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Abstract
High concentrations of household air pollution (HAP) due to biomass fuel usage with

unvented, insufficient combustion devices are thought to be an important health risk factor

in South Asia population. To better characterize the indoor concentrations of particulate

matter (PM2.5) and carbon monoxide (CO), and to understand their impact on health in rural

southern Nepal, this study analyzed daily monitoring data collected with DataRAM pDR-

1000 and LASCAR CO data logger in 2980 households using traditional biomass cookstove

indoor through the Nepal Cookstove Intervention Trial–Phase I between March 2010 and

October 2011. Daily average PM2.5 and CO concentrations collected in area near stove

were 1,376 (95% CI, 1,331–1,423) μg/m3 and 10.9 (10.5–11.3) parts per million (ppm)

among households with traditional cookstoves. The 95th percentile, hours above 100μg/m3

for PM2.5 or 6ppm for CO, and hours above 1000μg/m3 for PM2.5 or 9ppm for CO were also

reported. An algorithm was developed to differentiate stove-influenced (SI) periods from

non-stove-influenced (non-SI) periods in monitoring data. Average stove-influenced con-

centrations were 3,469 (3,350–3,588) μg/m3 for PM2.5 and 21.8 (21.1–22.6) ppm for CO.

Dry season significantly increased PM2.5 concentration in all metrics; wood was the clean-

est fuel for PM2.5 and CO, while adding dung into the fuel increased concentrations of both

pollutants. For studies in rural southern Nepal, CO concentration is not a viable surrogate

for PM2.5 concentrations based on the low correlation between these measures. In sum,

this study filled a gap in knowledge on HAP in rural Nepal using traditional cookstoves and

revealed very high concentrations in these households.
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Introduction
Approximately 3 billion people worldwide rely on solid fuels (biomass or coal) for cooking and
heating due to lack of access to cleaner fuels [1,2]. Solid fuels are typically used with unvented,
inefficient combustion devices leading to high emissions of toxic pollutants due to incomplete
combustion, including two main pollutants contributing to morbidity and mortality: particu-
late matter (PM) of various sizes, and carbon monoxide (CO) [2,3]. High concentration of fine
PM is a known risk factor for cardiopulmonary adverse outcomes. CO is associated with fatal-
ity and acute exposure-related reduction of exercise tolerance and also a marker for PM expo-
sure in some studies [3,4]. Combining exposure to all related pollutants, household air
pollution (HAP) due to solid fuels was estimated to account for 3.5 million deaths across the
world in 2010, and was the leading risk factor for death in South Asia [5]. To reduce the disease
burden due to HAP in households using solid fuels, understanding the exposure-outcome rela-
tionship is critical [3,6].

Difference in stove design, fuels used and cooking practices across regions can lead to large
variability in HAP concentrations. Therefore information is needed to assess exposures across
different study locations [6]. Research on solid fuel related pollutants and health impacts are
limited in low income countries like Nepal [7]. Previous studies documented high HAP con-
centrations during cooking in Nepalese houses using biomass fuel: 4,741 μg/m3 and 13.7 parts
per million (ppm) for PM2.5 and CO, respectively [8,9]. In rural India, recent studies found
24-hour average concentrations of 686 μg/m3 for PM2.5 and 2.6 ppm for CO among house-
holds using biomass fuel [10], and 48-hour average concentrations of 1,250 μg/m3 for PM2.5

and 10.8 ppm for CO in households using traditional cookstoves [11]. These levels are many
times higher than current air quality guidelines published by the World Health Organization
(WHO): 25 μg/m3 for 24-hour average ambient PM2.5 exposure and 6 ppm for 24-hour average
indoor CO exposure [4,12].

The Nepal Cookstove Intervention Trial–Phase I (NCIT-I) was designed to assess and
reduce adverse health effects (mainly acute lower respiratory infection) of biomass fuel smoke
exposure among women and young children with installation of enhanced, ventilated biomass
stoves to replace the traditional open burning mud stoves. Continuous daily concentrations of
PM2.5 and CO were measured before and after the installation of new stove in area close to
stove among eligible households. This paper reports the methods for quantifying daily indoor
PM2.5 and CO concentrations using monitoring data collected before enhanced stove installa-
tion in preparation for further analysis of related health outcomes. Issues and systematic solu-
tions regarding data reduction and data analysis for daily continuous HAP concentrations are
detailed as well as method for determining the pollutant concentration during cooking or
stove-influenced (SI) times.

Methods

Data Collection
NCTI-I was conducted in Sarlahi, a district on Nepal’s southern border with Bihar State in
India. Residents of all households in four Village Development Committees were screened for
enrollment eligibility. The final eligible households only used traditional biomass cookstove
indoor and had a married woman aged 15–30 or a child younger than 36 months. Detailed
methods for study design and enrollment criteria have been published previously [13]. Between
March 2010 and July 2012, all participating households in NCIT-I received two HAP assess-
ments, once before the new stove was installed and once afterwards. This assessment com-
prised measurement of PM2.5 and CO concentrations, temperature, and relative humidity
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every 10 seconds for a period of approximately 21 hours. For each household-day, measure-
ments started at approximately 3:00 pm and stopped around 12:00 pm the following day. This
interval covered nearly all the cooking events since lunch is not a typical meal in rural Nepal.
In addition, household characteristics including roof and wall material, room dimensions, and
number of external openings in the kitchen were collected during enrollment. Date (season)
and fuel type (wood, animal dung, crop waste) were collected during environmental sampling.

HAP concentrations were measured using a package of instruments including the
DataRAM pDR-1000 (Thermo Scientific, Franklin, MA), the LASCAR CO data logger
(EL-USB-CO300, Erie, PA), and the HOBO U10 Temperature and Humidity (TH) Data Log-
ger (Onset Computer Corporation, Pocasset MA), all recording data in 10-second intervals. A
package of instruments was placed approximately 1 meter in front of the stove and approxi-
mately 1.5 meters off the floor during each measurement to best capture the exposure to indi-
viduals who were cooking.

This study was approved by the institutional review boards (IRB) of the Johns Hopkins
Bloomberg School of Public Health and the Institute of Medicine, Tribhuvan University, Kath-
mandu, Nepal.

As a significant proportion of this population was illiterate, verbal informed consent was
received from all participating households and individuals and consent was documented
directly on data collection forms and entered into the study database. All IRBs approved the
consent procedures and all other procedures used in these studies. The trials are registered at
Clinicaltrials.gov (NCT 00786877).

Pre-Processing HAP Signals
To ensure consistency of quality control for data collected in NCIT-I, all daily pollution records
collected before and after stove installation were pre-processed together; a total of 7684 PM
and 6615 CO measurements. Measurements of PM concentration were removed from analysis
when a) data were in the wrong format or could not be connected to an eligible household
(2.6%), b) total sampling time was shorter than 18 hours (12.2%) and c) PM data with abrupt
change (>5%) from baseline during sampling, or with an entirely flat line during sampling
while cooking-time peaks were observed in corresponding CO results, were identified as physi-
cally implausible and a result of machine malfunction (1.6%). Similar quality control was con-
ducted for CO measurements (3.6%, 19.7%, 3.3% removed from analysis respectively). The
pDR-1000 is a passive nephelometric device and measured PM concentrations can be biased
due to variations in ambient humidity and particulate matter composition. PM concentrations
were adjusted to account for these factors using an algorithm described previously, resulting in
gravimetric equivalent PM2.5 values [14]. PM2.5 measurements that lacked concurrent temper-
ature and humidity measurements necessary for adjustment were removed (3.4%). Corre-
spondingly, 10.7% COmeasurements were removed due to missing PM2.5 measurements.

Drift of all PM2.5 measurements was calculated by subtracting the machine reported internal
average concentration from the manually calculated unadjusted time-weighted average con-
centration of real-time pDR readings [15,16]. In this project, given the high average concentra-
tion for PM2.5, the ratio of drift over daily average PM2.5 concentration worked better as an
exclusion criterion than the absolute value. Measurements with a drift ratio higher than 50%
were removed (0.5%). After eliminating these data, the mean drift ratio was 1.3% and the great-
est drift was 262 μg/m3, both acceptable when compared with the unadjusted time-weighted
average concentration of 1712 μg/m3. Since the drift might have occurred at any point after the
start of sampling and the drift was proportionally small, no further drift adjustment was
performed.
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The measurement range for pDR-1000 is 1 to 400,000 μg/m3, with 1 μg/m3 resolution;
PM2.5 concentrations below the limit of detection were recorded as 0 μg/m3 [17]. To account
for possible bias caused by this setting, all 0 μg/m3 PM2.5 measurements were adjusted to a
value that is closest to half of the limit of detection 0.5 μg/m3, and is equal to or higher than the
1 μg/m3 resolution (1 μg/m3 in this case). Similarly, since the limit of detection for the LASCAR
CO data logger was calculated to be 1.1 ppm, with 0.5 ppm resolution, all 0 ppm COmeasure-
ments were adjusted to the resolution (0.5 ppm in this case). 11.3% of PMmeasurements and
16.1% CO measurements were replaced.

To ensure that concentration excursions shorter than 30 seconds would be discounted, a
running median of length 5 was applied to the 10-second data before aggregation into data
with 5-minute intervals. These excursions may have been caused by unexpected disturbances
to the sampling machine, for example by being bumped. Aggregating the filtered 10-second
data into averages of 5 minutes reduced the size of the dataset while preserving the original
diurnal trends in concentration.

Quantifying daily Average HAP
Daily average concentration for each pollutant measure was estimated by the arithmetic mean of
the observed 5-minute interval values derived from the smoothed 10-second time series. In addi-
tion to daily averages, three additional metrics were calculated for each household to more fully
summarize distributions of PM2.5 and CO concentrations during each daily measurement period:
the 95th percentile, hours above 100 μg/m3 for PM2.5 or 6 ppm for CO; and hours above 1,000 μg/
m3 for PM2.5 or 9 ppm for CO. 100 μg/m3 is four times theWHO guideline for 24-hour average
PM2.5 exposure and was used as a threshold in previous study on the association with acute lower
respiratory infection [18]. 9 ppm is the exposure threshold above which carboxyhemoglobin level
is expected to exceed 2% for a normal subject engaging in light or moderate exercise for 8 hours,
while 6 ppm is recommended to address impact of chronic exposure for 24 hours [4].

To further understand air pollutants and concentrations attributed to cookstove usage, an
algorithm was developed to differentiate SI and non-stove-influenced (non-SI) periods. Since
stove related cooking events would elevate the level of PM2.5 and CO, we first defined a baseline
concentration and threshold above which measurements were candidates to be defined as SI.
Since activities like sweeping and smoking could also increase pollution concentrations for
short periods, a filtered time series was obtained for each home by applying a running median
smoother of length n to the 5-minute average values to eliminate short peaks. The baseline
level was then defined as the α (e.g. 10th) percentile of this filtered series. This baseline was
meant to represent a typical value during the non-SI period. The SI threshold was then defined
as a value β times the baseline level. The 5-minute intervals for which the filtered values
exceeded this threshold were defined as SI, and all other times were defined as non-SI. With
this definition of SI, the original 5-minute aggregated data (before the running median
smoother of length n) were then used in all subsequent calculations.

The SI partition depends on three constants: n, α, and β. We studied the dependence of the
final daily average concentration measurements on the choice of these constants among the
values: n = 5, 7 and 9; α = 10, 20 and 30%, and β = 1.2, 2.0, and 4.0, producing 27 different aver-
age values, one for each combination of constants to study the effect of constant choice on the
characterization of SI concentration. The correlation was estimated using the Pearson correla-
tion coefficient for each pair of the 27 averages to determine the influence of the constants on
the average SI concentrations.

We also estimated the correlation between daily average PM2.5 and CO under different fuel
types and seasons using Pearson’s correlation coefficients. The association between pollution
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concentrations and household characteristics was initially assessed by stratification. Loga-
rithm-transformed concentrations were linearly regressed on household characteristics con-
trolling for fuel type, season, roof material, kitchen wall material, kitchen size and presence of
external openings in kitchen. Both daily average PM2.5 and CO concentrations among all
households had a more nearly symmetric distribution on the logarithmic scale. Logarithm-
transformed values were therefore used in all regression models.

Results

Household Characteristics
Applying the inclusion criteria described above, the number of daily households with pre-
stove installation data available for analysis was 2,980 for PM2.5 and 2,013 for CO measure-
ments. The average sampling period per household was 21.7 h (interquartile range: 20.9 h–
22.1 h). In Table 1, we summarized the distributions of household characteristics and season
of assessment. More than 70% of houses had walls made from bamboo with mud plaster or
wood; the vast majority of roofs were tile or tin. Nearly a third of kitchens were internal
rooms with no window or door opening to the outdoors. More than half of households
burned wood alone or in combination with crop waste or dung and most of the measure-
ments were conducted during the dry season. Households with missing information on
characteristics or environmental factors had similar PM2.5 and CO concentrations as those
with such data.

Table 1. Summary of pre-intervention household characteristics and environmental factors
(N = 2980).

Household characteristics N (%*)

Fuel type

Wood 1175 (39)

Dung/wood 521 (17)

Crop waste 881 (30)

Wood/dung/crop waste 403 (14)

Season

Rainy season (June-September) 893 (30)

Dry season (October-May) 2087 (70)

Presence of external opening in kitchen

Internal room without external window/door 801 (32)

At least one external window/door 1674 (68)

Roof material

Cement 164 (6)

Tile or tin 2509 (84)

Plastic, thatch or grass 305 (10)

Kitchen wall material

Brick or stone with mortar 723 (25)

Bamboo with mud plaster or wood planks 2101 (72)

Thatch, grass, sticks, branches without mud 73 (3)

(median, interquartile range)

Kitchen size in m3 24.2 (13.6, 35.7)

*-Percentage among households with non-missing household characteristics.

doi:10.1371/journal.pone.0157984.t001
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General description of HAP
In Table 2, we summarized PM2.5 and CO concentrations in four metrics. The arithmetic mean
and median for daily average PM2.5 concentration exceeded 1,000 μg/m3, while that for CO
concentration were over 8 ppm. The mean and median for the 95th percentile PM2.5 concentra-
tion were higher than 4,500 μg/m3, while that for CO concentration were over 35 ppm. And
half of the households in these communities had approximately 15 hours of PM2.5 concentra-
tions over 100 μg/m3, and 5 hours of that over 1000 μg/m3. 15% of households experienced CO
levels higher than 9 ppm for more than 8 hours (data not shown).

Correlations among SI concentrations calculated with different sets of constants were high
for both pollutants, ranging from 0.92 to 1.00 for PM2.5, and 0.83 to 1.00 for CO. PM2.5 results
were reported for running medians of length 7 (n = 7), baseline level at the 30th percentile (α =
30%), and SI defined to be at levels 4 times the baseline (β = 4.0). The corresponding values for
CO were chosen as n = 7, α = 20%, and β = 2.0. Qualitatively similar results are obtained for
the other parameter values and are available from the authors. An example of the raw and fil-
tered, then averaged PM2.5 and CO data with SI periods highlighted is shown in Fig 1.

In Table 3, we estimated HAP concentrations during SI and non-SI periods. The SI concen-
trations were about half of the 95th percentile concentrations for both PM2.5 and CO, and
about 20 times of non-SI concentrations. The non-SI CO concentrations were close to zero
while the non-SI PM2.5 concentrations were over 100 μg/m

3.
Fig 2 presents hourly average PM2.5 and CO concentrations. Both pollutants had two peaks

(observed elevation in median pollutant concentrations) corresponding to cooking times
between 7:00 am and 11:00 am, and then again between 6:00 pm and 10:00 pm, representing
the typical cooking pattern in the study population. Total cooking hours under this pattern
were similar to the estimated mean and median SI times in Table 3. As displayed in Fig 3(A),
the monthly average PM2.5 concentration was lower in the rainy season and higher in dry sea-
son. For CO (Fig 3(B)), there was no evidence of substantial seasonal variation. Daily average
indoor relative humidity and temperature tracked the seasonal outdoor patterns as shown in
Figs 3(C) and 2(D).

Relationship between PM2.5 concentration and CO concentration
Fig 4 shows a scatter plot of average log PM2.5 against average log CO concentrations with a
Lowess curve [19] to estimate the possible non-linear relationship. Log scales were used
because each variable had a more nearly symmetric distribution on the log scale. Also displayed
was the fitted linear regression of PM2.5 against CO, which appeared curvilinear on the log

Table 2. Summary of pre-intervention HAP concentrations (N = 2980 for PM2.5; N = 2013 for CO).

Mean (95% CI) Median (IQR)

Overall PM2.5 Conc. (μg/m
3)

Daily Average 1376 (1331, 1422) 1070 (601, 1757)

95th percentile 6423 (6180, 6667) 4817 (2728, 7860)

Time above 100μg/m3 (h) 14.3 (14.1, 14.5) 14.8 (8.7, 20.4)

Time above 1000μg/m3 (h) 5.3 (5.1, 5.4) 4.8 (2.9, 7.0)

Overall CO Conc. (ppm)

Daily Average 10.9 (10.5, 11.3) 8.1 (4.6, 14.5)

95th percentile 49.9 (48.0, 51.9) 35.8 (16.0, 70.0)

Time above 6ppm (h) 6.6 (6.4, 6.8) 5.8 (3.7, 8.4)

Time above 9ppm (h) 4.9 (4.7, 5.0) 4.4 (2.5, 6.6)

doi:10.1371/journal.pone.0157984.t002

Estimating Indoor PM2.5 and CO Concentrations

PLOS ONE | DOI:10.1371/journal.pone.0157984 July 7, 2016 6 / 17



Fig 1. Comparison of PM2.5/CO concentration-time relationship before and after filtering: left, original 10-second interval data; right,
aggregated 5-minute interval data with SI period indicated by color (red-SI; blue-non-SI).

doi:10.1371/journal.pone.0157984.g001

Table 3. Summary of pre-intervention household SI and non-SI HAP concentrations (N = 2980 for
PM2.5; N = 2013 for CO).

Mean (95% CI) Median (IQR)

PM2.5 Metrics

SI Conc. (μg/m3) 3469 (3350, 3588) 2700 (1408, 4488)

Non-SI Conc. (μg/m3) 268 (252, 284) 139 (19, 399)

SI Time (h) 8.1 (8.0, 8.2) 7.8 (5.8, 10.4)

SI Time (%) 37 (37, 38) 36 (27, 48)

COMetrics

SI Conc. (ppm) 21.8 (21.1, 22.6) 16.7 (8.9, 29.4)

Non-SI Conc. (ppm) 1.9 (1.8, 2.0) 1.1 (0.6, 2.2)

SI Time (h) 9.7 (9.6, 9.8) 10.0 (7.4, 12.3)

SI Time (%) 45 (44, 46) 46 (34, 57)

doi:10.1371/journal.pone.0157984.t003
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Fig 2. Tukey boxplots of diurnal variation of hourly average (a) PM2.5 concentrations; (b) CO concentrations.

doi:10.1371/journal.pone.0157984.g002
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scale. The similarity of the linear regression with the nonparametric Lowess indicates that the
PM2.5—CO relationship is approximately linear on the original scale. The coefficient of deter-
mination for this linear regression is estimated to be 0.30, and the PM2.5—CO correlation is
estimated to be 0.55 (95% CI: 0.52–0.58). Stratification by season did not improve the correla-
tion, while stratification by fuel type improved the correlations by 20% for dung/wood and
dung/wood/crop waste.

Relationship between HAP and household characteristics
PM2.5 concentrations varied across household characteristics even after stratification by season,
and the same held for CO concentrations (Tables 4 and 5). PM2.5 concentrations in the rainy
season were roughly half the corresponding concentrations in the dry season, while CO con-
centrations remained constant across the year. Among all metrics, non-SI in the rainy season
was the only one that yielded PM2.5 lower than the WHO 24-hour guidelines, while non-SI in

Fig 3. Tukey boxplots of monthly variation of: (a) daily average PM2.5 concentrations*; (b) daily average CO concentrations*; (c) daily average indoor
relative humidity; (d) daily average temperature.

doi:10.1371/journal.pone.0157984.g003
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dry season was still 10 times higher than the WHO 24-hour guidelines. Wood burning pro-
duced the lowest PM2.5 concentrations across the year, while dung/wood was associated with
lowest CO concentrations in rainy season; crop waste burning was lowest in the dry season.
Presence of an external opening in the kitchen was associated with reduced PM2.5 and CO con-
centrations in the dry season but higher levels in the rainy season. Bamboo with mud plaster or
wood planks had the lowest PM2.5 and CO concentrations among all kitchen wall materials.

Table 6 presents the results of models in which the average daily concentrations were
regressed on season and household characteristics. Higher PM2.5 concentrations were associ-
ated with fuels other than wood, dry season, having an internal kitchen without an external
window/door, larger kitchen size, and wall material other than bamboo with mud plaster or
wood planks. Higher values of CO concentrations were associated with fuels other than crop
waste, rainy season, smaller kitchen size, and wall material other than bamboo with mud plas-
ter or wood planks (Table 7).

Discussion
We present a methodology for pre-processing and quantifying average indoor concentrations
of PM2.5 and CO in a representative sample of nearly 3,000 households in rural southern
Nepal. We established criteria for data pre-processing to ensure the quality of data and effi-
ciency of analysis. From every 10 seconds sampling, we used non-linear filters to eliminate spu-
rious outliers, averaged the resulting values into 5-minute interval data that were used to
estimate SI and non-SI periods. SI and non-SI concentrations were then used to characterize
HAP.

Fig 4. Scatter plot of CO concentration and PM2.5 concentration on logarithmic scales: regression line
estimated by simple linear regression and Lowess smoother on original scales.

doi:10.1371/journal.pone.0157984.g004
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The method for estimating SI and non-SI includes 3 constants that can be used to tune the
methods for this or other applications. The first is the length of a running median that elimi-
nates shorter excursions that are more likely caused by suspension of settled particles through
sweeping or other indoor activities rather than lighting of the stove. The second establishes the
quantile of the 5-minute data series that should be used as the baseline level. This controls the
length of time that could potentially be categorized as SI and represents a typical value during
the non-SI period. The third constant defines a threshold that is a multiple of the typical non-

Table 4. Summary of pre-intervention PM2.5 concentrations stratified by household characteristics in dry season (N = 2980).

N (%) Median overall PM2.5 conc. (IQR)
(μg/m3)

Median SI PM2.5 conc. (IQR)
(μg/m3)

Median non-SI PM2.5 conc. (IQR)
(μg/m3)

Rainy season

Fuel type

Wood 331 (11) 522 (316, 963) 1127 (620, 2211) 10 (2, 50)

Dung/wood 247 (8) 697 (371, 1162) 1505 (778, 2526) 13 (3, 72)

Crop waste 167 (6) 718 (391, 1290) 1612 (953, 2767) 14 (3, 57)

Wood/dung/crop waste 148 (5) 753 (436, 1269) 1821 (841, 3489) 24 (5, 102)

Presence of external opening

No 229 (9) 579 (340, 987) 1292 (729, 2396) 12 (2, 67)

Yes 542 (22) 664 (348, 1132) 1481 (706, 2673) 14 (3, 70)

Roof material

Cement 62 (2) 691 (394, 1117) 1457 (898, 2640) 14 (3, 60)

Tile or tin 731 (25) 629 (343, 1089) 1385 (707, 2615) 13(3, 72)

Plastic, thatch or grass 100 (3) 810 (382, 1413) 1708 (942, 3105) 17 (4, 53)

Kitchen wall material

Brick or stone with mortar 228 (8) 769 (432, 1417) 1783 (1031, 3241) 19 (3, 86)

Bamboo with mud plaster or wood
planks

631 (22) 590 (333, 1090) 1358 (655, 2538) 12 (3, 62)

Thatch, grass or branches without
mud

14 (0) 753 (436, 943) 1507 (1233, 2222) 60 (11, 132)

Dry season

Fuel type

Wood 844 (28) 1186 (710, 1920) 3074 (1791, 4897) 250 (82, 485)

Dung/wood 274 (9) 1371 (878, 2094) 3515 (2248, 5283) 258 (110, 486)

Crop waste 714 (24) 1264 (835, 1900) 3382 (2155, 5298) 308 (122, 548)

Wood/dung/crop waste 255 (9) 1285 (835, 2023) 3370 (1962, 5285) 178 (61, 428)

Presence of external opening

No 572 (23) 1367 (894, 2094) 3567 (2318, 5425) 314 (116, 575)

Yes 1142
(46)

1199 (758, 1846) 3150 (1859, 4823) 246 (90, 468)

Roof material

Cement 102 (3) 1240 (810, 1971) 3190 (1976, 4905) 315 (93, 560)

Tile or tin 1778
(60)

1250 (798, 1958) 3304 (1959, 5075) 258 (91, 493)

Plastic, thatch or grass 205 (7) 1223 (791, 1924) 3319 (1996, 5481) 301 (116, 521)

Kitchen wall material

Brick or stone with mortar 495 (17) 1251 (827, 1981) 3337 (1892, 5223) 258 (68, 532)

Bamboo with mud plaster or wood
planks

1470
(51)

1231 (787, 1945) 3282 (1965, 5058) 266 (103, 492)

Thatch, grass or branches without
mud

59 (2) 1473 (807, 2097) 3679 (1951, 6389) 167 (51, 486)

doi:10.1371/journal.pone.0157984.t004
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SI concentration, allowing fluctuation in non-SI period. Since this study was conducted in an
extremely poor environment with a per capita income of $146 [20], the cookstove is used for
both cooking and heating, which makes it the main source of indoor air pollutants. It is reason-
able to assume that these relatively long peaks identified were mostly caused by cookstove
related activities. When deciding on the actual number of 3 constants, we compared results
from different groups of constants to avoid misclassification of smaller peaks from fire star-up
and end of burn periods.

Table 5. Summary of pre-intervention CO concentrations stratified by household characteristics in rainy season (N = 2013).

N (%) Median overall CO conc. (IQR)
(ppm)

Median SI CO conc. (IQR)
(ppm)

Median non-SI CO conc. (IQR)
(ppm)

Rainy season

Fuel type

Wood 257 (13) 8.8 (4.8, 16.2) 16.8 (9.5, 32.2) 1.6 (0.7, 3.9)

Dung/wood 196 (10) 8.2 (5.2, 14.6) 17.0 (9.0, 28.7) 1.7 (0.7, 3.9)

Crop waste 118 (6) 8.7 (4.3, 15.6) 19.1 (8.6, 34.9) 1.7 (0.7, 2.9)

Wood/dung/crop waste 105 (5) 8.9 (5.0, 14.3) 20.0 (11.6, 34.3) 1.8 (0.8, 3.0)

Presence of external opening

No 170 (10) 8.3 (4.5, 15.1) 17.1 (9.0, 30.1) 1.6 (0.7, 3.8)

Yes 414 (25) 8.5 (5.0, 15.4) 18.3 (9.5, 32.4) 1.7 (0.6, 3.1)

Roof material

Cement 45 (2) 8.9 (5.6, 13.4) 16.3 (10.5, 30.3) 1.5 (0.7, 2.9)

Tile or tin 559 (28) 8.1 (4.7, 14.8) 16.8 (9.2, 30.0) 1.7 (0.7, 3.4)

Plastic, thatch or grass 72 (4) 12.3 (5.8, 19.4) 26.7 (15.3, 42.1) 1.8 (0.7, 4.2)

Kitchen wall material

Brick or stone with mortar 176 (9) 9.2 (5.7, 16.5) 20.2 (11.6, 34.6) 1.7 (0.7, 2.7)

Bamboo with mud plaster or wood
planks

472 (24) 7.9 (4.6, 15.0) 16.9 (9.1, 31.0) 1.7 (0.7, 3.6)

Thatch, grass or branches without
mud

11 (1) 8.9 (4.9, 16.2) 16.2 (8.7, 34.1) 2.1 (1.7, 4.3)

Dry season

Fuel type

Wood 544 (27) 8.2 (4.6, 14.5) 16.6 (8.7, 27.7) 0.8 (0.6, 1.7)

Dung/wood 173 (9) 8.8 (5.0, 16.8) 16.9 (9.6, 35.0) 1.1 (0.6, 2.2)

Crop waste 463 (23) 6.8 (3.9, 12.8) 14.6 (7.6, 26.9) 0.7 (0.6, 1.5)

Wood/dung/crop waste 157 (8) 9.3 (5.7, 13.4) 18.5 (11.0, 29.6) 1.2 (0.6, 2.2)

Presence of external opening

No 377 (22) 8.0 (4.7, 14.2) 15.9 (9.5, 27.0) 0.7 (0.6, 1.6)

Yes 716 (43) 7.5 (4.1, 13.5) 15.6 (8.1, 27.1) 0.8 (0.6, 1.9)

Roof material

Cement 57 (3) 7.3 (4.5, 17.4) 14.3 (7.1, 31.6) 1.0 (0.6, 2.7)

Tile or tin 1145
(57)

7.9 (4.3, 14.1) 15.9 (8.5, 28.0) 0.8 (0.6, 1.8)

Plastic, thatch or grass 134 (7) 9.3 (4.9, 14.6) 19.7 (10.3, 28.0) 0.7 (0.6, 1.7)

Kitchen wall material

Brick or stone with mortar 314 (16) 9.4 (5.3, 15.1) 18.0 (10.4, 31.1) 1.0 (0.6, 2.0)

Bamboo with mud plaster or wood
planks

939 (48) 7.6 (4.1, 13.6) 15.4 (8.0, 26.8) 0.8 (0.6, 1.6)

Thatch, grass or branches without
mud

39 (2) 8.1 (5.1, 20.9) 17.4 (10.7, 40.9) 1.8 (0.6, 2.7)

doi:10.1371/journal.pone.0157984.t005
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We also differentiated SI and non-SI exposures by identifying peaks through the change of
differences in value between two neighboring data points, and setting rules to combine or
exclude identified peaks [21]. It requires two constants to establish change qualified for peak,
one to establish the length for combining peaks, and the other to establish the length for
excluding peaks. This method is more intuitive, but also more sensitive to change in constants,
and requires more intensive adjustment in achieving an acceptable result. The results from this
method had a correlation coefficient of 0.85 for PM2.5 and 0.87 for CO with results from the
first method. Although misclassification exists both methods, we would recommend the first
method given it is easier to generalize.

This study revealed extremely high HAP concentration with traditional biomass cookstoves
in rural areas of southern Nepal. It demonstrated patterns with both high concentration peaks
and long periods of elevated concentrations. Average PM2.5 concentrations for daily, SI period,
and non-SI period were 40, 100, and 10 times higher than the WHO guidelines. The use of a
passive device for measuring PM2.5 concentrations is subject to error when humidity levels are
high and when air currents around the device are irregular. To address this concern, we cali-
brated this passive device against a gold standard gravimetric approach [14]. All concentrations
reported herein are adjusted by this calibration. The calibration study was conducted in both a
model house and local participating houses typical of the study setting. We did not limit move-
ment of persons in the houses and, thus, some error could have been induced in our

Table 6. Relative and absolute differences in PM2.5 concentrations predicted by household characteristics and season.

Unit of
increase

Overall PM2.5(95%
CI)

SI-PM2.5(95% CI) Non-SI-PM2.5 (95%
CI)

Intercept μg/m3 678 (583, 788) 1482 (1265,
1737)

22 (16, 30)

Fuel type (ref. Wood)

Wood/Dung % 20 (10, 32) 21 (10, 33) 29 (7, 57)

μg/m3 138 (69, 214) 309 (150, 485) 6 (1, 12)

Crop waste % 12 (4, 21) 19 (9, 29) 27 (8, 50)

μg/m3 79 (24, 140) 276 (140, 423) 6 (2, 11)

Dung/Wood/Crop waste % 17 (6, 29) 24 (12, 37) 5 (-15, 30)

μg/m3 113 (40, 195) 351 (172, 549) 1 (-3, 7)

Dry season (ref. Rainy season) % 99 (85, 113) 127 (111, 144) 922 (781, 1085)

μg/m3 668 (579, 763) 1880 (1647,
2131)

202 (172, 238)

Presence of external opening in kitchen (ref. No external opening
in kitchen)

% -10 (-16, -3) -10 (-17, -3) -24 (-35, -12)

μg/m3 -68 (-109, -24) -156 (-246, -52) -5 (-8, -3)

Roof (ref. Cement)

Tile or tin % -1 (-13, 13) -1 (-14, 14) -7 (-30, 23)

μg/m3 -7 (-90, 88) -9 (-201, 210) -2 (-7, 5)

Plastic, thatch or grass % 14 (-4, 34) 17 (-2, 39) 10 (-23, 57)

μg/m3 94 (-24, 233) 253 (-24, 583) 2 (-5, 13)

Wall (ref. Birck or stone with mortar)

Bamboo with mud plaster or wood planks % -15 (-21, -8) -17 (-23, -10) -17 (-29, -2)

μg/m3 -102 (-143, -57) -245 (-339, -143) -4 (-6, 0)

Thatch, grass or branches without mud % -13 (-29, 7) -13 (-29, 8) -32 (-56, 5)

μg/m3 -86 (-195, 47) -186 (-435, 121) -7 (-12, 1)

Kitchen size in 10 m3 (ref. median) % 0 (-1, 2) 1 (-1, 3) 4 (1, 8)

μg/m3 3 (-9, 15) 13 (-14, 41) 1 (0, 2)

doi:10.1371/journal.pone.0157984.t006
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measurements from irregular air currents passing through the detection chamber of the device.
While we are unable to estimate the level of this potential error in measurement, for the pur-
poses of the randomized trial, there is no reason to expect this potential error would be differ-
ent before and after installation of the improved biomass stove.

It is clear that controlling of SI PM2.5 could significantly reduce the indoor concentration
levels. The estimated high non-SI PM2.5 concentrations could be a result of elevated commu-
nity baseline PM2.5 concentrations due to SI PM2.5 exfiltration from other households or a con-
tribution from other sources such as road dust, suggesting that community wide interventions
may be necessary for reducing PM2.5 concentrations to a significant degree. In contrast, com-
pared with WHO guidelines, average CO concentrations for daily and SI periods was only 37%
and 3 times higher respectively, while the CO concentration for non-SI periods was close to
zero, indicating that successful control of SI CO could reduce the overall concentrations to an
acceptable level. Given the fact that most households were sampled between 3pm and 12pm
for logistic reasons, and that local people do not cook around noon, the daily HAP reported
here might be higher than the actual 24-hour time weighted HAP in these households. The
same situation might exist for non-SI concentrations but not for SI concentrations.

Since few data were available on daily HAP related to biomass fuel combustion with tradi-
tional cookstoves in rural Nepal, comparisons were made with studies carried out in rural
India, where similar types of cooking behaviors, fuels, traditional stoves, and geographic and
climate characteristics are present. Previous studies reported daily average PM2.5

Table 7. Relative and absolute differences in CO concentrations predicted by household characteristics and season.

Unit of
increase

Overall CO(95%
CI)

SI- CO(95% CI) Non-SI- CO (95%
CI)

Intercept ppm 9.8 (8.0, 12.0) 18.0 (14.8,
21.9)

1.7 (1.4, 2.0)

Fuel type (ref. Wood)

Wood/Dung % 2 (-9, 14) 2 (-9, 14) 8 (-4, 21)

ppm 0.2 (-0.9, 1.4) 0.3 (-1.7, 2.4) 0.1 (-0.1, 0.4)

Crop waste % -13 (-22, -4) -5 (-14, 5) -9 (-17, 1)

ppm -1.3 (-2.1, -0.4) -0.9 (-2.5, 0.8) -0.1 (-0.3, 0)

Dung/Wood/Crop waste % 5 (-8, 19) 13 (0, 28) 12 (-2, 27)

ppm 0.4 (-0.8, 1.9) 2.3 (-0.1, 5) 0.2 (0, 0.4)

Dry season (ref. Rainy season) % -6 (-14, 2) -10 (-18, -2) -33 (-39, -27)

ppm -0.6 (-1.4, 0.2) -1.8 (-3.2, -0.4) -0.6 (-0.6, -0.5)

Presence of external opening in kitchen (ref. No external opening in
kitchen)

% -2 (-11, 7) 1 (-7, 11) 0 (-9, 9)

ppm -0.2 (-1.1, 0.7) 0.2 (-1.3, 1.9) 0 (-0.2, 0.2)

Roof (ref. Cement)

Tile or tin % 1 (-15, 21) 4 (-13, 24) -4 (-19, 15)

ppm 0.1 (-1.5, 2.1) 0.7 (-2.3, 4.2) -0.1 (-0.3, 0.2)

Plastic, thatch or grass % 19 (-4, 49) 35 (9, 67) -5 (-23, 18)

ppm 1.9 (-0.4, 4.8) 6.2 (1.6, 12) -0.1 (-0.4, 0.3)

Wall (ref. Birck or stone with mortar)

Bamboo with mud plaster or wood planks % -20 (-27, -11) -16 (-23, -7) 0 (-9, 9)

ppm -1.9 (-2.6, -1.1) -2.8 (-4.2, -1.3) 0 (-0.2, 0.2)

Thatch, grass or branches without mud % -5 (-26, 24) 0 (-22, 28) 36 (5, 75)

ppm -0.5 (-2.6, 2.3) -0.1 (-4.0, 5.0) 0.6 (0.1, 1.3)

Kitchen size in 10 m3 (ref. median) % -3 (-5, -1) -4 (-6, -2) 1 (-1, 3)

ppm -0.3 (-0.5, -0.1) -0.7 (-1.1, -0.3) 0 (0, 0.1)

doi:10.1371/journal.pone.0157984.t007
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concentrations ranging from 686 to 1,250 μg/m3 and daily average CO concentrations ranging
from 2.6 to 10.8 ppm, both similar but lower than 1,377 μg/m3 and 10.9 ppm reported in our
study [10,11]. Previous studies in rural Nepal also identified 4,741 μg/m3 PM2.5 concentrations
and 13.7 ppm CO concentrations during cooking periods, which are also close to 3,466 μg/m3

and 21.9 ppm reported in our study [8,9].
Season was identified as the most significant influential factor in PM2.5 concentrations,

especially in the non-SI period. Given the relatively low temperature in dry season, changing
behaviors such as closing windows or doors, and prolonged periods of fuel burning as a source
of heat could explain the increase in overall and SI PM2.5 concentrations. Increases in non-SI
PM2.5 concentrations could result from the lack of a dampening effect of rain on ambient par-
ticulate matter, and increases in background PM2.5 concentrations in non-SI period due to
closed windows and doors. However, CO concentrations were slightly increased in the rainy
season, potentially caused by more inefficient combustion with wet fuel. Having an external
opening to the outdoors in the kitchen also decreased the indoor PM2.5 concentration, while
CO was not impacted as much. The effect of external openings should be interpreted with cau-
tion because the status of these openings was not recorded during sampling. Wood was the
cleanest fuel for both pollutants, while adding dung into the fuel led to worse indoor air quality.
Other household characteristics such as the type of roof and wall material did not have consis-
tent associations with concentrations of HAP.

A previous study from Guatemala suggested the use of CO as a surrogate for PM2.5 [22]
based on high correlations between these two pollutants [23]. However, the overall correlation
between PM2.5 and CO in this study was 0.55, lower than reported in Guatemala [22,23]. The
coefficient of determination for this linear regression is estimated to be 0.30, lower than previ-
ously reported 0.73 to 0.78 in Guatemala [24]. The increases in correlation through stratifica-
tion were also lower than a 2 fold increase reported from China [25]. This suggests that the use
of CO concentration as a surrogate for PM2.5 concentration is less appropriate on our setting,
even after stratification by fuel type and season.

Conclusions
In this paper, we summarized the time series pre-processing in estimating daily average con-
centrations from the original 10-second intervals data. A simple, flexible method developed to
distinguish periods during which pollution concentrations are SI or non-SI improved the
understanding of HAP and could be easily applied to other studies by tuning 3 constants in the
algorithm.

We also filled a gap in knowledge on HAP in rural Nepal with daily concentration data col-
lected in ~3,000 households and revealed the severity of the HAP problem in rural Nepal. For
households utilizing a traditional open burning mud stove, the median daily average PM2.5

concentration was over 40 times higher than the WHO guideline for daily exposure, and the
median daily average CO concentration was about 30% higher than the WHO recommended
guideline for daily exposure. A detailed description of the concentrations using multiple met-
rics will also facilitate further analysis on health outcomes for NCIT-I that will be reported in a
future manuscript. Exploration into the influence of environmental factors and household
characteristics on HAP provided potential intervention methods for reducing indoor air
pollution.
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