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Angiogenesis and neuronal remodeling after ischemic 
stroke

Introduction
Increased microvessel density in the peri-infarct region has 
been reported and has been correlated with longer survival 
times in ischemic stroke patients (Krupinski et al., 1994). 
This raises the possibility that enhancement of angiogenesis 
is one of the strategies to facilitate functional recovery after 
ischemic stroke (Arai et al., 2009; Jin et al., 2017; Kanazawa 
et al., 2019; Marushima et al., 2019).

Effective therapies to promote functional recovery after 
ischemic stroke could require protection and/or recovery of 
not only the neurons but also the entire neurovascular unit. 
The neurovascular unit comprises a conceptual anatomi-
cal framework consisting of neurons and their axons, glial 
cells, and the microvessels that supply oxygen and nutrients 
to neurons and other cells. Both neurons and microvessels 
contribute to the pathophysiology of cerebral ischemia (del 
Zoppo, 2006). Previous observations suggest that focal ce-
rebral ischemia can initiate coordinated responses within 
the microvasculature and in the neurons nearby where both 
elements appear to function as a unit.

The most general practical use of the term “ischemic pen-

umbra” is that of a peri-infarct region salvaged by any treat-
ment. Although the ischemic core is defined as a region or 
regions below perfusion threshold that correlate with char-
acteristic electrophysiological changes, for practical reasons, 
in animal models, the core has also generally been defined 
as regions lacking the microtubule-associated protein-2 (mi-
crotubule-associated protein-2-negative region), depending 
upon the setting and model system used. The angiogenesis 
is observed in the border of the microtubule-associated 
protein-2-negative ischemic core and peri-infarct region. 
Although, in the border of the ischemic core, angiogenesis 
is present after cerebral ischemia. This region might be a 
novel treatment target after cerebral ischemia (reviewed by 
Kanazawa et al., 2019). In this mini-review, we discuss how 
angiogenesis might couple with axonal outgrowth/neurogen-
esis and work for functional recovery after cerebral ischemia.

Literature Review
We have performed a PubMed literature search of articles 
published in the period January 1991 to April 2019 on 
angiogenesis, neovascularization (MeSH Terms), axonal 
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outgrowth, and/or neurogenesis (MeSH Terms) in ischemic 
stroke and also cerebral ischemia.

Coupling between Angiogenesis and Neuronal 
Recovery
Blood vessels and axons run parallel throughout the central 
nervous system, suggesting a coupling of both components. 
Post-ischemic angiogenesis may modulate 1) axonal out-
growth and 2) neurogenesis, including proliferation, migra-
tion, and maturation of neural stem/progenitor cells (NSCs), 
and it is thought to contribute to functional recovery. Fol-
lowing ischemic stroke, administration of bone marrow 
mononuclear cells may be correlated with improved regional 
cerebral blood flow, regional metabolic rate of oxygen con-
sumption, and improved neurological function (Taguchi et 
al., 2015). However, direct evidence correlating increased re-
gional cerebral blood flow and functional recovery is hardly 
proven in humans. Using ex vivo coculture systems, possible 
interactions between angiogenesis and neurogenesis have 
been examined in, for example, three-dimensional culture 
models, including neurons, endothelial cells, and extracellu-
lar matrices (Uwamori et al., 2017). Coculture of endothelial 
cells with neural stem cells led to expanded neurogenesis 
(Shen et al., 2004). Further, conditioned media from endo-
thelial cells protected neuronal cells against oxygen-glucose 
deprivation via brain-derived neurotrophic factor (BDNF) 
(Guo et al., 2008). Indeed, several mediators have been 
shown modulate both angiogenesis and axonal outgrowth 
and communicate with cells within the affected neurovascu-
lar units. These include vascular endothelial growth factor 
(VEGF) (Kanazawa et al., 2017a, b), transforming growth 
factor-β (Yi et al., 2010), angiopoetin-1 (Kawamura et al., 
2014), platelet-derived growth factor-B (Renner et al., 2003), 
BDNF (Jiang et al., 2017), and progranulin (Kanazawa et al., 
2015) (Figure 1). In addition, blood vessels secrete signals 
(e.g., VEGF, artemin, and neurotrophin) to guide axons and 
conversely, axons secrete signals to guide blood vessels (Car-
meliet and Tessier-Lavigne, 2005). As such, each cell in the 
neurovascular unit can communicate with other cells using 
various mediators.

Angiogenesis and Axonal Outgrowth
Angiogenesis is the formation of new microvessels that 
branch off from pre-existing vessels (Ruan et al, 2015). Hy-
poxic tissues secrete VEGF; angiogenesis occurs along a 
concentration gradient of VEGF in neonates (Carmeliet and 
Tessier-Lavigne, 2005). Angiogenesis also occurs within 4 to 
7 days after cerebral ischemia in the border of the ischemic 
core (Kanazawa et al., 2017a) (Figure 2). Meanwhile, axo-
nal outgrowth does not normally appear until 14 days after 
ischemia, even in the ischemic periphery (Kanazawa et al., 
2017a). Cortical circuits can be detected as early as three 
weeks after ischemia, which enhances functional recovery 
(Carmichael et al, 2017; Kanazawa et al, 2017a). Angiogen-
esis may be essential for brain repair following ischemia as 
it allows increased blood flow and metabolic nutrients to 

reach the affected brain regions. Furthermore, after isch-
emia, VEGF from vessel components may promote axonal 
outgrowth (Jin et al., 2006). Lei et al. (2012) reported that 
axons bound to laminin express β1-integrin and that lami-
nin/β1-integrin signaling may contribute to axonal devel-
opment and outgrowth in vitro. β1-integrin and laminin are 
expressed in endothelial cells (Osada et al., 2011). This raises 
the possibility that angiogenesis and neurogenesis are cou-
pled by VEGF and laminin/β1-integrin signaling, although 
this has not yet been demonstrated in vivo. Taken together, 
new blood vessels that are formed after ischemia are thought 
to have a role in the guidance of sprouting axons.

Angiogenesis and Neurogenesis 
Neurogenesis is the process of making new functional neu-
rons from endogenous NSCs, including proliferation, migra-
tion, and differentiation into mature neurons. Neurogenesis 
continues throughout the lifespan in two distinct regions: 
the subventricular zone of the lateral ventricles and the 
subgranular zone in the dentate gyrus of the hippocampus 
and increases following cerebral ischemia (Jin et al., 2001). 
Expression of several extracellular signals (e.g., fibroblast 
growth factor-2, insulin-like growth factor-1, BDNF, and 
VEGF) increases after cerebral ischemia, leading to an en-
hanced proliferation of endogenous NSCs. Among these, 
VEGF and fibroblast growth factor-2 are released from en-
dothelial cells (Ruan et al., 2015).

Following NSC proliferation, neuroblasts migrate from 
the subventricular zone to the peri-infarct region, where 
post-ischemic angiogenesis occurs (Ruan et al., 2015). 
Microvessels support the migration of NSCs toward the 
peri-infarct region in at least two ways. First, microvessels 
supply oxygen, nutrients, and soluble factors, which create a 
microenvironment suitable for NSC’s migration, and BDNF 
derived from endothelial cells promote vascular-guided NSC 
migration (Grade et al., 2013). Second, microvessels provide 
β1 integrin signals which cause NSC to adhere to microves-
sels and serve as a scaffolding for migration (Fujioka et al., 
2017). Integrins are transmembrane receptors that mediate 
cell adhesion to the extracellular matrix. Extracellular matrix 
proteins, such as type IV collagen, laminin, and fibronectin, 
are produced by endothelial cells, pericytes, and astrocytes, 
and are a component of the vascular basement membrane. 
Laminin-integrin-dependent adhesion of neuroblasts to 
vessels facilitates post-ischemic cell migration (Fujioka et al., 
2019). Following cerebral ischemia, vascular remodeling oc-
curs around the subventricular zone. VEGF and angiopoe-
tin-1 promote not only angiogenesis but also NSC migration 
after cerebral ischemia (Ohab et al., 2006; Wang et al., 2007). 
Stromal-derived factor-1 also contributes to vascular-guided 
migration (Ohab et al., 2006). 

After proliferation and migration of NSCs, how are mi-
crovessels involved in their differentiation into mature neu-
rons? Endothelial cells regulate NSC proliferation via BDNF 
and direct their fate towards neurons in vitro (Shen et al., 
2004). In the developing brain, neurogenesis is strongly cor-
related with angiogenesis. Neuronal precursor cells are pres-
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ent only in the vascularized cortex. Hypoxia is thought to 
increase NSC expansion via the hypoxia-inducible factor-1α 
pathway; the relief of hypoxia induced by angiogenesis in 
the cortex triggers a switch from NSC expansion to differ-
entiation (Lange et al., 2016). Angiogenesis can be observed 
in the border of the ischemic core (Kanazawa et al., 2017a, 
2019), where severely hypoxic regions are present. Thus, 
oxygenation induced by angiogenesis in the ischemic core 
is thought to facilitate the differentiation of migrated NSCs 
into mature neurons (Figure 2). This hypothesis remains to 
be fully validated.

Interventions and Perspectives
A number of reports using rodent models of focal cerebral 
ischemia have described the effects of pharmacological and 
cell-based treatments that appear to increase angiogenesis 
and axonal outgrowth, as well as lead to functional recovery 

(reviewed by Kanazawa et al., 2019). The direct causal rela-
tionship between angiogenesis and functional recovery has 
not yet been proven. However, angiogenesis might provide 
a suitable microenvironment to trigger axonal outgrowth 
and may induce neurogenesis. The use of agents and/or cell 
therapies that promote angiogenesis and axonal outgrowth 
in the ischemic periphery may be therapeutically relevant 
treatment strategies.

In summary, post-ischemic angiogenesis is involved with 
the axonal outgrowth and proliferation, migration, and mat-
uration of NSCs, which likely contribute to functional recov-
ery. Direct interactions between angiogenesis in the ischemic 
core and axonal outgrowth in the ischemic periphery have 
not been fully elucidated. It is unknown whether angiogen-
esis could aid in shrinking the ischemic core. The regions of 
angiogenesis and surrounding tissue may be coupled, repre-
senting novel treatment targets. 

Figure 1 The schema of association between 
angiogenesis and axonal outgrowth.
After ischemia, several mediators, such as vascular 
endothelial growth factor (VEGF), transforming 
growth factor-beta (TGF-β), brain-derived neu-
rotrophic factor (BDNF), platelet-derived growth 
factor-B (PDGF-B), angiopoietin-1 (Ang-1), and 
progranulin, may promote both angiogenesis and 
axonal outgrowth, coupled with cells comprising the 
neurovascular units.

Figure 2 The angiogenesis guides axonal 
outgrowth and neurogenesis.
Vascular endothelial growth factor (VEGF) and sev-
eral factors from hypoxic tissues and microvessels 
promote angiogenesis several days after cerebral 
ischemia. After intervention, (1) new blood ves-
sels that are formed after ischemia are thought to 
have a role in the guidance of sprouting axons by 
VEGF and laminin/β1-integrin signaling. (2) Vas-
cular-guided neural stem/progenitor cells (NSCs) 
also may migrate peri-infarct regions and migrated 
NSCs differentiate into mature neurons several 
weeks after cerebral ischemia. SGZ: Subgranular 
zone; SVZ: subventricular zone.
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