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Abstract: Nanotechnology-based drug delivery systems are an emerging technology for the targeted
delivery of chemotherapeutic agents in cancer therapy with low/no toxicity to the non-cancer cells.
With that view, the present work reports the synthesis, characterization, and testing of Mn:ZnS quan-
tum dots (QDs) conjugated chitosan (CS)-based nanocarrier system encapsulated with Mitomycin C
(MMC) drug. This fabricated nanocarrier, MMC@CS-Mn:ZnS, has been tested thoroughly for the
drug loading capacity, drug encapsulation efficiency, and release properties at a fixed wavelength
(358 nm) using a UV–Vis spectrophotometer. Followed by the physicochemical characterization, the
cumulative drug release profiling data of MMC@CS-Mn:ZnS nanocarrier (at pH of 6.5, 6.8, 7.2, and
7.5) were investigated to have the highest release of 56.48% at pH 6.8, followed by 50.22%, 30.88%,
and 10.75% at pH 7.2, 6.5, and 7.5, respectively. Additionally, the drug release studies were fitted to
five different pharmacokinetic models including pesudo-first-order, pseudo-second-order, Higuchi,
Hixson–Crowell, and Korsmeyers–Peppas models. From the analysis, the cumulative MMC release
suits the Higuchi model well, revealing the diffusion-controlled mechanism involving the correlation
of cumulative drug release proportional to the function square root of time at equilibrium, with the
correlation coefficient values (R2) of 0.9849, 0.9604, 0.9783, and 0.7989 for drug release at pH 6.5, 6.8,
7.2, and 7.5, respectively. Based on the overall results analysis, the formulated nanocarrier system
of MMC synergistically envisages the efficient delivery of chemotherapeutic agents to the target
cancerous sites, able to sustain it for a longer time, etc. Consequently, the developed nanocarrier
system has the capacity to improve the drug loading efficacy in combating the reoccurrence and
progression of cancer in non-muscle invasive bladder diseases.

Keywords: chitosan nanocarrier; Mn:ZnS quantum dots; drug delivery systems; mitomycin C
delivery; cancer cell therapy

1. Introduction

Recent years have witnessed the unprecedented growth of research and applications
in the field of nanotechnology-based drug delivery systems (DDS), especially for cancer
diagnostic and treatments, as cancer has been garnering tremendous interest because of
its severity to cause death worldwide and threatening public health [1]. Since the carcino-
genesis process is tedious, it has limitation on treatment regiments, and requires more
rigorous and comprehensive therapeutic plans. Although numerous treatment modali-
ties, for example immunotherapy, phototherapy, gene therapy and hormone therapy, are
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emerging, nonetheless, the gold standard for cancer treatment goes to surgical intervention
and chemotherapy [2]. It is noteworthy to mention that conventional chemotherapy is
considered as a non-specific treatment that can simultaneously kill healthy cells and leads
to systemic toxicity to the patients [3]. Thus, the quest for innovative technologies becomes
an urgent necessity.

In that view, innovative technologies with diverse nanomaterials have been imple-
mented as nanocarrier systems to encapsulate many kinds of drugs due to their special
characteristics such as small particle size, high surface area, surface charges, etc. [4]. In
contrast, the conventional methods for the administration of several drugs by chemothera-
peutic approaches exhibit excellent curative effects; however, they suffered from massive
downsides that may lead to adverse side effects on healthy tissues prior to their poor aque-
ous solubility, inadequate drug concentration at the lesion site, non-specific biodistribution,
intolerable cytotoxicity and the development of multiple drug resistance, severely limit
the therapeutic efficacy, and cause undesirable side effects [5]. Overall, to prevail these
shortcomings, the DDS has been implemented with high specificity, good biodistribution,
prolonged systemic circulation, low toxicity, and invasive molecular imaging for targeted
and controlled DDS [6]. Besides, the DDS has improved the biocompatibility of drug with
the cells and tissues, increased the intracellular uptake, retained the stability of drugs, and
improved the ability of drugs to be delivered to the target specific cells or tissues while
sparing the normal cells [7].

In this regard, chitosan (CS)-based nanocarrier systems find multifaceted applications
in DDS because of its biocompatility, biodegradability, non-toxicity, and antimicrobial
properties. In brief, chitosan is a biodegradable polymer of polysaccharide consisting of
alternate repeating units of (1→4) linked N-acetyl glucosamine and glucosamine units by
glycosidic links, derived from partial deacetylation of chitin [8–11]. The CS molecules can
be incorporated as part of films, microspheres, nanospheres, and nanoparticles (NPs), and
are eligible to be conjugated with other nanomaterials for broad applications of biocatalysis,
biomedicine, and pharmaceutical sectors. Basically, the CS molecules can be transformed
into nanocarriers with definite particles sizes and particle surface charges by altering its
molecular weight and degree of acetylation. The CS-based nanocarrier encapsulated drugs
are found to be very effective for theranostics applications because of the hemocompatibility,
antibacterial activity, particle size and shape, surface charge and morphology accompanied
by the presence of targeting ligands strongly affecting the effectiveness of cell targeting,
internalization, and anti-tumor action of cancer therapeutics [12,13].

On this note, the potential of CS is deemed to be applied in DDS by conjugating
with metal and polymer-based nanomaterials. Of many, some of the CS nanocarriers are
containing iron oxide (Fe3O4), silicon, quantum dots (QDs), polyethylene glycol (PEG),
polylactic acid glycolic acid (PLGA), etc., used for the delivery of anticancer drugs [14–16].
Such an incorporation of both metallic particles and anticancer drugs within a single
nanoparticulate polymer system in the form of nanocarrier has evoked fascinating out-
comes and substantial progress in DDS for cancer diagnosis and treatment. In general,
the QDs are semiconductor nanocrystals (NC) made up of atoms or elements from group
II–VI or from group III–V with small particles size, which are smaller than exciton Bohr
radius. The QDs exhibit unique optical and electronic properties prior to their quantum
confinement effect. Most of the metal and semiconductor NPs with particle sizes ranging
from 2 to 6 nm have received mounting interest because of their unique size-dependent
properties, as well as their dimension that mimics the biological macromolecules [17]. In
recent years, QDs have been widely employed as imaging agent rather than other fluo-
rescent nanomaterials and dyes. Briefly, QDs have drawn much attention because of the
advantages of multiplex emission with single light excitation with minimal overlap [18].
Additionally, QDs exhibit excellent optoelectronic properties such as high quantum yield,
high photostability, broad excitation wavelength-dependent optical emission [19], broad
and tunable absorption spectrum extending from the ultraviolet (UV) to near-infrared
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emission (>650 nm), size-tunable light emission broad absorption spectrum, massive stoke
shift and resistance to photobleaching [18,20,21].

These properties of QDs allow for the simultaneous application in bioimaging can-
cerous tissues and also act as photosensitizers in photodynamic therapy [22]. Hence, the
integration of QDs as fluorescence probe in various applications such as photocatalysis,
bioimaging, biosensing, biomedicine, and DDS has been boosted instead of the conven-
tional organic luminophores due to their intrinsic ability to resist photobleaching [23,24].

The conjugation of CS and its derivatives with numerous QDs for biomedical applica-
tion has been widely explored. According to the literature, the conjugation of CS with QDs
shows no significant toxicity when examined in an in vivo evaluation in mice [25]. Typi-
cally, the surface coating of the inorganic QDs is crucial to retain the stability of colloidal
NPs, prevent the degradation of QDs, and reduce the toxicity of inorganic metal ions [20].
In recent years, the ZnS QDs has dominated broad applications due to their optical prop-
erties, elevated refractive index, wide band gap, and good luminescence. However, pure
ZnS has poor optoelectronic properties and low quantum efficiency and so, the doping of
ZnS with various transition metal atoms has been explored to diversify the optical and
structural properties in the ZnS host lattice. There are numerous transition metal atoms
that have been used as doping elements for ZnS, but Mn has been widely used because
of the properties of excellent luminescence, close ionic radius and ionic charge that can
imitate Zn2+, good microstructure, electrical and optical properties, enhanced thermal and
photostabilities [26].

In the present report, the novelty of our studies lies in the fabrication of a stable
and biocompatible CS-based nanocarrier conjugated system having Mn:ZnS QDs (CS-
Mn:ZnS) to improve the bioavailability of mitomycin c (MMC, an anticancer drug) for
active targeted cancer cell therapy. To the best of the authors knowledge, the present work
sought to explore MMC encapsulation onto CS-Mn:ZnS, which has not yet been reported
previously. In addition, the architecture of drug nanocarriers for MMC is tremendously
difficult because MMC is classified as a water soluble drug that faced great challenges in
cell penetration and internalization prior to the lipophilic nature of cell membranes. We
present the first report on the formulation for MMC, that has been successfully encapsulated
onto CS-Mn:ZnS nanocomposite matrix, even though MMC is a water-soluble drug that
suffers from the limitations of rapid or burst release in aqueous solutions. As a result, the
MMC@CS-Mn:ZnS nanocarriers convey an excellent internalization and are engulfed into
the targeted cancer cell with high sustainability and extend the MMC efficiency for targeted
non-muscle invasive bladder cancer therapy. The excellent results of this formulation
may provide constructive hints for further developments in this research area of DDS
and theranostics.

2. Materials and Methods
2.1. Materials

Mitomycin C (MMC; C15H18N4O5, Mw = 334.33 g·mol−1) was purchased from Tocris
Bioscience (Bristol, UK). Chitosan (CS; medium molecular weight, 190,000–310,000 degree
of acetylation), Tween-20 (C26H50O10, Mw = 522.7 g·mol−1), and sodium tripolyphosphate,
TPP (Na5O10P3, Mw = 367.86 g·mol−1) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) (Mw = 183.48 g·mol−1, 99.5%) sodium
sulphide (Na2S·xH2O (x = 7–9), Mw = 240.18 g·mol−1, yellow flakes), manganese sulfate
monohydrate (MnSO4·H2O, Mw = 169.02 g·mol−1, 99%), and sodium tripolyphosphate
(Na5O10P3, Mw = 367.86 g·mol−1, 59%) were procured from R&M Marketing (Essex,
UK). Hydrochloric acid (HCl, 36.458 g·mol−1, 37%) was purchased from Friendemann
Schmidt (Parkwood, Australia). Other reagents were of analytical grade and used without
any further purification. All aqueous solutions were prepared using ultrapure water of
resistivity (18.2 MΩ·cm), purified using Thermo Scientific water purification system.
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2.2. Preparation of MMC@CS-Mn:ZnS Nanocarriers

The synthesis of fluorescence probe, Mn:ZnS QDs was carried out by modifying the
previously described method [27]. Initially, 0.15 M (0.076 g, for 3 mL) of MnSO4·H2O,
0.10 M (0.367 g, for 20 mL) of Zn(CH3COO)2·2H2O, and 0.1 M (0.480 g, for 20 mL)
of Na2S·xH2O were prepared in deionized water, separately. Then, 3 mL of 0.15 M
MnSO4·H2O was added dropwise into 20 mL of 0.10 M of Zn(CH3COO)2·2H2O, in ul-
trasonic bath that operates at a frequency of 40 kHz. The solution was de-aerated using
N2 gas for 15 min to remove unwanted dissolved gases that may disrupt the synthesis
process, followed by the injection of 20 mL of 0.10 M of Na2S·xH2O drop by drop under
constant magnetic stirring at 200 rpm, with continuous nitrogen purging. The presence of
fluorescence emission can be observed under handheld UV lamp. The resulting precursor
of Mn-doped ZnS (Mn:ZnS) was exposed to microwave irradiation at 1000 W, using sealed
Teflon reaction vessels at 120 ◦C for 60 s to accelerate processing time and improve the
purity of prepared nanostructures [28]. Then, the suspension was further exposed to UV
irradiation for 20 min.

In the next stage, MMC was loaded onto CS-Mn:ZnS nanocarrier and for that, the
ionic gelation method with slight modification was employed [28]. Briefly, CS solution
(5 mg/mL) was prepared by dissolving 5 mg of CS powder in 1 mL of 1.0% (v/v) acetic
acid solution. Then, 2.5 µL Mn:ZnS was added dropwise into 250 µL of CS solution under
constant stirring. In a different tube, 1 mg/mL of MMC was prepared in deionized water
separately. Next, the 250 µL of CS solution and 250 µL of MMC with ratio of 1:1 (v/v)
were mixed under sonication until a homogeneous solution was formed. Then, 2% (v/v)
Tween-20 was dispersed in deionized water, added to prevent particle aggregation with
the volume ratio of 1:100 (v/v) for Tween-20 to the CS solution. In this study, Tween-20
acts as a stabilizing, capping agent that forms interaction with water molecules through
its hydrophilic domains, and hence accelerates the interaction of NPs with the aqueous
medium. It is noteworthy to mention that Tween-20 is a safe addition to biomedical NPs
formulations [29].

Despite its natural properties, Tween-20 provides stability to NPs [30]; the reason it
was added at this stage was because the formation of NPs takes place at this step, where
CS NPs were formed spontaneously upon the addition of 100 µL TPP (10 mg/mL) drop-
by-drop using a micropipette under continuous magnetic stirring at 200 rpm. The final
TPP-to-CS ratio achieved was 1.0:2.5 (v/v). The mixture was then centrifuged at 12,000 rpm
for 10 min against deionized water for three times and the supernatant was discarded.
Finally, the MMC@CS-Mn:ZnS nanocarrier pellet was then freeze-dried overnight before
further analysis.

2.3. Reaction Yield, Drug Loading, and Encapsulation Efficiency

The reaction yield obtained for MMC@CS-Mn:ZnS nanocarriers was evaluated using
Equation (1) [28].

Reaction yield (RY) = (total mass of nanocarriers produced (mg))/(mass of
chitosan (mg) + mass of Mn:ZnS (mg) + mass of MMC (mg)) × 100

(1)

The loading capacity (LC) and encapsulation efficiency (EE) of MMC was evaluated
using Nanodrop Spectrofluorometer at wavelength of 358 nm. Typically, 5.0 mg of resulting
nanocarriers was dissolved against the mixture of methanol and 0.5% HCl (v/v) under
sonication until a clear solution was observed, indicating that the nanocarriers were totally
dissolved and hence, release 100% of entrapped MMC drug inside the nanocarriers. Finally,
LC and EE were successfully calculated using Equations (2) and (3) as follows:

Loading capacity, LC (%) = [encapsulated MMC in nanocarriers
(mg)]/[Mass of nanocarriers used (mg)] × 100

(2)
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Encapsulation efficiency, EE (%) = [encapsulated MMC in nanocarriers
(mg)]/[Initial mass of MMC in the system (mg)] × 100

(3)

2.4. MMC Drug Release Studies

The MMC release profile from Mn:ZnS nanocarriers was quantified using Multiskan
GO Microplate Spectrophotometer at wavelength of 358 nm. Initially, 10.0 mg of the
synthesized nanocarriers was dispersed into 10 mL of phosphate-buffered saline (PBS)
solution with pH 6.5, pH 6.8, pH 7.2 and pH 7.5 under constant stirring. The pH for PBS
was chosen to imitate the medium in human urine. At predetermined intervals of time,
1 mL of the solution was discarded by centrifugation and replaced with the same amount
of fresh medium.

2.5. Characterization of MMC@CS-Mn:ZnS Nanocarriers

The UV–Vis and PL (photoluminescence) analyses were carried out to study the photo-
physical properties of the ZnS and Mn:ZnS nanostructures. The Fourier transform infrared
spectra (FTIR), powder X-ray diffraction (XRD) were used to characterize the functionality
and crystal structure of the synthesized materials (respectively). The FTIR spectra of the
samples were obtained at ambient temperature using attenuated total reflectance (ATR)
technique in the wavenumber range of 500–4000 cm−1 using a series 100 Perkin Elmer FTIR
1650 spectrophotometer (Perkin Elmer, Waltham, MA, USA). The phase and purity of NPs
was acquired using an X-ray diffractometer (Rigaku SmartLab, Tokyo, Japan) operating at
a scanning rate of 1◦/min. The diffraction spectra were recorded at the diffraction angle,
2θ from 20◦ to 70◦ at room temperature. The hydrodynamic particle size was determined
by dynamic light scattering (DLS) studies using a particle size analyzer (Nano Series Nano-
ZS, Malvern Panalytical Ltd., Malvern, UK). The internal morphology and particle size
diameter were studied using a high-resolution transmission electron microscope (HRTEM),
FEI Tecnai G2 F20 S-TWIN (Hillsboro, OR, USA). The surface morphology studies were
conducted using Field-emission scanning electron microscopy (FESEM) attached with EDX
(JSM-7500F JEOL, Tokyo, Japan). The amount of drug loading and release was measured
using Multiskan GO Microplate Spectrophotometer (Thermo Fischer Scientific, Waltham,
MA, USA) at a wavelength of 358 nm.

2.6. Statistical Analysis

Data are presented as the mean ± standard deviation and the statistical difference
of parameters was analyzed using ANOVA with Tukey’s and Bonferroni’s model (where
applicable) for p test with (p < 0.05). A p-value of less than 0.05 was considered as statisti-
cally significant. The full width at half maximum (FWHM) of XRD diffraction peaks for all
NPs were acquired using Gauss and Lorentz fitting function. All statistical analyses were
performed using Origin 8 Software (Microcal Software, Inc., Northampton, MA, USA).

3. Results and Discussion
3.1. Characterization of ZnS and Mn:ZnS QDs
3.1.1. UV–Vis Spectroscopy

Figure 1 illustrates the UV–Vis spectra of ZnS and Mn:ZnS NPs at room temperature
in the wavelength range of 200–600 nm and from the graph, it is clearly observed for
an enhancement in the absorption intensity of Mn:ZnS spectra. This can be attributed
to the effect of quantization and alteration of the defect states within crystalline lattice
structure of ZnS with appropriate substitution of Mn2+ to Zn2+ that possesses different
sizes (as reported previously) [26,30]. In addition, the absorption edges were observed at
300 and 290 nm for ZnS and Mn:ZnS, respectively, with a tail extending into the visible
region, which indicates that the NPs are exhibiting good crystallinity and low defect density
near the band edge [12]. Additionally, there is a hypsochromic blue shift (~10 nm) in the
shoulder peak from red region of 300 nm to blue region of 290 nm in Mn:ZnS absorption
edge. Such an observation may be accredited to the formation of smaller particles than
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that of bulk ZnS and the quantum confinement effect of Mn:ZnS NPs, consistent with
the previous reports on semiconducting ZnS QDs [22,31,32]. The band gap of chemically
synthesized ZnS and Mn:ZnS NPs were obtained from the UV absorption data using the
following Equation (4):

αhυ = A (hυ − Eg)1/2 (4)

where α is the absorption coefficient, A is a proportionality constant, hv is the photon
energy and Eg is the band gap energy of the material [31]. The hv was derived from
hv = hc/λ, where h is the Planck constant (4.136 × 10−15 eV), c is the velocity of light in
vacuum (2.997 × 1017 nm/s), and λ is the wavelength (nm) [33]. Further, Figure 1 (inset)
shows the plot of (αhv)2 versus hv for both ZnS and Mn:ZnS. The band gap value can be
simply obtained by extrapolating the straight portion of (αhv)2 versus hv with the value
of α = 0. The values for band gaps were obtained from the extrapolated Tauc’s plot at
3.75 and 3.90 eV for ZnS and Mn:ZnS, respectively.
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Figure 1. Comparison of UV–Vis spectra for ZnS and Mn:ZnS QDs (inset showing the Tauc’s plot for
the same two samples).

The particle sizes of both ZnS and Mn:ZnS were also calculated from the UV–Vis
absorption spectra using Equation (5):

D =
0.32− 2.9

(
Eg − 3.49

) 1
2

3.50− Eg
(5)

where, Eg is the band gap (in eV) and D is the diameter of nanocrystallites in nm [34]. By
using the above equation, the diameters of particles were obtained to be 4.63 and 3.84 nm
for ZnS and Mn:ZnS, respectively. This data will be further supported by transmission
electron microscopy (TEM) data and will be further discussed in Section 3.1.3.

3.1.2. PL Spectroscopy

The room temperature PL spectra for ZnS and Mn:ZnS are compared in Figure 2a
where we observed the PL peak for ZnS at ~400 nm. However, for the Mn:ZnS, two
symmetrical peaks were recorded at ~400 nm (violet-blue region) and ~600 nm (red region).
The presence of new emission band at ~600 validates that the Mn2+ successfully occupied
the Zn2+ tetrahedral cation sites with Td symmetry in ZnS lattice. It is worth mentioning
that the ZnS exhibits optically active defect states in the band gap due to available S and
Zn vacancies (VS and VZn) emitting at 440 and 520 nm, respectively [35].
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for electron transition among ZnS and Mn:ZnS nanostructures.

Figure 2b illustrates the normalized PL intensity of ZnS with emission energy of
~3.00 eV. The PL peak for Mn:ZnS was prominently hypsochromic shifted to the blue
region and might be due to the cation exchange [36]. In addition, the shifting of PL
intensity from ~400 to 410 nm, in which towards the longer wavelength suggests that the
transition of electrons from conduction band to the electron trap centers, the least quantum
energy was transmitted to the lattice or Mn states. Hence, the reduction or quenching in
Mn emission energy was observed.

The blue fluorescence emission in pure ZnS was diminished after Mn was successfully
doped onto the ZnS lattice structure. This phenomenon is due to the mixing of s-p electrons
of the host ZnS with the d-electron of Mn2+ and leads to the forbidden partial transition of
electron from 4T1 to 6A1 state as shown in Figure 2c, emitting orange fluorescence [37,38].
The reduction of PL peak intensity can be attributed to (i) the weak Mn-Mn interaction (due
to low doping concentration) with s-p electrons in nanophase materials, and (ii) strong
hybridization of Zn2+ and Mn2+ with crystal field splitting of Mn2+ [39]. It should be noted
that Stokes shifts were calculated from both absorbance and emission maxima wavelengths.
In this work, the Stokes shift is inevitably large with the value of 310 nm, in which large
and tunable Stokes shift is crucial to achieve precise imaging, with unlimited application in
molecular imaging [40].

3.1.3. HRTEM Analysis

Both ZnS and Mn:ZnS samples were diluted with deionized water with the ratio factor
of 1:10 (v/v) for (ZnS/Mn:ZnS):deionized water. The mixture was deposited onto the Cu
grids covered with carbon film (200 mesh) using a disposable dropper and a standard filter
paper was used to absorb the excess solvent according to Ribeiro et al. [23]. Figure 3a shows
the monodispersed spherical shape ZnS particles with average particle size of 4.66 nm [41].
Similarly, the HRTEM micrograph for Mn:ZnS exhibit spherical NPs with average particle
size of 1.83 nm, as shown in (c). The reduction in particle size is in agreement with the



Pharmaceutics 2021, 13, 1379 8 of 19

results acquired from structural analysis [42]. The particle size distributions for ZnS (b) and
Mn:ZnS (d) were evaluated using ImageJ software and plotted using Origin 8 software.
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Figure 3. HRTEM images of (a) ZnS and (c) Mn:ZnS QDs; corresponding particle size distributions
for (b) ZnS and (d) Mn:ZnS.

3.1.4. FTIR Spectroscopy

FTIR analysis attempted to characterize the conjugation interaction of single NPs
by comparing the spectra of (a) CS, (b) Mn:ZnS, (c) MMC@CS-Mn:ZnS, and (d) MMC
as illustrated in Figure 4. For CS (a) there is broad band at ~3300 cm−1 and prior to
the C-H bond and NH2 stretching as mentioned before by previous work [23] and the
peak becomes more intense in MMC@CS-Mn:ZnS probably due to the ingestion of MMC
onto the nanocomposite. There is a weak peak at ~2350 cm−1 in Mn:ZnS spectrum due
to the Zn–S microstructure vibration, but disappeared in the spectra of CS-Mn:ZnS and
can be attributed to the interaction between the Zn–S and the carboxylate groups of CS
to form the nanocomposite [27]. Next, the absorption peaks present at ~2110 cm−1 are
mainly assignable to CO stretching vibrations in CS NPs. Meanwhile, the spectral band at
~1638 cm−1 corresponds to the stretching vibration of C=O and amide group in CS and
MMC [43]. In MMC@CS-Mn:ZnS, the peak reveals the integration of MMC and CS onto
the nanocomposite. Additionally, the COO- symmetric and asymmetric stretching can be
seen at the spectral band of ~1530 cm−1 in all spectra and an additional peak at 1402 cm−1

in Mn:ZnS. The peak at 1402 is disappearing in MMC@CS-Mn:ZnS sample and might be
due to the formation of nanocomposites that involve the binding of carboxyl group (COO–)
of Mn:ZnS with the amino group (–NH2) of CS [44], as the amine group of CS supports
electrostatic interaction to produce a stable mixture [45].
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Figure 4. FTIR spectral comparison of (a) CS, (b) Mn:ZnS, (c) MMC@CS-Mn:ZnS, and (d) MMC samples.

The absorption peaks at 1110 cm−1 apparently in Mn:ZnS correspond to the symmetric
stretching vibration of Zn–S–Mn bond [27]. Hasheminejad et al. [9] reported the observation
of absorption peak with slight shifting probably due to the overlapping of C–O–C glucose
ring or C–O stretching vibrations of peak at ~1030 cm−1 in CS sample. There is a ZnS
band and symmetric bending due to Zn–S or Mn–S vibrations for Mn:ZnS at ~655 and
~610 cm−1, thus strongly verifying the conjugation of Mn:ZnS into the host, CS NPs [27].
All the absorption peaks are summarized in Table 1.

Table 1. Absorption peaks for different functional groups in NPs.

Wavenumber (nm−1) Functional Group

3300 C–H and NH2 stretching in CS and MMC

2110 C–O stretching in CS

1638 NH2 bending in CS and MMC

1530 and 1402 C–O stretching of carboxylic group

1110, 655 and 610 Zn–S vibration

3.1.5. XRD Analysis

The XRD patterns of all prepared samples were obtained to characterize their crys-
talline nature and attest their phase purity (Figure 5). From the figure, we observed the
diffraction patterns for the ZnS sample at 2θ = 28.40◦, 48.40◦, and 55.50◦ (Figure 5b) and for
the Mn-doped ZnS (Mn:ZnS) at 28.70◦, 48.70◦, and 56.40◦ (Figure 5c). For the comparison
of both diffraction peaks, a shift in the ZnS diffraction peak slightly to the higher angle
was observed due to the doping of Mn2+ into ZnS crystal lattice. This is prior to the lattice
contraction after the substitution of Mn2+ into Zn2+ sites as Mn2+ exhibit larger atomic
radius compared to Zn2+ ions. The broadening of diffraction peaks of Mn:ZnS after doping
process designate the formation of nanostuctured particles. Additionally, the observation
of a reduction in intensity of Mn:ZnS diffraction peaks validates that the size and crystalline
nature of pure ZnS was deteriorated. In the recorded XRD pattern, the impurity peaks
are absent, revealing that the doped Mn ions are getting properly substituted into ZnS
lattice without much alteration to the basic structure of ZnS and with minimum shrinkage
and distortion to the crystal lattice [46]. The observed patterns can be correlated to the
reflection planes of (111), (220), and (311) for ZnS and Mn:ZnS QDs in the matrix; the hkl
diffraction plane suggests cubic zinc blende phase in accordance with Joint Committee on
Powder Diffraction Standard (JCPDS Card No.000-01-0792) [31]. The hkl diffraction planes
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exhibit space group of F-43m with the space group number 216 matching with the ZnS
nanoctructure, as reported in the literature [31,42]. Further, the observation of diffraction
reflections for the pure CS NPs (Figure 5a), CS-Mn:ZnS (Figure 5d), and MMC@CS-Mn:ZnS
(Figure 5e) without any impurity peak suggest the purity of polymeric nanostructure and
accuracy of the product [47].
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Figure 5. Comparison of XRD patterns for (a) CS NPs, (b) ZnS, (c) Mn:ZnS, (d) CS-Mn:ZnS, and
(e) MMC@CS-Mn:ZnS.

The average crystallite sizes, (D) of synthesized NPs were calculated using the Debye-
Scherrer’s Equation (6):

D =
kλ

β cos θ
(6)

where, D is the crystallite size, k the shape factor (assumed to be 0.89 for spherical shape
as confirmed by HRTEM image), λ is the wavelength of incident X-ray radiation of CuKα
(0.154 nm), β is the full width at half maximum (FWHM) of plane, and θ is the Bragg’s
diffraction angle [31]. In this regard, the highest intensity diffraction peak with (111)
crystal plane was selected. The variation in peak position (2θ), FWHM, d-value, and
average crystalline size along (111) plane, dislocation (δ), and microstrain (ε) for the ZnS,
Mn:ZnS, CS-MN:ZnS, and MMC@CS-Mn:ZnS. The increase of FWHM was observed as the
crystallite size decreased.

The broadening of diffraction peaks is mainly due to two factors, (i) size in the
quantum regime and (ii) strain induced in the nanostructures. Other than that, the peak
broadening might be due to a linear combination of the nanocrystalline nature and local
strain in the nanostructure due to the defects [46]. The strain (ε) prior to crystal imperfection
and distortion was calculated using Stokes–Wilson Equation (7) [48]:

strain (ε) =
β cos θ

4
(7)

The number of dislocations presenting in the unit area of synthesized samples were
calculated using Equation (8):

δ =
1

D2 (8)
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The lattice constant, a for the cubic structure was determined via [111] orientation
using the following Equation (9):

a2 = dhkl
2
(

h2 + k2 + l2
)

(9)

where h, k, l are the Miller indices and dhkl is the interplanar space calculated from Bragg’s
equation: 2dSinθ = nλ. All data obtained from the diffraction analysis are tabulated in
Table 2.

Table 2. Variation of different structural parameters of different types of NPs.

Sample hkl 2θ (deg.) β (rad.) D (nm) δ×101 ε×102 dhkl (nm) a (nm)

ZnS [111] 28.69 0.0805 1.775 3.172 1.951 0.311 0.733

Mn:ZnS [111] 28.70 0.0951 1.503 4.421 2.300 0.311 0.734

CS-Mn:ZnS [111] 28.22 0.1117 1.279 6.111 2.709 0.316 0.740

MMC@CS-
Mn:ZnS [111] 28.75 0.0749 1.909 2.741 1.814 0.310 0.733

3.1.6. Morphology and Particle Size Distribution

The surface morphological characterizations of as-synthesized composite acquired
from FESEM attached to energy dispersive X-ray spectroscopy (FESEM-EDX) is provided
in Figure 6a–c. From the images, the micrographs obtained for Mn:ZnS (Figure 6a) show
a smooth surface with spherical shape of the particles. On the other hand, the pure CS
and CS-Mn:ZnS nanocomposite (Figure 6b,c) incurred agglomeration, which can be clearly
seen in the FESEM images. The EDX elemental analysis for Mn:ZnS (Figure 6d) shows the
presence of Zn, S, and Mn (1.70 wt%) elements, confirming that Mn has been successfully
doped into ZnS nanostructure.
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Mn:ZnS nanostructure.
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EDX was employed to investigate the elemental analysis, by determining the elemental
composition of individual points or to map out the lateral distribution of elements from the
imaged area. Other than that, the EDX has been widely used to study the compositional
information on quasi-bulk specimens (low SEM magnification, high accelerating voltage)
or on specific particles, morphologies, or isolated areas on filters or within deposits [49].

For the pure CS NPs (Figure 6e), the EDX analysis exhibits the composition of carbon
and oxygen, with the presence of Na (0.72%) and P (8.57 wt%), validating the presence
of TPP in CS [50]. For the CS-Mn:ZnS nanocomposite (Figure 5f), the combination of
composition from Mn:ZnS and CS is observed, thereby revealing the successful conjugation
of CS with that of Mn:ZnS QDs.

Furthermore, the hydrodynamic size and polydispersity index (PDI) for the formu-
lated nanocarriers measured by the DLS analysis are shown in Table 3. From the data,
the particle size resembles the size of NPs, while PDI resembles homogeneity of particles
distribution; lower PDI samples are made up of more uniform particles size and, therefore,
they are more monodispersed. Meanwhile, zeta potential measures the surface charge
of NPs that gets developed at the particle–liquid interface [50]. In this study, the drug
nanocarriers were successfully synthesized by ionic gelation method using biodegradable
CS crosslinked with TPP. The TPP was chosen rather than other crosslinkers prior to its
low toxicity and no possibility of causing antigenicity. Briefly, the multivalent anions
(–P3O10

5−) interact with (–NH3
+) (after CS has been protonated under acid condition using

acetic acid) by inter- and intramolecular cross-linking interaction, serving as the basis of
ionic gelation process for the formation of CS NPs [51,52]. The size, PDI, and zeta potential
of all synthesized particles provided in Table 3 indicate that the MMC@CS-Mn:ZnS has
the particle size of 175 nm and PDI value of 0.448. In terms of particles size, we observed
an increase for the MMC@CS-Mn:ZnS as compared to naked CS-Mn:ZnS (before drug
loading), indicating that the incorporation of drug molecules into the nanoparticulate
structure have resulted in an increased particle size, and at the same time confirming the
efficient loading of MMC into the CS matrices [53,54]. Generally, zeta potential (ZP) is an
analytical technique to quantify the surface charge of NPs in colloidal solutions. As the
surface charged particles attract a thin layer of opposite charge, they bind to it, forming a
thin liquid layer called a Stern layer. Next, the diffusion of particles in the aqueous medium
will encourage ion interaction in which those loosely associated at the outer diffuse layer
result in the formation of double layer. The electrical potential of the double layer known
as ZP, typically lies in the range of −100 to +100 mV [55]. Additionally, the ZP can be used
to determine the degree of repulsion between the charged particles in the dispersion. The
NPs with high ZP or high charged particles (positive ZP) will tend to resist aggregation
prior to the electric repulsion. Meanwhile, the NPs with low ZP (negative ZP) will attain
attraction rather than repulsion, which leads to the formation of coagulated particles [56].
The ZP values ranging from 20 to 40 mV are likely to be the optimum condition to confer
good stabilization of a nanodispersion and less prone to form aggregations, even though
the particles sizes increase [57,58].

Table 3. Evaluation of particle sizes, PDI and zeta potential for NPs.

Sample Particle Sizes (nm) PDI Zeta Potential (mV)

Mn:ZnS 46 ± 0.56 0.564 −22.80 ± 0.33

CS NPs 158 ± 0.21 0.289 +32.60 ± 0.29

CS-Mn:ZnS 161 ± 0.67 0.320 +32.70 ± 0.46

MMC@CS-Mn:ZnS 175 ± 0.33 0.448 +33.20 ± 0.38

As for the ZP, the MMC@CS-Mn:ZnS exhibit surface charge with the value of
+33.20 ± 0.38 mV, which is significantly no different from the pure CS (+32.60 ± 0.29 mV)
and CS-Mn:ZnS (+32.70 ± 0.46 mV), suggesting that the MMC drug did not undergo
conjugation with the CS matrix, but was successfully encapsulated by physical bonds [51].
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The surface charge of all CS-based NPs is around +30 mV, which is in a good agreement
with the previous report and in addition, the observation of assimilated positive charges
can be due to the presence of positively charged amino groups (−NH3

+) in CS’s polymeric
chain [50]. Substantially, the ZP value outside the range from −30 to 30 mV exhibits good
suspension stability [59,60].

On the note, the positively charged nanocarriers could bind with negatively charged
mucosal membrane ideally, and thus facilitating the enhanced delivery of MMC drug and
cellular uptake [61,62].

3.2. Reaction Yield, Drug Loading Capacity, and Encapsulation Efficiency

Table 4 provides information about the drug loading capacity (DLC), encapsulation
efficiency (EE), and reaction yield of the formulated drug nanocarriers when different
concentrations of encapsulated MMC drug (in the range of 0.25–1.50 mg/mL) were used.
The highest DLC and EE were achieved to be 44.52 ± 1.05% and 60.31 ± 0.49% with
1.0 mg/mL concentration of MMC. Likewise, the DLC and EE were seen to reach saturation
limit at 1.00 mg/mL of TPP, where the reduction in DLC and EE was observed inversely
proportional to the increased concentration of TPP. Such limitation in DLC and EE suggests
that the formulation having the particle size of 175 nm (as mentioned in Section 3.1.6) can
hold approximately 44.52 ± 1.05% at its maximum value. Since the DLC and EE for both
MMC with concentrations of 0.50 and 1.00 mg/mL show no significant differences, and
thus the MMC with 0.5 mg/mL was chosen for further drug release studies.

Table 4. Data of DLC, EE, and reaction yield for nanocarriers with different encapsulation with MMC
of varying concentration was used.

Nanocarriers Drug Loading
Capacity (%)

Encapsulation
Efficiency (%)

Reaction
Yield (%)

MMC@CS-Mn:ZnS a 35.55 ± 1.25 50.13 ± 0.54 50.75

MMC@CS-Mn:ZnS b 42.36 ± 1.80 60.01 ± 0.28 54.17

MMC@CS-Mn:ZnS c 44.52 ± 1.05 60.31 ± 0.49 53.30

MMC@CS-Mn:ZnS d 37.82 ± 1.45 55.28 ± 0.31 52.29

Notes: a 0.25 mg/mL, b 0.50 mg/mL, c 1.00 mg/mL, d 1.50 mg/mL of MMC.

3.3. Drug Release Kinetics Based on Different Types of Pharmacokinetics Models

In vitro release study of MMC was carried out in four different release mediums
(phosphate buffer solution, PBS) with pH 6.5, 6.8, 7.2, and 7.5 to evaluate the drug release
profile ranging from 0 to 480 min as a function of time. The release of loaded drugs from
nanocomposites in different pH was conducted to study the mechanisms occurring inside
the nanomatrix and to understand the pH response. From the graph in Figure 7a, it is clearly
shown that the MMC release in release medium is highest in pH 6.8 with cumulative release
of 56.48% followed by cumulative release of 50.22%, 30.88%, and 10.75% in the release
mediums having the pH of 7.2, 6.5, and 7.5, respectively. This study validates that the
amino group (−NH2) of CS was successfully protonated in slightly acidic condition [53,54],
and the breakage of amino group attached at the surface of naocomposite then accelerates
a greater amount of drug to get diffused out from the CS matrix. This phenomenon hence
facilitates the drug release prior to the swelling behavior of CS NPs in various pH mediums.
At higher pH, the swelling is quite limited and drug release is slightly slow. As reported
in a similar study, the observation of sustained release for the same pH (up to 720 min)
might be due to the interaction of amino group of CS with that of the carboxyl group of
MMC [63].
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Figure 7. Drug release in (a) different release medium with pH 6.5, 6.8, 7.2 and pH 7.5; and drug release data fitted with
five different pharmacokinetics models (b) Pseudo-first-order model, (c) Pseudo-second-order model, (d) Hixson-Crowell
model, (e) Korsmeyer-Peppas model, and (f) Higuchi model.

Briefly, the drug release profile can be subdivided into two major phases, first phase
or burst release phase, followed by second phase which involves sustain release phase [64].
In the first phase, the burst effect might be contributed to by the adsorption and attachment
of drugs on the surface of nanocomposites with poor interaction, which can be clearly seen
during the first 180 min [48]. Meanwhile, the second phase remains plateaued within the
time from 180 min up to 480 min, which validates the sustained release drug from the core
compartment of CS-Mn:ZnS nanocomposite [52]. This finding was strongly supported
by previous work, which shows the burst release of MMC for the first 4 h (180 min) with
sustained release up to 72 h.

In this study, five pharmacokinetic models were implemented to evaluate the drug
release data and associated drug release mechanism. Five pharmacokinetics models includ-
ing pseudo-first-order, pseudo-second-order, Hixson–Crowell, Korsmeyer–Peppas and
Higuchi were used to fit the experimental release as illustrated in Figure 7b–f, respectively.
Acquired fitting parameters such as K1, K2, Khc, N, KKP, KH as well as the correlation
coefficient for each kinetic model were successfully tabulated in Table 5.

Table 5. Kinetic parameter for drug release from CS-Mn:ZnS nanocomposite fitted to various
pharmacokinetics models.

Model Pseudo-First
Order

Pseudo-Second
Order Hixson–Crowell Korsmeyer–Peppas Higuchi

Release
medium K1 R2 K2 R2 KHC R2 n KKP R2 KH R2

pH 6.5 0.0058 0.7003 0.0266 0.9631 0.0054 0.9567 0.63 0.0324 0.9680 1.8734 0.9849

pH 6.8 0.0077 0.7808 0.0001 0.0064 0.0066 0.8007 0.78 0.0694 0.9821 4.0951 0.9604

pH 7.2 0.0074 0.7621 0.0006 0.0636 0.0058 0.9006 0.74 0.0919 0.9727 3.1640 0.9783

pH 7.5 0.0057 0.6094 0.0066 0.6431 0.0016 0.3702 0.52 0.1460 0.8790 0.7776 0.7989

In pseudo-first-order kinetics model, the qe and qt represent the amount of MMC
release at equilibrium and at certain time, respectively, and K1 represents the reaction
coefficient, and t represent time [65].
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ln(qe − qt) = ln qe − K1t (10)

In pseudo-second-order kinetics model, K2 represents the rate constant in pseudo-
second-order model.

t
qt

=
1

K2
q2

e +
t
qe

(11)

In addition, Hixson–Crowell reveals the relationship between the cube root of MMC
remaining in nanocarriers as a function of time, where KHC is the rate constant, and M0 is
the initial concentration of drug in the nanoparticles, for Hixson–Crowell model.

3
√
(M0 − qt) = KHCt (12)

For spherical particles with a granular matrix containing a water soluble drug, the
release kinetics may be described using Kosmeyer–Peppas or Higuchi models [57,58]. The
data for first 60% of drug release fraction (qt) were fitted with both models to investigate
the drug release mechanisms. The drug release kinetic parameters for MMC-CS-Mn:ZnS
nanocarriers were calculated using linearized form of Korsmeyer–Peppas and Higuchi
models [66] as presented in Equations (13) and (14), respectively.

In the Higuchi model, the correlation between the amounts of MMC released was
studied against ascending square root of time, where, KH is denoted as the rate constant
for Higuchi model.

qt = KH
√

t (13)

In the Korsmeyer–Peppas model, the relationship of log of the MMC released was
studied versus the log of time, where log qt denotes the fraction released by time t (min), n
is an exponent related to the drug release mechanism, k (h−n) is a rate constant.

log qt = n log t + log k (14)

From the kinetics and mathematical models, it is clearly demonstrated that the release
of MMC was proficient in CS-Mn:ZnS nanocarriers, fitting both the Higuchi model and
Korsmeyer-Peppas model well. Hence, overall results manifested a more significant
prospective upon the diffusion controlled mechanism [67] which involved the correlation of
cumulative drug release proportionally with the function square root of time at equilibrium,
with the correlation coefficient values (R2) of 0.9849, 0.9604, and 0.9783 for drug release
in pH 6.5, 6.8 and 7.2, respectively. Separately, further validation on diffusion controlled
mechanism was obtained with the R2 value of 0.8790 for pH 7.5, further fit using the
Korsmeyer–Peppas model. From this model, we can determine the release exponent
(n). The n values were found to be 0.63, 0.78, 0.74, and 0.52 for pH 6.5, 6.8, 7.2, and 7.8,
respectively. The mechanism of drug release may be detailed by the adoption of initial
60% of the semi-empirical model and is known as the Korsmeyer–Peppas model. The
value n in the model reflects the possible release mechanisms of the drug. The value of
n < 0.5 indicates Fickian diffusion, whereas n > 0.5 indicates anomalous diffusion [68], as
mentioned in Table 6.

Table 6. Variability of release exponent (n) and the respective release mechanisms.

Release Exponent (n) Drug Transport Mechanism Rate as a Function of Time (t)
Transformation

n ≤ 0.45 Fickian diffusion t−0.5

0.45 ≤ n ≤ 0.89 Non-Fickian transport tn−1

n ≥ 0.89 Case II transport t

n ≥ 1 Super case II transport tn−1
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Moreover, in the Korsmeyer–Peppas release model (the second-highest correlation
coefficient values), the release exponent, n, obtained between 0.45≤ n≤ 0.89 represents non-
Fickian (anomalous) transport which involves hybrid drug release mechanism diffusion
in hydrated matrix and polymer relaxation [69]. The highest n value was observed in
release medium pH 6.8 (n = 0.78) validating that the swelling of CS that was controlled by
water diffusion mechanism, hence facilitating an efficient drug release process from the
MMC@CS-Mn:ZnS nanocomposite [24].

4. Conclusions

In conclusion, the present study investigated the release profiles of MMC@CS-Mn:ZnS
nanocomposite as an effective DDS for non-muscle invasive bladder cancer. The devel-
oped DDS when we applied the MMC concentration of 1.0 mg/mL, the DLC and EE
was achieved to be 44.52 ± 1.80% and 60.31 ± 0.49%, respectively. Furthermore, for the
drug releasing profile conducted in PBS at four different solutions having the pH of 6.5,
6.8, 7.2 and 7.5, we observed the highest cumulative drug release of 56.48% in pH 6.8
media followed by 50.22%, 30.88%, and 10.75% release in the mediums having the pH
of 7.2, 6.5, and 7.5, respectively. Additionally, the drug release data was fitted using five
different pharmacokinetic models where the cumulative MMC release suits the Higuchi
model well, revealing the diffusion-controlled mechanism which involved the correlation
of cumulative drug release proportional to the function square root of time at equilib-
rium. In addition, the drug release studies with the correlation coefficient values (R2) of
0.9849, 0.9604, 0.9783, and 0.7989 for the pH of 6.5, 6.8, 7.2, and 7.5, respectively, were
observed. Based on the overall results, we observed high drug loading capacity for the
developed DDS, which is one of the key features to serve the MMC@CS-Mn:ZnS nanocom-
posite as an excellent drug nanocarrier system that eventually contributes to the improved
chemotherapeutic efficiency.
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