All the computer codes discussed

here are provided in https://github.com/leiliu2015/HLM-Nbody, so that multi-way contacts

can be calculated from an input Hi-C dataset. The methodology developed here will be of

great help to elucidate the regulatory roles played by complex chromatin topology.

Methods

Numerical details for determining the stiffness matrix K�

Our previous numerical procedure [50, 51] to determine K�-matrix has been improved in this

paper by adapting those in the recent modeling studies of chromatin by two other groups [71–

73]. The best solution, K�, which is consistent with a given Hi-C data, was determined with

Hi-C data by optimizing the cost function, K� ¼ arg min
K

LðKÞ (see Fig 2). Different forms of

the cost function can be conceived:

L0ðKÞ ¼
X

i<j

ðpijðKÞ � pHi� C
ij Þ

2
ð9aÞ

L1ðKÞ ¼
X

i<j

ðlog
10
ðpijðKÞÞ � log

10
ðpHi� C

ij ÞÞ
2
ð9bÞ

L2ðKÞ ¼ 1 � PCðlog
10
ðpijðKÞÞ; log10

ðpHi� C
ij ÞÞ ð9cÞ

L3ðKÞ ¼
2

NðN � 1Þ

X

i<j

hr2
ijðKÞi
hr2

ijiHi� C
� 1

 !2

ð9dÞ

where pHi� C
ij is the pairwise contact probability observed in Hi-C experiments, PC(x, y) stands

for the Pearson correlation coefficient between x and y, and hr2
ijiHi� C ¼ 3=ð2gHi� C

ij Þ can be

derived from pHi� C
ij based on either Eq 12 for Gaussian contact probability or Eq. S1 for contact

probability in the form of Heaviside step function.
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To avoid non-physical negative eigenvalues of the Kirchhoff matrix, the interaction

strengths were previously required to be non-negative (kij� 0) during the minimization [50,

71]. Shinkai et al. have overcome the issue of negative kij by alternately updating the backbone

and non-backbone interaction strengths [72]. Even though there are some pairs with kij< 0,

as long as the resulting K-matrix is positive-definite [72], the potential of mean force between

the i- and j-th monomer is proportional to −ln P(rij), which has a physically meaningful mini-

mum at rij ¼ 1=
ffiffiffiffi
gij
p

.

We compared four different methods to optimize the cost functions: the first method mini-

mizes the cost by random sampling (RS) of the parameter space [72]; the second one updates

K via steepest gradient descent (GD) [71]; the third and fourth methods, RMSprop [74] and

ADAM [75], calculate both the gradient and its second moment to accelerate the model train-

ing [76].

As a case study, the decay of the cost function during the model training of a 2.4-Mb region

on chr8 in mouse embryonic stem cells is shown in S12(A) Fig. The ADAM optimizer outper-

forms other methods significantly. Quality of the final model was calibrated by using the stra-

tum adjusted correlation (SCC) [62] and PC between log10(pij) from Hi-C and that from the

model. As shown in the accompanying Table B in S1 Appendix, while L1 and L3 are both good

candidates, L2 seems to be the best choice. However, the dependence of contact probability on

the subchain size s, defined as PðsÞ ¼
Pi¼N� s� 1

i¼0
pi;iþs=ðN � sÞ, shows that the optimal model

based on minimizing L2 underestimates the overall contacts (S12(B) Fig), although the pattern

of log10(pij) from the model is highly correlated with that from Hi-C. Similar conclusions can

be drawn from training a model of a 10-Mb region on chr5 in GM12878 cells (S13 Fig), which

our previous work used as a test case [50]. The models trained with new schemes clearly

achieve better quality (S13(D) Fig).

Taken together, in this study we calculated the K-matrix based on Hi-C data by minimizing

L1 with F0, or minimizing L3 with F1 using ADAM optimizer, where F0 and F1 are two possible

functional forms of cross-linking probability explained below.

Derivations of the multi-body contact probability

Despite many potential biases in Hi-C [13], the frequency of two chromatin fragments being

cross-linked in millions of cells is ideally determined by the probability density of their spatial

distance P(r), and the efficiency of the cross-linking agent. The latter contribution can be

included by the r-dependent cross-linking probability of fragments F(r). One can consider

using a Gaussian function, F0ðrÞ ¼ e� 3r2=2r2
c , for cross-linking probability, which makes many-

body contacts easier to handle mathematically. Alternatively, the Heaviside step function F1(r)
= Θ(rc − r) is conceived as well, as a natural choice of the cross-linking probability, such that

fragment pairs are cross-linked if the spatial distance r is smaller than an effective capture

radius of the cross-linking agent (rc).
The contact probabilities based on the two cross-linking probabilities, F0(r) and F1(r) are

denoted by “p(0)” and “p(1)”, respectively. Unless stated otherwise, the results shown in the

main text were calculated with F0(r), and “p” was used as a shorthand notation of “p(0)” for

brevity.

Here we present the derivation of n-body contact probability based on the Gaussian cross-

linking probability, F0(r). The derivation based on the Heaviside step function, F1(r), is pro-

vided in S1 Appendix.

Generic many-body contact probability. Based on Eqs 1 and 2, if we set~r0 ¼ 0, the

many-body contact probability among n (� 2) monomers in a given set A ¼ ði; j; :::Þ can be
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directly calculated as

pð0Þn ¼
1

X

Z

DrPðrÞ
Y

ði;jÞ2M

F0ðk~ri � ~rjkÞ

¼
1

Xx

Z

Dxe� 1
2
xTK0x

Y

ði;jÞ2M

e
� 3

2r2c
ðxi � xjÞ

2

" #3

¼
1

Xx

Z

Dxe� 1
2
xTðK0þΔ0Þx

� �3

¼
detðK0 þ Δ0Þ

detðK0Þ

� �� 3=2

;

ð10Þ

where Dr �
Q

idri, P(r) is the probability density of the chain configuration (r) and M is the

enumeration of all the pair-wise combinations of the elements in A. Δ is a matrix of elements

Δuv whose values are given by

Δuv ¼
3

r2
c

�

n � 1; u ¼ v and u 2 A
� 1; u 6¼ v and u; v 2 A
0; otherwise

;

8
<

:
ð11Þ

in which u, v 2 (0, 1, 2, . . ., N − 1). The K and Δ with subscript “0” in Eq 10 signifies the matri-

ces whose 0-th row and column are removed from the original ones.

Pairwise contact probability. To avoid computing determinants of large matrices in the

general solution (Eqs 10 and 11), pn can alternatively be calculated based on n-body correlation

function. For example, considering the probability density of the pairwise distance between

the i-th and j-th monomer in three-dimensional space (Eq 3), the pairwise contact probability

between the i-th and j-th monomers can be formulated as [71, 72]

pð0Þij ¼

Z 1

0

PðrijÞF0ðrijÞdrij ¼

Z 1

0

PðrijÞe
� 3r2

ij=2r2
c drij

¼ 1þ
3

2gijr2
c

 !� 3=2

¼ 1þ
hr2

iji

r2
c

� �� 3=2

;

ð12Þ

where Eq 3 and hr2
iji ¼ 3=ð2gijÞ is used in the second row.

Three-body contact probability. For three-body contact probability pijk, we first consider

the probability density of the distances between the i-th and j-th monomers, and between the

j-th and k-th monomers projected on one dimension

Pðxij; xjkÞ ¼ hd ½xij � ðxi � xjÞ�d ½xjk � ðxj � xkÞ�i

¼

Z

dxd½xij � ðxi � xjÞ�d ½xjk � ðxj � xkÞ�PðxÞ

/

Z

dkeik1xij eik2xjk

Z

dxe� ik1ðxi � xjÞe� ik2ðxj � xkÞPðxÞ

/

Z

dkeik1xij eik2xjk e� 1
2
kTW3k

¼
1

2p
ffiffiffi
z
p e�

1
2zðcx

2
ij � 2bxijxjkþax2

jkÞ;

ð13Þ

PLOS COMPUTATIONAL BIOLOGY Identification of many-body chromatin contacts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009669 December 6, 2021 15 / 24

https://doi.org/10.1371/journal.pcbi.1009669


where k = (k1, k2), W3 ¼
a b

b c

 !

is a matrix with elements

a ¼ sii þ sjj � 2sij

b ¼ sij þ sjk � sik � sjj

c ¼ sjj þ skk � 2sjk;

ð14Þ

and

z ¼ detðW3Þ ¼ ac � b2: ð15Þ

Remember that σ is the element of K−1, and σij = 0 if i × j = 0. Then, the three-body contact

probability in 3D is given by

pð0Þijk ¼

Z Z

dxijdxjkPðxij; xjkÞF0ðxijÞF0ðxjkÞF0ðxij þ xjkÞ

� �3

¼ 1þ
6ðaþ bþ cÞ

r2
c

þ
27z
r4
c

� �� 3=2

:

ð16Þ

Four-body contact probability. Four-body contact probability pijkl can be derived in the

same manner. By defining ux = (xij, xjk, xkl)
T, the one dimensional probability density of three

pairwise distances, P(xij, xjk, xkl), is given by

hd½xij � ðxi � xjÞ�d½xjk � ðxj � xkÞ�d½xkl � ðxk � xlÞ�i

/

Z

dkeik1xij eik2xjk eik3xkl e� 1
2
kTW4k

¼
1

ð2pÞ
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðW4Þ

p e� 1
2
uTx ðW4Þ

� 1ux ;

ð17Þ

where now k = (k1, k2, k3). W4 has a matrix form of

W4 ¼

a b f

b c d

f d e

0

B
B
B
@

1

C
C
C
A
; ð18Þ

with elements in Eq 14 and

d ¼ sjk þ skl � sjl � skk

e ¼ skk þ sll � 2skl

f ¼ sik þ sjl � sil � sjk:

ð19Þ

PLOS COMPUTATIONAL BIOLOGY Identification of many-body chromatin contacts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009669 December 6, 2021 16 / 24

https://doi.org/10.1371/journal.pcbi.1009669


Then, from Eq 17, one gets

pð0Þijkl ¼

� Z Z Z

dxijdxjkdxklPðxij; xjk; xklÞF0ðxijÞF0ðxjkÞF0ðxklÞ

�F0ðxij þ xjkÞF0ðxjk þ xklÞF0ðxij þ xjk þ xklÞ

�3

¼
1

ð2pÞ
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðW4Þ

p

Z

duxe
� 1

2
uTx ðW4Þ

� 1ux e� 1
2
uTxΛ4ux

" #3

¼ ½detðW4ÞdetððW4Þ
� 1
þ Λ4Þ�

� 3=2
;

ð20Þ

where

Λ4 ¼
3

r2
c

3 2 1

2 4 2

1 2 3

0

B
B
@

1

C
C
A: ð21Þ

Conditional pairwise contact probability. With super-resolution tracing, Bintu et al.
examined whether the association between two chromatin loci facilitates or prevents the con-

tact with a third locus [14]. More specifically, given three monomers of indices i< j< k, two

conditional probabilities p(rjk� rc j rij� rc) and p(rjk� rc j rij> rc) were compared with the

marginal one p(rjk� rc) (see Fig 5 in Ref. [14]). They found “cooperativity”, namely p(rjk� rc j
rij> rc)< p(rjk� rc)< p(rjk� rc j rij� rc), among more than 80% triplets of CTCF-bound and

generic loci, as well as little effect of cohesin depletion induced by auxin treatment.

Assuming F0(r), we next aim at deriving the conditional contact probabilities of the j- and

k-th monomers given that the j-th monomer is in contact with the i-th monomer (pð0Þjkjij), or

given that the j-th monomer is in contact with the i-th monomer (pð0Þjknij), with an ordering of

indices i< j< k. The first conditional probability can be calculated based on the relation that

pð0Þjkjij ¼ pð0Þij;jk=p
ð0Þ

ij , in which

pð0Þij;jk ¼
1

X

Z

drPðrÞF0ðk~ri � ~rjkÞF0ðk~rj � ~rkkÞ

¼
detðK0 þΩÞ
detðK0Þ

� �� 3=2
ð22Þ

with non-zero elements Ωii ¼ Ωkk ¼ Ωjj=2 ¼ � Ωij ¼ � Ωjk ¼ 3=r2
c , or equivalently

pð0Þij;jk ¼

Z Z

dxijdxjkPðxij; xjkÞF0ðxijÞF0ðxjkÞ

� �3

¼ 1þ
3ðaþ cÞ

r2
c

þ
9z
r4
c

� �� 3=2

;

ð23Þ

where we have applied Eqs 13 and 14. By using the relation that pð0Þjk ¼ pð0Þjkjijp
ð0Þ

ij þ pð0Þjknijð1 � pð0Þij Þ,

the second conditional pairwise contact probability can be determined as

pð0Þjknij ¼
pð0Þjk � pð0Þjkjijp

ð0Þ

ij

1 � pð0Þij

¼
pð0Þjk � pð0Þij;jk

1 � pð0Þij

; ð24Þ

where the marginal contact probabilities pð0Þij and pð0Þjk are given by Eq 12.
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Together with pð0Þij ¼ ð1þ 3a=r2
c Þ
� 3=2

and pð0Þjk ¼ ð1þ 3c=r2
c Þ
� 3=2

, it is straightforward to

prove that for any triplet

pð0Þjknij � pð0Þjk � pð0Þjkjij: ð25Þ

The equality signs hold if and only if b = 0 (see Eq 14), which corresponds to the case that xij

and xjk are completely uncorrelated.

Gaussian polymer chain. At last we consider the simplest model, a Gaussian polymer

chain, in which kij = k0 if |i − j| = 1 and kij = 0 otherwise. It follows that σij = min(i, j)/k0. With

Eq 16, it straightforwardly leads to

pð0Þijk ¼ pðs1; s2Þ ¼ 1þ
6ðs1 þ s2Þ

k0

þ
27s1s2

k2
0

� �� 3=2

; ð26Þ

where s1 = j − i and s2 = k − j for any triplet with i< j< k.

There is a power-law decay of pð0Þijk with s1 as pð0Þijk � s� 3=2

1 if s1� s2. It is also easy to prove

that the quantity, pijk/pij pjk, discussed in Fig 6D is a nontrivial function of s1 and s2. If s1 + s2 =

constant, it has its minimum at s1 = s2, and maximum at s1 = 1 or s2 = 1.

In addition, as a result of b = 0 in Eq 14, we notice that pð0Þjkjij ¼ pð0Þjknij ¼ pð0Þij for a Gaussian

chain (see Eqs 22–25).

Supporting information

S1 Appendix. Derivation of n-body contact probability based on the cross-linking proba-

bility modeled with the Heaviside step function. Table A. Genomic regions simulated in this

work. Table B. Pearson correlation (PC), stratum-adjusted correlation (SCC8) and distance-

corrected Pearson correlation (DCPC9) of the contact probabilities predicted by SBS and

HLM compared with Capture-C1 and Tri-C2 experiments. Table C. Stratum adjusted correla-

tion (SCC) and PC coefficients between Hi-C and HLM model.

(PDF)

S1 Fig. Stratified Pearson correlations of the HLM-predicted contact probabilities. Strati-

fied PC at α-globin locus of mouse (A) ES and (B) erythroid cells compared with Capture-C

(2-body) and Tri-C (3-body) experiments.

(TIF)

S2 Fig. Changes of Tri-C triplet contact frequencies in the α-globin region of mouse ery-

throid cells with respect to ES cells. The analysis was done at the viewpoints of R2 (top) and

HS-39 (bottom). Following the statistical analysis in the experiment [17], we use the symbol �

to mark all triplet interactions with significant changes (P< 0.01). The erythroid cell-specific

regulatory hub and diffuse interactions among CTCF boundary sites, which are highlighted by

dashed triangles, are both captured by Tri-C and our theory (Fig 3E).

(TIF)

S3 Fig. Analysis of the changes in triplet contacts (pDWAPL
ijk � pWT

ijk ) and in pairwise contacts

(pDWAPL
ij � pWT

ij ) among CTCF binding sites in WAPL lacking cells. (A) The triplet contacts

from MC-4C data [18] with respect to the viewpoints of E (top) and K (bottom). The triplet

contacts predicted by HLM are shown in Fig 4D. (B) The enrichment of pairwise contacts

between long-range CTCF binding sites (off-diagonal elements in red corresponding to

ðpDWAPL
ij � pWT

ij Þ≳ 0:05) is counteracted by the depletion of contacts in the domains flanked by

short-range CTCF binding sites (matrix elements along the diagonal block in blue
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corresponding to ðpDWAPL
ij � pWT

ij Þ≲ � 0:05). The data of pairwise contacts are obtained from

Hi-C data [63].

(TIF)

S4 Fig. WAPL depletion-induced fold changes of n-body contact probability. Fold changes

of (A) four-body contacts double-anchored at sites E, K and (B) five-body contacts triple-

anchored at sites E, H and K. The absolute change of contact probabilities is shown in Fig 4F

and 4G, respectively.

(TIF)

S5 Fig. Comparison between HLM and SPRITE. Comparison between HLM and SPRITE

similarly to those of Fig 5 in a 0.52 Mb region on human chr12. (C) From the viewpoint of the

promoter of active ETV6 gene which encodes an ETS family transcription factor.

(TIF)

S6 Fig. Many-body contacts of a Gaussian polymer chain calculated with step function.

Same as Fig 6 but using F1(r) (Heaviside step function) as the cross-linking probability.

(TIF)

S7 Fig. Conditional pairwise contact probability with either a Gaussian (left column) or

Heaviside step (right column) cross-linking probability. (A) Heatmaps of log10(pij) in a

1.23-Mb region on chr21 of IMR90 cells from Hi-C and log10(pij) from HLM. (B) Comparison

between the unconditioned contact probability pjk, the conditional contact probability, pjkjij,

and pjk\ij, calculated for CTCF-site triplets. (C) pjk, pjkjij, and pjk\ij calculated for all triplets ijk of

i< j< k, which are sorted in an ascending order of pjk.

(TIF)

S8 Fig. Triplet contacts predicted by simple rules with reference to Fig 3C and 3D. (A)

Three-body contact matrix at α-globin locus of mouse erythroid cells measured by Tri-C

experiment or predicted by using three simple rules (B-D). (E) Pearson correlations between

the results from 4 methods and the experiment.

(TIF)

S9 Fig. Excluded volume in a polymer melt at different levels of coarse graining. (A) A typi-

cal configuration of a dense polymer melt and (B) one polymer chain in the melt at three levels

of coarse graining. The beads in (B) are colored differently along the chain, with a diameter of

the most probable bond length at the corresponding scales. (C) Probability of the bond length

and (D) intra-chain pairwise monomer distance.

(TIF)

S10 Fig. HLM of mouse β-globin locus on chr7 at resolution of 8kb. (A) Pairwise contact

probability from Hi-C [70] compared with HLM, which has a PC of 0.996. (B) Triplet contact

probabilities from Tri-C compared with HLM, which are anchored at 3’HS1 and HS2 with

PCs of 0.62 and 0.88, respectively.

(TIF)

S11 Fig. HLM of mouse Pcdhα locus on chr18 at 5 kb resolution (see also the caption of

S10 Fig). Compared with the MC-4C dataset, (A) the pairwise contact probability has a PC of

0.98, and (B) the triplet contact probabilities have PCs of 0.84, 0.76, 0.76, 0.88, and 0.70 at the

viewpoint of Pcdhα1, Pcdhα11, Pcdhαc1, HS7, and HS5–1, respectively.

(TIF)
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S12 Fig. Comparison between the model trainings with different choices of cost functions

and optimizers. We trained a polymer model of a 2.4-Mb genomic region on chr8 in mouse

ES cells at 25-kb resolution [70]. (A) The trajectories of various cost functions L in a log-log

scale, minimized by using one of the four methods (RS, GD, RMSprop, and ADAM) with dif-

ferent cross-linking probabilities Fα (α = 0, 1). (B) Comparing P(s) from Hi-C and from three

models, which were all trained with ADAM using F0, but with different forms of the cost func-

tions. (C) Comparison of log10(pij) from Hi-C (top) with that from the model trained by mini-

mizing L1 with ADAM (bottom).

(TIF)

S13 Fig. Comparison between the models trained for a 10-Mb genomic region at 50-kb res-

olution in GM12878 cells [77] with different choices of cost functions and optimizers.

(A-C) Same as the caption of S12 Fig. (D) Pearson correlations between Hi-C and HLM in our

previous work [50] (the black line), and new models trained in this work (the colored lines) as

a function of genomic separation, s.
(TIF)
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