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Abstract: Bioactive peptides isolated from marine organisms have shown to have potential anti-
inflammatory effects. This study aimed to investigate the intestinal protection effect of low molecular
peptides (Mw < 1 kDa) produced through enzymatic hydrolysis of tuna processing waste (tuna
bioactive peptides (TBP)) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in BALB/c
mice. Here, we randomly divided twenty-four male BALB/c mice into four groups: (i) normal
(untreated), (ii) DSS-induced model colitis, (iii) low dose TBP+DSS-treated (200 mg/kg/d), and
(iv) high dose TBP+DSS-treated groups (500 mg/kg/d). The results showed that TBP significantly
reduced mice weight loss and improved morphological and pathological characteristics of colon
tissues. In addition, it increased the activities of antioxidant enzymes (SOD and GSH-Px) and
decreased inflammatory factors (LPS, IL-6, and TNF-α) expression. TBP increased the gene expression
levels of some tight junction (TJ) proteins. Moreover, TBP increased the short-chain fatty acids (SCFAs)
levels and the diversity and imbalance of intestinal flora. Therefore, TBP plays some protective roles
in the intestinal tract by enhancing antioxidant and anti-inflammatory abilities of the body, improving
the intestinal barrier and metabolic abnormalities, and adjusting intestinal flora imbalance.

Keywords: low molecular weight peptides; ulcerative colitis; inflammation; intestinal barrier; intesti-
nal flora; short-chain fatty acid

1. Introduction

Ulcerative colitis (UC) is a disorder characterized by non-specific chronic intestinal
inflammation, and the World Health Organization (WHO) has classified it as a refractory
disease [1]. Its prevalence has gradually increased globally, and that of China has risen to
11.6/106 [2]. The disease has no prominent age characteristics. Patients with low resistance
are more prone to recurrent abdominal pain, diarrhea, and other clinical symptoms, which
seriously affect their everyday social life [3]. Researchers generally believe that its etiology
correlates with the complex interaction between environmental factors, immune dysfunc-
tion, oxidative stress, and intestinal flora disturbance [4]. Furthermore, in these patients,
the intestinal flora disturbance causes a series of adverse effects on the body [5]. These
include reduced gut ability to resist invasion by foreign pathogens, damage to intestinal
tissues, and an aberrant immune response [6,7]. Recently, numerous studies have reported
that dietary factors can indirectly affect the UC pathogenesis process by directly acting on
the host or by regulating the composition or function of intestinal microorganisms [8].

Bioactive peptides are specific protein fragments that positively affect body functions
and have attracted progressive attention in preventing and controlling diseases [9]. Usu-
ally, they are inactive in protein sequences but can function after being released through
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enzymatic hydrolysis or microbial fermentation [10]. They have relatively small molecular
weight and are absorbed easily across membranes. Apart from nutritional benefits, bioac-
tive peptides have several physiological regulatory effects, like lipid lowering, antibacterial,
and immune regulation [11]. Moreover, previous literature illustrates that dietary peptides
derived from therapeutic food proteins can be delivered to colon epithelial cells to reduce
inflammation and modulate pro-inflammatory signaling events [12]. Azuma [13] showed
that the collagen peptide in fish scales played an anti-inflammatory role in the dextran sul-
fate sodium (DSS)-induced acute UC mice model. Liu [14] showed that bioactive peptides
from egg whites contribute to maintaining healthy homeostasis and intestinal microflora of
colitis hosts. Jin [15] illustrated the inhibitory effect of a new peptide from Pacific oysters
(Crassostrea gigas) enzymatic hydrolysate on colitis induced by DSS in mice.

Tuna is a type of marine organism with high economic value, which contains many
nutrients that are beneficial to the human body and is a high-quality protein resource [16].
Unutilized parts (tuna skeleton, dark muscle, fish skin, fish scales, etc.) generated during
tuna processing are discarded, which account for about 50% to 70% of the original materi-
als, hence, the problem of insufficient utilization of resources [17]. Enzymatic hydrolysis
of these protein-rich byproducts is conducive to forming peptides with nutritional and
functional properties [18]. Studies have reported that the derived peptides extracted from
different parts of tuna have rich functions, like antioxidative [19], anti-obesity [20], bacterio-
stat [21], and inhibition of cancer cell proliferation [13]. Some studies have shown that some
peptides isolated from tuna sources exert anti-inflammatory effects in vivo and in vitro.
Cheng [22] showed that the small molecular peptides isolated and purified from the en-
zymatic hydrolysis of tuna boiled juice had great anti-inflammatory activity. Zhang [23]
demonstrated that antioxidant peptides extracted from tuna bone protein enhanced the
inflammatory response of necrotizing colitis caused by decreasing reactive oxygen species
(ROS) and inhibiting the NF-κB pathway. Wang [24] illustrated that enzymatically hy-
drolyzed peptides from Skipjack (Katsuwonus pelamis) had a good regulating effect on
inflammation and intestinal flora of UC model mice induced by DSS.

Skipjack is a kind of tuna species with a large fishing amount and has excellent market
potential. In this study, the low molecular peptides (Mw < 1 kDa) (tuna bioactive peptides
(TBP)) were prepared through enzymatic hydrolysis and membrane separation of skipjack
processing waste to establish the effects of DSS on UC mice. Furthermore, our study would
provide a theoretical basis and reference for the high-value utilization of tuna byproducts
and the development of Marine biology-assisted treatment for intestinal inflammation.

2. Results
2.1. Characterization of TBP

As demonstrated in Table 1, we determined the molecular weight distribution of TBP
through high-performance liquid chromatography (HPLC). TBP is mainly composed of
molecules in the range of 180–500 Da (48.71%) and 500–1000 Da (43.23%). The present study
results indicated that TBP was nearly a small molecule after enzymolysis and membrane
separation. The amino acid analysis revealed that TBP contained seventeen kinds of
amino acids, among which glutamate, aspartate, leucine, alanine, and lysine were the
main components (Table 2). The essential amino acids (Leucine, Lysine, Valine, Histidine,
Isoleucine, Isoleucine, Threonine. Phenylalanine and Methionine) and branched-chain
amino acids (Valine, Valine, Isoleucine) accounted for 26.84% and 11.73% of the total
amino acids.
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Table 1. The molecular weight distribution of tuna bioactive peptides (TBP).

Molecular Weight
Range (Da) Percentage (%) Molecular Weight

Range (Da) Percentage (%)

>5000 0.16 1000–500 43.23
5000–3000 0.58 500–180 48.71
3000–2000 1.41 < 180 4.61
2000–1000 1.30 - -

Total 100

Table 2. The amino acid composition of TBP.

Amino Acid Abbreviation Ratio (g/100 g)

Glutamic acid # Glu 9.16
Aspartic acid # Asp 5.68

Leucine * Leu 5.35
Lysine * Lys 5.14

Alanine # Ala 4.27
Arginine # Arg 3.67

Valine * Val 3.42
Histidine * His 3.09
Glycine # Gly 3.05

Isoleucine * Ile 2.96
Proline # Pro 2.59

Threonine * Thr 2.58
Serine # Ser 2.54

Phenylalanine * Phe 2.43
Methionine * Met 1.87

Tyrosine # Tyr 1.78
Cysteine # Cys 0.52

Essential amino acids * 26.84
Non-essential amino acids # 33.26

Total amino acids 60.10
Notes: An amino acid marked with * means that it is an essential amino acids. An amino acid marked with #
means that it is non-essential amino acids.

2.2. Effects of TBP on Body Weight and DAI Score of DSS-Induced Colitis Mice

In this study, we established four groups of mice with different treatment, including
Normal, DSS-induced model colitis (DSS), low dose of TBP (L-TBP), and the high dose of
TBP (H-TBP) groups. The animal experiment process is shown in Figure 1A. As illustrated
in Figure 1B, we observed a body weight change in each group of mice. During the last
week of the experiment, the mice in the Normal group continued to gain weight. The
DSS and TBP groups began to lose weight on the third day after DSS induction. Notably,
we observed a reduction in weight loss in the TBP group than in the DSS group. The
mice in the DSS group had mild diarrhea symptoms, such as reduced dietary water intake
and activity and poor hair color, which significantly increased the score evaluation of the
disease activity index (DAI). This suggests that the mouse colitis model was successfully
constructed. After TBP treatment, we observed that the physiological condition of mice
was improved to some extent but still existed, and the DAI score was lower than that of
the DSS group.

2.3. Effects of TBP on Pathological Changes of Colon Tissues in DSS-Induced Colitis Mice

Figure 2 demonstrates the colon tissues of mice in each group. In the Normal group,
the colonic epithelium had a clear structure. The glands were neatly arranged, the crypt
and mucosa were intact, rich in goblet cells, and no apparent inflammatory cell infiltration
was observed (Figure 2A). Scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) showed that the colonic epithelial microvilli of normal mice were closely
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arranged and of the same shape and size (Figure 2B,C). The colon tissues of mice induced
by DSS were disordered, crypt destruction was severe, the number of goblet cells in
the intestinal epithelium was significantly reduced, and many inflammatory cells were
infiltrated in the mucosal and submucosal layers (Figure 2A). The mice colonic epithelial
microvilli were enlarged, damaged, collapsed, and atrophic (Figure 2B,C). The colonic
condition of the H-TBP group was better than that of the DSS group. Many goblet cells were
retained, visible crypt structure appeared, and inflammatory cell infiltration significantly
reduced (Figure 2A). The colonic epithelial microvilli of H-TBP group mice became denser,
and the collapsing atrophy decreased (Figure 2B,C). These results suggested that TBP can
slowed down the process of intestinal injury induced by DSS.
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2.4. Effects of TBP on Cytokines of Colon Tissues in DSS-Induced Colitis Mice

Figure 3 shows the cytokines detection in colon tissue of mice in each group. Com-
pared with the Normal group, the levels of inflammatory cytokines (IL-6 and TNF-α)
in colon tissues of the DSS group were significantly increased (P < 0.05). On the other
hand, H-TBP and L-TBP treatment significantly reduced the levels of these inflamma-
tory cytokines, which was substantially different from that in the DSS group (p < 0.05)
(Figure 3A,B). We further detected the SOD and GSH-Px activities in colon tissues and
established that the activities of these antioxidant enzymes were significantly decreased in
the DSS group (p < 0.05). Compared with the DSS group, the activities of SOD and GSH-Px
were increased considerably after H-TBP treatment (p < 0.05) (Figure 3C,D). Furthermore,
TBP effectively reduced intestinal permeability in mice. The LPS and DAO levels in colon
tissues of the DSS group were significantly increased (p < 0.05). Compared with the DSS
group, the LPS and DAO levels in L-TBP and H-TBP groups were significantly decreased
(p < 0.05) (Figure 3E,F).
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2.5. Effect of TBP on Related Gene in Colon Tissues in DSS-Induced Colitis Mice

Like the results of colonic cytokines, the gene expression of TNF-α and IL-6 in colon
tissues of the DSS group was also significantly increased (p < 0.05). After TBP treatment,
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the gene expression of TNF-α and IL-6 in colon tissue were decreased and approached
those of the Normal group (Figure 4A,B). In addition, as illustrated in Figure 4C,E, DSS-
induced mice significantly reduced the gene expression of tight junction (TJ) proteins such
as ZO-1, Occludin, and Claudin (p < 0.05) in colon tissues. Compared with the DSS group,
TBP treatment could increase the gene expression of TJ protein; however, H-TBP was
significantly different. These results suggests that TBP therapy may reduce inflammation
and heal intestinal damage.
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2.6. Effects of TBP on the Gut Microbiota in DSS-Induced Colitis Mice

Here, we used Venn map, α-diversity index, and PCA map to evaluate the effects of
H-TBP on gut microbiota structure. The Venn diagram illustrated that the number of OTUs
shared by the groups was 160. The number of unique OTUs in the Normal group, DSS,
and H-TBP groups were 105, 121, and 126, respectively. However, as shown in Figure 5A,B,
the number of OTUs in the DSS group was the lowest. DSS group demonstrated that
DSS reduced the α-diversity indices (Chao1, Simpson, and Shannon indices) of the gut
microbiota compared to the Normal and H-TBP groups. As illustrated in Figure 5C–E, TBP
treatment could inhibit the decrease of α-diversity in DSS-induced mice. PCA analysis
showed that the gut microbiota obtained in the DSS group was significantly separated from
the other two groups, and the H-TBP group was close to the Normal group (Figure 5F).
These results are indicating that different treatments changed the structure of the gut
microbiota of the mice.

Furthermore, we analyzed gut microbiota changes at the phylum and genus levels in
the three mice groups. As demonstrated in Figure 6A, Bacteroidetes and Firmicutes are the
main flora at the phylum level in the gut. Compared with the Normal group, Bacteroidetes
increased, and Firmicutes decreased in the DSS-induced mice. In contrast, after H-TBP
treatment, Bacteroidetes decreased, whereas Firmicutes increased. At the genus level, the
abundance ranking of Bacteroides, Lactobacillus, Alistipes, and Lachnospiraceae NK4A136
groups in the Normal group was from one to four, respectively. The abundance ranking
of one to four of the DSS group was Alistipes, Lachnospiraceae NK4A136, Lactobacillus, and
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Bacteroides. Compared with the Normal group, the abundance of Bacteroides in the DSS
group was significantly decreased, whereas that of Alistipes was increased considerably. As
illustrated in Figure 6B, the abundance ranking in the H-TBP group, from one to four, was
Bacteroides, Lachnospiraceae NK4A136, Alistipes, and Lactobacillus, respectively. Moreover,
the results showed that six bacteria at the genus level (four increased and two decreased)
were significantly altered in the H-TBP group in comparison to the Normal group (p < 0.05)
(Figure 6C). This includes the Oscillibacter, Desulfovibrio, Rikenellaceae RC9 gut group, etc.
Compared with the DSS group, 13 bacteria were significantly changed at the genus level in
the H-TBP group (nine decreased and five increased) (p < 0.05) (Figure 6D). This includes
the Alistipes, Oscillibacter, Rikenellaceae RC9 gut group, etc. These results suggested that the
TBP treatment could regulate gut microflora.

Mar. Drugs 2021, 19, x FOR PEER REVIEW 7 of 16 
 

 

Figure 4. TBP treatment modifies related gene expression in mice colon. (A) IL-6, (B) TNF-α, (C) ZO-1, (D) Occludin, (E) 
Claudin. Data are presented as mean ± SEM (n = 3). Different lowercase letters were used to show significant differences 
between groups (P < 0.05), and the same lowercase letters were used to indicate that the differences between groups were 
insignificant (P > 0.05). 

2.6. Effects of TBP on the Gut Microbiota in DSS-Induced Colitis Mice 
Here, we used Venn map, α-diversity index, and PCA map to evaluate the effects of 

H-TBP on gut microbiota structure. The Venn diagram illustrated that the number of 
OTUs shared by the groups was 160. The number of unique OTUs in the Normal group, 
DSS, and H-TBP groups were 105, 121, and 126, respectively. However, as shown in Figure 
5A,B, the number of OTUs in the DSS group was the lowest. DSS group demonstrated 
that DSS reduced the α-diversity indices (Chao1, Simpson, and Shannon indices) of the 
gut microbiota compared to the Normal and H-TBP groups. As illustrated in Figure 5C–
E, TBP treatment could inhibit the decrease of α-diversity in DSS-induced mice. PCA anal-
ysis showed that the gut microbiota obtained in the DSS group was significantly separated 
from the other two groups, and the H-TBP group was close to the Normal group (Figure 
5F). These results are indicating that different treatments changed the structure of the gut 
microbiota of the mice.  

 
Figure 5. TBP treatment altered the diversity of mice gut microbiota. (A)Venn diagrams, (B) Observed-OTUs, (C) Chao1 
index, (D) Simpson index, (E) Shannon index, (F) PCA. All data were expressed as mean ± SEM (n = 6). * means that there 
is a significant difference between the two groups (P < 0.05),  

Furthermore, we analyzed gut microbiota changes at the phylum and genus levels in 
the three mice groups. As demonstrated in Figure 6A, Bacteroidetes and Firmicutes are the 
main flora at the phylum level in the gut. Compared with the Normal group, Bacteroidetes 
increased, and Firmicutes decreased in the DSS-induced mice. In contrast, after H-TBP 
treatment, Bacteroidetes decreased, whereas Firmicutes increased. At the genus level, the 
abundance ranking of Bacteroides, Lactobacillus, Alistipes, and Lachnospiraceae NK4A136 
groups in the Normal group was from one to four, respectively. The abundance ranking 
of one to four of the DSS group was Alistipes, Lachnospiraceae NK4A136, Lactobacillus, and 
Bacteroides. Compared with the Normal group, the abundance of Bacteroides in the DSS 
group was significantly decreased, whereas that of Alistipes was increased considerably. 

Figure 5. TBP treatment altered the diversity of mice gut microbiota. (A)Venn diagrams, (B) Observed-OTUs, (C) Chao1
index, (D) Simpson index, (E) Shannon index, (F) PCA. All data were expressed as mean ± SEM (n = 6). * means that there
is a significant difference between the two groups (p < 0.05),

2.7. Effects of TBP on Short Chain Fatty Acids (SCFAs) in DSS-Induced Colitis Mice

Intestinal microorganisms have many effects on the host by mediating microbial prod-
ucts, among which SCFAs are related to IBD pathogenesis. Furthermore, we analyzed the
changes of SCFAs in intestinal contents of the Normal, DSS, and H-TBP groups (Figure 7).
As shown in Figure 7A–F, the SCFAs contents that were significantly decreased in the DSS
group (p < 0.05) include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric
acid, and isovaleric acid. The difference is that the content of caproic acid increased signifi-
cantly (p < 0.05) (Figure 7G). Compared with the DSS group, H-TBP treatment significantly
increased the range of these SCFAs in the intestinal tract of DSS-induced mice (p < 0.05)
(Figure 7A–G). The results suggested that the TBP treatment may help regulate microbial
metabolites in the gut.
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In this study, we analyzed the relationship between the 30 most abundant genera
and SCFAs, to investigate whether the changes in the SCFAs in mice correlated with
enteric gut microbiota. The results showed that acetic acid, propionic acid, isobutyric
acid, butyric acid, iso-valeric acid, valeric acid and Bacteroides, Oscillibacter, Odoribacter,
Ruminococcaceae series and Lachnospiraceae UCG-006, Lachnoclostridium and Butyricicoccus
were positively correlated to different degrees, while negatively correlated to Alistipes,
Rikenella, Lachnospiraceae NK4A136 Group, Rikenellaceae RC9 Gut Group, Alloprevotella, and
other bacteria (Figure 8).
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3. Discussion

Bioactive peptides play an essential role in human immune function and metabolic
activities [25]. Currently, enzymatic hydrolysis is an effective and safe method of obtaining
bioactive peptides [26]. Membrane separation can further isolate high-value molecules
from hydrolyzed protein by-products to improve their functional properties [27]. Previous
research indicated that low molecular weight polypeptides could be readily absorbed
and utilized in intact form, and their biological activities could be preserved during their
gastrointestinal digestion [28]. This study prepared low-molecular bioactive peptides from
skipjack processing waste through enzymatic hydrolysis and membrane separation. The
results showed that the molecular weight of TBP was less than one Kilodalton, and it
was rich in various amino acids. UC is a complicated disease, and drug treatment often
has some severe side effects [29]. DSS-induced mice are used to establish a non-specific
UC model with symptoms and pathological changes similar to human UC. They mainly
manifest as intestinal epithelial cell replacement, imbalance intestinal physical barrier,
dysfunction intestinal oxidative damage, intestinal mucosa inflammation, and intestinal
microorganism disorder [30]. Therefore, we assessed the TBP effect and mechanism on
DSS-induced colitis mice.

In this study, typical clinical symptoms of colitis and pathological changes in the
intestinal tract were produced in mice induced using 3.5% DSS (w/v) [31]. These included
poor diet, weight loss, and bloody stool. In the DSS group, we observed colonic tissue
ulceration and microvilli damage in the colon epithelium of mice. Intestinal mucosal
barrier abnormalities are a key feature of individuals with colitis [32]. H-TBP treatment
inhibited weight loss, reduced DAI score, and improved the damage of intestinal epithelial
barrier in mice. The LPS and DAO levels, which represent the severity of the intestinal
injury, began to decrease in the TBP group. In addition, further experiments demonstrated
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that TBP increased the gene expression level of TJ protein in colon tissue. These results
propose that TBP treatment is beneficial for restoring the intestinal barrier in colitis. This
could be linked to the amino acid composition of TBP. Different studies have reported
that glutamate and aspartate provide energy to mammalian intestinal epithelial cells
through mitochondrial oxidation, regulating the AMPK mTOR activity pathway, promoting
intestinal epithelial cell proliferation, and playing an essential role in maintaining integrity
of intestinal mucosa [33,34]. Leucine provides energy for nutrient transfer and intracellular
protein transformation to promote intestinal development, affecting intestinal barrier
function [35]. Arginine is a conditioned, essential amino acid that plays a significant role in
cell physiological activities. Studies have shown that it can protect cells from apoptosis
caused by LPS-induced oxidative damage [36].

The intestinal epithelial barrier improves the inflammatory response by preventing
local inflammation from becoming systemic [37]. It is reported that inflammatory cytokines
such as IL-6 and TNF-α are critical signaling molecules in the inflammatory response of
the body, and their expression level is positively correlated with the severity of UC. Their
increase causes the abnormal distribution of Occludin protein, making it unable to localize
and function on TJ, causing the intestinal homeostasis instability after the breakage of
TJ [38]. TBP treatment reduced the levels of IL-6 and TNF-α inflammatory cytokines in mice
colon tissues induced by DSS, and their mRNA expression levels were close to that of the
normal level. Excessive production of reactive oxygen species is the critical factor to cause
tissue damage and ulcer formation during UC pathogenesis [39]. The increase of SOD and
GSH-Px enzyme activity can stabilize cell membranes and protect colon tissue [40]. This
experiment showed that after DSS induction, TBP intervention could improve SOD and
GSH-Px activity in colon tissues. This finding is consistent with previous studies showing
that peptides extracted from tuna have better antioxidant effects [41]. These results propose
that TBP can inhibit intestinal inflammation, enhance antioxidant capacity, and repair
epithelial barrier, thus alleviating colitis.

It has been reported that peptides can alter colonic microbes, and bacteria can modify
peptides in the gut. Regulating intestinal microbiota is considered to be an effective method
for the treatment of colitis. Intestinal microorganisms have established an asymmetric
relationship with the host through long-term evolution and play a significant role in the
development and maturation of the host immune system [42]. The normal intestinal flora
is rich in composition and diverse in variety of which 99% of these strains are mainly
Firmicutes and Bacteroides [43]. In a delicate balance, beneficial bacteria and conditional
pathogens maintain usual in vivo metabolism and immune functions [44]. Several studies
have shown that imbalanced intestinal flora can directly invade intestinal epithelial cells to
induce inflammation, and its metabolite endotoxin can also trigger intestinal inflammatory
responses [45]. UC has obvious bacterial flora imbalance, mainly manifested in changes in
the type, number, and function of intestinal flora. The experimental results showed that TBP
treatment increased the diversity index of intestinal microbial, but it was not significantly
different from the DSS group, which had certain limitations. Some reports have shown
a decrease in the Bacteroidetes/Firmicutes ratio in the gut of patients with colitis [46]. In
mice intestines, TBP treatment increased Firmicutes and decreased Bacteroidetes. Bacteroides
are one of the dominant bacteria in the intestine, and their existence can help reduce
inflammation [47]. TBP treatment increased Bacteroides that were decreased after DSS
induction. These results have shown that TBP plays a crucial role in maintaining intestinal
flora homeostasis.

Moreover, TBP could exert an anti-colitis effect through other pathways, like microbial
metabolism. SCFAs are well-known signaling molecules for regulating diet, gut microbes,
and hosts. SCFAs, including acetic acid, propionic acid, butyric acid, isobutyric acid, and
hexic acid, are produced by microorganisms fermenting undigested carbohydrates [48].
They affect chronic diseases through various mechanisms and play an essential role in
maintaining the metabolic stability of colon epithelial cells, protecting the colon from
external injury, and potentially impacting colon disease [49]. SCFAs as the primary energy
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substrate can also play an anti-inflammatory and anti-cancer effect [50]. The changes in gut
microbiota have a significant impact on SCFAs in the intestine. Our results showed that
DSS reduced SCFAs in the gut, but TBP treatment increased them. Correlation analysis
showed that there were different associations between the gut microbiota and the SCFAs.
For instance, Ruminococcaceaes are considered to be anti-inflammatory factors since they
produce SCFA, particularly butyric acid [51]. However, its abundance was increased after
TBP treatment. Therefore, the beneficial effects of TBP were mediated not only by enhanced
intestinal barrier function, but also linked with the gut microbiota and its metabolism.

4. Materials and Methods
4.1. Chemicals

Tuna was purchased from Zhejiang Rongchuang Food Co. LTD (Zhoushan, China).
DSS (MW:36000) from MP Biomedicals (San Mateo, CA, USA). ELISA kits for TNF-α,
IL-6 and LPS were purchased from Nanjing Jiancheng Institute of Biological Engineer-
ing (Nanjing, China) and Wuhan Boster Company (Wuhan, China), respectively. DAO,
GSH-PX, and SOD detection kits were purchased from Wuhan Huamei Biology Co.,
LTD (Wuhan, China). Trizol Reagent, the cDNA Reverse transcription Kit, and the TB
GreenTM Premix Ex TapTM Fluorescent Quantitative Kit were purchased from TaKaRa
(Dalian, China). Fecal genomic DNA extraction kits were obtained from TianGen Biotechnol-
ogy (Beijing, China). All other chemical reagents are commercially available analytical grade.

4.2. Preparation of TBP

Briefly, we collected the Skipjack processing wastes and washed them dozens of
times in distilled water to remove the remaining blood and fat. Then, we mixed Skipjack
processing wastes with sufficient phosphate-buffered saline (PBS) for homogenization and
attained a pH of 7.4. After adding pepsin (2500 U/g), the homogenate was hydrolyzed
at pH 3.0, 37 ◦C for 4 h. Subsequently, to inactivate pepsin, 0.1 M NaOH solution was
used to adjust the pH value of the homogenate to 8.0. Next, we added animal protease
(2500 U/g) to the homogenate and hydrolyzed it again for 4 h. After terminating the
enzymatic hydrolysis reaction, precipitation was performed through centrifugation, and
the enzymatic hydrolysate was obtained. The ultrafiltration device with a retention of
1 kDa was used to treat the enzymatic hydrolysate and collected the small molecular weight
(< 1 kDa) peptide components of the processed tuna wastes, concentrate, and freeze-drying.
HPLC (Agilent Technologies, Inc., CA, USA) equipped with TSK gel G2000 SWXL analytical
column (7.8 × 300 mm, 5 µm, TOSOH, Tokyo, Japan) was used to determine the molecular
weight distribution of TBP. Its amino acid composition was determined using the Hitachi
835-50 amino acid analyzer (Hitachi, Tokyo, Japan), methods as previously reported.

4.3. Animal Experiment Design

We procured male BALB/C mice aged five weeks from the Zhejiang Academy of Med-
ical Sciences. Upon arrival, the mice were placed in a controlled environment (23 ± 2 ◦C,
for a 12 h light/dark cycle), and provided with a standard basic diet. After the 5-day
adaptation period, all mice were randomly divided into four groups of six mice each:
Normal, DSS-induced model colitis (DSS), low dose of TBP (L-TBP), and the high dose
of TBP (H-TBP) groups. Notably, all experimental protocols for animals were formulated
per the National Institutes of Health standards and approved by the Ethics Committee of
Zhejiang Ocean University (2019003). All necessary measures were used to reduce animal
suffering during experimental procedures.

Based on our previous laboratory experiment, the L-TBP and H-TBP groups were
designed to receive 200 mg/kg and 500 mg/kg TBP gavage, respectively, once daily until
the end of the experiment. The Normal and the DSS groups were given a similar amount of
pure water. In the last week of the investigation, DSS (3.5% v/w) was added to the drinking
water of the DSS, L-TBP, and H-TBP groups to induce experimental UC in mice (Figure 1A).
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At the end of the experiment, all mice were euthanized, and the colon tissues and cecal
contents were collected and stored at −80 ◦C until further analysis.

4.4. DAI Score Evaluation

We used the DAI score to assess the severity of colitis in each group. After establishing
the DSS model, we conducted the comprehensive score daily following the weight change
of mice, including fecal viscosity and fecal hematochezia. The specific criteria were shown
in Table 3.

Table 3. Evaluation of disease activity index (DAI).

Weight Loss% Stool Consistency Occult/Gross Bleeding DAI Score

0 Normal Normal 0

1–5 Soft stools Hemoccult positive
mildly 1

5–10 - - 2
10–15 Diarrhea Visible gross bleeding 3
>15 - - 4

4.5. Pathological Evaluation

After we separated the colonic tissues of mice in each group, some fresh tissues were
fixed in 4% paraformaldehyde solution for 48 h and embedded in paraffin. Then, paraffin
sections were prepared successively through block repair, dehydration, transparency,
waxing, embedding, section, etc., and were stained with hematoxylin and eosin (H&E)
solution, sealed with neutral gum, and observed under a microscope. Subsequently, we
evaluated the degree of edema, superficial necrosis, and infiltration of granulocytes in
colon tissues.

The partial colon tissue was carefully washed with PBS, fixed in 2.5% glutaraldehyde
at 4 ◦C. After dehydration under different alcohol concentrations, the tissue block was
dried at a critical point, pasted onto a short rod, coated with gold, and then observed
under a scanning electron microscope (SEM). The other part of the treated colon tissue was
impregnated with epoxy resin, made into ultrathin sections, and stained using uranium
acetate and aluminum citrate for TEM observation.

4.6. Colon Tissues Biochemical Parameter Analysis

A section of colon tissue was taken. Normal saline was added at a mass volume ratio
of 1:9, the tissue was ground using a homogenizer, and the supernatant was collected
through centrifugation, that is, 10% of the colon tissue homogenate. Then, we measured
the activity of DAO, SOD, and GSH-PX in colon tissue homogenate using a kit. Lastly, we
determined TNF-α, IL-6, and LPS contents in colon tissue homogenate using an ELISA kit.
Three biological replicates were performed for each treatment.

4.7. Real-Time Polymerase Chain Reaction (RT-PCR)

We extracted total RNA from colon tissues using the Trizol reagent and converted
it into complementary DNA (cDNA), following the instructions from the manufacturer.
cDNA is produced through RNA reverse transcription using the Prime Script™ Reverse
Transcription Kit. Then, we performed quantitative PCR using SYBR Green PCR Core
Reagent in ABI Step One Plus Real-Time PCR system. The procedures were performed as
follows: Stage 1: Pre-denaturation at 95 ◦C for 30 s, one cycle; Stage 2: PCR, at 95 ◦C for 5 s
and 60 ◦C for 34 s, 40 cycles; and Stage 3: at 95 ◦C for 30 s and 60 ◦C for 1 min, one cycle.
All qPCR reactions were performed for each RNA sample. The gene expression levels were
calculated using the 2−∆∆Ct method. β-actin was used as the internal control. Table 4
shows the primers used in this study.
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Table 4. Primers used for the RT-qPCR.

Gene Primer Primer Sequence 5’–3’ Product Size (bp)

IL-6 Forward Reverse CAGGTCTATTTTGGGATCATTGCC
TCCCTGATTTCTAAGTGTTGCTGT 189

TNF-α Forward Reverse CACCTCAGACAAAATGCTCTTCAC
CTCACACATCTCCTTTCTCATTGC 100

ZO-1 Forward Reverse TACCTCTTGAGCCTTGAACTT
CGTGCTGATGTGCCATAATA 248

Occludin Forward Reverse GCCCAGGCTTCTGGATCTATGT
GGGGATCAACCACACAGTAGTGA 124

Claudin-1 Forward Reverse GCTGGGTTTCATCCTGGCTTCT
CCTGAGCGGTCACGATGTTGTC 110

β-actin Forward Reverse AGTGTGACGTTGACATCCGT
GCAGCTCAGTAACAGTCCGC 298

4.8. Gut Microbiota Analyses

We extracted total bacterial DNA from samples of cecal contents using fecal genomic
DNA extraction kits, following the instructions from the manufacturer. Then, V3–V4
regions of the bacterial 16S rRNA were amplified using the Phusion High-Fidelity PCR
Master Mix with a specific primer barcode. After the purification of PCR products, a
sequencing library was generated to assess the quality of the library. Finally, the library
was sequenced using the MiSeq sequencing system (Illumina, San Diego, CA, USA), and
the quality control program was read single-ended to acquire clean reads. Next, we used
the Uparse software to allocate reads with a similarity of 97% to the same OTUs and further
annotate them according to the SILVA database. The QIIME (Version 2) software was used
to calculate the α-diversity index, including Chao, Simpson, and Shannon. Consequently,
we used the STAMP software (Version 2.1.3) to plot PCA and compared the different flora
of each group. Lastly, the Spearman coefficient was used to analyze the association between
microbiota and SCFAs.

4.9. SCFAs Analyses

As in the previous study, we extracted 10 mg of cecal contents with a mixture of 15%
phosphoric acid, diethyl ether, and isocaproic acid. Then, we mixed them well, centrifuged,
and removed the supernatant. The supernatant was transferred for analysis through gas
chromatography-mass spectrometry (GC-MS) (Agilent Technologies, CA, San Diego, USA).
Notably, to construct standard gas chromatographic curves, we procured all standard
materials for acetic acid, propionic acid, butyric acid, isobutyric acid, pentanoic acid,
isopentyl acid, and hexanoic acid from Sigma Company. Lastly, short-chain fatty acids
were calculated quantitatively per the quality of cecal contents and retention time of the
standard solution.

4.10. Statistical Analysis

All statistical analyses were conducted using SPSS 20.0 and GraphPad Prism. Data are
expressed as mean ± SEM. Then, we used Analysis of Variance (ANOVA) to determine the
difference in the four groups and Student’s t-test to investigate the significance between
any two groups. For all experiments, p < 0.05 was considered statistically significant.

5. Conclusions

This study confirms the protective effect of TBP on DSS-induced colitis mice. TBP
treatment significantly alleviates colitis symptoms, including improved body weight and
DAI score, inhibited production of pro-inflammatory cytokines, increased antioxidant
enzyme activity, weakened colon tissue damage, restored the disturbed intestinal flora,
and increased SCFA production. However, further research is needed to understand
how TBP plays a role in the gut to produce these effects. In summary, our experimental
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results will provide some theoretical basis for using TBP as a prebiotic in maintaining
intestinal homeostasis.
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