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Abstract
X-linked Alport syndrome (XLAS) arises from mutations in the COL4A5 gene encoding the α5-chain
of type IV collagen and is associated with hematuria, ocular abnormalities and high-tone sensori-
neural hearing loss. Nearly all affected males have decreased kidney function resulting in end-
stage renal disease (ESRD) as early as the second decade of life. It was long thought that affected
females had a benign outcome; however, in recent decades, it has become quite clear that they
too are at risk for developing nephrotic syndrome, decreased kidney function and ESRD. We report
two young females presenting with microscopic hematuria and proteinuria diagnosed with XLAS
on renal biopsy. Both developed nephrotic-range proteinuria and progressive renal insufficiency.
Additionally, both developed extra-renal manifestations of XLAS. The ultrastructural and immuno-
fluorescence features on kidney biopsy were instrumental in making the diagnosis of heterozygous
XLAS as neither patient had a family history of AS.
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Introduction

X-linked Alport syndrome (XLAS) arises from mutations in
the COL4A5 gene encoding the α5-chain of type IV collagen
(IV) and accounts for ∼80% of families with AS. Features
include microscopic hematuria, anterior lenticonus, high-
tone sensorineural deafness and progressive renal insuffi-
ciency leading to end-stage renal disease (ESRD) [1, 2]. In
his initial description of AS in 1927, Alport noted that the
‘male members of a family tend to develop nephritis and
deafness and do not as a rule survive’, while ‘the females
have deafness and hematuria and live to old age’ [3]. Since
then it has become evident that heterozygous XLAS
females are, in fact, not ‘benign carriers’, but rather have
widely variable disease outcomes and are at risk of develop-
ing nephrotic syndrome, decreased kidney function, and
can progress to ESRD [4–6]. In addition to an unpredictable
clinical course, the kidney biopsy specimens of heterozy-
gous XLAS females often have widely variable appearances.

The ultrastructural features on kidney biopsy that are diag-
nostic of AS consist of (i) variable thickening and thinning of
the glomerular basement membrane (GBM); (ii) splitting or
lamellation of the GBM; (iii) ‘basket weaving’ of the GBM and
(iv) foot process fusion in regions of an abnormal GBM [1, 2].
In males with XLAS, these changes becomemore prominent
with increasing age, while in females the extent and impact
of aging on GBM thickening are variable and unpredictable
[4, 7, 8]. Furthermore, the earliest ultrastructural finding in
AS is diffuse thinning of the GBM, and this can result in girls
or women being misdiagnosed with thin basement mem-
brane nephropathy (TBMN) [2, 6].

The use of immunohistochemistry is additionally helpful
in diagnosing XLAS [1, 2, 6] as immunostaining for α3(IV),
α4(IV) and α5(IV) collagen demonstrates the complete
absence of these collagen chains in the GBM, distal
tubular basement membrane (dTBM) and Bowman’s
capsule in essentially all males with XLAS, whereas
women who are heterozygous carriers of XLAS demon-
strate a segmental or ‘mosaic’ absence due to variable X-
chromosome inactivation [9]. These immunohistologic
features help to distinguish XLAS from autosomal-reces-
sive AS (ARAS), where expression of α5(IV) collagen by im-
munostaining is negative in the GBM but positive in the
dTBM and Bowman’s capsule. While genetic testing can
also aid in the diagnosis of XLAS, it can be quite expensive
and is not always readily available, and thus, the renal
biopsy findings become essential in diagnosing XLAS.
We report two young females who presented with

microscopic hematuria and proteinuria and developed ne-
phrotic-range proteinuria and progressive renal insuffi-
ciency. At presentation, neither patient had a family
history of AS or extra-renal manifestations of XLAS. Renal
biopsy led to the diagnosis of XLAS based on the ultra-
structural and immunofluorescence (IF) features.

Case Report 1

Clinical history and initial laboratory data

A 25-year-old white female presented in 2006 at age 19
with nephrotic syndrome. Her serum creatinine (SCr) was
0.9 mg/dL (79.6 μmol/L) with an estimated glomerular
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filtration rate (eGFR) [10] of 74 mL/min/1.73 m2, serum
albumin (SAlb) was 2.9 g/dL (29 g/L) and a urinalysis had
4+ protein and large blood by dipstick. A 24-h urine
protein was 6.4 g/day. She had no history of gross hema-
turia, hearing difficulty or visual changes. Family history
was negative for proteinuria, renal failure or AS, but
was positive for microscopic hematuria in her maternal
grandmother and aunt. A kidney biopsy was performed
for the evaluation of nephrotic syndrome and microscopic
hematuria.

Kidney biopsy

Light microscopy (LM) contained six glomeruli, one of
which was globally sclerotic. The remaining glomeruli had
preserved architecture with delicate basement mem-
branes, patent glomerular capillaries and normal mesan-
gial matrix and cellularity (Figure 1A). Tubular atrophy and
interstitial fibrosis involved 5% of the cortex, and interstitial
foams cells (Figure 1B) affected 10–15% of the cortex. IF
demonstrated weak mesangial staining for IgM (trace–1+)
and C3 (trace). The tissue was stained with antibodies to
the alpha 1, 3 and 5 chains of type IV collagen. This
revealed 1–2+ segmental/mosaic staining of the GBM
with the alpha 3 chain of type IV collagen (Figure 2).

Staining for the alpha 5 chain of type IV collagen also
showed 1+ segmental/mosaic staining of the GBM
(Figure 3). There was no staining of the dTBM for either the
alpha 3 or the alpha 5 chains of type IV collagen. Electron
microscopy (EM) demonstrated diffusely thinned GBMs,
measuring 124 nm in average thickness (Figure 4), but
there was no lamellation or splitting. Segmental foot
process effacement involved 50% of the total glomerular
capillary surface area.

Diagnosis

Heterozygous XLAS was diagnosed based on the ultra-
structural findings and the segmental/mosaic IF staining
of the GBM and Bowman’s capsule and the lack of staining
of the dTBM for the alpha 3 and alpha 5 chains of type IV
collagen.

Clinical follow-up

An angiotensin-converting enzyme inhibitor (ACEi) was
started after the biopsy. In 2012, her SCr rose to 1.6 mg/dL
(141.4 μmol/L) (eGFR—38 mL/min/1.73 m2), and she re-
mained nephrotic (urine protein creatinine ratio 3.7 g/g)
with microscopic hematuria. Additionally, she developed

Fig. 1. (A) Glomeruli appear unremarkable with normal mesangial matrix
and cellularity, open capillary lumina and the glomerular capillary walls
appear normal in thickness, texture and contour (Periodic acid-Schiff stain;
original magnification, ×80). (B) The interstitium is remarkable for foam
cells, which appear as isolated cells and in aggregates (hematoxylin and
eosin stain; original magnification, ×80). All images are from Case Report 1.

Fig. 2. (A) IF micrograph showing staining of normal tissue (positive
control) for the alpha 3 chain of type IV collagen. There is linear staining of
the entire GBMs and dTBMs. (B) On high power, a glomerulus displays weak
and segmental positivity in the GBMs for the alpha 3 chain of collagen IV
and loss of staining in the dTBM. This image is from Case Report 1.
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progressive high-tone hearing loss and now requires
hearing aids.

Case Report 2

Clinical history and initial laboratory data

A 36-year-old white female presented in 1990 at age 14
with microscopic hematuria and nonnephrotic proteinuria,
and had a normal SCr of 0.8 mg/dL (70.7 μmol/L) (eGFR—98
mL/min/1.73 m2). A kidney biopsy demonstrated TBMN, but
there was no other evidence of AS. Her urinalysis findings
persisted, but her kidney function remained normal so no
further work-up was pursued. The family history was nega-
tive for AS, TBMN, microscopic hematuria, proteinuria or
renal disease. In 2007, she had proteinuria of 500 mg/day
which by 2008 had progressed to 4 g/day with a SAlb of
3.6 g/dL (36 g/L) and a SCr of 0.8 mg/dL (70.7 μmol/L) (eGFR
—84 mL/min/1.73 m2), and the urinalysis continued to de-
monstrate microscopic hematuria. A serological evaluation
(rheumatoid factor, C3 and C4 levels, myeloperoxidase and
proteinase 3 anti-neutrophil cytoplasmic antibody, hepatitis
B surface antigen, hepatitis C antibody, HIV, anti-nuclear
antibody, anti-Smith antibodies and anti-ribonucleoprotein

antibodies) was negative. She had no history of gross
hematuria, hearing difficulty or visual changes. She under-
went a second kidney biopsy in 2008 for the evaluation of
nephrotic-range proteinuria andmicroscopic hematuria.

Kidney biopsy

The biopsy contained eight glomeruli by LM and two were
globally sclerotic. The remaining six glomeruli appeared
normal. Small foci of tubular atrophy and interstitial
fibrosis affected 10% of the total cortex. IF demonstrated
segmental/mosaic staining of the GBM and Bowman’s
capsule with the alpha 3 and alpha 5 chains of type IV col-
lagen. There was no staining of the dTBM for either the

Fig. 3. (A) IF micrograph showing staining of normal tissue (positive
control) for the alpha 5 chain of type IV collagen. Similar to alpha 3, there
is linear staining of the entire GBMs and dTBMs. The alpha 5 chain of type
IV collagen also stains Bowman’s capsule. (B) On high power, a glomerulus
displays weak and segmental positivity for the alpha 5 chain of type IV
collagen in the GBMs, and the absence of staining in Bowman’s capsule
and the dTBMs. Image is from Case Report 1.

Fig. 4. (A) By EM, GBMs appear uniformly and diffusely thinned without
electron-dense deposits. The foot processes appear preserved. The
mesangium contains rare, small electron-dense deposits. (B) GBMs appear
uniformly and diffusely thinned without lamellation or splitting. There is
focal foot process effacement in a glomerulus. All images are from Case
Report 1.

632 P. Raju et al.



alpha 3 or alpha 5 chains of type IV collagen. EM demon-
strated variable thinning and thickening of the GBMs, aver-
aging 265 (range 157–427) nm with no splitting or
lamellation. Foot process effacement was focal.

Diagnosis

Heterozygous XLAS was diagnosed based on the ultrastruc-
tural findings and the segmental/mosaic IF staining of the
GBM and Bowman’s capsule and the lack of staining of the
dTBM for the alpha 3 and alpha 5 chains of type IV collagen.

Clinical follow-up

She was placed on an ACEi. Nonetheless, in 2012, her SCr
had risen to 1.1 mg/dL (97.2 μmol/L) (eGFR—54 mL/min/
1.73 m2), she remained nephrotic with proteinuria of 4–6
g/day and continued to have microscopic hematuria.
Additionally, formal hearing test demonstrated high-
frequency hearing loss and an ophthalmologic evaluation
showed anterior lenticonus.

Discussion

We report two young females presenting with microscopic
hematuria and proteinuria in whom the diagnosis of XLAS
was made possible based on the ultrastructural and IF
features on kidney biopsy. At presentation, neither patient
had a family history of AS or exhibited extra-renal mani-
festations of AS. Both patients developed nephrotic-range
proteinuria and had progressive renal insufficiency, and
both patients went on to manifest extra-renal manifes-
tations of XLAS.

The diagnosis of XLAS in women presenting with micro-
scopic hematuria and proteinuria can be challenging as
the presentation and early ultrastructural features could
easily be misdiagnosed as TBMN as demonstrated in our
patients [1, 6, 11]. In Case 1, there was a family history of
microscopic hematuria and her EM demonstrated diffuse
thinning of the GBMs, and Case 2 was actually misdiag-
nosed with TBMN at a young age. TBMN accounts for most
cases of what has been called benign familial hematuria.
TBMN is often familial, with a history of hematuria being
noted in up to 60% of family members [12, 13]. Several
mutations of the type IV collagen genes COL4A3 and
COL4A4 have been identified in patients with TBMN, but
such mutations are not present in all families; and in
some patients, TBMN represents a carrier state for ARAS
[1, 11–13]. As demonstrated by our cases, the correct di-
agnosis can be made possible as a result of the immuno-
histochemical features on renal biopsy that underscores
the importance of assessing for α3(IV), α4(IV) and α5(IV)
collagen in these biopsies [6]. Genetic testing can also
help in differentiating XLAS from TBMN, but it is quite
expensive and is not always readily available [6].

While it was initially thought that females with XLAS
had a benign renal course with a normal life span [3, 14],
in the late 1960’s and early 1970’s, case reports began de-
monstrating that females, like affected males with XLAS,
can have a progressive course leading to ESRD at a young
age [15, 16]. In 1985, Grünfeld et al. [4] found that 39%
(14 of 36 patients) of patients with AS progressed to ESRD.
In 64% (9 of 14 patients) of these patients, ESRD was
reached before 35 years of age. In 2003, Jais et al. [5] pub-
lished the largest study to date looking at the natural
history of XLAS in 288 female carriers from 195 families.

They found that 18% (51 patients) of women progressed
to ESRD over the course of the follow-up. Progression to
ESRD occurred between the ages of 19–30 years in 27%
(14 of 51 patients), 31–40 years in 31% (16 of 51 patients)
and after 41 years of age in 41% (21 of 51 patients) of
women. By comparison, while only 12% of women had
progressed to ESRD by age 40 years, 90% of men had
reached ESRD by age 40. However, 30–40% of female
patients followed to age 60 or greater had progressed to
ESRD. These studies, as with our cases, highlight the fact
that, even in female carriers with XLAS, the risk of pro-
gressive renal disease increases with age.

A number of risk factors for progressive renal diseases
have been identified in females with AS. Grünfeld et al. [4]
found that the presence of nephrotic syndrome, gross he-
maturia in childhood and diffuse GBM thickening by EM
were prognostic of progression to ESRD. Jais et al. [5] also
found that proteinuria was of prognostic significance in
women with XLAS. They found that no women without
proteinuria developed ESRD, while in women with protei-
nuria ESRD occurred in 20% by age 40 and 30% by age 60.
Thus, the development of and progressive increase in pro-
teinuria are prognostic of progression to ESRD in women
with XLAS.

Unfortunately, there is no specific therapy available for
the treatment of AS. However, it has been shown that
early initiation of ACEi in XLAS, even prior to the develop-
ment of overt proteinuria, significantly delays the pro-
gression to ESRD and improves life expectancy in both
men [17] and women [18]. Temme et al.[18] found that, in
females with XLAS, only 5.4% of patients receiving an ACEi
or angiotensin receptor blocker (ARB) progressed to ESRD
compared with 25% not on an ACEi/ARB. Furthermore,
they found that the age of the onset of ESRD was signifi-
cantly later in those patients on an ACEi/ARB. By age 60,
∼15% of patients on an ACEi/ARB had reached ESRD com-
pared with 55% of patients not on treatment. As a result,
it has been recommended that patients with XLAS be fol-
lowed yearly by a nephrologist, and that early initiation of
ACEi/ARB is recommended in patients with microalbumi-
nuria, proteinuria or hypertension [11, 18].

It has been suggested that the variable phenotype in
females with XLAS might be due to different X-chromo-
some inactivation patterns [19, 20]. In a normal female,
we would expect 50% of the active X-chromosome to be
of maternal origin and 50% to be of paternal origin [21]. If
this always held true in females with XLAS, then we would
expect only half of the cells to express the mutant COL4A5
gene and this would explain the less severe clinical course
often expected in women. It has since been recognized
that a subset of X-linked genes can escape silencing by X-
inactivation [21, 22]. Based on this observation, Vetrie
et al. [19] suggested that selection against cells expres-
sing the mutant AS allele in females with XLAS might
result in a less severe disease, whereas inactivation of a
high proportion of normal X-chromosomes in the critical
tissues could lead to a more severe clinical manifestation.
They were unable to find a correlation between X-inacti-
vation measured in lymphocytes with AS severity in a
group of 43 women, but could not exclude that this mech-
anism was operating in the basement membranes of the
kidney, ear and cells within they eye. Since that study,
there have been multiple case reports showing skewing of
X-inactivation in favor of the mutant COL4A5 resulting in a
severe Alport phenotype in heterozygous females [20, 23,
24]. Rheault et al. [25] studied skewed X-inactivation
ratios on disease outcomes in the transgenic mouse
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model and found that preferential inactivation of the
mutant COL4A5 gene improved survival and surrogate
outcome measures of urine protein and plasma urea ni-
trogen. They concluded that X-inactivation patterns may
offer prognostic information and could potentially guide
treatment strategies including gene replacement therapy
or manipulation of X-inactivation choice in the future.

In conclusion, the presentation of XLAS in women is
variable and may not always be apparent based on initial
history and physical findings. The renal manifestations
may be the first indication of XLAS, and the renal biopsy
findings become critical in leading to the diagnosis of
XLAS. The prognosis for women with XLAS is not as benign
as once thought and the presence of proteinuria portends
an unfavorable prognosis similar to that in men with XLAS.
Early detection and treatment of women with XLAS are
important and close long-term follow-up is essential.

Conflict of interest statement. None declared.
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