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Beckwith-Wiedemann syndrome (BWS) is a human genomic imprinting disorder that

presents with a wide spectrum of clinical features including overgrowth, abdominal wall

defects, macroglossia, neonatal hypoglycemia, and predisposition to embryonal tumors.

It is associated with genetic and epigenetic changes on the chromosome 11p15 region,

which includes two imprinting control regions. Here we review strategies for diagnosing

and managing BWS and delineate commonly used genetic tests to establish a molecular

diagnosis of BWS. Recommended first-line testing assesses DNA methylation and

copy number variation of the BWS region. Tissue mosaicism can occur in patients

with BWS, posing a challenge for genetic testing, and a negative test result does not

exclude a diagnosis of BWS. Further testing should analyze additional tissue samples

or employ techniques with higher diagnostic yield. Identifying the BWS molecular

subtype is valuable for coordinating patient care because of the (epi)genotype-phenotype

correlations, including different risks and types of embryonal tumors.

Keywords: Beckwith-Wiedemann syndrome, methylation, diagnostic testing, mosaicism, cancer predisposition,

tumor screening

INTRODUCTION

Beckwith-Wiedemann syndrome (BWS) is a human imprinting disorder that leads to overgrowth.
It is associated with genetic and epigenetic changes on the chromosome 11p15 region (1),
which includes imprinted genes that regulate fetal and postnatal growth. BWS is often diagnosed
neonatally or in early childhood and has a broad clinical spectrum of features that vary in severity.
These features include macroglossia, abdominal wall defects, lateralized overgrowth, enlarged
abdominal organs, and an increased risk for developing embryonal tumors during early childhood
(2). BWS is now considered a spectrum (BWSp) ranging from classic BWS to isolated lateralized
overgrowth (2, 3). BWS has an estimated prevalence of 1 affected child in 10,340 live births (4),
with an increased risk associated with assisted reproductive technologies (ART) of around 1 in
1,100 (5–7).

To determine if molecular testing should be pursued and to establish a clinical diagnosis
of BWS, a clinical scoring system is used (2). In this system, cardinal features include
macroglossia, omphalocele, lateralized overgrowth, bilateral Wilms tumor, hyperinsulinism, and
specific pathological findings such as adrenal cytomegaly or placental mesenchymal dysplasia. Each
cardinal feature is given 2 points. Suggestive features include birthweight greater than two standard
deviations above the mean, facial nevus simplex, polyhydramnios or placentomegaly, ear creases or
pits, transient hypoglycemia, embryonal tumors, nephromegaly or hepatomegaly, and umbilical
hernia or diastasis recti. Each suggestive feature is given 1 point. Patients with a clinical score ≥2
merit genetic testing for BWS. Patients with a score ≥4 based on cardinal and suggestive features

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2019.00562
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2019.00562&domain=pdf&date_stamp=2020-01-21
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kalishj@email.chop.edu
https://doi.org/10.3389/fped.2019.00562
https://www.frontiersin.org/articles/10.3389/fped.2019.00562/full
http://loop.frontiersin.org/people/747647/overview


Wang et al. Diagnosis and Management of Beckwith-Wiedemann Syndrome

satisfy a clinical diagnosis of classical BWS, even without
molecular confirmation. Patients with a score <2 do not meet
criteria for genetic testing. If a patient with a score ≥2 has
negative genetic testing, alternative diagnoses and/or referral
to a BWS expert should be considered. Genetic testing is also
recommended for patients with a family history of BWS and
a known heritable pathogenic 11p15 anomaly, which occurs in
about 10–15% of patients (1).

BWS is a mosaic disorder and, as such, may warrant genetic
testing on multiple tissues because a patient may have cells of
different genetic or epigenetic compositions in their body (8). In
the case of BWS, a patient may have some cells that carry the
epigenetic/genetic change and some cells that do not. Mosaicism
itself can also vary in severity within a patient as different tissues
can have different ratios of affected to unaffected cells. Thus,
molecular confirmation is not always possible due to tissue
mosaicism.More details about testing are below underMolecular
Genetic Testing for BWS.

MOLECULAR MECHANISMS OF BWS

BWS involvesmolecular aberrations within a cluster of imprinted
genes on the chromosome 11p15.5-11p15.4 region, as depicted
in Figure 1. There are two functionally independent domains,
the telomeric and the centromeric, each with its own imprinting
control region (1). The telomeric domain includes the long non-
coding RNA (lncRNA) H19 and insulin-like growth factor 2
(IGF2). H19 is a maternally expressed lncRNA in the embryo
and placenta, but it is silenced in most tissues after birth
except in cardiac and skeletal muscle (9, 10). It may have
a role in both tumor formation and suppression (11). IGF2
is a growth factor that is paternally expressed in the fetus
and placenta, and biallelically expressed in the liver after birth
(12). The telomeric domain is controlled by the H19/IGF2
intergenic differentially methylated region (H19/IGF2:IG DMR),
also known as imprinting control region 1 (IC1) that is located
2 kilobases upstream of H19 (1). Shared enhancers of H19 and
IGF2 and a CTCF binding factor-dependent insulator located
between the two genes control imprinting of this locus (13, 14).
In mouse, CTCF binds to the imprinting control region (ICR)
on the maternal allele to produce an insulator that results in
expression of H19 and silencing of Igf2 (15). On the paternal
allele, methylation of the ICR prevents CTCF binding, which
leads to Igf2 expression and silencing of the H19 promoter.
Similar mechanisms of regulation occur in humans, but the IC1
region is much larger in humans (16).

The centromeric domain includes KCNQ1, the regulatory
lncRNA KCNQ1OT1, and CDKN1C, a cell cycle inhibitor.
KCNQ1 encodes a voltage-gated potassium channel, and it
is initially maternally expressed during early embryogenesis
but becomes biallelically expressed during fetal development
(17). KNCQ1OT1 is a paternally expressed lncRNA transcribed
antisense to KCNQ1 (18). CDKN1C encodes a G1 cyclin-
dependent kinase inhibitor, and it negatively regulates cell
growth and proliferation. It is expressed in the embryo and
placenta as well as postnatally in the body (19). The centromeric

domain is controlled by the KCNQ1OT1 transcription start site
differentially methylated region (KCNQ1OT1:TSS DMR), also
known as imprinting control region 2 (IC2) that is located on
the 5′ end of KCNQ1OT1 and includes the promoter region for
KCNQ1 (20). In mice, the maternal allele is methylated so that
Kcnq1ot1 is not expressed and Kcnq1 and Cdkn1c are expressed.
On the paternal allele, the Kcnq1ot1 promoter is not methylated
so the lncRNA is expressed and Kcnq1 and Cdkn1c are silenced
(21). Regulation of this ICR seems to be similar in mice and
humans (16).

About 80% of patients with BWS have a known molecular
defect in the 11p15 region, most commonly due to aberrant DNA
methylation (1). Normally, the paternal allele is methylated at
IC1 and the maternal allele is methylated at IC2 (Figure 1A).
These methylation marks are established in the germline and
must be maintained throughout the reprogramming that occurs
post-fertilization in the zygote (22). Gain of methylation at
IC1 on the maternal allele (IC1 GOM) is found in about 5–
10% of patients. This leads to downregulation of H19 and
expression of IGF2 on the maternal allele (Figure 1B) (23). Loss
of methylation at IC2 on the maternal allele (IC2 LOM) is found
in about 50% of patients (24). This leads to derepression of
KCNQ1OT1 and downregulation of CDKN1C on the maternal
allele (Figure 1C) (23, 25). Paternal uniparental isodisomy
(pUPD) occurs when a patient has two copies of the paternal
chromosome 11p15 and none of the maternal, and this occurs
in about 20% of patients (24). The extent of the disomy can
range from segmental to genome wide, but with regards to
the 11p15 region, pUPD leads to overexpression of IGF2 and
decreased CDKN1C expression (Figure 1D) (26). pUPD can be
caused by errors in meiosis I or meiosis II in the gametes,
or more frequently in BWS by postzygotic errors in mitotic
recombination during early embryogenesis (27, 28). CDKN1C
mutations on the maternal allele occur in about 5% of sporadic
cases and 40% of familial BWS (Figure 1E) (24). If the mutation
is maternally inherited, there is a 50% chance recurrence risk with
variable expressivity (29). Chromosomal abnormalities including
duplications, deletions, and translocations of the 11p15 region
are found in <5% of patients (24). These alterations are usually
inherited in an autosomal dominant manner, and the recurrence
risk depends on the sex of the parent carrying the affected
allele (1).

There is a higher frequency of multiple gestations in patients
with BWS compared to the general population (30). The majority
of cases are monozygotic female twins with discordant features
where one twin is more affected by BWS than the other (30), but
there is great variability in the degree of phenotypic discordance
(31). It is hypothesized that an epigenetic event causing BWS
occurs prior to, and perhaps triggers the twinning process (30, 32,
33). The affected cells diffuse among the embryos in a multiple
pregnancy, resulting in a mosaic distribution. Cohen et al. (31)
present this theory of “diffused mosaicism” where the timing of
the embryologic twinning relative to the timing of the epigenetic
event likely influences the degree of BWS affectedness and degree
of mosaicism.

Assisted reproductive technologies (ART), such as in vitro
fertilization (IVF) and intracytoplasmic sperm inject (ICSI)

Frontiers in Pediatrics | www.frontiersin.org 2 January 2020 | Volume 7 | Article 562

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Wang et al. Diagnosis and Management of Beckwith-Wiedemann Syndrome

FIGURE 1 | Molecular mechanisms that can lead to Beckwith-Wiedemann syndrome. (A) In normal cells, the paternal allele is methylated at imprinting control region

1 (IC1) and the maternal allele is methylated at imprinting control region 2 (IC2). (B) In IC1 gain of methylation (IC1 GOM), both the maternal and paternal alleles are

methylated at IC1, which leads to downregulation of H19 and overexpression of IGF2. (C) In IC2 loss of methylation (IC2 LOM), the maternal allele loses methylation at

IC2, which leads to expression of KCNQ1OT1 and downregulation of CDKN1C. (D) In paternal uniparental disomy of 11p15 (pUPD), there are two copies of the

paternal chromosome, which leads to overexpression of IGF2 and decreased expression of CDKN1C. (E) Mutations of the maternal CDKN1C gene can result in loss

of function.
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may impact the establishment and/or the maintenance of
DNA methylation at imprinted loci (7, 34). There is a 10-
fold increased risk of BWS with ART and an absolute risk
of about 1 in 1,100 (5). More than 90% of children with
BWS conceived by ART have IC2 LOM (5). Further research
is needed to illuminate the relationship between ART and
imprinting defects.

MOLECULAR GENETIC TESTING FOR
BWS

Overview of Genetic Testing Strategies
Mosaicism can pose a significant challenge to genetic testing in
BWS because different tissues may have different proportions
of affected BWS cells (8). First-line diagnostic testing is

usually performed on DNA derived from blood-leukocytes (2).
Other samples such as buccal swabs, skin fibroblasts, or cells
of mesenchymal origins including surgical resections and/or

excisions of hyperplastic tissues, can improve the detection of
mosaicism (3, 35, 36). A negative result does not exclude a
diagnosis of BWS and may be the result of low-level mosaicism
that is below the level of detection, a rare balanced chromosomal
rearrangement, or another currently unrecognized cause (2).
In up to 20% of patients with a BWS phenotype, a molecular
diagnosis remains unknown (1). This may be due to tissue
mosaicism, as testing multiple tissues improves diagnostic yield
(3). Patients without a confirmed molecular diagnosis should be
evaluated for clinical features suggestive of different diagnosis
and appropriate additional testing should be considered (2). If
other features are not present and the clinical score is ≥4, the

FIGURE 2 | Flowchart for molecular diagnosis of Beckwith-Wiedemann syndrome. Patients with BWS clinical score ≥2 should receive genetic testing while patients

with clinical score <2 do not meet the criteria for testing. Recommended first-line testing (highlighted in orange) should analyze methylation at H19/IGF2:IG DMR (IC1)

and KCNQ1OT1:TSS DMR (IC2) and copy number variation (CNV). These tests can yield positive molecular diagnoses of chromosome 11 abnormalities, paternal

uniparental disomy of chromosome 11 (pUPD), IC1 gain of methylation (IC1 GOM), and IC2 loss of methylation (IC2 LOM) (highlighted in dark green). Further testing

(highlighted in blue) can determine chromosomal abnormalities more precisely. If DNA methylation testing is negative, CDKN1C sequencing is recommended, or

additional tests for rare chromosomal translocations. Negative test results can also be due to tissue mosaicism, and additional tissue samples can be tested.

Differential diagnoses should also be considered, but patients with clinical score ≥4 can have a clinical diagnosis of BWS even without molecular confirmation.

Adapted from Brioude et al. (2).
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patient may have classical BWS without molecular confirmation
(2). Patients with a score <4 and with isolated lateralized
overgrowth may still be part of the BWSp (3).

Figure 2 presents a flowchart for how to approach a
molecular diagnosis for BWS. First-line testing procedures
should determine the IC1 and IC2 methylation level and the
differentially methylated region (DMR) copy number (2).
Abnormal methylation is present in IC1 GOM, IC2 LOM,
pUPD11 (which shows both IC1 GOM and IC2 LOM), and
in copy number variations (CNVs) (35). Methylation-specific
multiplex ligation-dependent probe amplification (MS-MLPA)
is currently the most common diagnostic test because it
simultaneously detects percent methylation and DMR copy
number status (37, 38). However, other methylation-specific
techniques are more sensitive to low-level mosaicism, and
multiple tissues should be tested in patients with low-level
mosaicism (36, 39, 40). To confirm pUPD, chromosomal
microarray analysis (CMA) such as a single nucleotide
polymorphism (SNP) based microarray analysis can detect
low-level mosaicism and determine the length of the region of
pUPD, which may impact care (27, 41, 42). Genome-wide pUPD
(GWpUPD), or mosaic paternal isodisomy, may affect up to
10% of patients with pUPD of chromosome 11p15 and involves
additional clinical features and elevated tumor risk (26, 43).
CDKN1C mutations are detected through gene sequencing, and
detection of a pathogenic variant allows for cascade testing of
family members to clarify recurrence risk (29, 44).

If a CNV is detected, chromosome microarray is
recommended to determine the size and nature of the deletion
or duplication (41, 45). Karyotyping or fluorescence in situ
hybridization (FISH) can also be used to identify chromosomal
translocations depending on the nature of the breakpoints (46).
In patients with IC1 GOM, up to 20% may have small CNVs in
the DMR, which are associated with a high risk of recurrence
(47, 48). These can sometimes be detected using MS-MLPA but
require targeted IC1 sequencing, especially if there is a family
history of BWS (49, 50). Deletions in IC2 are rare (45), and there
is currently no specific recommendation to analyze CNVs in
patients with IC2 LOM (2). About one third of IC2 LOM patients
have been reported to have a multilocus imprinting disturbance
(MLID), but the clinical significance is uncertain so testing is
usually not indicated (51).

For BWS patients who are part of a multiple pregnancy,
knowing the zygosity and chorionicity is important for
appropriate diagnosis. For dizygotic dichorionic gestations,
no evaluation is indicated for the unaffected twin but for
monozygotic monochorionic and dichorionic gestations, the
twin should receive a clinical examination by a geneticist (31). To
accurately diagnose discordant monozygotic twins, buccal swab
is the preferred source of DNA because DNA from blood cells or
saliva may show aberrant methylation in an unaffected twin due
to shared circulation during fetal development (52).

Diagnostic Tests for Aberrant Methylation
The most widespread diagnostic test is methylation-specific
multiplex ligation-dependent probe amplification (MS-MLPA)
because it can detect both DMR methylation and copy number

variation (37, 38). However, it cannot determine the size or
content of CNVs, and other tests such as CMA or FISH analyses
are more suitable for this (37). MS-MLPA is a polymerase chain
reaction (PCR)-based method and uses multiple test probes in
the 11p15 region and in other loci across the genome (37, 38).
Some of the probes for the 11p15 region are methylation specific
and contain the Hha I restriction enzyme site within a CpG
island. After the probes and DNA incubate together, the sample
is divided into two aliquots, one for traditional MLPA and the
other for methylation-specific (MS) analysis. The first aliquot
for traditional MLPA uses the ligation of two half-probes to
detect CNVs. The second aliquot for MS analysis includes the
addition of Hha I restriction enzyme, which specifically targets
unmethylated sequences for degradation so only methylated
samples are amplified. The relative amounts of the target DNA
sequence are quantified by fluorescently-labeled primers, which
are used to calculate the methylation index (37, 38). MS-
MLPA can also identify the parent of origin of small genomic
duplications and deletions (38), but further testing such as a
CMA or FISH is recommended. It is important to have a wide
cohort of controls and to match analyses with controls from
the same tissue (36). Using a single experiment, MS-MLPA can
detect CNV and methylation status within the 11p15 region with
high specificity and reliability (45). Furthermore, this test can be
performed efficiently and at low costs with a small quantity of
DNA, making it an ideal first-line diagnostic test (37, 38).

To more precisely study low-level mosaicism, other
methylation-sensitive PCR methods are needed. In quantitative
methylation-sensitive PCR, genomic DNA is treated with
sodium bisulfite then amplified with quantitative TaqMan PCR
(39, 40). The bisulfite treatment deaminates unmethylated
cytosines to uracil while methylated cytosines are preserved.
The TaqMan probes are labeled with different fluorophores to
discriminate between methylated and unmethylated DNA, and
the methylation index is calculated based on the fluorescence
intensity from each allele. Using allele-specific methylated
multiplex real-time quantitative PCR (ASMM RTQ-PCR), Azzi
et al. (40) identified a range of normal methylation smaller
than that of MS-MLPA, meaning the assay is more sensitive
and is able to detect minute changes in methylation. Another
method is methylation-specific high-resolution melting (MS-
HRM) that uses differences in melting profile of methylated
and unmethylated DNA to detect methylation (53). Following
bisulfite treatment and PCR amplification, a fluorescent
intercalating dye is added to the DNA, and the change in
fluorescence is monitored as the DNA melts. The unmethylated
allele will begin melting at a lower temperature followed by the
methylated allele. MS-HRM has similar results and limitations as
MS-MLPA and other methylation-specific PCR techniques (53).

Diagnostic Tests for Uniparental Disomy
and Chromosomal Abnormalities
Chromosomal microarray analysis (CMA), FISH, and
karyotyping can detect copy number variations, chromosomal
abnormalities, and can confirm uniparental isodisomy (46).
CMA is the most common microarray technology used to
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identify deletions and duplications, but it provides limited
information on the structural rearrangements. Either FISH or
karyotyping is usually performed with CMA to confirm results
and to identify translocations and insertions (46).

There are two major microarray analyses: comparative
genomic hybridization (CGH) and single nucleotide
polymorphism (SNP) analysis. Both microarrays detect
submicroscopic changes that are too small to be detected
through conventional karyotyping by comparing hybridization
intensities between the patient sample and normal reference
DNA (54). Through this approach, labeled patient DNA
and labeled reference DNA compete to hybridize to normal
metaphase-arrested human DNA. An equal distribution of
the hybridized patient and reference DNA is indicative of a
healthy sample, whereas an imbalanced ratio is indicative of
chromosomal aberrations in the patient DNA (54). CGH can
identify deletions or duplications of a few kilobases in size
whereas SNP probes can identify variations at a single site
in DNA when present (55). A major limitation of CGH is its
inability to detect balanced chromosomal rearrangements, or
UPD and low-level mosaicism (46, 54).

SNP microarrays can simultaneously detect gain/loss CNVs
and copy-neutral loss of heterozygosity, as well as the parent of
origin of CNVs to detect uniparental disomy (27, 45, 56). MS-
MLPA and methylation-sensitive PCRmethods can detect pUPD
indirectly when both IC1 and IC2 have abnormal methylation,
but SNP microarrays can quantitatively determine the size of
UPD based on the extent of the SNPs affected (26, 36, 41). SNP
microarrays can detect uniparental disomy when both alleles
in the patient come from a single parent. SNP microarrays
are the most sensitive method for UPD and the associated
mosaicism (41), and can distinguish low-level mosaicism (1–
5%) from normal samples using B-allele frequencies (BAF) (27,
42). They are also able to distinguish UPD from chromosomal
abnormalities more precisely than karyotyping or FISH (42).
Furthermore, a genome-wide SNP array can be utilized to
distinguish mosaicism from chimerism, which occurs when there
are two different cell lines with two complete sets of DNA
within the body (27). Microsatellite arrays, which analyze highly
polymorphic short tandem repeats (STRs) in the DNA, are
similar to SNPmicroarrays in that both can detect UPD, but SNP
microarrays are more sensitive (41).

While microarrays identify changes at specific regions of the
genome, karyotyping identifies larger chromosome differences.
Karyotyping detects structural changes >3–10Mb in size and
it is well-suited for complex rearrangements involving multiple
chromosomes (46).

Fluorescence in situ hybridization (FISH) can detect structural
changes of genes with higher resolution than karyotyping (57).
FISH is a hybridization technique that uses fluorescent probes to
bind to specific DNA sequences with high specificity in order to
detect the presence or absence of these stretches of DNA (58).
Prior knowledge of the abnormal region is required to design
FISH probes, and only a few probes can be used at a time (58).
While karyotyping and FISH can also distinguish chromosomal
abnormalities from mosaic UPD, they cannot determine the size
of a disomy nor the size of a chromosomal deletion or duplication

(42). After identifying the chromosomal abnormalities in the
patient, testing should be extended to other family members as
appropriate (2).

Diagnostic Tests for CDKN1C Mutations
To detect CDKN1C mutations or other gene mutations
in the 11p15 region, genetic sequencing is performed.
Briefly, PCR is performed to amplify the region of interest,
then Sanger sequencing is used to query the sequence for
candidate mutations.

Prenatal Testing
BWS can be diagnosed molecularly in some prenatal cases,
but due to mosaicism, a negative test result cannot exclude a
diagnosis (23) and postnatal testing should also be performed
to confirm results (59). Genetic counseling should include
discussion of the benefits and limitations of each test offered.
Testing is usually indicated by abnormal ultrasound, including
omphalocele, macroglossia, or enlarged abdominal organs in
the fetus. Placental mesenchymal dysplasia, polyhydramnios,
or increased alpha-fetoprotein (AFP) in the second trimester
can also occur (59). Positive family history mainly arises from
CDKN1C mutations or chromosomal abnormalities such as
deletions/duplications. Both native and cultured amniocytes
can be used for testing, but cultured cells may show features
that do not correlate with the true biological status of the
fetus or placenta (59). If testing is undertaken, methylation
testing and CDKN1C sequencing is recommended. Testing
on chorionic villus sampling (CVS) can be limiting because
of confined placental mosaicism, which might not reflect
the (epi)genetic status of the fetus (60) and thereby CVS
testing that is negative or showing low-level changes would
require an amniocentesis and/or postnatal testing for further
evaluation. Maternal contamination is also a possibility, so
parallel microsatellite analysis of maternal and fetal short
tandem repeats (STRs) is strongly advised (59). While a positive
methylation or chromosomal test result confirms a diagnosis
of BWS, a negative result cannot exclude a diagnosis. Due to
the complexity and heterogeneity of BWS, tissue mosaicism and
other molecular alterations could escape detection. Postnatal
testing should be performed to confirm any results (59).

MANAGEMENT AND CARE OF PATIENTS
WITH BWS

Determining the molecular subtype of BWS is important
because there are correlations between clinical phenotype and
(epi)genotype (61–63). Figure 3 depicts facial photographs
of patients with different molecular subtypes of BWS. IC1
GOM patients tend to have large birth weights, enlarged
abdominal organs, and high incidence of tumors (28%) especially
Wilms tumors, while IC2 LOM patients typically present
with omphalocele, macroglossia, and nevus simplex, and have
the lowest incidence of tumors (2.6%). UPD patients tend
to have lateralized overgrowth and hyperinsulinism and an
intermediate tumor incidence (16%). It is unknown if there is
a correlation between the severity of the phenotype and the
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FIGURE 3 | Photos of six patients with BWS due to (A) IC2 loss of methylation (IC2 LOM), (B) IC1 gain of methylation (IC1 GOM), (C) chromosomal rearrangements

(deletions, duplications), (D) paternal uniparental isodisomy 11 (pUPD), (E) genome-wide paternal uniparental isodisomy (GWpUPD), and (F) CDKN1C mutation.

Written consent was obtained from the parents of every participant to publish these identifying images.

level of mosaicism or chromosomal isodisomy (61). Patients
with CDKN1C mutations have similar features as those with IC2
LOM including omphalocele and nevus simplex, and they have
an estimated tumor incidence of 6.9%, although limited data
exists (62).

Prenatal Care
For patients with a prenatal diagnosis, the management
of individual congenital anomalies should follow standard
protocols. BWS is associated with increased risk of
polyhydramnios, gestational hypertension, pre-eclampsia, and
preterm births (64–66), so appropriate arrangements for delivery
and neonatal care should be made. Post-delivery complications
may include neonatal hypoglycemia, respiratory obstruction due
to macroglossia, and surgical repair of omphalocele (2).

Hypoglycemia and Hyperinsulinism
Hypoglycemia occurs in about 30–60% of patients, and BWS-
related neonatal hypoglycemia is due to excess insulin (62,
67, 68). It is generally transient and resolves within a few
days, but in some cases persistent hyperinsulinism (HI) occurs,
and therefore neonates with suspected BWSp should be
screened for hypoglycemia before discharge (2). HI may require
medical treatment such as diazoxide or somatostatin analogs
such as octreotide and lanreotide, or in some cases subtotal
pancreatectomy in HI that persists despite maximal medical

therapies (68). Congenital HI is a rare condition seen most
commonly in pUPD patients, and a diagnosis should be made
with an endocrinologist who is familiar with this condition. HI
in BWS can occur with or without mutations in the beta cell
potassium channel genes (ABCC8 and KCNJ11), which are also
on chromosome 11p near the BWS region (68).

Macroglossia
Macroglossia is seen in about 90% of patients with BWS (61, 62),
and about 40% of children undergo a tongue reduction surgery
(69). Need for surgery and timing of surgery depends on the
clinical status of the patient. The most common indications for
surgery include respiratory problems, obstructive sleep apnea,
feeding difficulties, persistent drooling, problems with speech
and articulation, and orthodontic problems (70, 71). An airway
evaluation and polysomnography can provide further assessment
for obstructive sleep apnea (72). If there are respiratory problems,
surgery might need to be performed earlier in the neonatal
period. Studies show that patients who receive surgery before
2–3 years tend to have good outcomes with favorable results
including cosmetic improvement, adequate tongue mobility, and
no substantial effect on taste (69, 71).

Abdominal Wall Defects
For omphalocele and other abdominal wall defects, no specific
recommendations have been given with regards to patients with
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BWS. The management of these features should follow standard
protocols and local practices (2).

Growth and Lateralized Overgrowth
Overgrowth in BWS occurs in about 43–65% of patients (61, 62),
and lateralized overgrowth can occur when one side of the
body is larger than the other. Postnatal growth is generally in
the upper percentiles but slows down in late childhood (73).
Lateralized overgrowth is the most frequent feature in pUPD
patients (63), and the management will depend on the affected
limbs. Leg length discrepancy (LLD) may require shoe lifts or
surgical correction in some cases (74).

Tumor Screening Protocols
BWS is a cancer predisposition syndrome with an overall tumor
risk of about 8%, but each molecular subgroup is associated
with a different tumor incidence and types of tumors (75, 76).
The most common types of tumors are Wilms tumor (52%)
and hepatoblastoma (14%), followed by neuroblastoma (10%),
rhabdomyosarcoma (5%), and adrenal carcinoma (3%) (62).
Cancer risk is the highest during the first 2 years of life and
declines afterwards, and there is currently no evidence of an
increased tumor risk in adults with BWS (2). IC1 GOM is
associated with the highest incidence of tumor (28%), followed
by pUPD (16%), CDKN1C mutation (6.9%), and the lowest
with IC2 LOM (2.6%) (61, 62, 75). Patients with IC1 GOM
are predisposed to Wilms tumor, which accounts for 95% of
tumors in this group (62, 75), while patients with IC2 LOM are
more likely to develop hepatoblastoma (77), and patients with
CKDN1C mutations are predisposed to neuroblastoma (62, 75).
Wilms tumor and hepatoblastoma occur with similar frequencies
in patients with pUPD, and patients with GWpUPD seem to
develop similar types of tumor as those with segmental pUPD
but with an increased incidence of hepatic and/or adrenal tumors
extending into young adulthood (78, 79). For patients with a
clinical diagnosis of BWSp or negative molecular testing, there
needs to be further research to understand their cancer risk (80).

Tumor screening protocols are recommended for earlier
detection of tumors, reducing morbidity, and increasing patient
survival. Guidelines developed by the American Association for
Cancer Research Childhood Cancer Predisposition Workshop
(AACR-CCPW) include full abdominal ultrasound (USS) every
3 months from diagnosis until the 4th birthday, renal ultrasound
every 3 months from age 4–7 years, and AFP screening every
3 months until the 4th birthday for all patients with BWSp
(81). Patients with CDKN1C mutations should also receive
neuroblastoma screening, which includes urine VMA/HVA and
chest X-ray every 3 months until the 6th birthday then every 6
months from age 6–10 years, in addition to abdominal imaging
and AFP screening (82). In contrast Brioude et al. (2), an
international consensus group consisting primarily of European
experts, recommends abdominal ultrasounds every 3 months
from diagnosis until the 7th birthday for the BWSp subgroups
that are at the highest risk of cancer including IC1 GOM, pUPD,
CDKN1C mutation, and other genomic rearrangements of the
region and clinical BWS (2).

To screen for hepatoblastomas, measurements of serial serum
alpha-fetoprotein (AFP) could lead to earlier detection than
abdominal ultrasounds. However, interpreting AFP levels can
be difficult during infancy and early childhood due to variable
concentrations and wide range of normal values (83–85). The
consensus group stated that AFP measurements should not be
offered routinely because of the low incidence of hepatoblastoma
in BWSp and the difficulties in interpretation (2).

AACR-CCPW identifies a 1% tumor risk threshold and
therefore recommends abdominal USS and AFP screening for all
subtypes of BWSp (81). While patients with IC2 LOM have an
overall lower risk of tumor development, they have an increased
risk of hepatoblastoma (77), which has significantly lower event-
free survival rates compared to Wilms tumor or other embryonal
tumors. Patients with localized and lower stage hepatoblastoma
can achieve high survival rates between 80 and 100%, but patients
with late stage tumors face a poorer prognosis (86, 87). Serum
AFP levels to screen for hepatoblastoma should be interpreted
in the context of the clinical picture, and patients with BWS
tend to have higher AFP levels in early childhood compared to
normal pediatric values (83, 84, 88). AFP levels are expected to
decline over time and can be tracked with normograms (89), and
large rises in AFP levels should be further investigated by repeat
testing and additional imaging (81). AFP screening can be used to
distinguish hepatoblastoma from infantile hepatic hemangioma,
a benign vascular neoplasm (90, 91). Monitoring serial serum
AFP levels can allow for early detection of hepatoblastoma,
even before detection by abdominal imaging, which can lead to
better patient outcomes (92, 93). Recently Mussa et al. (94) have
developed a less invasive method for measuring AFP levels using
dried blood spots that is as accurate as traditional venipuncture.

Children with BWS and Wilms tumor tend to have higher
incidence of recurrence (95) and potential co-occurrence of
progressive non-malignant renal diseases and bilateral Wilms
tumor (96, 97). Multifocal or diffuse nephrogenic rests in one or
both kidneys (nephroblastomatosis) are not easily distinguishable
from Wilms tumor and may require MRI for diagnosis (97).
Partial nephrectomy and nephron-sparing strategies for Wilms
tumors are recommended if possible (96, 98). The presence
of nephro-urological anomalies in patients with BWSp is 28–
61% (99), including cortical and medullary cysts in about
10% of patients and higher incidence of hypercalciuria and
nephrolithiasis (100). For adults with BWS, a detailed clinical
review and renal ultrasound should be performed at 16 years to
develop specific recommendations for surveillance for ongoing
problems (2). There is no apparent association between BWSp
and predisposition to common adult-onset carcinomas (101), but
further research on adults with BWS is needed.

Cardiac Features
Cardiac defects occur in up to 13–20% of patients with BWS, and
there is higher incidence of congenital heart disease compared
to the general pediatric population (61, 102, 103). Minor
anatomical defects should be monitored by echocardiogram
until spontaneous resolution, but more severe defects might
require surgical correction (2). Although rare, patients with
IC2 CNVs and/or genomic rearrangements of the region may

Frontiers in Pediatrics | www.frontiersin.org 8 January 2020 | Volume 7 | Article 562

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Wang et al. Diagnosis and Management of Beckwith-Wiedemann Syndrome

be predisposed to long QT syndrome and require follow-up
throughout adulthood (104, 105).

Cognitive and Neurological Features
Patients with BWS usually have normal cognitive development,
and a broader differential diagnosis should be considered in
patients with an overgrowth disorder and learning disability
without a 11p15 anomaly (2, 106). However, developmental
delay can be associated with prematurity, severe hypoglycemia,
unbalanced chromosomal rearrangements, and GWpUPD (78).

Psychological Well-Being
The diagnosis of BWSp can affect patients and families
psychologically and socially. Parents may be unprepared for the
diagnosis because in many cases there is no relevant family
history (2). The increased tumor risk and surveillance protocol
can cause increased anxiety, but a survey of parents with children
with BWS revealed that tumor screening decreases worry and
is not burdensome (107). In children with macroglossia, some
parents are worried that a large protruding tongue and persistent
drooling may affect peer interactions and increase emotional
difficulties (70, 108). Healthcare professionals should be aware
of these psychosocial issues and refer families to specialists
including genetic counselors, social workers, and psychologists,
or offer support groups as appropriate (2).

DISCUSSION

BWSp is a complex multisystem disorder that can result from
a variety of molecular changes in the 11p15 region. A range
of different genetic diagnostic tests are used to detect aberrant
methylation and chromosomal abnormalities, and the presented

genetic testing strategies can guide clinicians when establishing
a molecular diagnosis for BWSp. However, tissue mosaicism
continues to pose a challenge to genetic testing, and a negative
test result cannot exclude a diagnosis of BWSp. Even with
negative molecular testing, a BWS clinical score ≥4 based on
cardinal and suggestive features satisfies a clinical diagnosis
of BWS. Nevertheless, identifying a molecular diagnosis is
important in coordinating the care and management of patients
with BWSp and testing multiple tissues if possible can improve
molecular diagnosis.
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