
fpsyg-10-00353 March 12, 2019 Time: 19:10 # 1

METHODS
published: 14 March 2019

doi: 10.3389/fpsyg.2019.00353

Edited by:
Guido Alessandri,

Sapienza University of Rome, Italy

Reviewed by:
Michael D. Toland,

University of Kentucky, United States
Wolfgang Rauch,

Ludwigsburg University, Germany

*Correspondence:
Fred A. Hintz

fredhintz040@gmail.com

Specialty section:
This article was submitted to

Quantitative Psychology
and Measurement,

a section of the journal
Frontiers in Psychology

Received: 01 May 2018
Accepted: 05 February 2019

Published: 14 March 2019

Citation:
Hintz FA, Geiser C, Burns GL and

Servera M (2019) Examining
Quadratic Relationships Between

Traits and Methods in Two
Multitrait-Multimethod Models.

Front. Psychol. 10:353.
doi: 10.3389/fpsyg.2019.00353

Examining Quadratic Relationships
Between Traits and Methods in Two
Multitrait-Multimethod Models
Fred A. Hintz1* , Christian Geiser1, G. Leonard Burns2 and Mateu Servera3

1 Department of Psychology, Utah State University, Logan, UT, United States, 2 Department of Psychology, Washington State
University, Pullman, WA, United States, 3 Department of Psychology, University of the Balearic Islands, Palma, Spain

Multitrait-multimethod (MTMM) analysis is one of the most frequently employed methods
to examine the validity of psychological measures. Confirmatory factor analysis (CFA)
is a commonly used analytic tool for examining MTMM data through the specification
of trait and method latent variables. Most contemporary CFA-MTMM models either
do not allow estimating correlations between the trait and method factors or they
are restricted to linear trait-method relationships. There is no theoretical reason why
trait and method relationships should always be linear, and quadratic relationships are
frequently proposed in the social sciences. In this article, we present two approaches
for examining quadratic relations between traits and methods through extended latent
difference and latent means CFA-MTMM models (Pohl et al., 2008; Pohl and Steyer,
2010). An application of the new approaches to a multi-rater study of the nine inattention
symptoms of attention-deficit/hyperactivity disorder in children (N = 752) and the results
of a Monte Carlo study to test the applicability of the models under a variety of data
conditions are described.

Keywords: structural equation modeling, multiple rater, multitrait-multimethod (MTMM) analysis, latent
moderated structural equations, latent difference model, latent means model

INTRODUCTION

In psychology, researchers frequently examine the validity of tests and measurements they use.
Convergent and discriminant validity are two aspects of validity that researchers typically study
(American Educational Research Association et al., 2014). Evidence for convergent validity is
provided when different measures (or “methods of measurement”) of the same psychological
construct are strongly related (Cronbach and Meehl, 1955; Campbell and Fiske, 1959). Evidence
for discriminant validity is provided when measures of different constructs (that pertain to the
same or different methods) are sufficiently distinct from each other (Campbell and Fiske, 1959). For
example, Cole et al. (1996) examined the extent to which children’s self-reports of their depression
were concordant with the reports of their parents, their teachers, and their peers, thus testing
convergent validity. In the same study, the authors also examined discriminant validity by looking
at the extent to which the relations between the ratings of child depression, academic competence,
and social competence were inflated due to the use of the same reporter type.
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A common approach for examining convergent and
discriminant validity is called the multitrait-multimethod
(MTMM) design (Campbell and Fiske, 1959). In an MTMM
study, researchers gather data on multiple traits (e.g., depression,
self-esteem, competence) that are assessed with multiple methods
(e.g., self, parent, and teacher reports). According to Campbell
and Fiske (1959), each variable represents a trait-method unit
(TMU), as it reflects both trait and method (e.g., self-report of
depression, parent report of self-esteem, etc.).

Convergent and discriminant validity are evaluated based on
the correlation matrix that results from an MTMM design using
specific criteria. Specifically, convergent validity is supported
by strong correlations between ratings of the same trait by
different methods. In contrast, discriminant validity is supported
by correlations between different traits measured by the same
method that are not too large.

The original correlation-based MTMM analyses has a number
of limitations (Widaman, 1985). These limitations include a
lack of correction for measurement error (unreliability) in the
variables representing each TMU and the inability to relate trait
and method effects to one another and to external variables.
Confirmatory factor analysis (CFA) models are now widely
used to analyze MTMM data, as they allow addressing many
of the limitations of the original MTMM correlation matrix
approach (Kenny, 1976; Browne, 1985; Widaman, 1985; Marsh
and Hocevar, 1988; Eid, 2000). CFA uses latent variables to
represent trait and method effects and corrects for random
measurement error. Furthermore, CFA explicitly expresses trait
and method effects in terms of latent factors, thus allowing
researchers to study relationships between trait, method, and
external variables.

A number of different CFA-MTMM models have been
proposed in the literature. For example, the correlated-traits
correlated-methods (CTCM) model (Jöreskog, 1971) includes as
many trait and method factors as there are traits and methods
in the study. The CTCM model allows correlations between
the trait factors as well as correlations between the method
factors, but no correlations between the trait and method
factors (Widaman, 1985). The correlated-traits-uncorrelated-
methods model (CTUM) has the same basic structure as the
CTCM model, but assumes uncorrelated method factors (Marsh
and Hocevar, 1983). The correlated-traits-correlated-uniqueness
(CTCU; Kenny, 1976) model includes as many trait factors as
there are traits in the study. Instead of including method factors,
the CTCU model allows correlations between the measurement
error variables that pertain to the same method.

Most CFA-MTMM models posit that trait factors can be
correlated with other trait factors, and that method factors can
be correlated with other method factors. However, correlations
between trait and method factors are typically restricted to
zero, either for ease of interpretation, statistical reasons, or
based on the definition of method factors as regression residuals
(e.g., Eid, 2000). Nonetheless, such trait-method correlations
could be present and meaningful in practical applications of
the MTMM approach. Specifically, trait-method correlations
indicate that method effects are larger or smaller depending on
the level of the trait.

An example of a potential trait-method relationship is
that method effects pertaining to peer reports of children’s
extraversion could be related to the children’s level of
extraversion. That is, when an individual scores low in
extraversion, it may be more difficult for his or her peers
to judge the extent to which they prefer to be alone rather
than with others, and the discrepancy between peer and
self-report may be higher.

In contrast, when an individual is high in extraversion, it may
be easier for his or her peers to see that an individual prefers
to be around others and the peer and self-reports might show
greater agreement (higher convergent validity). Method effects
(discrepancies between peer and self-reports) would therefore be
larger at lower levels of the trait and smaller at high levels of the
trait. This would be reflected in a negative relationship between
the trait (extraversion) and the method effect (peer report vs. self-
report): the higher the trait score, the smaller the method effect.

Effects like these are ignored in the most frequently used
MTMM models (Podsakoff et al., 2003). In most MTMM models,
it is implicitly assumed that trait levels are unrelated to method
effects. This is either because the method effects are defined in
such a way that they must be uncorrelated with the trait factors
(e.g., Eid, 2000), or because of concerns with model identification,
convergence, overfitting, or interpretability of model parameters
(Widaman, 1985; Marsh and Grayson, 1995). In other words,
these restrictions are typically chosen for statistical expediency
rather than for substantive reasons. As noted by Marsh
and Grayson (1995), trait-method correlations are typically
constrained to zero in CFA-MTMM models “to avoid technical
estimation problems and to facilitate decomposition of variance
into trait and method effects, not because of substantive
likelihood or empirical reasonableness” (p. 181). In fact, the
creators of the MTMM approach themselves noted in a later
paper that “method and trait or content are highly interactive
and interdependent” (Fiske and Campbell, 1992). In summary,
it is plausible that trait and method factors could be correlated,
yet most commonly used statistical models for MTMM data
do not allow the estimation of correlations between trait
and method factors.

Early applications of CFA-MTMM models found large trait-
method correlations when using the CTCM approach (Boruch
and Wolins, 1970; Kalleberg and Kluegel, 1975; Schmitt, 1978).
However, the CTCM approach is prone to both conceptual as
well as convergence, admissibility, and interpretation problems
(Marsh, 1989; Geiser et al., 2008). The addition of correlations
between trait and method factors compounded these problems
(Marsh, 1989; Kenny and Kashy, 1992). Other CFA-MTMM
approaches have been developed to avoid the problems typically
encountered with the CTCM model (Eid, 2000; Pohl et al., 2008;
Pohl and Steyer, 2010).

Recently, two CFA-MTMM models have been proposed that
allow for the estimation of trait-method correlations and that
do not show the same estimation and identification problems as
the CTCM approach: the latent difference (LD) and the latent
means (LM) model (Pohl et al., 2008; Pohl and Steyer, 2010).
These models are based on classical test (true score) theory and
can be used to estimate linear relationships between trait and
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method factors. Linear relationships between traits and methods
indicate that method effects increase or decrease as a function of
the trait level. One shortcoming of the LD and LM models in
their current form is that quadratic relationships between traits
and methods cannot be tested. A quadratic relationship could
exist, for example, if parent and teacher reports of children’s
attention-deficit/hyperactivity disorder (ADHD) symptoms are
less discrepant at low and high symptom levels, but more
discrepant at intermediate symptom levels. This may be the case
because certain ADHD symptoms may not be visible to the
parents, but may be visible to the teachers. In contrast, children
with very low or very high levels of ADHD may be correctly
identified by both parents and teachers. In general, method effects
may be weaker at lower or higher levels of a trait as individuals
with “extreme” trait levels or symptoms may show stronger
convergence of, for example, external observers due to the greater
visibility of their symptoms compared to individuals with more
moderate trait levels.

Currently, such quadratic relationships cannot be tested
within the CFA-MTMM framework. Some methodologists have
previously noted that theoretical models involving quadratic
effects are frequently posited in psychology, but that a
methodological understanding of how to test those models
is lacking (Aiken and West, 1991). Ignoring quadratic trait-
method relationships could result in either disregarding a true
threat to convergent validity, or inappropriately concluding that
convergent validity is lower than it truly is. In this paper,
we propose an approach for examining quadratic trait-method
relations with MTMM data.

The remainder of the paper is organized as follows: we first
review a basic CFA-MTMM model for multiple-indicator data
that served as the basis for defining the LD and LM models.
Second, we present the standard LD and LM models and compare
them in terms of their ability to represent linear trait-method
relationships. Third, we describe extensions of the LD and LM
models that allow analyzing quadratic relationships between
traits and methods. Fourth, an application of the linear and
quadratic LD and LM models to real data is presented. Lastly,
we briefly discuss the results of a Monte Carlo simulation study
examining the performance of the model extensions under a
larger set of conditions.

THE BASIC TMU, LD, AND LM MODELS

In this section, the mathematical definitions and assumptions
characterizing the LD and LM models are presented. To simplify
our presentation, we consider a design in which just one trait is
measured by just two methods, as this is the simplest possible
way to examine convergent validity (Geiser et al., 2012) as well as
trait-method relationships. The extension to additional traits and
methods is straightforward. In addition, we consider models with
multiple indicators in each TMU in line with Marsh and Hocevar
(1988). This approach is preferable to single-indicator designs,
because it allows for the examination of trait-specific method
effects and latent (instead of observed) variables representing
each TMU (Marsh and Hocevar, 1988). Before introducing the

LD and LM models, we discuss the basic TMU model that serves
as the basis for formulating both the LD and LM models.

The Basic TMU Model
Each method in our example uses three observed variables
(indicators) Yim, where i indicates the observed variable and
m indicates the method (e.g., self-report) and m = 1, . . ., K.
Note that no index for the trait is required here, given that for
simplicity, we consider only one trait. In the basic TMU model
(see Figure 1A for a path diagram), all variables Yim that share the
same method m measure a common method-specific latent factor
(true score variable) Tm as well as a measurement error variable
εim. The measurement equation for each variable is in line with a
congeneric measurement model and is given by:

Y im = αim + λimTm + εim (1)

where αim is a constant intercept parameter and λim is a constant
factor loading parameter. The Tm factor can be interpreted
as a common true score variable in the sense of classical test
theory. It represents true score variance common to all indicators
measuring the same trait with method m.

For model identification purposes, researchers often fix the
intercept of one indicator per TMU to zero and the factor loading
of the same indicator to unity to identify the scale and mean of
each Tm factor. We follow this approach in the present paper.
The means, variances, and covariances of the Tm factors can then
be freely estimated. The εim variables have variances estimated,
but have means of zero by definition as measurement error
variables (Steyer, 1989). Furthermore, all error variables εim are
uncorrelated with all other error variables as well as with all
Tm factors.

In the basic TMU model, all Tm factors are allowed to
correlate. High correlations of Tm factors for the same trait
but different methods indicate strong convergent validity across
methods. In contrast, weak correlations indicate the presence of
substantial method effects (e.g., disagreement between reporters).
One advantage of the basic TMU model over classical MTMM
analysis with observed correlations is that the Tm factor
correlations represent latent correlations that have been corrected
for measurement error and are thus more accurate.

Another advantage of the basic TMU model is that is allows
researchers to test for measurement equivalence of the loadings
and intercepts of the observed indicators across methods (also
referred to as strong factorial invariance; Widaman and Reise,
1997; Cheung and Rensvold, 2002). Equal loadings and intercepts
are required for meaningfully comparing Tm factor means and
variances across methods (Geiser et al., 2014). Non-equivalent
intercepts and/or loadings across methods would mean that
differences in, for example, latent variable means across methods
may be due to differences in the measurement structure (e.g.,
differences in item difficulty between methods) rather than true
score mean differences (Pohl et al., 2008; Pohl and Steyer, 2010;
Geiser et al., 2014).

Prior to fitting either the LD or LM models (which use LD
scores), invariance of the intercepts and loadings should be
tested in the basic TMU model. Because strong measurement
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FIGURE 1 | Path diagrams of CFA-MTMM models for examining linear trait-method relationships. (A) Basic TMU model. (B) Latent difference (LD) model. (C) Latent
means (LM) model. Yim = observed variable (i = indicator, m = method); λi = factor loading; αi = intercept; εim = measurement error variable. Tm = trait as measured
by method m; M2 = method factor for Method 2 in the LD model; T = common trait factor in the LM model; M∗2 = method factor in the LM model; β0m, β∗0m = latent
regression intercept coefficient; β1m, β∗1m = latent regression slope coefficient; ζ2, ζ∗2 = latent residual variables.

equivalence is a prerequisite for a meaningful interpretation of
LD scores. In our subsequent presentation, we assume that strong
measurement equivalence has been established. Figure 1 thus
refers to the αim and λim parameters with only a subscript i (i.e.,
we assume the intercepts and loadings to be invariant across
methods). After establishing measurement equivalence in the
TMU model, researchers can move on to examine method effects
in the more complex LD and LM models.

One limitation of the basic TMU model is that it does
not contain latent variables representing method effects (i.e.,
there are no method factors). Therefore, method effects cannot
be examined directly in terms of latent factors and cannot
be related to external variables. The LD and LM models are
equivalent to the basic TMU model, but address this limitation
by including method factors. Furthermore, the basic TMU model
uses “method-specific” (rather than “common”) trait factors (i.e.,
the Tm factors do not reflect “pure” trait effects, but contain
method-specific effects as well). The LM model also addresses this
second limitation.

The LD Model
The LD model defines a method factor as the difference between
a Tm variable and another Tm variable that is defined to serve
as reference (Pohl et al., 2008; Geiser et al., 2012). Without loss
of generality, we choose the first method (m = 1) to serve as
reference so that T1 denotes the reference true score variable.
Without making any restrictive assumptions, we can decompose
each non-reference Tm variable as follows:

Tm = T1 + (Tm − T1).

The LD score variable (Tm – T1) is defined to be the method
factor for comparing Method m to the reference method for a
given trait:

Mm ≡ (Tm − T1).

The LD approach thus requires the selection of a reference
method against which another method is contrasted. It has been
suggested that in MTMM models requiring the selection of a
reference method a “gold standard” method or a method with
a clear structural difference from the other methods should
be chosen as the reference method (Geiser et al., 2008). For
example, when self- and other-reports are used in a study, it
would be natural to select self-report as the reference method
unless there are theoretical or practical reasons to prefer a
different method (e.g., in studies of very young children,
parent reports might be seen as more dependable than the
children’s self-reports).

The mean and covariance structure of the trait and method
variables in the LD model are unrestricted, such that the means,
variances, and covariances can be estimated for all trait and
method factors. Individual scores on the method factor Mm in
the LD model indicate the difference between the non-reference
method and the reference method for a given individual. For
example, if both mothers and fathers rate a child’s inattention
level with mother report used as the reference method, and the
scores of the latent TMU variables are 1 for the mother report and
1.5 for the father report, then the value of the method variable
for that child is 1.5–1 = 0.5. This would indicate that the child’s
score is overestimated by 0.5 by his or her father relative to the
mother’s report.

The mean of the method factor E(Mm) indicates the average
difference between the non-reference method as compared to the
reference method. For example, if the mean of the method factor
is 0.5, then, on average, fathers in the sample rate children 0.5
points higher than all mothers in the sample. The variance of
the method factor Var(Mm) indicates the spread of the individual
method effect scores. For example, if the variance of the method
factor is 0.81, then the standard deviation is

√
0.81 = 0.9, which

means that each discrepancy is, on average, 0.9 points away from
the mean difference score. Therefore, even though fathers rate
0.5 points higher than mothers on average, it is likely that if

Frontiers in Psychology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 353

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00353 March 12, 2019 Time: 19:10 # 5

Hintz et al. Quadratic Method Effects

the mother rates the child as a 1, a substantial number of father
ratings for that child (68%) fall anywhere between 0.6 and 2.4.

High convergent validity would be supported if the mean of
the method factor was close to zero and the variance of the
method factor was relatively small. This would indicate that the
scores from both methods tend to show strong agreement.

The covariance between the trait and method factors can be
represented either as a covariance parameter or, equivalently,
as a linear regression of the method factor on the trait
factor, as follows:

Mm = β0m + β1mT1 + ζm,

where β0m is a constant intercept parameter, β1m is a constant
regression slope parameter, and ζm represents a regression
residual variable with a mean of zero that reflects variance in Mm
that is not accounted for by T1. The β1m parameter represents
the strength of the linear relationship between the trait factor and
the method factor. Figure 1B shows a path diagram of this model
with the mean structure included.

When the LD trait-method relationship is parameterized as
a linear regression, the mean and variance of the method factor
and the covariance of the method factor with the trait factor are
represented by the intercept β0m, the regression slope β1m, and
the latent residual varianceVar(ζm). The intercept β0m reflects the
expected value of the method factor when the reference-method
trait level is zero. The regression slope β1m indicates the direction
and degree of a potential linear relationship between a method
factor and the reference trait factor.

For example, a positive regression slope β1m would show that
at higher levels of inattention as rated by mothers (reference
method), fathers tend to overestimate inattention more than
for lower levels of inattention. A negative regression slope β1m
indicates that, as levels of the trait as measured by the reference
method increase, the method scores become smaller. That is,
when mothers rate children’s inattention as high, fathers may
tend to either overestimate inattention less strongly (difference
scores get closer to zero), or underestimate inattention more
strongly (difference scores become more negative).

The completely standardized version of the slope β1m is equal
to the correlation between T1 and Mm and can be used as an
effect size measure for the strength of the linear association
between trait and method factors. The latent residual variance
Var(ζm) reflects the variability in the method factor that is not
accounted for by the linear relationship with the reference-
method trait factor.

The LM Model
An alternative to the LD model is the LM model (see Figure 1C),
which does not require the selection of a reference method.
In the LM model, a common trait factor is defined as the
mean of the trait factors across all methods. Method factors are
defined as deviations from the mean (Pohl and Steyer, 2010).
The LM model may therefore be more meaningful when a clear
reference method is not available, or the methods are not clearly
distinguishable (e.g., interchangeable judges), since the common
trait factor is defined as the average of scores from both methods.

Formally, the trait variable for a LM model in which one trait
is measured by two methods is defined as:

T ≡
T1 + T2

2
,

where T is the common trait factor. The method effect variables
are defined as:

M∗1 ≡ T1 − T and
M∗2 ≡ T2 − T,

where we denote the method factors in the LM model as
M∗m to differentiate them from the method factors in the LD
model, which are defined as differences from a reference method
rather than differences from an overall average. Simple algebraic
manipulation yields the structural equations for the TMU factors:

T1 = T +M∗1
T2 = T +M∗2 .

Given that T is defined as the mean of the trait variables across
methods, the deviations from the trait factor add up to 0 by
definition. In our design with just two methods, we have

M∗1 +M∗2 = 0.

Therefore, the two method variables are equal in magnitude but
oppositely signed1 such that

M∗1 = −M
∗
2 .

Given the deterministic relationship between method factors,
only K – 1 method factors need to be included in the analysis.
For example, in our design with two methods, we need only
one method factor. Without loss of generality, we replace M∗1
(i.e., the method factor for the first method) by −M∗2 in the
structural equation for the first TMU variable given above. Then,
the structural model for the TMU factors can be re-written as:

T1 = T −M∗2
T2 = T +M∗2

It can be seen that the first TMU variable has an implicit
loading of−1 on the method factorM∗2 , whereas the second TMU
variable has an implicit loading of +1 on the method factor M∗2 .
Both TMU factors have an implicit loading of+1 on the common
trait factor T. This is illustrated in the path diagram in Figure 1C.

In the LM model, both T1 and T2 are completely determined
by the T and M factors. Similarly to the LD model, the means,
variances, and covariances of all latent variables are freely
estimated. The covariance between the trait and method factors
can also be parameterized as a linear regression of the method
factor on the trait factor. In general, we have:

M∗m = β∗0m + β∗1mT + ζ∗m,

1This is only true for the two-method case. Designs with three or more methods
require that m – 1 method factors be estimated. The value of the last method effect
is a deterministic function of the others (Pohl and Steyer, 2010).
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where β∗0m is a constant intercept parameter, β∗1m is a constant
slope parameter, and ζ∗m is a latent residual variable representing
variability in M∗m that is not accounted for by the common trait
factor T. Figure 1C shows a path diagram of the LM model with
the mean structure and latent regression included.

In our case with just two methods, the mean of the method
factor E(M∗2) indicates the average deviation from the common
trait for the method that has positive loadings on the M∗2 factor.
The individual scores on the method factor indicate 1/2 times the
difference between each method’s scores for that individual. For
example, if a mother reports a score of 2 for her child’s inattention
and a father provides a rating of 3 for the same child, the score for
that individual on the M∗2 factor would be 0.5. The mean E(M∗2 )
of the method factor is the mean of these individual scores, and
therefore the mean difference between the two methods is two
times the mean of the M∗2 factor.

The variance of the method factor Var(M∗2) indicates the
spread of the method factor scores. Since the M∗2 factor represents
half the distance between the TMU scores, the variance of M∗2
is 1/4 the size of the variance of the method factor in the LD
model. For this reason, it may be easier to interpret the standard
deviations of the M∗2 factor instead of the variance. The standard
deviation of the M∗2 indicates how far away the typical individual
M∗2 score is from the mean of M∗2 , and can be compared to the
standard deviation of the T variable to judge the size of the effect.
Convergent validity is supported by a relatively low mean and
variance (or standard deviation) of M∗2 .

A potential linear relationship between the M∗2 factor and
the common trait factor T can be examined by analyzing the
β∗0m, β∗1m, and Var(ζ∗m) parameters. The intercept parameter β∗0m
indicates the expected value of the M∗2 variable when the common
trait factor is 0. The regression slope parameter β∗1m represents the
direction and magnitude of the linear relationship between the
common trait T and the method variable M∗2 . Higher values of
β∗1m indicate that values of the M∗2 factor increase more steeply as
values of the trait increase. The completely standardized version
of β∗1m gives the correlation between T and M∗2 . The variance of
the residual variable Var(ζ∗m) indicates how much of the variance
in the M∗2 variable is linearly unrelated to the trait variable.

Comparison of the LD and LM Models
for Analyzing Trait-Method Relations
The LD and LM models are equivalent models that imply the
same covariance and mean structure for a given set of data.
The models are similar in that they both contain K – 1 method
factors that are defined in terms of LD score variables. Both
models allow trait and method factors to be correlated. In both
models, the covariances between the trait and method factors can
be modeled as a linear regression of the method factors on the
reference trait factor.

The trait and method factors, however, are defined differently
in each model, which means that the trait-method relationship
has a different meaning across models. Although model fit is
identical for the linear LD and LM models for a given set of
data, the means and variances of the trait and method factors
as well as the size and direction of the trait-method relationship

(covariance) can be very different in each model (In Appendix A,
we provide more formal details on how each of the structural
parameters of the LD and LM models can be derived from the
baseline TMU model).

In the LD model, the trait factor is defined to be the
trait as measured by a reference method, and the method
factor is the difference between the reference method TMU
and the non-reference method TMU. Therefore, the trait-
method relationship is the relationship between the level of the
reference method TMU and the difference between the two TMU
variables. Consider a mother and father rating a child’s level of
inattention on a five-point scale, where 1 indicates lowest and
5 indicates the highest level of inattention symptoms. Assume
that after correcting for measurement error, the mother rating
of inattention is 2.5, and the father rating is 1.5. If we were to
use the LD model for this data and select the mother report as
the reference method, the trait factor score for that child would
be 2.5, and the method factor score for the father deviation from
the mother report is 1.5–2.5 = –1, indicating that the true father
report underestimates the child’s inattention by 1 point relative to
the true mother report.

In general, a positive linear relationship between the reference
TMU factor and the method factor in the LD model indicates
that as the scores on the reference factor increase, there is a
tendency for the method factor scores to increase also. For
example, for higher levels of inattention as rated by mothers,
the difference between father and mother scores may tend to
increase. In contrast, a negative linear relationship between
trait and method factor would indicate that as inattention
scores go up, the difference scores between father and mother
ratings become smaller.

Note that method factor scores can take on positive as
well as negative values (or the value of zero when there is
no discrepancy between reporters). Therefore, “smaller” here
could also mean “more strongly negative.” That is, rather than
considering the absolute value of the difference, the model
deals with raw difference scores. A small value of the difference
score therefore does not necessarily indicate a small discrepancy
between reporters. Such a value (i.e., a strongly negative method
factor score) could in fact indicate a strong discrepancy between
reporters. For this reason, it is important to consider the range
of scores, for example, by using scatter plots of estimated factor
scores as we show later in our illustrative application.

In the LM model, the trait factor is defined as the mean of the
true score variables across methods for the same trait, and the
method factors (M∗m) are defined as the deviations of a specific
true score variable from the mean true score (trait) variable.
In the LM model, the trait factor therefore has a completely
different meaning than in the LD model, as it represents the
average across all true score variables pertaining to the same trait.
In the two-method case, M∗2 , however, has a similar meaning
to M in the LD model, as M∗2 represents 1/2 of the difference
between the two TMUs.

If we consider the above example using the LM model instead
of the LD model, a true mother rating of 2.5 and a true father
rating of 1.5 would result in a trait factor score of 2 as well as
method factor scores of +0.5 for the mother rating and −0.5
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for the father rating. A positive correlation between the common
trait factor and a method factor in the LM model indicates that as
the value of the mean of mother and father ratings of inattention
increases, the deviation of a specific reporter (e.g., fathers) from
that average tends to increase also.

QUADRATIC RELATIONSHIPS BETWEEN
TRAITS AND METHODS

It is plausible that, in addition to linear relationships, quadratic
relationships between traits and methods exist in practice.
For example, at low and high levels of a trait, discrepancies
between methods may be smaller than in the center of the trait
distribution. Although plausible in many applications, to our
knowledge, quadratic trait-method relations have not yet been
tested and models have not yet been proposed to examine them.
We now present extensions to the LD and LM models that allow
for an examination of quadratic trait-method relationships.

The LD Model With Quadratic
Trait-Method Relationships
In order to examine quadratic relationships between trait and
method factors, a squared term T2

1 with an additional regression
slope coefficient β2m is added to the structural regression
equation in the LD model:

Mm = β0m + β1mT1 + β2mT2
1 + ζm.

Figure 2A shows a path diagram of this model. For β2m 6= 0, a
quadratic relationship is present in the data. A value of β2m > 0
indicates a u-shaped curve, whereas a value of β2m < 0 indicates
an inverted-u-shaped curve.

To determine the points at which the values of the method
factor are implied to be zero and the maximum level of
discrepancy, researchers should calculate the roots and the
inflection point of the quadratic function. Note that they are only
substantively meaningful if they are within the observed range
of the measures. The inflection point is the value of the trait
level at which the relationship between the two variables changes
direction, and thus reflects the trait level that corresponds to the
minimum or maximum level of the method effect. The formula
for the inflection point is given by

−β1m

2β2m
.

For example, for the quadratic function 0.6− 0.7T1 +

0.1T2
1 + ζm, the inflection point is 0.7

0.2 = 3.5. This means that
below 3.5, values of the method factor decrease as the value
of the trait factor increases. Above 3.5, values of the method
factor increases as the value of the trait factor increase. The
model-predicted minimum or maximum value of the method
factor can be obtained by plugging the trait-factor value into
the model equation. For the previous example, the predicted
value of Mm is thus 0.6− 0.7 · (−3.5)+ 0.1 · (−3.5)2

= −0.625.
This means that for the previously given model-estimated
formula, the maximum predicted value of Mm is −0.625 and

occurs when T1 takes on the value of 3.5. The size of this
maximum predicted value should be interpreted in the units of
the measure being examined.

The values of T1 for which the predicted value of Mm is zero
are called the roots of the function. The roots are given by:

−β1m ±
√

β2
1m − 4β2mβ0m

2β2m
.

There may be zero, one, or two roots. The roots of the method
factor regression are only of substantive interest if they are within
the range of the observed data. In the example given, the roots are
T1 = 1 and T1 = 6. This means that method effects are predicted
to be lowest at those levels of the trait.

In addition, a good way to interpret the quadratic function
is to plot the trend in the range of the observed data and
compare it with the linear model. In this way, the substantive
significance (or lack thereof) of the quadratic trend will become
more easily apparent.

The Latent Means Model With Quadratic
Trait-Method Relationships
The proposed LM structural model with a quadratic trait-method
relationship is analogous to the previously described extension of
the LD model and is given by:

M∗m = β∗0m + β∗1mT + β∗2mT
2
+ ζ∗m.

Figure 2B shows a path diagram of the quadratic LM model.
The inflection point and roots of this function can be also be
calculated in the same way as shown above for the LD model.

Comparison of Quadratic Trait-Method
Relationships in the LD and LM Models
It is well-known that the distribution of quadratic and interaction
terms is not a normal distribution (Moosbrugger et al., 1997).
In latent variable models with quadratic structural relationships,
the endogenous latent variables and their indicators are therefore
implied to be non-normally distributed (Klein and Moosbrugger,
2000). An important difference between the linear and quadratic
LD and LM models is therefore that when the quadratic extension
is added to the LD and LM models, it is no longer true that model
fit will be the same for both types of models as we explain below.

The implied distribution of the TMU variables is multivariate
normal for the linear LD and LM models. For the quadratic LD
model, the observed variables for the reference TMU variable T1
are implied to be multivariate normal, and the observed variables
for the non-reference TMU variable Tm are implied to be non-
normal. For the quadratic LM model, all observed variables
for both TMU variables are implied to be non-normal. This is
because the latent M∗m variable is implied to have a non-normal
distribution, and both latent TMU variables are dependent on the
M∗2 variable. In this way, each model has a different implication
for the distribution of the observed variables.

We recommend that researchers should not primarily rely
on model fit indices when making a decision about whether to
choose the quadratic LD or LM approach. Instead, the choice
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FIGURE 2 | Path diagrams of quadratic extensions of CFA-MTMM models. (A) LD model. (B) LM model. Yim = observed variable (i = indicator, m = method);
λi = factor loading; αi = intercept; εim = measurement error variable. Tm = trait as measured by method m; M2 = method factor for Method 2 in the LD model;
T = common trait factor in the LM model; M∗2 = method factor in the LM model; β0m, β∗0m = latent regression intercept coefficient; β1m, β2m, β∗1m, β∗2m = latent
regression slope coefficients; ζ2, ζ∗2 = latent residual variables.

should be based on whether it makes more sense theoretically
or substantively to contrast K – 1 methods against a reference
(as in the LD model) or compare the methods to an overall
average. When there are clear structural differences between
methods and/or when one method differs from the remaining
methods (e.g., self- versus other reports of depression; objective
test score versus subjective ratings of intelligence), the LD
model is typically the better choice, because an overall average
is typically less meaningful in this case. When there is not
a single clearly outstanding method or no clear difference
between methods (e.g., multiple friend reports of depression;
multiple test batteries to measure intelligence), the LM approach
may be more useful.

Estimation of Quadratic Relationships in
the LD and LM Models
A variety of estimation methods have been developed to analyze
quadratic relationships in structural equation models (for an
overview, see Harring et al., 2012). In the present paper,
we focus on the latent moderated structural equations (LMS)
approach, which uses numerical integration to approximate
the probability density of the quadratic term, and models the
probability density of the dependent variables as a mixture of
the normal and non-normal distributions in the independent
variable part of the model (Klein and Moosbrugger, 2000).
The expectation-maximation (EM) algorithm is then used to
estimate the mixing proportions of the normal and non-
normal densities in the dependent variable portion of the
model (Klein and Moosbrugger, 2000). The technique has
been shown to be unbiased and efficient compared with other

techniques and is robust to moderate non-normality, although
other estimation methods may be more robust to non-normality
(Harring et al., 2012). Unlike some other methods, the LMS
method does not provide an absolute measure of model fit,
but likelihood ratio tests can be used to perform nested model
tests against linear models without a quadratic term (Klein and
Moosbrugger, 2000; Kelava et al., 2011). In addition, the LMS
technique is readily available in the software package Mplus
(Muthén and Muthén, 1998-2015).

APPLICATION

We now present an application of the quadratic LM and
LD models to an actual empirical data set containing multi-
rater reports of children’s ADHD inattention symptoms to
demonstrate the estimation and interpretation of non-linear
trait-method relationships. The Mplus syntax for all models is
available from Appendix C.

Sample
The data for this application come from a longitudinal study of
childhood symptoms of ADHD (Burns et al., 2014). The sample
consisted of children from 30 schools in Madrid and the Balearic
Islands in Spain. Mothers, fathers, and teachers of the children
rated the ADHD symptoms and academic performance. For this
demonstration, we analyzed mother and father reports of the nine
ADHD-inattention symptoms at the first time point [N = 752].2

2In an actual substantive application, the nested data structure (children nested
within schools) should be taken into account, for example, by using a robust
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Measures
The measure used was the ADHD-inattention subscale of the
Child and Adolescent Disruptive Behavior Inventory (Burns and
Lee, 2010a,b). The inattention (ADHD-IN) subscale consisted
of the nine inattention symptoms. Symptoms of inattention
were rated on a six-point scale ranging from 0 (nearly occurs
none of the time [e.g., 2 or fewer times per month]) to
5 (nearly occurs all the time [e.g., many times per day]).
ADHD-IN symptoms were split into three parcels of three
items each, using a parceling technique designed to create
homogeneous parcels (Little et al., 2013).3 The parcels were
treated as continuous measures. Skewness and kurtosis of
the parcels was moderate (Skewness was between 1.12 and
2.08 for all parcels; kurtosis was between 0.79 and 3.92 for
all parcels; skewness and kurtosis were significantly different
from 0 for all observed variables). Previous simulations have
shown that LMS is robust to this level of non-normality
(Harring et al., 2012).

Analysis Strategy
In the first step, we fit the basic TMU model to the data.
Subsequently, the standard LD and LM models with only
linear trait-method relationships were examined. In the final
step, we tested the new quadratic extensions of the LD and
LM models. The fit of the quadratic models was compared
against the fit of the linear models using a likelihood ratio test.
Statistical significance of the quadratic term was determined
using the likelihood ratio test as opposed to a Wald test based
on the model-estimated standard errors, as recommended by
Klein and Moosbrugger (2000).

Results
Table 1 shows descriptive statistics for the mother and father
ratings of child inattention. We first estimated a basic TMU

sandwich estimator. Given that our analyses serve illustrative purposes only, we
did not use this approach here.
3Item parceling rests on the assumption of unidimensionality of the items, which is
a strong assumption that should be thoroughly investigated in item level analyses
prior to creating parcels. For a thorough discussion of the pros and cons of item
parceling (see Little et al., 2002).

TABLE 1 | Correlation matrix and descriptive statistics of mother and father
ratings of child inattention from Burns et al. (2014) study.

Variable 1 2 3 4 5 6

(1) Mother, Parcel 1 —

(2) Mother, Parcel 2 0.87 —

(3) Mother, Parcel 3 0.82 0.85 —

(4) Father, Parcel 1 0.77 0.74 0.72 —

(5) Father, Parcel 2 0.71 0.78 0.72 0.88 —

(6) Father, Parcel 3 0.69 0.72 0.78 0.83 0.86 —

M 0.94 1.20 1.10 0.96 1.18 1.11

SD 0.96 1.13 1.05 0.94 1.12 1.08

Skewness 1.41 1.22 1.39 1.20 1.12 1.27

Kurtosis 1.89 1.11 1.89 1.26 0.81 1.39

model with strong measurement equivalence (equal intercepts
loadings) across methods. The model also included correlated
measurement error variables between identical parcels across
methods to account for relationships between the indicators
that are not accounted for by the trait factor (Figure 1A with
correlated residuals added; Marsh and Hocevar, 1988). The
TMU model showed a good fit to the data when parcel-specific
effects were accounted for, χ2(9,N = 752) = 17.42, p = 0.04,
RMSEA = 0.04, CFI = 0.998. Table 2 shows the estimated
model parameters.

Measurement Model
Standardized factor loadings for the observed inattention
indicators are presented in Table 2, and represent the correlation
between the observed variable and the latent TMU factor.
Reliability is indicated by the squared standardized loadings.
The lowest standardized loading was 0.9, and the highest
was 0.95. The reliabilities of the observed indicators thus
ranged from 0.81 to 0.9. The correlations between measurement
error variables pertaining to identical parcels across methods
ranged between 0.32 and 0.44, indicating that some amount of
parcel-specific variance was shared across mother and father
reports. The mother and father TMU factors were strongly

TABLE 2 | Parameter estimates from the basic TMU model fit to mother and
father ratings of child inattention.

Parameter Estimate
(standardized

estimate)

SE p

E(InattentionMother) 0.954 0.034 <0.001

E(InattentionFather) 0.977 0.035 <0.001

Var(InattentionMother) 0.759 0.046 <0.001

Var(InattentionFather) 0.761 0.049 <0.001

Cov(InattentionMother ,

InattentionFather)

0.637 (0.84) 0.042 <0.001

λ11 1 (0.91) — —

λ21 1.23 (0.95) 0.02 <0.001

λ31 1.09 (0.90) 0.02 <0.001

λ12 1 (0.93) 0.02 <0.001

λ22 1.23 (0.95) 0.02 <0.001

λ32 1.09 (0.90) 0.02 <0.001

α1 0 — —

α2 0.03 0.03 0.41

α3 0.09 0.03 0.008

Var(ε11) 0.13 (0.17) 0.01 <0.001

Var(ε21) 0.10 (0.10) 0.01 <0.001

Var(ε31) 0.21 (0.19) 0.02 <0.001

Var(ε12) 0.13 (0.15) 0.01 <0.001

Var(ε22) 0.12 (0.10) 0.02 <0.001

Var(ε32) 0.22 (0.19) 0.02 <0.001

Cov(ε11, ε12) 0.06 (0.43) 0.01 <0.001

Cov(ε21, ε22) 0.03 (0.32) 0.01 <0.001

Cov(ε31, ε32) 0.09 (0.44) 0.01 <0.001

λi = factor loadings of indicators onto latent TMU factors; αi = intercepts;
εim = measurement error variable; i = indicator; m = method (1 = mother report,
2 = father report).
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correlated (φ = 0.84), indicating strong convergent validity
across parent reports.

LD Model
In the LD analyses, mother report of child inattention was
selected as the reference method (m = 1), against which father
report of child inattention (m = 2) was contrasted. Mother report
was selected as the reference method because previous research
has suggested that mental health professionals tend to view
mothers as most knowledgeable about children’s mental health
symptoms (Loeber et al., 1990). As a consequence, the trait factor
T1 in the model represented inattention true scores as measured
by mother reports and the method factor M2 represented the
difference between true father and true mother reports.

The model was parameterized with the trait-method
relationship as a linear regression of the method factor on the
trait factor (Figure 1B). The key parameters in the linear LD
model are the mean and variance of the trait factor and the
parameters in the linear regression of the method factor on the
trait factor. The mean of the reference trait factor was estimated
to be 0.95, meaning that the average mother rating of inattention
symptoms was relatively low (given the range of the response
scale from 0 to 5). The variance of the mother trait factor was
estimated to be 0.69.

The relationship between mother-rated inattention and
the method effect of father ratings was parameterized
as a linear regression. The following structural regression
equation was estimated:

M2 = 0.18− 0.16T1 + ζ2.

Notice that the slope parameter (β12 = –0.16) was significant
(z = –5.98) and negative (the standardized regression coefficient,
which equals the correlation between T1 and M2, was estimated
to be −0.28, indicating a medium size effect). This linear
relationship is illustrated in Figure 3A. As can be seen in
the figure, the negative relationship in this example indicated
that for lower trait scores of inattention (as rated by mothers),
the discrepancy between mother and father reports was small
(difference scores close to zero). As mother trait scores increased,
the difference scores tended to become more and more negative
(indicating that the discrepancy between mother and fathers
increased). Specifically, based on the estimated negative slope
coefficient, the father–mother rating difference scores were
expected to become smaller by 0.16 points for every one point
increase in mother-rated inattention symptoms. This indicated
that fathers’ underestimation of inattention symptoms relative
to mother reports was stronger at higher levels of inattention
than for lower inattention scores (This can in part be explained
by a floor effect, because the scale used in this example is
bound by zero).

The model-implied mean of the method factor can be derived
from the regression equation as E(M2) = β02 + β12E(T1) = 0.02.
This indicated that on average, the discrepancy between true
mother and true father reports in this application was close to
zero. The model-implied variance of the method factor is given by
Var(M2) = β2

12Var(T1)+ Var(ζ2) = 0.25. The residual variance
Var(ζ2) was estimated to be 0.23, showing that the method factor

variance was only slightly reduced by taking into account the
regression on the trait factor (R2 = 0.08).

In summary, the linear model suggested that the mother and
father ratings of inattention showed the highest agreement at the
low end of the scale, and that father and mother ratings became
increasingly discrepant as mother-rated levels of inattention
increased. For higher levels of inattention, fathers tended to more
strongly underestimate inattention symptoms relative to mothers
according to the linear model.

A likelihood ratio test comparing the linear LD model to
an LD model with a quadratic term in the regression of the
method factor on the trait factor fit the data significantly better
than the linear model, χ2(1,N = 752) = 6.682, p = 0.009. This
indicated that the quadratic term was statistically significant.
The estimated quadratic structural regression equation was
M2 = 0.24− 0.33T1 + 0.06T2

1 + ζ2. The quadratic coefficient
was significant (z = 2.93) and positive, indicating a u-shaped
curve. Figure 3A shows the model-implied quadratic regression
compared to the linear model. The roots of the equation were
0.87 and 4.74, meaning that the model-estimated points at which
the estimated value of the M2 was 0 were at 0.87 and 4.74. The
first root is very close to the mean of the trait scores, meaning
that when mothers rated inattention at the average level, fathers
tended to agree on the level of inattention. The second root is
at the extreme end of the possible range of observed scores,
indicating that when mothers rated inattention very highly,
fathers tended to agree on the level of inattention as well.

The inflection point of the function was 3.1, meaning that the
slope of the line was decreasing when mother-rated inattention
symptoms were below 3.1, and increasing when mother-rated
inattention symptoms were above 3.1. The minimum value of M2
when mothers rated inattention at 3.1 was −0.21, indicating that
the highest discrepancy between mothers and fathers was at an
intermediate level of inattention symptoms, and that the level of
discrepancy was relatively small.

The quadratic function showed a substantial difference from
the linear model. The quadratic model suggested that fathers were
not very discrepant from mothers at either low or high levels
of mother-rated inattention. However, at intermediate levels of
mother-rated inattention (between mother ratings of 1 and 4),
father ratings tended to be lower than mother ratings. The
quadratic model therefore showed that the discrepancy between
the two methods at higher levels of the trait (above 3.1), is just as
small as it is at lower levels of the trait, which is a characteristic
that would have been overlooked had we only fit the linear model.

LM Model
The LM model is an alternative parameterization of the basic
TMU model, and thus showed an equivalent fit to the LD model
for this data when only the linear trait-method relationship was
specified. The structural equations for the TMU factors were set
up as follows:

T1 = T −M∗2 (mothers)
T2 = T +M∗2 (fathers),

where T1 is the TMU factor for the mother ratings of child
inattention, and T2 is the TMU factor for the father ratings of
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FIGURE 3 | Plots of the estimated linear and quadratic trait-method relationships in LD and LM models for parent ratings of children’s inattention. (A) LD model. (B)
LM model. Relationships estimated with linear models are represented as solid lines. Relationships estimated with quadratic models are represented as dashed lines.

child inattention. As such, the method factor for fathers (M∗2 ) was
retained and the mother TMU factor T1 was assigned a loading
of−1 on the method factor.

In the linear LM model, E(T) was estimated to be 0.93 and
Var(T) was estimated to be 0.64. This reflects the fact that the trait
factor T in the LM model reflects the average of both the mother
and the father TMU variables, instead of only the reference
variable for mothers.

The model-estimated linear regression equation for M∗2 was
M∗2 = 0.011+ 0.001T + ζ∗2 . Neither the intercept nor the slope
coefficient were significant, z = 0.04 and 0.621, respectively. This
means that no significant linear relationship was found between
T and M∗2 in the data. In other words, the mother and father
deviations from the average inattention scores were not linearly
related to the average. In addition, the model-implied mean of
the method factor was not significantly different from zero. The
residual variance was estimated to be Var(ζ∗2) = 0.06 and was
significant (z = 13.08).

The quadratic extension to the LM model fit the data better
than the linear model as shown by a likelihood ratio test
comparing the two models,χ2(1,N = 752) = 9.614, p = 0.002.
The model-estimated structural equation was M∗2 = −0.034+
0.11T − 0.036T2

+ ζ∗m. The quadratic coefficient was significant
(z = −2.92) and negative, indicating an inverse u-shaped curve.
Figure 3B displays both the linear and quadratic functions for
the LM analyses.

The roots of the quadratic function were 0.35 and 2.7, meaning
that at these inattention trait values, the model-implied value of
the method factor was zero. The inflection point of the model-
estimated function was 1.78, meaning that for inattention trait
factor scores below 1.53, the overall slope of the line was positive,
and for trait scores greater than 1.53, the overall slope of the
line was negative. The model-predicted maximum value of M∗2
was 0.05, which means that when the mean level of mother
and father ratings was 1.53, the average difference between
mother and father scores was 0.1. Above trait values of 2.7, the

model-estimated value of the method effect became increasingly
negative. At the value of the highest estimated trait factor score
in the data (T = 4.2), the model-estimated value of M∗2 was
−0.21, meaning that the difference between mother and father
ratings was estimated to be 0.42, with mothers rating higher than
fathers. At this level of the scale, this is almost half the difference
between a rating of 4 (anchor is “Very often occurs [several times
per day]”) and 5 (anchor is “Nearly occurs all the time [e.g.,
many times per day]”). Because the mother report’s method factor
loadings were fixed to−1, this means that mothers rated children
higher on inattention than fathers at this level of the common
inattention trait.

In summary, each quadratic model provided substantively
different information than the linear models, showing that the
quadratic model may be useful in identifying trait levels at which
convergent validity is stronger or weaker. Both the quadratic LD
and LM models revealed that convergent validity was strongest at
low levels of inattention, and marginally weaker at higher levels
of inattention. When comparing the father–mother discrepancy
to mother ratings of inattention, discrepancies were highest at
intermediate levels of inattention. When comparing the method
discrepancy to the mean of mother and father-rated inattention,
discrepancies were highest at high levels of inattention.

SIMULATION STUDY

In addition to the practical application, we examined the
performance of the quadratic LD and LM models under a larger
set of conditions using a Monte Carlo simulation (The details
of the simulations are reported in Appendix B). Although the
LMS estimation procedure has been well-studied (Klein and
Moosbrugger, 2000; Kelava et al., 2011; Harring et al., 2012),
little is known about issues of statistical power for common
sample sizes in psychological research when using the LD and LM
models with quadratic effects. To test power, the simulation used
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parameter estimates from the LD and LM models presented in
the application as population models and varied the sample size,
indicator reliability, and effect size of the quadratic term in both
the LM and LD models. Effect size values were based on Cohen’s
recommendations for small, medium, and large partial regression
coefficients (Cohen, 1992).

To test the Type 1 error rate, we used parameter estimates
from the LD and LM models as population models, but changed
the value of the quadratic term to zero. The estimator then
searched for a quadratic effect where none was present, and
the proportion of replications with a significant quadratic effect
was regarded as the Type I error rate. The Type 1 error
models were varied with respect to sample size and indicator
reliability. Further details of the simulation and software code
for the simulation are provided in Appendix B and the online
Supplementary Material.

The power simulation found that for medium and large effect
sizes, with indicator reliability of 0.8, power of 0.8 was achieved
at sample sizes above N = 250. Small effect sizes resulted in
low power at all sample sizes and reliabilities. Similar results
were found for the LM model, although the LM model overall
had slightly reduced power compared to the LD model. The
Type 1 error rates were within the acceptable range (between
2.5 and 7.5%) for all conditions except N = 100, where there
was slight inflation of the type I error rate (actual α = 10%).
The findings are in line with previous simulations with the LMS
estimator (Klein and Moosbrugger, 2000; Kelava et al., 2011;
Cham et al., 2012; Harring et al., 2012), which found that it
performs better with larger effect sizes, and that power to detect
latent interactions is frequently lower than would be expected in
an observed variable model.

DISCUSSION

The LD and LM models of CFA-MTMM analysis both allow
examining linear relationships between trait and method factors.
In the present paper, we proposed extensions of both models
to incorporate potential non-linear relationships between traits
and methods. The extensions were shown to provide useful
insights into the convergent validity of methods and to perform
well both in an empirical application and a Monte Carlo
simulation study.

The LD model requires the choice of a reference method.
A method factor represents the difference between a given non-
reference trait and the trait pertaining to the reference method.
The LM model does not require the choice of a reference method.
Instead, a common trait factor is defined as the grand mean of all
method-specific traits and method factors represent the deviation
of a method-specific trait from the common trait.

The quadratic LD model represents the potentially non-linear
effects of a reference trait on the discrepancies between each non-
reference method and the reference method. The quadratic LM
model represents the potentially non-linear effects of a common
trait on the method-specific deviations from that common trait.
The LD model is more appropriate when researchers are able to
specify a clear reference method that is a gold standard method

or has a clear structural difference from the other methods. The
LM model is more appropriate when researchers do not have a
clear reference method available and when the grand mean across
method-specific traits is meaningful as a common trait represents
a meaningful trait score.

In our example of mother and father reports of inattention,
a case could be made for either model. If mother reports were
seen as a clear “gold standard” in the study of child inattention
symptoms (e.g., following Loeber et al., 1990), the LD model
(with mother reports as reference method) may be preferred and
the true scores based on mother reports would be used as “best
estimates” of the children’s inattention trait values. If instead a
researcher views parents as more or less interchangeable sources
of information, the average across mother and father reports may
be seen as a more meaningful trait score, and the LM model may
be chosen. Regarding the statistical performance of the quadratic
LD and LM models, both appear to work similarly well to detect
quadratic effects. Our simulation revealed that small effects are
difficult to detect in both models.

Our work extends and complements Koch et al. (2017) paper,
who examined LD models and CTC(M-1) models in which the
method effect variables were regressed on explanatory variables
that interacted with the level of the trait variable. These models
were also estimated using the LMS method.

Advantages of the Quadratic LD and LM
Models
The LD and LM models both have their roots in classical test (true
score) theory. As a result, they represent CFA-MTMM models
that are based on explicit mathematical definitions of latent trait
and method variables. Both models allow researchers to examine
relationships between trait levels and method effects and these
relationships have a clear meaning.

The new linear and quadratic LD and LM models both allow
researchers to examine the extent to which method effects are
dependent on trait levels. The new quadratic models allow for
less restrictive assumptions about the trait-method relationship
(i.e., the relationship does not have to be linear as in the standard
LD and LM models). These models therefore allow researchers
to examine more complex questions about method effects than
were possible with previous latent variable MTMM modeling
techniques. Our simulations showed that the estimation of
quadratic effects in the LD and LM models using the LMS method
appears to have sufficient statistical power at sample sizes above
250 with medium to large quadratic effects. Both models also
showed acceptably low Type-1 error rates.

Limitations of the Quadratic LD and LM
Models
Limitations of the LD and LM models are that they require
strong measurement invariance of the indicators across methods
for a meaningful interpretation. That is, the LD scores used
to define method factors only have meaning when the latent
method-specific trait factors Tm representing each TMU are
measured with the same origin and units of measurement.
Otherwise, the difference scores represent a mix between
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true method discrepancies and measurement-related differences
between methods. This is a limiting factor for many research
situations, especially ones that do not use the same measurement
instruments (e.g., questionnaires) across methods.

A limitation of the quadratic extensions to the LD and LM
models is that the statistical power to detect small quadratic
effects is very low for all sample sizes. Researchers may therefore
have difficulty detecting such effects unless they use extremely
large samples, which may not be feasible in many MTMM studies.
An additional limitation is that we studied only the LMS method
for parameter estimation in this paper. Future studies should
examine alternative non-linear SEM estimation methods as they
may provide greater statistical power.

An additional limitation of the quadratic LD and LM models
is that they assume that the discrepancy between methods
is such that one method consistently rates higher or lower
at a given level of the trait. However, the absolute values
of a method factor may be of greater interest in practice,
because both large positive and small negative method factor
scores indicate strong discrepancies between methods (i.e.,
large method effects). It may be the case that the absolute
values of the method factor are dependent on the level of
the underlying trait or some other explanatory variable. In
this case, the absolute value of the method factor should
be the subject of study, disregarding the direction of the
discrepancy. Further research should examine ways to model the
absolute value of the method factor in addition to the observed
values of the method factor. Future studies may also examine
non-linear relationships between method factors and external
variables. Finally, we recommend that researchers who use the
techniques presented here should make an effort to replicate
findings of quadratic trait-method relationships with fresh data,

especially when such analyses are exploratory in nature rather
than theory-driven.

CONCLUSION

The LD and LM models represent an important advancement
in the modeling of multitrait-multimethod data. Along with
other new models for examining trait-method interactions
(e.g., Litson et al., 2017), they represent a new avenue for
multitrait-multimethod research that explicitly examines the
relationship between traits and methods and asks questions
about convergent validity that are innovative and important.
The quadratic extensions of the LD and LM models expand the
toolbox of multimethod researchers, as they make it possible to
examine more complex trait-method relationships. Such complex
relationships may reveal practically meaningful differences in the
level of convergent validity across trait levels.
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