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This study presents a new approach for an sEMG hand prosthesis based on a 3D

printed model with a fully embedded computer vision (CV) system in a hybrid version.

A modified 5-layer Smaller Visual Geometry Group (VGG) convolutional neural network

(CNN), running on a Raspberry Pi 3 microcomputer connected to a webcam, recognizes

the shape of daily use objects, and defines the pattern of the prosthetic grasp/gesture

among five classes: Palmar Neutral, Palmar Pronated, Tripod Pinch, Key Grasp, and

Index Finger Extension. Using the Myoware board and a finite state machine, the user’s

intention, depicted by a myoelectric signal, starts the process, photographing the object,

proceeding to the grasp/gesture classification, and commands the prosthetic motors

to execute the movements. Keras software was used as an application programming

interface and TensorFlow as numerical computing software. The proposed system

obtained 99% accuracy, 97% sensitivity, and 99% specificity, showing that the CV system

is a promising technology to assist the definition of the grasp pattern in prosthetic devices.

Keywords: hand prosthesis, computer vision, myoelectric signal, convolutional neural network, 3D printed

1. INTRODUCTION

The main function of the human hand and upper limb is to grasp and manipulate objects. Thus,
this loss affects the ability of the amputees to carry out activities of daily living, leading to a
significant impact on their independence and quality of life. Today there are some sophisticated
commercial robot hands available in the market, such as iLimb Ultra and iLimb Quantum by Össur
(2021b,a) and Bebionic Hand and Michelangelo Prosthetic Hand by Ottobock (2021a,b). However,
the need for affordable prosthetic devices has driven the development of 3D printing systems in
order to enable their use by a greater number of people. OpenBionics (2021) and InMoov (2021)
are open-source initiatives for the development of affordable, lightweight, andmodular myoelectric
prosthetic devices that can be easily reproduced with commercially available materials.

The simple structural design of DC or servo motor wired-driven mechanisms controlled by a
surface myoelectric signal (sEMG) became popular (Abarca et al., 2019; Ku et al., 2019; Sureshbabu
et al., 2019; Mohammadi et al., 2020; Wahit et al., 2020; Khan et al., 2021). The sEMG control can
be as simple as an on-off control scheme, proportional where movement velocity depends on the
muscle contraction intensity, and even by pattern recognition, which classifies the sEMG into grip
pattern classes, have also been used (Geethanjali, 2016). However, while in the former, the number
of possible grasp patterns is limited, the success of the latter in clinical applications depends on the
users’ ability to generate distinct commands in a reproducible manner, being difficult to amputees.
Users may get frustrated and stop using the prosthesis quickly (Scheme and Englehart, 2011; Jiang
et al., 2012; Palermo et al., 2017; Zhai et al., 2017).
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Computer vision (CV) can help the system to better
understand the visual world, simulating tasks in the same way
that human vision does. Algorithms that give a visual perception
to the system can, for example, identify the type of object to
be picked up and associate it with the appropriate grasp to
be performed.

Dosen et al. (2010) and Dosen and Popovic (2010) proposed
a simple scheme, using a web camera and an ultrasound distance
sensor. After processing grayscale images at a resolution of 320
× 240 pixels, using LabView 2009 running on a standard laptop
(dual-core 2 GHz Pentium), they extracted parameters such as
the lengths of the long and short axes and the orientation angle
of the long axis concerning the horizontal axis of the image plane.
Based on the object size and series of rules, one of four grasp types
was selected, being pinch, key grasp, palmar, or spherical.

The InMoov hand was modified by Sidher and Shen (2017)
enabling the opposability of the thumb and the introduction of
two cameras and proximity sensors on the palm, allowing object
detection and automatic grasp definition. Two Raspberry Pi 3
(RPI3) were used to control the cameras, and the control of the
servos was achieved by an Arduino Mega, all controlled by a
Matlab algorithm running on a PC. However, in Sidher (2017)
tests weremade only with geometrical objects with a tripod grasp.

DeGol et al. (2016) proposed the inclusion of a CV based
on a convolutional neural network (CNN) with an architecture
based on the VGG-VeryDeep-16 in a prosthesis for the automatic
selection of the grasp to be performed into five classes: power
grasp, pinch, tripod pinch, tool, and key grasps. The system
achieved 93.2% accuracy running on an NVIDIA Tegra GPU for
image processing.

In Andrade et al. (2017), the image captured by an embedded
camera was processed on an external server through the
Inception-v3 and Tensorflow, and the suggested grasp returned
to the local processing unit, an RPI3. The user could accept
or cancel the result. If accepted, the resulting grasp pattern
went to the V-rep simulator system, which had 14 grasp pattern
possibilities: relaxed hand, active index finger, tool, abducted
thumb, index flexion, hook, key grasp, use with a computer
mouse, open palm, pinch, power, precision gripper opening,
precision gripper closing, and tripod pinch. The Myo armband
was used to trigger a state machine to take a picture, validate a
proposed grasp, ask for another grasp, or cancel an operation,
using “wave in,” “wave out,” and “fist” contractions.

Another study that also used a CV system with a two-layer
CNN to classify objects into their respective grasp patterns
was presented by Ghazaei et al. (2017). Over 500 objects from
Amsterdam and Newcastle Grasp Libraries were categorized into
four grasp classes, named: pinch, tripod, palmar wrist neutral,
and palmar wrist pronated. The classification accuracy in the
offline tests reached 75%. In a real-time experiment with a set of
the novel as well as seen but randomly-rotated objects, the system
achieved an overall score of 84%, implemented in MATLAB on a
Lenovo laptop with an Intel Core i7-4559U CPU (2.10 GHz).

A multimodal system was proposed by Shi et al. (2019)
combining eye tracking, CV, sEMG, and an Inertial Measurement
Unit (IMU) integrated into the HIT AID Hand prosthetic device.
The Kinect 2.0 (Microsoft, USA), a 3D Camera, collected color,

depth, and infrared scene images from the user’s perspective. The
selection of the target objects was through gazing (Eye-Tracking),
and the grasp pattern was defined among four based on a
convolutional network model. The user controls the prosthesis
in collaboration with both sEMG and IMU.

A more sophisticated system was proposed by Shi et al.
(2020) showing that depth data play an important role in
a grasp pattern definition. Adopting bimodal data scheme,
grayscale, and depth information, they improved in 12% the
classification accuracy using four types of grasp patterns, named
tripod, cylindrical, lateral, and spherical. A specific dataset
was built using Kinect 2.0 with objects of different sizes and
shapes. After alignment and filtering, color image with reduced
resolution, grayscale images, and depth images (all in 32 × 32)
were used as the inputs of the two channels of independent
convolutional networks, based on the Cifar-10 model, running
on a personal Laptop (Intel Core i5-3210M, 2.5 GHz, 64 bits,
Win10) and connected to a prosthetic device. sEMG control
was also provided, based on two finite state machines set up
to divide the hand control into coding and motion states. The
system accuracy was 93.9%, and the tripod grasp was the main
misclassification pattern.

As can be seen, image processing systems usually use
robust external computers (CPU), which make the application
unfeasible for daily living activities context. The best classification
rate was 93% achieved by both Shi et al. (2020) and DeGol et al.
(2016). The first used a 3D camera providing depth data and two
channels of independent convolutional networks based on the
Cifar-10 model for four classes (cylindrical, key grasp, spherical,
and tripod), while the latter used a 16-layer VGG-VeryDeep-16
convolution neural network for five classes (power grasp, pinch
grasp, tool grasp, 3-jaw chuck, and key grasp).

Within this context, a new intelligent hybrid prosthesis model
is proposed, commanded by a simple sEMG system aided by
a fully embedded CV system. A modified 5-layer SmallerVGG
convolutional neural network classifies objects regarding the
hand gestures used to interact with them without explicitly
identifying them. The system offers five modes: palmar grasp
with the wrist in a neutral position and with the wrist pronated,
tripod pinch, key grasp, and the index finger extension gesture.
This intelligent model facilitates and will speed up the process of
learning and using the prosthesis.

2. MATERIALS AND METHODS

2.1. System Design
The prosthesis prototype system (Figure 1) is composed of
a 3D printed model, an Arduino Nano board, a Myoware
sEMG system, a CV system, and an RPI3. The 3D model
was based on Buchanan’s Kwawu Arm 2.0 and printed
on lactic polyacid (PLA). The Arduino system commands
the start of image processing, opening, and closing of
the prosthesis using servo motors, based on the user’s
intention detected by the sEMG system and a finite state
machine. The CV system is responsible for capturing the
image of the object the user wants to grasp, and a CNN,
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FIGURE 1 | Prosthesis prototype diagram system.

FIGURE 2 | 3D prosthesis prototype with the camera, laser point, and LEDs.
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running on the RPI3, classifies it according to the five hand
posture patterns.

The 3D prosthesis model was modified after being printed for
the camera, laser point, and LEDs installation. A USB camera,
APP-TECH model of 16 Megapixels, and a laser point indicator
were installed in the palm area, as shown in Figure 2. The laser
point indicates the object to be photographed and handled by the
user. LEDs on the back of the prosthesis prototype inform which
grasp class was proposed by the neural classifier.

2.2. Control System
The sEMG system is comprised of the Myoware Muscle Sensor
from Advancer Technologies. It is an Arduino-powered all-
in-one sEMG board with adjustable gain, providing the raw
and the envelope of the filtered and rectified signal. In this
application, the latter was used. The wearable design allows the
disposable electrode attachment directly to the board through
embedded electrode connectors. Adhesive disposable electrodes
fromMeditrace were used to capture sEMG signals. The Arduino
Nano board, which makes the analog/digital conversion, has
a sampling rate of 9,600 samples per second and 10 bits
of resolution.

The control system is expressed by a finite state machine,
which diagram can be seen in Figure 3. For each supra threshold
muscle contraction, the control system receives an input pulse. A
muscle contraction activates the laser point, so the user visually
confirms the object to be picked up, photographs it, and starts
the classification process by the CNN. The pattern chosen by
the neural network is displayed on the LEDs on the back of the
prosthesis. The user has two options: reject and restart the process
or accept and command the movement. In the latter, another
muscle contraction defines the object release, and the prosthesis
returns to its initial condition.

The total estimated time for this state machine to grasp the
object since rest is 1.4 s, excluding the time the user takes
to accept the suggested grasp pattern. The estimated time for
each sEMG pulse is 100 ms, the laser point takes 350 ms,
the classification time since camera activation was less than
250 ms, and the time for motor activation and movement was
approximately 600 ms.

A 5-layer VGG network (Rosebrock, 2018a,b), a modified
version of the VGG-16 (Simonyan and Zisserman, 2015), was
used. The input image with 96 × 96 pixels × 3 channels passes
through a 3 × 3 convolution filter, followed by a linear rectified
function (RELU) and a normalization function (BATCH). The
network’s first pooling layer uses a 3 × 3 matrix to reduce image
dimensionality to 32 × 32 pixels. In the consecutive layers, the
dimension of the convolution filters is changed from 32 to 64 and
finally from 64 to 128. In all intermediate layers, the DROPOUT
function is applied, which disconnects 25% of the layer’s neurons
to reduce overfitting. The final layer is fully connected through
the DENSE function that uses a linear rectifier activation function
and then goes through a SOFTMAX function to return the
value of the probability of classification of each class. Keras
software was used as an application programming interface and
TensorFlow as numerical computing software.

The training and validation phases were conducted on a Mac
mini 2012 computer (2.3 GHz, quad-core i7, 16 GB) and the final
CNN model run on the RPI3 (1.2 GHz, Quad-Core Boadcom
BCM2837, 1 GB, running with the Raspbian system) for the
final testing. The algorithm converts the images to grayscale and
resizes them to 96× 96 pixels. All images contain a single object,
black background, and were taken with ambient lighting.

2.3. Experiments
Three experiments were carried out using images from the
Newcastle Grasp Library (NGL) associated with the Amsterdam
Library of Object Images (ALOI), while the final tests were
carried out with a set of 24 objects (Figure 4) plus 14 keyboard
images, establishing a total of 182 images not presented in the
training/validation set. This set of images allowed comparisons
of experiment performance.

For experiment 1, the objective was to compare the
classification results of the modified 5-layer SmallerVGG
network with the experiment of Ghazaei et al. (2017).
The training/validation set had 7,632 images for the pinch
classification pattern, 11,810 images for the tripod pinch, 8,777
images for the palmar grasp with neutral wrist position (neutral),
and 11,304 images for the palmar grasp with pronated wrist
(pronated). The 182 images for the test phase had 42 images for
the pinch classification pattern, 42 for the tripod, 42 for neutral,
and 56 for the pronated.

Due to the experiment 1 results, changes were made to
the experiment 2 dataset, eliminating images of objects with
similar shapes from different classes, choosing only tripod pinch
(between the precision grasps), and adding the key grasp class.
The CNN training set had 6,900 images for the tripod pinch,
8,345 images for the neutral pattern, 8,280 images for the
pronated, and 2,188 images for the key grasp class. The tests were
performed with 70 images for the tripod pinch, 42 for neutral, 56
for pronated, and 14 for the key grasp.

For experiment 3, 8.354 images were added to the experiment
2 dataset, being 3,210 computer keyboard images, 2,808 musical
keyboard images, and 2,336 tablet images. Classifications from
these three new image classes result in the index finger extension
movement. The tests were performed with 182 images being 70
for the tripod pinch pattern, 42 for neutral, 42 for pronated, 14
for key grasp pattern, and 14 for index finger extension.

For the test phases mentioned before, a set of 24 objects, like
those used by Ghazaei et al. (2017) (Figure 4), plus 14 images
of keyboards and tablets were used, establishing a total of 182
images allowing for result comparisons. Just as Ghazaei et al.
(2017), seven images for each object with random angles of view
were presented to the classifier.

3. RESULTS

Table 1 shows the confusion matrix and Table 2 shows the
sensitivity, specificity, and accuracy values, for experiment 1. It
can be noted from Table 1 that pinch and pronated patterns
had an excellent result, with almost 100% of classification (41
from 42 and 51 from 56, respectively). On the other hand, a
huge misclassification (41 from 42 trials) appeared for the tripod
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FIGURE 3 | Finite state machine diagram.

FIGURE 4 | Objects used for comparison between experiments.
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FIGURE 5 | Different tube positions allowing the use of different grasps, such as pronated palmar, tripod, pinch, and neutral palmar.

pattern that was classified as pinch, and a smaller one appeared
for the neutral pattern (11 from 42 trials) that was classified
as pronated. Following these results, Table 2 reflect the impact
of the right and wrong classifications for each pattern, showing
a high sensitivity, but lower specificity for pinch, a very low
sensitivity, but high specificity for tripod, a low sensitivity, but
high specificity for neutral, and high sensitivity and specificity
for pronated.

Table 3 shows the confusion matrix and Table 4 shows the
sensitivity, specificity, and accuracy values, for experiment 2. In
Table 3, it can be noted that all patterns had an excellent result,
with almost 100% of classification, resulting in high sensitivities,
specificities, and accuracies up to 96%.

Table 5 shows the confusion matrix and Table 6 shows the
sensitivity, specificity, and accuracy values, for experiment 3.
In this experiment, despite having one more class, the results
of Table 5 showed almost 100% of classification with very low
misclassifications, resulting in high sensitivities, specificities, and
accuracies up to 98%.

4. DISCUSSION

Defining the type of grasp to pick up objects is not as
easy as it may seem because there is no consensus. Even
with studies like Feix et al. (2016) and Abbasi et al. (2019),
which propose grasp taxonomies, the number of grasp patterns
is impractical in such type of system. Furthermore, it is
reasonable to pick up an object in different ways, whether
it is in the same position or if it is arranged in different
orientations, as shown in Figure 5. Thus, it is often a matter
of convention.

The proposed 5-layer SmallerVGG trained in experiment
1, with the same image dataset as Ghazaei et al. (2017),
achieved an accuracy of 84%, with new objects, as shown in
Table 2. The same result was reached by the original work
with new and seen images but randomly-rotated objects. The

misclassifications, shown in Table 1, resulted in a high sensitivity
but low specificity for pinch, a very low sensitivity but high
specificity for tripod, and a low sensitivity by but high specificity
for neutral (Table 2). Sensitivity is a measure of how well a
test can identify true positives, and specificity is a measure of
how well a test can identify true negatives. The overall result
for experiment 1 was sensitivity equal to 68% and specificity
equal to 89%, which will frustrate the user and make the system
non-functional. Since the classification feature was based on
object shapes, the explanation of these misclassifications was
the arrangement of objects with similar shapes in different
classes. Clear examples can be seen in Figures 6 and 7. Figure 6
shows objects with rectangular shape, and despite the possibility
of using both neutral and pronated palmar grasps to pick
them, as the system use the shape as a classification feature,
it is not reasonable to have them into different classes. The
same situation occurs for the balls with different sizes of
Figure 7.

In order to resolve this incompatibility and have a better
model, changes were made to the experiment 2 dataset,
eliminating images of objects with similar shapes of different
classes, choosing only tripod pinch between the precision
grasps, since it covers both types of objects, and adding
the key grasp class due to its importance, according to
Feix et al. (2016) and aiming to keep the same number
of classes. These modifications improved the accuracy to
98%, sensitivity to 96%, and specificity to 99% as shown in
Table 4, for experiment 2, proving the fragility of the original
image bank.

In experiment 3, the proposed 5-layer CNN trained with
the modified image bank added with the extension index class
obtained 99% of accuracy, 97% of sensitivity, and 99% of
specificity as shown in Table 6. It can be said that the proposed
CNN, trained for the neutral and pronated palmar grasps, tripod
pinch, and key grasp, recognizes patterns, while for the computer
and music keyboards, and tablet classes, the network recognize
objects. Evenwith only five convolutional layers, the SmallerVGG
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FIGURE 6 | Objects with similar shapes placed in different classes: first line neutral palmar, second and third lines pronated palmar.
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FIGURE 7 | Objects with similar shapes placed in different classes: pinch, tripod, and pronated palmar, respectively.

network showed high accuracy in classifying these patterns and
objects in a hybrid configuration.

Comparing the sensitivity and specificity values, experiments
2 and 3 showed greater effectiveness in classification
than experiment 1, due to the consistency of the image
dataset, presenting a smaller number of false-negative
and false-positive results, showing the importance of
the adequacy of the image set for the success of the

classification. These results contribute to user satisfaction
and system functionality.

Compared with other works in the literature that used a
CV system to define the grasp patterns for the prosthesis, the
proposed system with a 5-layer SmallerVGG CNN achieved an
accuracy higher than those proposed by DeGol et al. (2016) and
Shi et al. (2020) that presented accuracies of 93% with a bimodal
data scheme and a VGG-VeryDeep-16, respectively.

Frontiers in Neurorobotics | www.frontiersin.org 8 January 2022 | Volume 15 | Article 751282

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Castro et al. Computer Vision-Based Hand Prosthesis

TABLE 1 | Confusion matrix for experiment 1.

Pinch Tripod Neutral Pronated Total

Pinch 41 0 0 1 42

Tripod 41 1 0 0 42

Neutral 0 0 31 11 42

Pronated 3 2 0 51 56

Total 85 3 31 63 182

TABLE 2 | Performance metrics of experiment 1 [Se, sensitivity (%); Sp, specificity

(%); Acc, accuracy (%)].

Se Sp Acc

Pinch 98 69 75

Tripod 2 99 76

Neutral 74 100 94

Pronated 91 90 91

Total 68 89 84

TABLE 3 | Confusion matrix for experiment 2.

Tripod Neutral Pronated Key grasp Total

Tripod 68 0 0 2 70

Neutral 0 41 1 0 42

Pronated 0 0 54 2 56

Key grasp 3 0 0 11 14

Total 71 41 55 15 182

TABLE 4 | Performance metrics of experiment 2 [Se, sensitivity (%); Sp, specificity

(%); Acc, accuracy (%)].

Se Sp Acc

Tripod 97 97 97

Neutral 98 100 99

Pronated 96 99 98

Key grasp 79 98 96

Total 96 99 98

TABLE 5 | Confusion matrix for experiment 3.

Tripod Neutral Pronated Key grasp Index finger ext. Total

Tripod 68 0 0 2 0 70

Neutral 0 42 0 0 0 42

Pronated 0 0 41 0 1 42

Key grasp 1 0 0 12 1 14

Index finger ext. 0 0 0 0 14 14

Total 69 42 41 14 16 182

Using an RPI 3 microcomputer instead of a computer for
real-time analysis associated with a 3D printed model prosthesis
turned the project into a low-cost portable prototype. It is a

TABLE 6 | Performance metrics of experiment 3 [Se, sensitivity (%); Sp, specificity

(%); Acc, accuracy (%)].

Se Sp Acc

Tripod 97 99 98

Neutral 100 100 100

Pronated 98 100 99

Key grasp 86 99 98

Index finger extension 100 99 99

Total 97 99 99

full embedded control system, with higher accuracy than those
proposed by Dosen et al. (2010), Dosen and Popovic (2010),
Ghazaei et al. (2017), and Shi et al. (2020) in which the processing
was done in a separate unit as a standard PC.

Moreover, the proposed hand prosthesis prototype focused on
a more natural appearance, incorporating a discreet webcam in
the palm, unlike the proposals by DeGol et al. (2016), Ghazaei
et al. (2017), Dosen et al. (2010), and Dosen and Popovic (2010)
who used an external webcam. The Arduino Nano board used
to command the servos can be substituted, as the RPI3 can
perform this task. This change would reduce the internal wires
and cables and increase the space available inside the prosthesis
prototype body.

The Myoware sensor board has a gain adjustment of the
sEMG signal, and the software has a threshold adjustment, which
allows for the customization required for each user due to the
sEMG electrode positioning and physical conditions. Despite its
simplicity, it seems to be enough to the proposed application of
state machine trigger, instead of a more sophisticated one such as
Myo armband as used by Andrade et al. (2017) or Delsys Trigno
used by Ghazaei et al. (2017).

The total estimated time for the state machine to grasp the
object since rest is approximately 1.4 s, which is reasonable
for prosthetic control. However, the time taken for the user to
confirm the grasp pattern was not considered. The time for each
sEMG pulse was estimated at 100 ms, and it depends on the
user’s ability to fast contract above the selected threshold. The
laser point of 350 ms aims only to confirm the selected object to
be grasped. The classification time since camera activation was
approximately 250 ms, and the time for motor activation and
movement was approximately 600 ms.

Ghazaei et al. (2017) reported 150 ms for the average time
needed for pre-processing and classification in computer-based
real-time performance analysis, and 300 ms using a short
flexion contraction above a threshold. Sidher (2017) reported
classification times varying from 223ms to 1.963 s for geometrical
objects using RPI 3. Compared with the previous studied, the
proposed system control presents promising behavior.

On the other hand, the presented prototype did not intend
to be a final prosthesis proposal but a proof of concept of the
feasibility of a fully embedded hybrid system based on a hybrid
approach using sEMG and CV to overcome the limitations of the
strict sEMG control systems. Therefore, the experiments reported
in this study were related to the CV technical aspects.
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Some improvements could be performed, such as adding
new classes to the CV classification system or some common
gestures as a user choice option via the sEMGfinite statemachine.
Examples of the first are parallel extension, hook, and power grip,
and for the latter are point (index finger extension), ok sign, and
thumbs up.

Furthermore, the results were obtained in a controlled
environment, with fixed prototype distance and height related
to the object. These parameters could change the classification
accuracies due to the classifier model’s dependence on object
shape patterns. Adding distance sensors like Dosen et al.
(2010), Dosen and Popovic (2010), and Sidher (2017) did, seem
reasonable to overcome the problem of similar shape but different
size objects, as shown in Figure 7.

Therefore, the prosthesis’s functional performance evaluation
in a clinical trial is essential to guarantee its effectiveness. The
Southampton Hand Assessment Procedure (SHAP) is a well-
known, simple, and replicable protocol based on the assessment
of the effectiveness of the prosthetic device with a focus on
performing a set of tasks by the user (Light et al., 2002; Andres-
Esperanza et al., in press). Dosen et al. (2010) showed that
the average time to accomplish the “reach, pick up and place”
task with 13 healthy subjects decreases with training, reaching
approximately 10 s after 100 trials. Shi et al. (2020) reported
an average time of 6.4 s in an experimental protocol with four
healthy subjects performing a total of 320 trials, comparing
Vision-EMG and Coding-EMG control. Ghazaei et al. (2017)
reported an average time of 7s for two trans-radial amputee
volunteers to accomplish the “reach, pick up, and place” task.
However, this evaluation is not the focus of this study and will
be the subject of future investigation.

5. CONCLUSION

This study presented a hybrid 3D printed hand prosthesis
prototype based on an sEMG controlled finite state machine and
a fully embedded CV system. A modified 5-layer Smaller Visual
Geometry Group (VGG) CNN running on an RPi 3 connected
to a webcam recognizes the shape of daily use objects and defines
the grasp/gesture pattern for the prosthetic prototype. The sEMG
signal, representing the user’s intention, starts the process and
commands the prosthetic motors to movement execution.

The proposed system obtained 99% accuracy, 97% sensitivity,
and 99% specificity for grasping objects from neutral and
pronated palmar grasp, tripod pinch, key grasp, and index
finger extension gesture. Compared with other studies in
the literature that used a CV system for prosthetics, the
proposed system achieved a higher accuracy with a full
embedded system. Furthermore, it is a low-cost technology
with a reduced user training time, considering the simple use
of sEMG.

This study showed that the use of a vision system to
help define the pattern of grasping and manipulating
objects is a promising alternative and that studies in
this area should be performed. For the continuity
of this study, it is proposed the improvement of the
prosthesis for thumb movement; prosthetic functional
performance evaluation in clinical measurements to guarantee
its effectiveness.
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