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Simple Summary: Visual loss and blindness caused by retinal disease has a significant negative
effect on the quality of life of many adults and children, and as a result has become a global public
health concern. In the early stage, the majority of retinal diseases have no obvious symptoms and,
during disease progression, current therapeutic options, such as surgery, laser photocoagulation, and
anti-VEGF agents, all have significant limitations. Furthermore, the pathophysiological mechanisms
underlying retinal disease have not been fully delineated. These issues highlight the importance
of developing more effective screening strategies and/or diagnostic biomarkers to improve retinal
disease outcomes. Metabolomics are a promising tool for discovering various biomarkers that
improve understanding of the pathogenesis of retinal disease. Here, we will review the impact of
metabolomics in addressing the above challenges.

Abstract: Retinal diseases are a leading cause of visual loss and blindness, affecting a significant
proportion of the population worldwide and having a detrimental impact on quality of life, with
consequent economic burden. The retina is highly metabolically active, and a number of retinal
diseases are associated with metabolic dysfunction. To better understand the pathogenesis underlying
such retinopathies, new technology has been developed to elucidate the mechanism behind retinal
diseases. Metabolomics is a relatively new “omics” technology, which has developed subsequent
to genomics, transcriptomics, and proteomics. This new technology can provide qualitative and
quantitative information about low-molecular-weight metabolites (M.W. < 1500 Da) in a given
biological system, which shed light on the physiological or pathological state of a cell or tissue
sample at a particular time point. In this article we provide an extensive review of the application of
metabolomics to retinal diseases, with focus on age-related macular degeneration (AMD), diabetic
retinopathy (DR), retinopathy of prematurity (ROP), glaucoma, and retinitis pigmentosa (RP).

Keywords: metabolomics; retinopathy; age-related macular degeneration; diabetic retinopathy;
retinitis pigmentosa; retinopathy of premature; glaucoma

1. Introduction

The retina is abundant with highly specialized neurons that receive, process, and
transduce light signals. It is composed of the monolayered retinal pigment epithelium
(RPE) and the multi-layered neural retina, which contains five major types of neurons and is
regarded as part of the central nervous system. As can be seen in Figure 1, the neurosensory
retina is organized into three layers of cells: the outer nuclear layer (ONL), inner nuclear
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layer (INL), and ganglion cell layer (GCL); and two layers of nerve fiber or synapse: the
outer plexiform layer (OPL) and inner plexiform layer (IPL). Dysfunction in rod, cone,
RPE cell, retinal vascular endothelial cell, or other cells (e.g., Müller glia cell) can result in
various retinal diseases, with consequential vision loss. Blindness and vision impairment
affect a large proportion of the population, having a detrimental impact on quality of
life, and constituting a major public health problem. Alongside cataract and uncorrected
refractive error, glaucoma and age-related macular degeneration (AMD) have become the
leading causes of blindness worldwide for those aged 50 years or over [1]. Although much
effort has been devoted to preventing and eliminating avoidable blindness, the population
with blindness is expected to reach 61.0 million by 2050 [2]. The prevention and therapy
of blindness and vision impairment require a more comprehensive understanding of the
pathogenesis underlying retinal diseases. Currently, many new and advanced technologies
are being applied to the study of retinal disorders, especially some “omics” technologies.
In this article we focus on metabolomics.
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Figure 1. Structure of retina and application of metabolomics to retinal diseases. The retina can be divided into inner retina
and outer retina. The inner retina consists of the nerve fiber layer (NFL) ganglion cell layer (GCL), inner plexiform layer (IPL),
inner nuclear layer (INL, where amacrine, bipolar, and horizontal cells are localized), and outer plexiform layer (OPL); the
outer retina consists of the outer nuclear layer (ONL) of rod and cone photoreceptors, which are compartmentalized as outer
segments (OS) and inner segments (IS). The retinal pigment epithelium (RPE) cells and choroid endothelial cells provide
nutrition across Bruch’s membrane to support photoreceptor cells. Age-related macular degeneration (AMD) primarily
affects the RPE and photoreceptor cells; diabetic retinopathy (DR) and retinopathy of prematurity (ROP) mainly affects
choroidal vasculature and the photoreceptors; retinitis pigmentosa (RP) and glaucoma predominantly affect, respectively,
the photoreceptors and ganglion cells. Damage in retinal structure can lead to retinal diseases, including AMD, DR, ROP,
glaucoma, and RP. The diseases have been extensively studied by metabolomics based on LC-MS, GC-MS, and NMR.

Metabolomics is the most recently developed “omics” in the area of system biology,
following genomics, transcriptomics, and proteomics. It uses nuclear magnetic reso-
nance (NMR) or mass spectroscopy for qualitative and quantitative analysis of all small
molecules in given samples, with the purpose of discovering and identifying biomarkers.
The outcomes of metabolomics studies can be helpful for disease diagnosis, identification
of therapeutic targets, and monitoring of disease state, rendering it a powerful tool in
medicine and clinical translation. Moreover, metabolomics can provide unique insight
into physiological and pathophysiological processes [3]. With expanding applications of
metabolomics, research into the metabolic bases of ocular diseases has been increasing [4,5].
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This article provides a review of recent findings in metabolomics studies of retinal disease,
with a focus on metabolome of clinical samples, and using AMD, diabetic retinopathy (DR),
retinitis pigmentosa (RP), retinopathy of prematurity (ROP), and glaucoma as illustrative
examples (Figure 1).

Relevant literature was obtained by searching PubMed/MEDLINE database from
1999 to July 2021. The search terms included “retinal disease”, “age-related macular de-
generation”, “diabetic retinopathy”, “retinitis pigmentosa”, “retinopathy of prematurity”,
“glaucoma”, “metabolomics”, “metabonomics”, and “metabolic profiling”. The above
keywords were combined with “OR”/“AND” operators for searching titles and abstracts.
The search results were imported into Endnote for management and removal of duplicated
literature. A total of 280 abstracts were reviewed and, among these, 110 relevant articles
were retrieved for comprehensive evaluation.

2. Metabolomics: Brief Overview

In general, the workflow of metabolomics includes sample collection, sample prepa-
ration (extraction and concentration), sample determination (data acquisition), and data
analysis. Each phase consists of numerous steps and key points. For more details, some
excellent reviews [6,7] are available. Accurately measuring and unequivocally identi-
fying metabolites are crucial to metabolomics studies. Broadly, metabolites consist of
endogenous compounds and xenobiotic compounds. Endogenous metabolites—such as
amino acids, lipids, alcohols, organic acids, carbohydrates, small peptides, and nucleic
acids—are derived from endogenous catabolism or anabolism. Xenobiotic compounds
primarily come from the diet or the environment, e.g., plant/food phytochemicals, food
additives, over-the-counter or prescription drugs, microbial byproducts, cosmetic chem-
icals, chemical contaminants, pollutants, herbicides, and pesticides [3]. Based on the
coverage of metabolites, metabolomics can be divided into untargeted (or global) and
targeted metabolomics [8,9]. Untargeted metabolomics (global profiling) aims to detect all
measurable metabolites, providing cues for further study. In other words, it can be used
for generating hypotheses. Targeted metabolomics, on the other hand, enables absolute
quantification of a predefined set of metabolites, which are often within a specific pathway
or are compounds with similar structure. In view of the high-throughput metabolite pro-
filing, metabolomics has been extensively applied to biological, biomedical, agricultural,
environmental, and toxicological fields and to food safety [10–13].

3. Metabolomics: Technological Advances
3.1. Mass Spectrometry

As a result of its high sensitivity, high mass resolution, and mass measurement
accuracy—as well as high throughput in data acquisition—mass spectrometry (MS) has
been the cornerstone of metabolomics study, often coupled with chromatographic technol-
ogy, such as liquid chromatography (LC-MS) and gas chromatography (GC-MS). These
“hyphenated” technologies can increase selectivity and have been the most commonly
used platforms for metabolite profiling, particularly LC-MS [14,15]. In spite of advances in
metabolite detection, mass-spectrometry-based metabolomics has been confronted with
some problems, including matrix effects, peak overlapping, and challenges in metabolite
quantification, identification, and annotation (e.g., one metabolite producing multiple ionic
features). These shortcomings or issues have driven the development of new analytical
approaches and improvements in the existing technologies applied to metabolomics. For
example, to circumvent peak overlapping (e.g., isomers) and increase metabolome cover-
age, using ion shape and size as an additional dimension of separation has been achieved
by ion mobility spectrometry coupled with mass spectrometry (IMS-MS). IMS-MS, along
with front-end separation technologies, such as LC and GC, can provide multi-dimensional
separation, thus improving peak capacity and separation efficiency [16]. In studies in-
volving direct infusion into MS, several ion sources, such as electrospray ionization (ESI),
matrix-assisted laser desorption/ionization (MALDI), or desorption electrospray ioniza-
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tion (DESI), have been used for maximizing sample throughput. Additionally, in order to
obtain product ions to aid metabolite identification and annotation, several approaches
for simultaneously acquiring MS1 and MS2 (tandem MS or MS/MS) spectra have been
developed: data-independent acquisition (DIA), encompassing MSE, all ion fragmentation
(AIF), SWATH, and MSX [17]. Apart from data acquisition methods, several advanced
tandem MS approaches, such as electron-induced dissociation (EID), IR multiple photon
dissociation (IRMPD), charge transfer dissociation (CTD), and Ozone-induced dissociation
(OzID), have been optimized for generating diagnostic product ions that can facilitate
metabolite identification [18]. Recently, there has been a surge of mass spectrometry imag-
ing (MSI) based on MALDI for characterizing small molecular metabolites in the spatial
context of cells, tissues, organs, and organisms, known as spatial metabolomics [19]. For
example, this has been applied to the comparative investigation of lipids in mammalian
retinal ganglion cells and Müller glia [20], and to the exploration of in situ host–microbe in-
teractions [21]. This technology can allow a better trade-off between metabolome coverage,
spatial resolution, and destructiveness of sample.

3.2. Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy is another cornerstone of metabolomics, due to its significant
strengths, which include minimal sample preparation, non-destructive sampling, excellent
reproducibility, its highly quantitative nature, and its powerful capacity for structure eluci-
dation. These characteristics enable the extensive application of NMR in the metabolomics
field, particularly 1D 1H NMR. Among the 1D NMR-based metabolomics, magnetic nuclei
such as 13C [22] and 31P [23] are also used for profiling metabolites in given samples. Unfor-
tunately, owing to multiple components contained in metabolomics samples, 1D 1H NMR
spectra present ubiquitous resonance overlapping that markedly impedes quantification
and identification of metabolites. To address this problem, two-dimensional (2D) NMR
has been proposed as a solution. Two-dimensional NMR allows peaks spreading along an
additional axis (indirect dimension), thus providing a much better separation of resonances.
Nowadays, 2D NMR has been introduced into metabolomics and lipidomics [24]. However,
2D NMR used for profiling metabolites on a large scale suffers from two major drawbacks.
One is the lengthy experimental duration, due to the need for repeating numerous 1D
sub-experiments in order to obtain 2D spectra with sufficient resolution. To overcome
this drawback, a number of approaches have been developed for reducing experimen-
tal duration, such as non-uniform sampling (NUS) and ultrafast [UF] NMR. These two
methods have been successfully applied to targeted and untargeted metabolomics and
lipidomics workflows [24,25]. Another drawback is quantitative analysis of 2D NMR. In
spite of 2D NMR peak volumes being proportional to analyte concentrations, this associa-
tion varies with peaks in the spectrum, as 2D NMR experiments exploit multiple pulses.
Fortunately, several novel strategies have been suggested to circumvent this problem, such
as HSQC0 [26], Q-HSQC [27], and QEC- HSQC [28]. Recently, a trend of developing smaller,
cheaper, and/or more sensitive NMR instruments as alternatives to mass spectrometry
has been rising [29]. This type of instrument is suitable for clinical settings or labs, but
has limited sensitivity and resolution. Additional developments in NMR spectrometer
hardware include superconducting magnets (up to 1 GHz resonance frequency) and sample
probe heads, such as cryogenically cooled, miniaturizing probes, which have helped to
expand the application of NMR.

4. Metabolomics in Retinal Diseases

It is well known that the retina is one of the most metabolically activity tissues in the
body. Metabolic dysfunction can cause a number of retinal diseases, compromising vision
to the extent that blindness can occur. Some retinal diseases, like AMD, are asymptomatic at
the early stage, which means that diagnosis occurs only when the features of relatively late-
stage AMD are present, with associated impairment of vision. Moreover, the pathogeneses
underlying retinal diseases are yet to be comprehensively elucidated. Metabolomics is a
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powerful tool that has great potential for enhancing the understanding of pathological
mechanisms and molecular processes, discovering new pathways, and identifying biomark-
ers for diagnosis and prognosis, thus offering support in personalized ophthalmology. In
this section, we review and discuss recent progress in metabolomics investigations of
several common retinal disorders, including AMD, DR, RP, ROP, and glaucoma.

4.1. Age-Related Macular Degeneration (AMD)

In developed countries, AMD is the main cause of blindness in people aged 50 years,
or above; worldwide, it is the third most common cause [30]. AMD is a class of cone-
based degenerative diseases. Initially, dysfunction and progressive degeneration of retinal
pigment epithelial (RPE) cells occur; subsequently, gradual cone degeneration in the central
retina occurs [31]. At the early stage, AMD has no obvious clinical symptoms. When
progression into a more advanced stage occurs, AMD can take two forms, including
the dry form (also known as geographic atrophy), characterized by slow and progressive
photoreceptor cell degeneration and/or retinal pigment epithelium death, and the wet form,
with the distinct feature of aggressive, exudative choroidal neovascularization. Currently,
the treatment strategies for advanced AMD are very limited. For the wet form of AMD,
antibodies against vascular endothelial growth factor (VEGF) have proven to be an effective
therapeutic agent [32,33]. However, there is no treatment for the dry form of AMD [34]. In
order to fully understand the pathological mechanisms of AMD and to identify biomarkers
or new therapeutic regimens for AMD, the utilization of advanced technologies such as
metabolomics is required.

Recently, studies of AMD based on metabolomics have significantly increased and
have been summarized by both Kersten et al. [35] and Hou et al. [36]. Here, we ex-
pand and summarize metabolomics-based research regarding the association between
metabolites and AMD, pathological mechanisms underlying AMD, diagnosis, therapeu-
tic monitoring, and new treatment targets of AMD. Significant changes in metabolite
levels have been observed between control subjects and patients at all stages of AMD.
These differential metabolites or potential biomarkers and the associated pathways are
summarized in Table 1, which mainly include amino acids (alanine, glutamine, histidine,
tyrosine, phenylalanine, methionine, arginine, proline), organic acids (formate, acetate,
β-hydroxybutyrate), and lipids (glycerophosphocholine, LysoPC (18:2) and PS (18:0/20:4)),
as well as related pathways (glycerophospholipids pathway, carnitine shuttle pathway,
and glutamine pathway). Laíns et al. [37] compared the urinary metabolic profiles of
patients at different stages of AMD and controls, as acquired by 1H NMR technology.
The results revealed important metabolite differences between controls and early AMD
patients, with more significant differences in metabolic profile found between controls
and late AMD subjects. This work highlighted citrate and selected specific amino acids as
potential biomarkers for identifying the severity of AMD and also identified geographic
differences between Coimbra and Boston cohorts; suggesting that AMD effects might
be masked if researchers perform joint analysis of the metabolic profiles of cohorts from
different regions. More recently, in order to identify metabolites associated with AMD,
Acar et al. [38] performed the largest metabolome association analysis in AMD to date.
They identified 60 differential metabolites, including amino acids, citrate, tyrosine, HDL
subclasses, and VLDL. Some of the significantly changed metabolites such as citrate are
consistent with the results of Lains et al. [37].

To clarify the pathogenesis of AMD, metabolomics has been employed to investigate
metabolic alterations in response to risk factors of AMD. RPE cells play an important role
in maintaining normal functioning of the neurosensory retina. Chao et al. [39] employed
LC-MS/MS combined with 13C tracers to systematically study nutrient consumption and
metabolite transport in cultured human fetal RPE. The study reveals that RPE cells prefer
proline as a nutrient and that they transport metabolic intermediates to the retinal side.
Similarly, Zhang et al. [40] performed a study on RPE cells via LC-MS, GC-MS, and 13C
tracer technologies, and established that inhibition of mitochondrial respiration impairs
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the consumption of nutrients and transportation of metabolites by RPE cells. It has been
reported that multiple abnormalities, including oxidative stress damage, cytoplasmic glyco-
gen accumulation, mitochondrial dysfunction and disintegration, and enlarged and annular
LAMP-1-positive organelles, can be observed in AMD RPE. Shu’s group [41] have studied
the effects of translocator protein (TSPO) deletion on RPE metabolism from an oxidative
stress perspective through LC-MS-based metabolomics. The result has shown that TSPO
deletion affects glucose, amino acid, and nucleotide metabolism, and elevates fatty acids,
glycerophospholipids, and glutathione disulphide (GSSG). To elucidate the mechanisms
underlying aforementioned abnormalities, Zhang et al. [42] compared metabolite and
lipid profiles of AMD RPE and normal RPE. The study identified significant changes in
glycerophospholipid metabolism, lipid and protein metabolisms, glutathione, guanosine,
and L-glutamic acid, linked with increased PAPR2 expression, deceased NAD+ and SIRT1,
increased PGC-1α acetylation (inactive form), lower AMPK activity, and overactive mTOR
pathway. A recent study has shown that RPE cells with constitutively high mTORC1 activ-
ity were reprogramed to be hyperactive in glucose and lipid metabolism [43]. This provides
evidence that the metabolic changes occur prior to structural changes of RPE and retinal
degeneration. For decreasing oxidative stress, bis-allylic deuterated docosahexaenoic acid
(DHA, C22:6, n-3) has been developed for alleviating oxidative stress in RPE cells [44]. In
addition to dysfunction of RPE cells, degeneration of photoreceptor cells is an important
cause of AMD. Recently, several studies have utilized metabolomics technology to reveal
the mechanism of AMD induced by degeneration of photoreceptor cells [45,46].

As a result of these mechanistic studies, new and effective diagnostic, intervention, or
therapeutic strategies can be proposed. A recent study examining the association of human
plasma metabolomics with delayed dark adaptation in AMD has been performed [47].
The results revealed that fatty-acid-related lipids and amino acids related to glutamate
and leucine, isoleucine, and valine metabolism were linked with dark adaptation. This
association might be beneficial in the early diagnosis of AMD since dark adaptation
can be considered as a functional outcome measure for AMD diagnosis. Based on the
knowledge of metabolic pathways inferred from the analysis of different metabolites,
therapeutic targets can be identified. For example, pyruvate dehydrogenase kinase/lactate
axis was identified by metabolomics for treatment of neovascular AMD (nAMD) [48]. It is
well-known that some endogenous metabolites have pharmacological activity. Homma
et al. [49] found that taurine could rescue mitochondria-related metabolic impairments in a
cell model. This effect was demonstrated by metabolomics analysis. Therefore, intervention
with taurine may be a new potential therapeutic strategy for mitochondria-related retinal
diseases. During the treatment course of disease, metabolomics can also be employed for
evaluating therapeutic effects or to predict the response of the given regimen. Gao et al. [50]
conducted a serum metabolomics study of patients with nAMD in response to anti-VEGF
therapy. They identified reductions in glycerophosphocholine, LysoPC (18:2), and PS
(18:0/20:4) as predictors for responsiveness to anti-VEGF therapy for nAMD patients.
Additionally, personalized metabolic patterns can be obtained by metabolomics studies.
In order to take advantage of this type of information, patients with certain diseases,
such as macular neovascular disease [51], can be stratified. As a result, this allows for
improvements in the therapeutic effects. Overall, metabolomics has greatly enhanced the
understanding of pathogenesis of AMD and has contributed to the development of new
therapeutic approaches for AMD.
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Table 1. Summary of metabolomics-based clinical studies of AMD.

AMD Stage Samples Metabolic Biomarkers/Pathway Analytical
Platform

Untargeted/
TARGETED Study Design References

late AMD (wet) plasma (−)

Phe, Tyr, Gln, Asp, His-Arg, Trp-Phe, GCA,
GDCA, GUDCA; tyrosine metabolism, sulfur
amino acid metabolism, and amino acids related
to urea metabolism pathway

LC-MS Untargeted case-control [52]

early, intermediate,
and late AMD plasma (fasting) acetate, acetoacetate, creatine, dimethyl sulfone,

β-hydroxybutyrate, pyruvate, Ala, Gln, His NMR Untargeted cross-sectional [53]

late AMD (wet) plasma (fasting)

N-acetyl-L-alanine,
N1-methyl-2-pyridone-5-carboxamide, Tyr, Phe,
Arg, Met, palmitoylcarnitine, isomaltose,
hydrocortisone, biliverdin

GC-MS,
LC-MS Untargeted case-control [54]

early, intermediate,
and late AMD plasma (fasting)

linoleoyl-arachidonoyl-glycerol (18:2/20:4),
stearoyl-arachidonoyl-glycerol (18:0/20:4),
oleoyl-arachidonoyl-glycerol (18:1/20:4),
1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6),
1-stearoyl-2-arachidonoyl-GPC (18:0/20:4),
adenosine; diacylglycerol, glycerophospholipids
pathway, purine metabolism

LC-MS Untargeted cross-sectional [55]

late AMD (wet) plasma (−)

L-oxalylalbizziine, isopentyl β-D-glucoside,
LysoPC(P-18:0), LysoPC(P-18:1(9Z)),
LysoPC(16:1(9Z)),
1-Lyso-2-arachidonoyl-phosphatidate,
9-hexadecenoylcarnitine,
heptadecanoylcarnitine,
11Z-octadecenylcarnitine, L-palmitoylcarnitine,
stearoylcarnitine, N-ornithyl-L-taurine;
carnitine shuttle pathway, bile acid biosynthesis
pathway

LC-MS Untargeted − [56]

early, intermediate,
and late AMD plasma (fasting)

taurine, β-citrylglutamate, serotonin,
N-acetylmethionine, Asp, hypotaurine,
N-acetylasparagine, S-adenosylhomocysteine,
maltotriose, maltose, nicotinamide, adenosine,
cytidine, guanine, inosine, hypoxanthine,
adenine, isoleucylglycine,
1-stearoyl-2-oleoyl-GPS(18:0/18:1), PE, PC,
sphingosine, 1-(1-enyl-palmitoyl)-GPE (P-16:0),
14-HDoHE/17-HDoHE, 12-HETE, sphinganine,
1-(1-enyl-oleoyl)-GPE (P-18:1),
1-(1-enyl-stearoyl)-GPE (P-18:0);
glycerophospholipid, purine, taurine and
hypotaurine, and nitrogen metabolism

LC-MS Untargeted cross-sectional [57]

late AMD (wet) plasma (fasting) Val, Lys, Pro, carnitine, valerylcarnitine,
carnosine (Ala-His) LC-MS Targeted (IDQ

p180 kit) case-control [58]

early, intermediate,
and late AMD plasma, serum (+) HDL and VLDL lipoprotein particles, fatty

acids, citrate, Ala, Ile, Leu, Phe, Tyr NMR Untargeted − [38]

early, intermediate
AMD)

serum
(non-fasting)

Gln, Glu:Gln ratio, glutaminolysis,
phosphatidylcholine diacyl C28:1; glutamine
pathway

LC-MS Targeted (IDQ
p180 kit) case-control [59]

late AMD (wet) serum (fasting) lactate, lipoproteins NMR Untargeted − [48]
late AMD (wet) serum (−) GPC, LysoPC (18:2), PS (18:0/20:4) LC-MS Untargeted case-control [50]

AMD subtype
(PCV) serum (fasting)

LPA (18:2), LysoPC (20:4), PC (20:1p/19:1), SM
(d16:0/22:2), PAF (35:4), PC (16:0/22:5), PC
(18:1/20:4); glycerophospholipid metabolism,
ether lipid metabolism, glycerolipid metabolism
pathway

LC-MS Untargeted
(lipidomic) − [60]

early, intermediate,
and late AMD urine (fasting) 4-hydroxyphenylacetate, formate, s-inositol,

sucrose, citrate, Val NMR Untargeted cross-sectional [37]

late AMD (wet) aqueous humor

carnitine, deoxycarnitine, N6-trimethyl-L-lysine,
cis-aconitic acid, itaconatic acid, mesaconic acid,
Gly, betaine, creatine; carnitine-associated
mitochondrial oxidation pathway, carbohydrate
metabolism pathway, osmoprotection pathway

LC-MS/MS Untargeted case-control [61]

Amino acids [Ala: alanine; Arg: arginine; Asp: aspartate; Gln: glutamine; Gly: glycine; His: histidine; Ile: isoleucine; Leu: leucine;
Lys: lysine; Met: methionine; Phe: phenylalanine; Pro: proline; Tyr: Tyrosine; Val: valine]. Lipids [GPC: glycerophosphocholine; GPS:
glycerophophatidyl-serine; GPE: glycerophosphoryl-ethanolamine; HDL: high-density lipoprotein; HDoHE: hydroxydocosahexaenoic acid;
HETE: hydroxyeicosatetraenoic acid; LPA: lysophosphatidic acid; LysoPC: lysophosphatidylcholine; PAF: platelet-activating factor; PC:
phosphatidylcholine; PE: phosphatidylethanolamine; PS: phosphatidylserine; SM: sphingomyelin; VLDL: very-low-density lipoprotein].
Cholic acids [GCA: glycocholic acid; GDCA: glycodeoxycholic acid; GUDCA: glycoursodeoxycholic acid]. PCV: polypoidal choroidal
vasculopathy. −: not state in the article. +: the study consists of multiple cohorts, samples of several cohorts are collected under fasting,
and samples of other cohorts are collected under non-fasting.

4.2. Diabetic Retinopathy (DR)

Diabetes mellitus (DM) and its complications have become a global public health
concern. Diabetic retinopathy (DR) is one of the common complications of DM and is char-
acterized by microvascular damage in the retina. DR is one of the main contributory factors
of preventable blindness and vision impairment worldwide [1]. With the rising prevalence
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of DM and increasing life expectancy, the population with DR has also been rising. Accord-
ing to a recent survey [62], the annual incidence of DR and progression could be as high
as 12.7% and 12.3%, respectively. It has been reported that dysfunction in multiple cell
signaling pathways, inflammation and oxidative stress resulting from hyperglycemia, and
dyslipidemia contribute to the pathogenesis of DR [63,64]. DR is classified into two stages:
non-proliferative DR (NPDR) and proliferative DR (PDR). From a disease severity perspec-
tive, NPDR is further sub-divided into three types: mild, moderate, and severe NPDR [65].
The common clinical manifestations of NPDR include microaneurysms, venous beading,
and intraretinal microvascular abnormalities. As the disease evolves, NPDR can develop
to PDR. Within 1 year without treatment, the rate of progression to PDR is related to the
severity of NPDR, corresponding to 5% (mild), 27% (moderate), and >50% (severe) [66].
Further progression of intraretinal microvascular abnormalities can cause intravascular
coagulation, leading to retinal ischemia, and the consequent formation of new, fragile blood
vessels within the retina, known as retinal neovascularization. This can trigger some neo-
vascular complications, such as vitreous hemorrhaging as a result of rupture and bleeding
of new vessels, or retinal detachment due to blood vessels infiltrating the vitreous [66].
Currently, although the molecular and cellular pathology of DR is understood [64] and
some new therapeutic methods—such as anti-VEGF therapy—have been developed, the
exact pathological mechanism is still not clear and the treatment options for DR remain far
from satisfactory. To date, a number of new technologies have been employed to study DR,
including metabolomics. For instance, metabolic signatures (biomarkers) of DR discovered
by metabolomics have been described in several reviews [67–70]. In this subsection, we
summarize and discuss the application of metabolomics to DR.

Since 2010, publications involving studies of the metabolome of DR have been rising,
particularly so in the most recent two years. The differential metabolites or biomarkers
identified over the past 10 years and sample sources in metabolomics research on DR
are summarized in Table 2. As shown in Table 2, DR stages are mainly associated with
changes in amino acids, lipids, and carbohydrate metabolism. The most frequently used
samples for evaluating relevant biomarkers of DR are plasma, serum, and vitreous humor.
Rhee et al. [71] performed metabolic profiling of plasma from T2DM patients with and
without DR. Their results suggest that plasma glutamine and glutamic acid can be used
as potential biomarkers for predicting DR. With a similar design of experimental groups,
Zuo et al. [72] conducted a targeted metabolomics study of serum samples from T2DM
patients with and without DR. The researchers developed multidimensional network
biomarkers containing linoleic acid, nicotinuric acid, ornithine, and phenylacetyl-glutamine
(PAG), efficiently allowing for the distinguishing of DR from T2DM. PAG is a product
of amino acid fermentation that results from glutamine conjugation of phenylacetic acid,
implying an association with glutamate metabolism. However, in this study, glutamine
and glutamic acid were not identified as differential metabolites. With respect to vitreous
humor, Midena et al. [67] performed a detailed review of aqueous and/or vitreous humor
sampling in human eyes from DR patients for proteomic and/or metabolomic analysis.
The exact quantification of aqueous and vitreous humor biomarkers can provide valuable
insights to retinal diseases and can contribute to precision medicine in ophthalmology.
Nevertheless, the availability of vitreous or aqueous humor can be problematic, given the
invasive nature of sampling.

In order to investigate the mechanism of DR, Marchetti et al. [73] utilized molecular
biotechnology and a metabolomics approach to study ischemic retinopathy. The results
demonstrated that differential macrophage polarization could stabilize the ischemia-injured
retinal vasculature by modulating the inflammatory response, reducing oxidative stress
and apoptosis, and promoting tissue repair. From a lipid–lipid interactions viewpoint,
lipids analysis of plasma, renal, neural, and retinal tissues from a diabetic mouse model
with microvascular complications was performed [74]. Among the different tissues, shared
alterations in diacylglycerol and in lipids containing arachidonic acid were observed, while
the highly saturated cholesterol esters were similarly coregulated between plasma and
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each tissue type. From a protein–metabolite interactions viewpoint, Patrick et al. [75]
employed the protein–metabolite interactome to dissect the mechanism of DR. Their results
found that diverse phosphorylations (ATP/ADP/AMP ratio vs. Ser/Thr Kinase and
Tyr kinase) were positively correlated with DR progression. Recently, a pdx1-/-zebrafish
mutant [76] was established as a novel model for studying mechanisms of hyperglycemia-
induced retinopathy, with the help of genetic editing and metabolomics technologies.
In addition to the mechanistic aspect, metabolomics can also be used to evaluate the
efficacy of interventions, such as protective effects of the neuropeptides PACAP, substance
P and the somatostatin analogue octreotide in retinal ischemia [77], and the effects of
Keluoxin capsules [78] and Bushen Huoxue prescriptions [79] on DR. Through review
of relevant publications, we have observed that there is a new trend of acquiring two
datasets (discovery set and validation set) in order to identify more reliable biomarkers.
A cooperative study of Xu’s group, Jia’s group, and Wu’s group [80] was performed to
develop biomarkers related to DR. They identified a panel of biomarkers, including 12-
hydroxyeicosatetraenoic acid (12-HETE) and 2-piperidone, which offers better diagnostic
performance in differentiating DR from diabetes, compared to hemoglobin A1c (HbA1c).
The biomarker panel was also validated in a separate cohort with 444 samples, which is
promising for detecting DR and early-stage DR. Validation of biomarker and large-scale
samples were the clear advantages of this study. A similar validation strategy has also
been implemented in a number of other studies [71,72,81–83]. Nevertheless, the identified
metabolic signatures in these studies were not consistent, and the evaluation of sample
size was not performed, with the exception of Zuo et al.’s study [72]. The discrepancy of
biomarkers between these studies might be attributed to different analytical approaches,
samples, and metabolome coverage.

Table 2. Summary of metabolomics-based clinical studies of DR.

DR Stage Samples Metabolic Biomarkers/Pathway Analytical
Platform

Untargeted/
Targeted Study Design References

pre-DR, NPDR,
PDR plasma (−) pyruvate, Asp, glycerol, cholesterol GC-MS Untargeted − [84]

NPDR plasma (−)
2-deoxyribonic acid, 3,4-dihydroxybutyric acid,
erythritol, gluconic acid, ribose; pentose
phosphate pathway

GC-MS Untargeted case-control [81]

NPDR plasma (−)

15-oxo-ETE, 4-HDoHE, 11-HEPE, LTB4, PGD2,
RvD2, PGD3, PGF2α, 5,6-DiHETE, 8-HDoHE,
5-oxo-ETE, RvD1, 7-HDoHE, 6R-LXA4,
15d-PGJ2, PGJ2, 10-HDoHE, PGE3

LC-MS/MS Targeted
(eicosanoids) − [85]

NPDR, PDR plasma (−) Glu, Gln, Gln/Glu GC-MS,
LC-MS Untargeted − [71]

PDR plasma (fasting) fumaric acid, uridine, acetate, cytidine LC-MS Untargeted case-control [86]

NPDR, PDR plasma (−) Arg, citrulline, glutamic γ-semialdehyde,
dehydroxycarnitine, carnitine LC-MS Untargeted case-control [87]

NPDR, PDR plasma, serum
(−)

2,4-DHBA, 3,4-DHBA, ribonic acid, ribitol, the
triglycerides 50:1 and 50:2

GC-MS,
LC-MS Untargeted cross-sectional [88]

NPDR serum (−) ribitol, GPC, UDP-Glc-NAc,
fructose-6-phosphate NMR Untargeted − [89]

NPDR, PDR serum (−) dimethylarginine, Trp, Pro, PC, kynurenine,
propionylcarnitine, butyrylcarnitine, hexose LC-MS Targeted (IDQ

p180 kit) cross-sectional [90]

NPDR, PDR serum (fasting) 12-HETE, 2-piperidone GC-MS,
LC-MS Untargeted − [80]

mild DR Serum (−)
Cer(d18:1/24:0), ChE 20:3, ChE 20:4, ChE 22:6,
DG(16:0_18:2), DG(16:1_18:2), DG(18:2_20:4),
DG(18:2_22:6), FA(14:0), FA(16:0)

LC-MS Untargeted
(lipidomic) − [91] *

NPDR, PDR serum (fasting) linoleic acid, nicotinamide, ornithine,
phenylacetylglutamine LC-MS Targeted case-control [72]

NPDR, PDR vitreous humor 5-HETE, CYP-derived epoxyeicosatrienoic acids LC-MS/MS Targeted
(lipidomic) − [92]

PDR vitreous humor galactitol, ascorbic acid, lactate NMR Untargeted − [93]

PDR vitreous humor
Arg, Pro, Met, allantoin, citrulline, ornithine,
octanoylcarnitine, decanoylcarnitine; arginine,
proline, acylcarnitine metabolism pathway

LC-MS/MS Untargeted − [82]

PDR vitreous humor

pyruvate, inosine, hypoxanthine, urate,
allantoate, pentose phosphates, xanthine;
glucose metabolism, purine metabolism,
pentose phosphate pathway

LC-MS Untargeted − [83]

PDR vitreous humor 5-HETE, 12-HETE, 20-HETE, 20-COOH-AA LC-MS/MS Targeted
(eicosanoid) − [94]
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Table 2. Cont.

DR Stage Samples Metabolic Biomarkers/Pathway Analytical
Platform

Untargeted/
Targeted Study Design References

PDR vitreous humour
Pro, pyruvate, lactate, allantoin, creatine,
dimethyl glycine, N-acetyl serine, succinate,
α-ketoglutarate

LC-MS/MS Untargeted cross-sectional [95]

PDR vitreous, aqueous
humor CysSSH, Cys, GSSSG, cystine LC-MS/MS Targeted

(polysulfides) − [96]

PDR vitreous, aqueous
humor

d-2,3-dihydroxypropanoic acid, isocitric acid,
fructose 6-phosphate, lactate;
pyroglutamic acid, pyruvate; gluconeogenesis,
ascorbate-aldarate metabolism,
valine–leucine–isoleucine biosynthesis, and
arginine–proline metabolism pathway

GC-MS Untargeted − [97]

DR aqueous humor
His, Thr, Gln, Asn, dimethylamine, lactate,
succinate, 2-hydroxybutyrate; alanine, aspartate,
and glutamate metabolic pathway

NMR Untargeted − [98]

Amino acids [Arg: arginine; Asn: asparagine; Asp: aspartic acid; Cys: cysteine; Glu: glutamic acid; Gln: glutamine; His: histidine; Met:
methionine; Pro: proline; Thr: threonine; Trp: tryptophan]. Lipids [AA: arachidonic acid; Cer: ceramides; ChE: cholesterol esters; DG:
diacylglycerols; ETE: eicosatetraenoic acid; FA: fatty acids; GPC: glycerophosphocholine; HDoHE: hydroxydocosahexaenoic acid; HEPE:
hydroxyeicosapentaenoic acid; HETE: hydroxyeicosatetraenoic acid; LTB4: leukotriene B4; LXA4: Lipoxin A4; PC: phosphatidylcholine;
PGD: prostaglandin D; PGE: prostaglandin E; PGF: prostaglandin F; PGJ: prostaglandin J]. UDP-Glc-NAc: uridine diphosphate N-acetyl
glucosamine; RvD: Resolvin D; DHBA: dihydroxybutyric acid; CysSSH: cysteine persulfides; GSSSG: oxidized glutathione trisulfide.
pre-DR: pre-clinical stage of DR; * indicates partial list of differential metabolites. −: not stated in the article.

4.3. Retinopathy of Prematurity (ROP)

Retinopathy of prematurity (ROP), a common complication of preterm birth (<37 weeks)
and the leading cause of childhood blindness, belongs to the category of vasoproliferative
retinal disease. ROP consists of two phases, including cessation of the normal retinal
vascular growth and hypoxia-induced retinal neovascularization [99]. Many risk factors,
such as birth weight, gestational age, maternal factors, prenatal and perinatal factors,
demographics, medical interventions, comorbidities of prematurity, nutrition, and genetic
factors, contribute to the development of ROP [100]. At present, the diagnosis of ROP
depends mainly on fundoscopy screening via indirect ophthalmoscopy or fundus imaging,
which is expensive and labor intensive. The treatment of ROP primarily comprises laser
photocoagulation and anti-VEGF therapy, but still involves poor visual prognosis and
other adverse effects [101,102]. Thus, there is an urgent need for the development of new
diagnostic biomarkers, preventive strategies, and therapeutic targets.

With the rapid development and gradual maturation of metabolomics, its application
has been implemented in many fields, for example, the study of postnatal metabolic adap-
tations [103] and neonatal diseases [104,105]. Currently, though, only a few metabolomics-
based studies of ROP have been reported. There are two published preclinical stud-
ies of ROP using a metabolomics approach. Lu et al. [106] performed a comparative
metabolomics analysis of two phases of oxygen-induced retinopathy (OIR) in a rat model
with GC-MS technology. Their results identified proline and “arginine and proline metabolism”
pathway as potential biomarkers for OIR, which might assist in the diagnosis of human
ROP. Another study employed untargeted metabolomics to elucidate the mechanism un-
derlying HIF-mediated protection against ROP in a mouse model [107]. In addition to
these preclinical studies, the metabolome of clinical samples from ROP subjects has also
been investigated, as summarized in Table 3. Zhou et al. [108] conducted an untargeted
metabolomics analysis of plasma from treatment involving ROP patients (n = 38) and
age-matched infants (n = 23) via UHPLC-MS. A total of 29 differential metabolites were
identified in positive ion mode, while 23 were identified in negative ion mode. The KEGG
pathway analysis revealed that most differential metabolites were enriched in the “pro-
tein digestion and absorption” and “aminoacyl-tRNA biosynthesis” pathways. Similarly,
a UPLC-MS/MS-based targeted metabolomics study of blood from ROP and non-ROP
infants [109] identified malonyl carnitine (C3DC) and glycine as potential biomarkers for
predicting the occurrence of ROP. These clinical studies had a number of limitations. Firstly,
the sizes of the study cohorts were relatively small and evaluation of sample size has not
been performed. Secondly, gender difference was not considered in experimental design
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and data processing, which might compromise the validity of research results. Typically,
gender and age are both confounding factors in clinical studies. In summary, large-scale
metabolomics studies of ROP are still required and the potential biomarkers should be
verified in a validation dataset.

Table 3. Summary of metabolomics in retinopathy of prematurity (ROP).

Disease Samples Metabolic Biomarkers/Pathway Analytical
Platform

Untargeted/
Targeted Study Design References

ROP plasma (−)

N1-methyl-2-pyridone-5-carboxamide,
biliverdin, linoleic acid, 4-guanidinobutyric acid,
adenosine, thioetheramide-PC, citrulline,
GCDC, cis-9-palmitoleic acid, sunitinib, vanillin,
trehalose, 1-aminocyclopropanecarboxylic acid

LC-MS Untargeted − [108]

ROP Blood (−) Gly, Glu, Leu, Ser, Val, Trp, piperidine, citrulline,
malonyl carnitine, homocysteine LC-MS Targeted − [109]

GCDC: glycochenodeoxycholate; PC: phosphatidylcholine; Glu: glutamic acid; Gly: glycine; Leu: leucine; Ser: serine; Trp: tryptophan; Val:
valine; − not stated in the article.

4.4. Glaucoma

Glaucoma is a complex and chronic progressive optic neuropathy, known to be the
leading cause of irreversible blindness worldwide. It is characterized by gradual degen-
eration of retinal ganglion cells (RGCs) and optic nerve axons. RGCs are neurons of the
central nervous system, the cell bodies of which are located in the interior retina and whose
axons form the optic nerve. The damage associated with glaucoma occurs in the interior
retina, the retinal nerve fiber layer (NFL), and the optic nerve head, and can cause perma-
nent loss of peripheral or central vision. It is estimated that more than 76 million people
worldwide are affected by glaucoma, with an expectation of this growing to 112 million by
2040 [110]. On the basis of anatomy and pathophysiology, glaucoma is classified into two
types: open-angle glaucoma (OAG) and angle-closure glaucoma (ACG). According to the
etiology of the disease, it can be categorized as idiopathic or primary glaucoma with no
identifiable cause, or secondary glaucoma with identifiable cause of elevated intraocular
pressure (IOP), such as pseudoexfoliative glaucoma. Categorized according to age of onset,
the most common form, primary OAG (POAG), has three subtypes, including primary
congenital glaucoma (starting prior or up to the age of three years), juvenile open-angle
glaucoma (JOAG, beginning from 3–5 years), and adult-onset POAG [111]. To date, it
has been reported that several risk factors, comprising increased intraocular pressure,
older age, and family history, contribute to the development of glaucoma [112]. However,
the complicated pathogenesis of glaucoma is still not well understood. Moreover, the
therapeutic options are limited and the biomarkers of diagnosis, therapy, and prognosis for
glaucoma are currently insufficient.

There are several reviews concerning the application of metabolomics in glaucoma [113,114]
and studies of glaucoma based on a metabolomics approach. We retrieved 16 full-text
articles in the area of clinical metabolomics from the PubMed database (Table 4). Most
studies focused on POAG, with various analytical platforms, including LC-MS, GC-MS and
1H NMR. Tang et al. [115] utilized LC-MS for the analysis of metabolic profiles of aqueous
humor and plasma from POAG patients. They identified cyclic AMP, 2-methylbenzoic
acid, 3′-sialyllactose in the aqueous humor, and N-lac-phe in the plasma as potential
biomarkers for POAG. Moreover, they found that the metabolic profiles in aqueous humor
and plasma were involved in the purine metabolism pathway. Based on GC-MS tech-
nology, metabolomic analysis of serum collected from 30 POAG patients and 30 healthy
subjects was performed [116]. The results showed that five amino acids or dipeptides
(glycine, lysine, glycine-L-proline, aspartyl-L-proline, L-γ-glutamyl-L-alanine), two hor-
mone derivatives (17-hydroxypregnenolone sulfate, 3α,7α-dihydroxycholanoic acid), one
purine derivative (hypoxanthine), one bile acid derivative (cholic acid glucuronide), and
one organic acid (citric acid) were significantly changed, compared to the control group.
In this study, researchers also analyzed the gut microbiota compositional profile. The
integrated analysis of metabolomics and gut microbiome revealed potential correlations
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between the GM and serum metabolites in the pathogenesis of POAG. In addition to LC-MS
and GC-MS, 1H-NMR has also been reported to analyze the metabolic profile of aqueous
humor from glaucoma patients [117–119]. Additionally, proton magnetic resonance spec-
troscopy (1H-MRS) embedded in the magnetic resonance imaging (MRI) scanner can gain
metabolite spectrum data. Zhang et al. [120] identified neurodegeneration of the central
visual pathway in primary glaucoma using this technology.

With respect to pathophysiological mechanisms, oxidative stress plays an important
role in the development of glaucoma. Takayanagi et al. [121] explored the association be-
tween systemic and local oxidative stresses in POAG and PEXG by utilizing a metabolomics
approach. They drew a conclusion that a low level of systemic antioxidant capacity was
observed, along with up-regulation of antioxidant enzymes in aqueous humor, suggest-
ing elevated oxidative stress in eyes with POAG, particularly in PEXG. For treatment
of glaucoma, metabolomics can also be used to develop potential therapeutic strategies,
such as the lowering of IOP by ascorbic acid metabolites [122], neuroprotective effects of
pyruvate or rapamycin [123], or nicotinamide [124], by protecting against mitochondrial
and metabolic dysfunction.

Table 4. Summary of metabolomics-based clinical studies of glaucoma.

Disease Samples Metabolic Biomarkers/Pathway Analytical
Platform

Untargeted/
Targeted Study Design References

POAG plasma (−) palmitoylcarnitine, hydroxyergocalciferol, C17
sphinganine, ergostanol LC-MS/MS Untargeted case-control [125] *

POAG plasma (fasting)
octadecadienyl-carnitine (C18:1), methionine
sulfoxide, propionyl-carnitine, PC (34:2), PC (34:4),
PC (36:4)

LC-MS Targeted (IDQ
p180 kit) − [126]

POAG plasma (fasting)

nicotinamide, hypoxanthine, xanthine, 1-methyl-6,7-
dihydroxy-1,2,3,4-tetrahydroisoquinoline,
cystathionine, N-acetyl-L-leucine, Arg, rac-glycerol
1-myristate, 1-oleoyl-rac-glycerol

LC-MS Untargeted − [127]

PACG plasma (fasting)

myristic acid, stearic acid, oleic acid, arachidic acid,
eicosenoic acid, eicosadienoic acid, eicosatrienoic
acid, AA, eicosapentaenoic acid, docosapentaenoic
acid, erucic acid, docosatetraenoioc acid,
docosahexaenoic acid, tetracosanoic acid

LC-MS/MS Targeted (FFAs,
lipids) cross-sectional [128]

PACG serum (fasting) palmitoleic acid, linoleic acid, γ-linolenic acid, AA GC-MS Targeted
(FFAs) − [129]

POAG serum (fasting)
Gly, Gly-Pro, Asp-Pro, citric acid, Lys, Glu-Ala,
MHPG, hypoxanthine, 17-hydroxypregnenolone
sulfate, 3α,7α-dihydroxycholanoic acid

GC-MS Untargeted − [116]

OAG aqueous humor
diacylglycerophosphocholines and 1-ether,
2-acylglycerophosphocholines, SM (d18:2/16:0), SM
(d18:1/18:0)

LC-MS Untargeted
(lipidomic) − [130] *

POAG aqueous humor

taurine, spermine, creatinine, carnitine,
propionylcarnitine, acetylcarnitine, Gln, Gly, Ala,
Leu, Ile, hydroxyl-proline, acetyl-ornithine, SM
(C18:1), LysoPC (C28:1), PC (34:1), PC (36:2), PC
(36:4), PC (38:4), PC (32:1)

FIA-MS/MS Untargeted
(lipidomic) case-control [131] *

PCG aqueous humor Gly, Phe, urea GC-MS Untargeted − [132]

POAG,
PEXG aqueous humor

Arg, Lys, Gln, Tyr, His, creatine,
2,4-diacetamido-2,4,6-trideoxy-beta-l-altrose,
5-hydroxypentanoate, N(6)-acetonyllysine,
propylene glycol,
1-aminocyclopropane-1-carboxylate

NMR,
LC-MS/MS Untargeted − [117]

POAG aqueous humor

biotin, glucose-1-phosphate, methylmalonic acid,
N-cyclohexylformamide, sorbitol, spermidine,
2-mercaptoethanesulfonic acid, galactose, mannose,
talose, erythronolactone, dehydroascorbic acid

GC-MS Untargeted case-control [133]

POAG aqueous humor

Lys, Arg, Cys, Gly, Gln, Phe, anthranilate, ascorbate,
4-hydroxybenzoate, myo-inositol, acetate, propylene
glycol, 2-hydroxy-butyrate, creatine, choline,
4-aminobutanoate, isopropanol

NMR,
LC-MS/MS Untargeted − [118]

POAG aqueous humor betaine, taurine, Glu NMR Untargeted cross-sectional [65]

POAG aqueous humor
adenine, N-acetyl alanine, hypoxanthine, Lys,
Phe-Glu, nicotinamide, 2-aminobutyraldehyde,
acetate

LC-MS Targeted − [134]

POAG aqueous humor,
plasma (fasting)

cyclic AMP, methylbenzoic acid, 3′-sialyllactose,
N-lactoyl-phenylalanine LC-MS Targeted − [115]

POAG tear Ala, Arg, Gln/Lys, Leu/Ile/Pro-OH, Met, Phe, Pro,
Val, acetylcarnitine, LysoPC (C22:0), LysoPC (C24:0) DI-MS Targeted − [135]

Amino acids [Ala: alanine; Arg: arginine; Asp: aspartic acid; Gly: glycine; Gln: glutamine; Glu: glutamic acid; Ile: isoleucine; His:
histidine; Leu: leucine; Lys: lysine; Phe: phenylalanine; Pro: proline; Tyr: tyrosine; Val: valine]. Lipids [AA: arachidonic acid; LysoPC:
lysophosphatidylcholine; MHPG: 3-methoxy-4-hydroxyphenylglycol; PC: phosphatidylcholine; SM: sphingomyelin]. DI-MS: direct infusion
mass spectrometry. * indicates partial list of differential metabolites. −: not stated in the article.
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4.5. Retinitis Pigmentosa (RP)

Retinitis pigmentosa (RP) is a group of inherited retinal neurodegenerative diseases,
involving more than 71 causative genes with greater than 3100 mutations [136]. Among
these genes, many are preferentially expressed in rod photoreceptors. As one of the most
common forms of rod–cone dystrophy, RP is characterized by initial rod degeneration,
followed by cone degeneration, resulting in night blindness as well as subsequent tunnel
vision and photophobia, and culminating in complete blindness [137]. RP can be grouped
into non-syndromic RP caused by mutant proteins implicated in some functional retinal
processes, and syndromic RP with systemic manifestations resulting from relevant gene
mutations in cells/tissues [138,139]. For instance, a recently identified peripherin rare
haplotype variant can cause impairments of photoreceptor outer segment renewal and pho-
totransduction [140], which is closely linked with retinitis pigmentosa punctata albescens
(RPA), a non-syndromic retinal degeneration. In addition to genetic factors, other factors
are closely associated with pathogenesis of RP, including inflammation [141,142], oxidative
stress [143], and gut microbiota [144]. To date, the treatment strategies of RP mainly include
supplementation with vitamin A, prosthetics, or gene therapy, although these treatments
are not without controversies and limitations. Thus, there is a critical need to deepen our
understanding of the underlying mechanism of RP and to develop alternative therapies
for RP.

Recently, there has been an increasing interest in metabolic reprogramming under RP
conditions. It has been reported that conditional ablation of the tuberous sclerosis complex
1 (Tsc1) gene in a preclinical RP mouse model (Pde6bH620Q/H620Q) can delay photoreceptor
degeneration [145], which suggests that reprogramming the metabolome can be used as a
therapeutic strategy. Similarly, Zhang et al. [146] have identified the therapeutic benefits of
metabolic reprogramming by targeting pyruvate kinase M2 (PKM2) in a Pde6β preclinical
model of RP. In the Pde6β rd10 mouse model, a method of broad spectrum metabolomics
was employed to detect abnormal metabolic pathways [147]. The results showed that sig-
nificant alterations occurred in retinal pyrimidine and purine nucleotide metabolism. Other
differential metabolites included a coenzyme A intermediate, 4′-phosphopantothenate, and
acylcarnitines, as well as nitrosoproline. The role of reprogramming the metabolome in res-
cuing retinal degeneration, including RP and AMD, has been highlighted in a review [148].
Based on the association between metabolic reprogramming and RP, a metabolite therapy
for RP has been proposed [149]. The first step of this strategy is to identify, using proteomic
analysis, the molecular pathways affected at the onset of photoreceptor death. The RP
model is then given dietary supplementation of a single metabolite, which is crucial in
those molecular pathways. For this strategy, a metabolomics approach is used to evaluate
metabolism changes in response to metabolite supplementation. A means of identifying
the pivotal metabolites in the affected molecular pathways is the key to this strategy, given
that a molecular pathway can involve multiple metabolites. In addition to common amino
acid, carbohydrate, and nucleotide metabolism, lipid metabolism also plays an impor-
tant role in the pathogenesis of RP. Osada et al. [150] utilized a strategy of gene editing
combined with lipodomics technology to reveal the role of ELOVL2 and docosahexaenoic
acid in the course of photoreceptor degeneration and vision loss. Overall, most previous
metabolomics studies of RP have been conducted in cell or animal models. To the best of
our knowledge, studies of RP in human subjects based on metabolomics have yet to be
carried out.

5. Discussion
5.1. Samples

In ophthalmology, systemic and local biofluids can be used for metabolomics stud-
ies of retinal diseases. The systemic samples mainly include blood, plasma, and serum,
which are extensively used because of their easy availability in comparison to local sam-
ples. Nevertheless, metabolome in blood-derived samples might be influenced by several
confounding factors, such as diet and lifestyle. In general, blood-derived samples are
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collected under fasting condition. In the above tables, collecting conditions of several
plasma and serum samples were not indicated or were under non-fasting condition. Local
(intraocular) biofluids comprise vitreous humor (VH), aqueous humor (AH), and tears.
Vitreous and aqueous humors are usually obtained during cataract or vitreous surgeries or
via paracentesis, which make them relatively difficult to collect. This has been a special
challenge in the application of metabolomics to retinal disease. Differences exist in sample
sources for metabolomics-based studies of different retinal diseases. For example, for AMD,
12 publications used plasma or serum as samples, accounting for 85.7% of studies (12/14),
as illustrated in Table 1. Meanwhile, for the metabolomics studies of DR, plasma, serum,
and vitreous humor have been the predominant sample sources (Table 2). For glaucoma,
besides plasma and serum, aqueous humor has become a principal sample source (Table 4).
AMD, being an eye disease of the posterior segment and with the influence of the retina
and ciliary body on the AH metabolomic composition [61], might be a cause of the seldom
use of AH in characterizing the metabolic profile of AMD. Although intraocular metabolic
alterations can be partially characterized by AH, the metabolomics composition of AH has
been extensively investigated in glaucoma due to the fact that an important etiological
factor of glaucoma is an elevated intraocular pressure, resulting from an imbalance between
inflow and outflow of AH [151]. In addition, after trans-scleral percolation, AH soaks
the trabecular meshwork and the anterior chamber of the eye [152], which may result
in glaucoma-related biomarkers entering into AH. Likewise, VH can directly reflect the
physiological status of the eyes [83]. Moreover, due to easy extraction during surgery and
anatomical contact with the retina, VH is often used as sample for metabolomics studies
of DR.

There are significant differences in metabolic profiles between systemic and local
samples of retinal diseases, which have been demonstrated [115]. This suggests that
potential biomarkers from systemic and local samples might be complementary for more
reliable diagnosis, treatment, and prognosis of retinal diseases. In spite of considerable
differences existing in the metabolic compositions of systemic and local samples, there
are several differential metabolites/potential biomarkers that have been detected in both
systemic and local samples of DR and glaucoma (Figure 2A,B). This can be explained by
inherent links between systemic and local metabolism via the blood aqueous barrier (BAB)
and blood retina barrier (BRB). There are also 10 shared differential metabolites/potential
biomarkers across three retinal diseases: AMD, DR, and glaucoma (Figure 2C, Table 5).
This suggests that common metabolic alterations occur across these retinal diseases.

Table 5. Shared differential metabolites/biomarkers between different retinal diseases.

Disease Common Differential Metabolites/Biomarkers

AMD-DR 12-HETE, acetate, Arg, Asp, carnitine, creatine, cytidine, Gln, GPC, His, hypoxanthine, inosine,
lactate, Met, nicotinamide, PC, Pro, pyruvate

AMD-Glaucoma acetate, adenine, Ala, Arg, betaine, carnitine, creatine, Gln, Gly, His, hypoxanthine, Ile, Leu, Lys,
Met, nicotinamide, palmitoylcarnitine, Phe, Pro, taurine, Tyr, Val

DR-Glaucoma acetate, Arg, carnitine, creatine, Cys, Gln, Glu, His, hypoxanthine, linoleic acid, Met,
nicotinamide, Pro, propionylcarnitine, xanthine

AMD-DR-Glaucoma acetate, Arg, carnitine, creatine, Gln, His, hypoxanthine, Met, nicotinamide, Pro

Amino acids [Ala: alanine; Arg: arginine; Asp: aspartic acid; Gly: glycine; Gln: glutamine; Glu: glutamic acid; Ile: isoleucine; His:
histidine; Leu: leucine; Lys: lysine; Phe: phenylalanine; Pro: proline; Tyr: tyrosine; Val: valine]; GPC: glycerophosphocholine; 12-HETE:
12-hydroxyeicosatetraenoic acid; PC: phosphatidylcholine.

5.2. Study Design

The listed metabolomics-based clinical studies of retinal diseases in above tables
almost all belonged to observational studies, e.g., cross-sectional studies or case-control
studies. Despite the fact that a majority of studies do not state the type of study design
in the article, judgement based on our best knowledge suggests that these studies were
cross-sectional study or case-control studies, without any longitudinal studies. Cross-
sectional studies cannot establish causal relationships between differential metabolites
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and diseases or their severity since cross-sectional sampling solely captures a snapshot
of a metabolic fingerprint at a given time point. Some identified biomarkers may rep-
resent short-term metabolic perturbations rather than chronic risk factors related to the
development of DR [81]. To date, longitudinal analysis is still lacking in the area of
metabolomics-based clinical studies of retinal diseases. Only one study has employed a
longitudinal analysis to characterize associations between circulating metabolites (lipids)
and DR. Curovic et al. [88] performed serum metabolomic cross-sectional analyses and
plasma lipidomic cross-sectional analyses, and identified a panel of differential metabolites
(lipids), including 2,4-dihydroxybutyric acid (DHBA), 3,4-DHBA, ribonic acid, ribitol, and
the triglycerides 50:1 and 50:2, which were significantly correlated (p < 0.042) to DR stage.
Based on the follow-up information on DR status, differential metabolite (lipid)-specific
Cox proportional hazards models were established for capturing association with any pro-
gression, onset of DR, and progression from mild to severe DR. Through these longitudinal
analyses, higher level of 3,4-DHBA was identified as a risk marker for progression of DR
after adjustment.
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5.3. Differential Metabolites/Biomarkers and Pathway

To clarify which differential metabolite/potential biomarker are the true biomarkers
with more accuracy, the frequency rate of each metabolite or class of metabolites in each
table (Tables 1–3) was calculated by R software (summary function).

For metabolomics-based clinical studies of AMD, phosphatidylcholines (PCs), includ-
ing PCs, glycerophosphocholines and LysoPCs, were frequently detected and identified as
differential metabolites. PCs are representative precursors to the remodeling pathway of
platelet-activating factor (PAF) synthesis. During the synthesis of PAF, the intermediate
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LysoPCs (LPCs) are produced. PAF has been identified as a potential biomarker for poly-
poidal choroidal vasculopathy (PCV), a subtype of AMD [60]. Besides PCs, carnitine and
its derivatives were also frequently discovered as differential metabolites. Carnitine, as a
dipeptide composed of lysine and methionine, is required for β-oxidation of long-chain
fatty acids in the mitochondria. Dysfunction of mitochondria is closely related to retinal
diseases [154]. For single metabolites, glutamine (Gln), phenylalanine (Phe), and tyrosine
(Tyr) were the most frequently identified differential metabolites/biomarkers.

For metabolomics-based clinical studies of DR, eicosanoids and their derivatives
(encompassing ETE, HETE, HDoHE, prostaglandins), and carnitine and its derivatives were
the predominant differential metabolites/biomarkers. For single metabolites, lactic acid,
pyruvate, and proline (Pro) were the differential metabolites with the highest frequency
rates (4, 4, 3). Proline is an important, preferential nutrient for RPE [39] and also mediates
metabolic communication between RPE cells and the retina [155]. Additionally, proline can
offer energetic supply under stress or hypoxia and serve as an antioxidant for maintaining
redox balance via regulation of mitochondrial function [156].

For metabolomics-based clinical studies of glaucoma, similarly to AMD, a majority of
differential metabolites/biomarkers belonged to PCs and carnitines. For single metabolites,
arginine (Arg), glycine (Gly), lysine (Lys), phenylalanine (Phe), glutamine (Gln), and
hypoxanthine were frequently identified as differential metabolites/biomarkers. Relative
to AMD, DR, and glaucoma, there have only been two metabolomics-based clinical studies
of ROP (Table 3). A common differential metabolite, citrulline, has been identified.

To identify which metabolic pathway has been principally implicated in the develop-
ment of retinal diseases, a pathway analysis was performed by using MetaboAnalyst [157].
All differential metabolites/biomarkers in each table (Tables 1–4) were used as an input
set for pathway analysis. As a result, 14 metabolic pathways related to AMD (Figure 3A),
13 metabolic pathways related to DR (Figure 3B), 14 metabolic pathways related to glau-
coma (Figure 3C) and 7 metabolic pathways related to ROP (Figure 3D) were significantly
enriched (p < 0.05). For example, the significant and impactful pathways in DR mainly in-
cluded “arginine biosynthesis”, “alanine, aspartate and glutamate metabolism”, “arginine
and proline metabolism”, and “D-glutamine and D-glutamate metabolism”, as depicted on
Figure 3B. Although aminoacyl-tRNA biosynthesis was the common significant pathway
among different retinal diseases (Figure 3) and different sample sources, it showed little or
no impact. This pathway has been involved in extensive cellular translation events and
cellular energy requirements [158]. Some changes in the concentration of amino acids may
result in this bias, which is usually identified by MetaboAnalyst algorithm [36].
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6. Conclusions and Perspectives

In summary, this article provides a systematic review of metabolomics studies of
retinal diseases including AMD, DR, ROP, glaucoma, and RP. Metabolic profiling using
vitreous humor, aqueous humor, plasma, serum, blood, and tears from patients with retinal
diseases has revealed unique features and metabolic patterns of the metabolite landscape,
which has shed new light on identification of novel biomarkers for retinal disease diagnosis,
treatment, progression, and prognosis. For example, a protective effect of taurine against
mitochondria-related metabolic impairments in the retinal pigment epithelium [49] and
neuroprotection of nicotinamide on glaucoma [124] have been discovered. Nevertheless,
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metabolomics research of retinal diseases is still some way from clinical translation due
to a variety of factors, including the complexity and heterogeneity of retinal diseases.
Moreover, most clinical studies involving metabolomics investigations are still preliminary
and exhibit significant limitations. Lack of effective validation of biomarkers and evaluation
of cohort size are common, while some confounding factors, such as gender, are not always
considered or eliminated. Overall, more rigorous experimental design and further large-
scale, multicenter clinical studies are urgently needed.

It is noteworthy that some exciting trends have been emerging in the published work.
Several studies have involved acquisition of two independent datasets, including a discov-
ery set and validation set for identifying reliable biomarkers. Integration of metabolomics
with other advanced technologies for delineating molecular mechanism behind retinal
diseases is another development. There are advantages and disadvantages existing in each
analytical technique, so in order to fully exploit their strengths, a combination of multiple
analytical platforms has already been implemented in metabolic profiling studies of retinal
diseases, such as LC-MS/NMR-based metabolomics in glaucoma [117]. Additionally, mass
spectrometry imaging has been combined with metabolomics in the investigation of various
molecular events, such as de novo purine synthesis in cells [159]. Furthermore, multi-omics
integration, such as metabolomics and proteomics, and metabolome and microbiome, is
becoming a promising strategy for exploring the pathogenesis of retinal diseases.
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