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ABSTRACT: The typical spectrally limited laser pulse in the near-
infrared region is narrow-band up to 40−50 fs. Its spectral width
Δk is much smaller than the carrying wavenumber k0 (Δk ≪ k0) .
For such kinds of pulses, on distances of a few diffraction lengths,
the diffraction is of a Fresnel’s type and their evolution can be
described correctly in the frame of the well-known paraxial
evolution equation. The technology established in 1985 of
amplification through chirping of laser pulses triggered remarkable
progress in laser optics along with the construction of femtosecond
(fs) laser facilities producing high intensity fields of the order of
1015−1021 W/cm2. However, the duration of the pulse was quickly
shortened from picoseconds down to 5−6 fs, which have a broad-
band nature (Δk ∼ k0). The linear and nonlinear propagation dynamics of broad-band pulses is quite different form their narrow-
band counterparts. Here, we review the appropriate theoretical approach to study the evolution of the pulse. Moreover, we shed light
on the different diffraction regimes inherent to both narrow-band and broad-band laser pulses and compare them to unveil the main
differences. Using this very method, in subsequent papers, we will investigate the influence of the dispersion and nonlinearity on the
laser pulse propagation in isotropic media.

1. INTRODUCTION
The technology established in 1985 of amplification through
chirping of laser pulses1 promoted fast progress and
construction of femtosecond (fs) laser facilities producing
high intensity electric fields on the order of 1017−1021 W/cm2.
However, the duration of the pulse was quickly reduced from a
few picoseconds to 5−6 fs. This allowed the unfolding of
unexpected novel nonlinear effects due to multiphoton
ionization, high harmonics emission, plasma defocusing, tunnel
ionization, and many other mechanisms. Experiments inves-
tigating the propagation of fs pulses in air, in a gas medium, and
quartz glass unveiled other nonlinear phenomena such as
filamentation,2 GHz and THz emissions,3,4 rotation of the
polarization plane,5 merging, and energy exchange between
filaments.6 During the early experiments in air on filamentation,3

the typical experimental set up already produced nonlinear focus
by self-focusing, where the field intensity reached values as high
as 1014−1015 W/cm2 to allow for plasma generation and
defocusing processes. Therefore, the first theoretical models3,7

relate the waveguide propagation with a balance between self-
focusing and plasma defocusing. The standard theory of
filamentation applies under the assumption that the intensity
is about I ∼ 1014 W/cm2 and that the plasma density is on the
order of 1016 cm−3. The theoretical models obeying these
requirements8 are based on a balance between self-focusing,
diffraction, and ionization defocusing. However, “this balance

was never identified in numerical simulations” as it was claimed.
Recently, it was determined9 that a stable ionization-free
filament with power in the range P ∼ 2−10 of the critical for
self-focusing, propagates with an intensity significantly lower
than I ∼ 1014 W/cm2. Moreover, a stable filament with a weak
plasma string of a few centimeters shows up a few meters away
from the source, with power in the range P ∼ 10−19 of the
critical for self-focusing, with a stable spot (without self-
focusing) and intensity in the range I ∼ 1010−1011 W/cm2. So,
why does the plasma string appear at such a low intensity of the
laser pulse? The answer to this question is provided in ref 9,
where it is suggested that this effect could be traced back to the
emergence of a new type of collision ionization.

Despite the overwhelming number of papers on the standard
classical model, the equations of paraxial nonlinear optics
include terms accounting for tunnelling and multiphoton
ionization, higher orders of nonlinearities (χ (5), χ(7), ...),
Raman effects, and other effects. In general, the problem is not
solvable analytically and thus the equations should be solved
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numerically with the aid of very powerful computers. Through
parameters’ tuning, the main aim is to obtain a relatively stable
waveguide propagation of the filament. Let us point out that the
first inconsistencies in these models are related to the fact that
the paraxial equations assume narrow-band pulses, while the
filament becomes broadband over a few diffraction lengths. This
is one of the main reasons this approach has not demonstrated
waveguide propagation, while in the experiments on a vertical
trace the stable filament reaches a few kilometers. Seemingly,
there are some shortcomings manifested in the linear component of
the model’s amplitude equations. Additionally, there are discrep-
ancies between the plasma-like interpretation of f ilamentation and
the outcome of real experiments. For instance, in experiments
employing long-focus distance lenses aiming to avoid the
nonlinear focus10 and then in almost all leading laboratories a
filamentation without ionization of the medium is observed.
Another fundamental contradiction between experiments and
the standard theory is that the measured intensity in the stable
filament is on the order of 1011−1012 W/cm2, which is two to
three orders lower than the intensity needed for defocusing by
ionization. In all experiments on filamentation this effect is being
observed when the power of the laser pulse is a bit higher than
the critical one for self-focusing 5−10 GW. The critical power
value for self-focusing is given by Pcr = π(0. 61λ0)2/(8n0 n2),
where n0 and n2 are the linear and nonlinear refractive indices,
respectively, and λ0 is the carrying wavelength of the laser pulse.
Let us point out that this quantity also defines the intensity of the
electric field for laser pulses. For pulses with spot diameters in
the range of 100−200 μm, the intensity I ≈ 1012 W/cm2.
Recently,9 experiments on the filamentation process of a 35 fs
laser pulse showed that when the power reaches the value of 15
Pcr, a weak plasma column is observed with an intensity of the
electric field below the critical one needed to trigger ionization.
Thus, a new nonparaxial model of filamentation and a new type
of collision ionization obtained from single broadband filaments
in air were developed. The ensuing collision ionization may be
traced back to trapping by polarization forces of neutral particles
into the pulse envelope. As the density of trapped particles grows
gradually, and as it reaches a critical value, their collision with the
free ones leads to ionization of the medium.11 The stable
propagation of the laser pulse with a power in the range Pcr <
Ppulse < 20Pcr and the observation of very weak ionization
patterns into the pulse during this process, lead to the following
basic questions:

1 What kinds of equations are suitable to describe both
dif f raction and dispersion of broad-band (few and phase-
modulated 20 − 40) femtosecond pulses?

2 What kinds of nonlinear processes of narrow and broad-band
pulses lead to asymmetrical spectrum broadening f rom the
inf rared spectral region to the visible one and the mechanism
of f ilamentation?

3 What kinds of mechanisms are involved in merging and
energy exchange between the f ilaments?

This review attempts to correctly solve the diffraction
problem raised in the first question, based on the accumulated
theoretical and experimental results obtained over the last few
decades.

2. LIMITS OF APPLICABILITY OF THE AMPLITUDE
APPROXIMATION IN THE LINEAR AND NONLINEAR
OPTICS

Typically, the electric field vector of a laser source is linearly
polarized, i.e., (E⃗ = Ex x)⃗, and the nonlinear propagation of
ultrashort optical pulses in isotropic materials is described
generally by the scalar integro-differential nonlinear wave
equation12,13

{

}

=

+ {[ * ] }

E
c

E
t c t

R E t r d

R E t r E t r E t r

d d d

1 4
( ) ( , )

( , , ) ( , ) ( , ) ( , )

,

2

2

2 2

2

2 0

(1)

0

(3)
1 2 3 1 2 3

1 2 3 (1)

where E(t,r) ≡ E(x, y, z, t) and E*(t,r) ≡ E*(x, y, z, t) are the Ex
component and its complex conjugate of the linearly polarized

electrical field, = + +
x y z

2

2 2

2

2 2

2

2 2 is the Laplace operator,

R(1) and R(3) are, respectively, the linear and nonlinear response
functions of the isotropic medium, and c is the vacuum light
velocity. The methods for solving this complex integro-
differential equation are based on the fact that the convolution
integrals are performed only over time. Representing the
electrical field as an amplitude envelope and a plane wave, i.e.,
E(r, t) = A(r, t) e−i(k0 z − ω 0 t) + c.c, where k0 and ω0 are the
carrying wavenumber and frequency of the laser electric field,
equation (1) transforms into
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where Â is the Fourier transform in time of the amplitude A. In
the integrand in the Fourier-like integral on the right-hand side
of equation (2) only the linear wave vector function klin2 (ω) = ω 2

ε(ω) /c2 [ε(ω) is the dispersion of the media] depends on the
frequency ω. All other functions depend on the frequency
difference ω − ω 0. The transformation of this linear integro-
differential equation to the usual differential one can be obtained
after performing a series expansions of the square of the linear
wavenumber k2(ω) around the carrying frequency of the laser
pulses ω0 yielding
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This is the so-called approximation of slowly varying amplitude,
which assumes that equation (3) is valid for narrow-band pulses
with a significant number of cycles under the envelope.12

Hereafter, we will show that actually, such an expansion is
correct up to single-cycle pulses (broad-band), if the differential
operator series in the brackets of the right-hand side of equation
(3) is strongly convergent. The convergence of the series gives the
possibility to approximate it and thus for solving the differential
equation it may be usually cut off to the second order of the
linear dispersion.
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To make a quantitative analysis of the series convergence, we
normalize in time the amplitude function and its derivatives in
equation (3). The normalized amplitude of a localized in time
pulse can be written as

=A A A x y z t t( , , , / ),0 0 (4)

where A0 is the normalizing amplitude, t0 denotes the initial
temporal duration of the pulse, A′ → 0 at the limits t→ ± ∞, and
max A′ = 1. Substituting expression (4) in the Taylor series on
the right-hand side of equation (3), we obtain a product of
normalized functional series and numerical Taylor series of the
linear polarization operator

+
!=

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

k A i k
t

A
t

k
t

A
t

i
m

k
t

A
t

1 1
2

1

( ) 1 .
m

m m

m m

m

m

0
2

2

0

2 2

2
0
2

2

2

3

2

0

0 0

0 (5)

The normalization of the amplitude transforms the functional
series (5) into a series of the derivatives of the normalized
localized function (distribution)
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where superscripts designate the order of the derivatives.
Alternatively, the normalized numerical Taylor series of the
wavenumber square in equation (5) takes the form
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where the superscripts denote the corresponding derivatives.
The Taylor series of the wavenumber square expansion (7)
around the carrier frequency turns into a series, for which the
dimensionality of each term is equal to the dimensionality of the
first term−the square of the wavenumber (cm−2). If expressed in
terms of the functional (6) and the numerical series (7), then the
right-hand side of equation (5) becomes

= + ··· + + ···R A k A g f ig f g f i g f( , ) ( ( ) ).m m m2
0

0 0 1 1 2 2

(8)

The maximal value of the function f ′0 in the first term of the
function series (8) is 1, and the maximal values of the derivatives
f ′m are always less than one. This is a typical property of the
normalized distribution functions. Each term of the series (8) is
a product of a numerical Taylor series (7) and a normalized
majorant series of a distribution function and its derivatives (6).

For the series (8), we choose the maximal values of the function
terms in equation (6). Thus, the series (8) turns into a numerical
series of the type
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Thus, we apply the following lemma: a suf f icient condition for the
convergence of the series of the linear polarization operator (5) is
that of the convergence of the numerical series
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The properties of the series Pm(k2, t0) will be analyzed for optical
pulses of wavelength λ = 800 nm propagating in air and having
distinct temporal durations t0. More specifically, we will express
the different pulse widths t0 in terms of the number of
oscillations of the carrier frequency at a level e−1 from the pulse
maximum t0 = N T0 with optical period T0 = n0λ0/c. For a
wavelength λ = 800 nm, we obtainT0 ≈ 2.6 × 10−15 s. Moreover,
the Ciddor formula14 has been applied to compute the dielectric
constant ε(ω), the square of the wavenumber and its derivatives
in equation (10), whose convergence will be studied by varying
the number N from N = 100 (the case of slowly varying
amplitudes) toN ∼ 2 (two optical cycle pulse) for the dispersion
expansion up to the 5th order. Let us use the following notation
for the mth component of the Taylor series:
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The values of the numerical expansion (11) for a spectrally
narrow pulse (t0 = 266 fs andN = 100) are presented in Table 1.

The value of the ratio β 3/β2, i.e., the third to the second series
term (11) is of the order of 10 −7. Thus, truncating the expansion
in equation (3) at the second order term of the dispersion is
sufficient for describing the dynamics of a narrow-band wave
packet propagating in air.

Now, we turn our attention to the convergence of the series
(11) for broad-band pulses. Table 2 displays the results for the
series truncated to the 5th order term for a spectrally broad pulse
with two cycles (N = 2 and t0 = 5.3 fs). These estimates show that
for a gas medium with weak dispersion, truncation of the
expansion in equation (3) at the second order term is sufficient
for the description of pulses with even one or two optical cycles
under the envelope. It is worth mentioning that it can be easily
seen from the data in Tables 1 and 2 that the approximation used
for the dispersion curves is close to a quadratic one for the
amplitude function.

Table 1. Results for the Dispersion Expansion up to the 5th Order for N = t0/T0 = 100
a

β0 β1 β2 β3 β4 β5

6.1 × 109 9.8 × 106 3.9 × 103 6.38 × 10−5 1.4 × 10−8 9.2 × 10−13

aThat is, for a 266 fs pulse (t0 = 266 fs) at wavelength λ = 800 nm and optical period T0 ≈ 2.66 × 10−15 s.

Table 2. Values of the 1st to the 5th Components of the Taylor Series (11) for Spectrally-Broad 5.3 fs Pulse (n = 2)a

β0 β1 β2 β3 β4 β5

6.17 × 109 4.9 × 10 8 9.7 × 10 6 7.9 9.01 × 10 −2 2.8 × 10−4

aThe series is also strongly convergent. The ratio of the third to the second orders term of dispersion β 3 /β 2 is of the order of 10 −6.
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In addition, we perform similar calculations for fused silica,
where the dispersion ε(ω) was calculated using the Sellmeier
dispersion formula. The series is also strongly convergent for
spectrally broad 5.3 fs, but the ratio β3/β2 of the third to the
second dispersion term is now 10−3. As it can be seen, for fused
silica, it is also possible to truncate the expansion in equation (3)
to the second order, but the third order dispersion can play the
role of a small parameter, even in the spectral region where β2 ≠
0.
To sum up, the above analysis of the series expansion of the

linear polarization (3) suggests that it is possible to employ a
linear amplitude approximation to describe the dynamics of
broad-band optical pulses with durations up to one optical cycle,
using the expansion (3) to the second order in air, and including
the third dispersion order as a small parameter in fused silica.
In general, the nonlinear response time function R(3) is shorter

than the linear one R(1). As it is shown in ref 13, this corresponds
to a nonlinear response time τ nlin ≈ 100, which is much shorter
than the linear response time τ lin ≈ 2.5 fs. This is yet an
additional reason to use the nonlinear amplitude approximation
to describe the dynamics of broad-band optical pulses with
durations down to one optical cycle, using the second-order
amplitude approximation in air or the third dispersion order in
fused silica.

3. LINEAR AMPLITUDE EQUATION UP TO FIRST
ORDER OF THE DISPERSION: DIFFRACTION

The linear amplitude equation (3) up to the second order of the
group-velocity dispersion can be written as
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where Δ ⊥ = ∂2/∂ x2+∂2/∂ y2 designates the transverse Laplace
operator,A(x, y, z, t) is the amplitude envelope, β = k0 k″vgr2 is the
dimensionless group velocity dispersion parameter, k0 is the
carrying wavenumber, vgr is the group velocity, and k″ is the
group velocity dispersion. In some applications, such as
generation of high harmonics with fs pulses, construction of
petawatt laser systems etc., when vacuum tubes are used, due to
the significant reduction of atmospheric gases, dispersion effects
are absent. For this type of investigation, the group velocity
dispersion may be neglected and the amplitude equation (12) to
the first order of the dispersion, group velocity, takes the form
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Equation (13) is actually equivalent to the wave equation
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when the electrical field is represented as

= [ ]E x y z t A x y z t ik z v t( , , , ) ( , , , )exp ( ) ,0 gr (15)

So, by solving the problem of dispersion-free propagation of an
optical pulse, we simultaneously solve the wave equation for
propagation in a medium with group velocity equal to the phase
velocity, without accounting for the dispersion. The solution of
the wave equation (14) will be obtained from the solution of the
amplitude equation (13) after multiplication by the carrier

frequency and wavenumber (15). Using the method of the
amplitude envelope (15), a number of analytical solutions, with
finite energy, of the linear wave equation (14) were obtained in
ref 15.

The theory in the standard paraxial optics is written in local
time coordinates, z = z and τ = t−z/vgr, thus we may apply the
analysis in the same coordinate system. The amplitude equation
(13) in local time coordinates takes the form
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We will apply a three-dimensional Fourier transform to the
amplitude function (16) of the kind: Â(kx, ky, Δω/vgr, z) =
F[A(x, y, τ, z) ], where the function F stands for the three-
dimensional Fourier transform in the (x, y, τ) coordinates. In the
momentum (kx, ky, Δω/vgr) Fourier space, equation (16)
transforms into the one-dimensional second order ordinary
differential equation of the kind:
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where Δω = ω − ω 0; Δkz = Δω/vgr are the frequency and
wavenumber spectral components of the laser pulse, respec-
tively. The fundamental solution of equation (17) reads
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The solution of the amplitude equation in real space can be
obtained by analytical or numerical solution of the inverse
Fourier transform
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where vgr = c in vacuum. Depending on the relation between the
wavenumber k0 and spectral width on the level of the e−1 from
the maximum of the initial pulse Δkz

0 = Δω0/vgr, we determine
three different domains and kind of the pulses:
(a) Narrow-band pulses when the spectral width is much

smaller than the carrying wavenumber.

=k v k/z
0

0 gr 0

(b) Relatively narrow-band pulses with spectral width smaller
than the carrying wavenumber.

= <k v k/z
0

0 gr 0

(c) Broad-band laser pulses having a spectral width of the
order of the carrying wavenumber.

=k v k/z
0

0 gr 0
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Hereafter, we will perform the analysis of the fundamental
solution (18) in these three cases.

4. NARROW-BAND LASER PULSES (ΔKZ
0 = Δω0/VGR ≪

K0): PROPAGATION DISTANCES, WHERE THE
FRESNEL’S TYPE DIFFRACTION WORKS

Spectrally limited laser pulses with time duration from
nanoseconds up to Δt > 50−100 fs, in the near-infrared region
(800 nm) satisfies the relation for narrow- band pulses Δkz

0 =
Δω0/vgr ≪ k0.
In this case, as the wavenumber k0 is significantly larger than

the spectral width Δkz
0, thus we can use the approximation

k k
v0 0

gr
in equation (18) to obtain
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Alternatively, the square of the wavenumber k02 is significantly
larger than the square of the transverse wave numbers or the
laser pulse kx

2, ky
2, (kx

2 + ky
2) /k02 ≪ 1. Whence, we can use

correctly the Tailor series of the square root as the series is
rapidly converging
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In the case of narrow-band pulses, having in mind the linear
order term from equation (21), we obtain
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This is the typical Fresnel’s spectral kernel and it is equal to the
spectral kernel of a laser in CW regime. Equation (22) is solution
in the Fourier space of the well-known Leontovich equation:16

=ik A
z

A2 .0 (23)

As it can be seen, for narrow-band pulses in the diffraction
regime, that the transverse wave numbers increase rapidly with
the propagation distance (kx

2 + ky
2) z/2k0, where k0 is a constant.

It must be pointed out that the Fresnel’s dif f raction is valid in a
domain, where the transverse spectra k⊥(z) = (kx

2 +ky
2) z is much

smaller than the square of the wavenumber k0, i.e.

= +
k

k z z
k

k k1
2

( )
2

( ) 1.x y
0 0

2 2

(24)

As it can be seen from equation (24), the transverse spectra
k⊥(z) grows linearly with the propagation distance z. Thus, at
some fixed distance from the source z0 the series (21) will not
converge faster and thus will turn into a domain, where the
higher order terms of the Tailor series should be accounted for.
From the mathematical point of view, a series is still rapidly
converging when the second term is o(−1) = 0.1 and the third
term is o(−2) = 0.01 with respect to unity, i.e
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Thus, we have the following definition: The paraxial
approximation for laser pulses is valid over a distance, where the
Taylor series (21) is strongly converging. This condition is fulf illed
f rom the mathematical point of view when the relations (25) are
satisf ied.

This definition, along with the relations (25) give us one
quantitative criteria for determining the propagation distance,
where we can apply the Fresnel’s approximation. From equation
(25) it follows that this distance must obey

<
+

z
k

k k
1

0.05
.

x y
0
Fresnel 0

2 2
(26)

To determine the correct Fresnel’s propagation distance z0Fresnel
of a laser pulse, we will analyze equation (26) in two basic cases
depending on the initial length of the laser pulse compared to e−1

from the maximum, namely (i) Δx0 = Δy0 = 10−1 cm and (ii)
Δx0 =Δy0 = 10−2 cm. The calculation of the transverse spectra in
both cases is based on the relations between the spectral width
and the spatial dimension of a spectrally limited Gaussian pulse,

i.e., = = =i
k
jjj y

{
zzzk kx y x y

2 2

0 0
. Thus, in both cases the initial pulse

spectra satisfies the condition (kx
2 + ky

2)/k02≪ 1, that is using only
the first term in the Taylor series (Fresnel’s approximation) is
correct.

The Fresnel’s propagation distance z0Fresnel obtained from
equation (26) for both cases takes the values z0Fresnel = 20 m and
z0Fresnel = 20 cm for (i) and (ii), respectively. In the first case, the
diffraction length is zdiffr = k0(Δx2 +Δy2) ≈ 15.7 m and nearly up
to one and half of diffraction length, we can expect Fresnel’s type
diffraction without influence of higher terms in the Taylor series
(21). While, in the second case, the diffraction length is zdiffr =
k0(Δx2 + Δy2) ≈ 15.7 cm and again up to one and half of
diffraction lengths we can expect the appearance of a Fresnel’s
type diffraction.

There is a so-called “grey zone” at distances higher than a few
diffraction lengths, where again the diffraction is still in a plane,
orthogonal of the direction of propagation, but the higher order
term in the Taylor series (21) must be kept in mind. This is due
to the fact that the series (21) in these domains become slowly
convergent.

Contemporary petawatt laser facilities use vacuum tubes for
laser pulses propagation up to hundred meters to reach the
investigated objects. In vacuum, due to the negligible non-
linearity, the main physical mechanism leading to the trans-
formation of femtosecond laser pulses is diffraction. Thus, for
correct engineering of the tubes one must bear in mind the
results of this paragraph, stating that Fresnel diffraction takes
place even at narrow band pulses of one/two diffraction
length(s) only.

5. RELATIVELY NARROW-BAND PULSES ΔKZ
0 =

Δω0/VGR < K0: REDUCTION OF THE DIFFRACTION
LENGTH AND THE FRESNEL’S ZONE

Spectrally limited laser pulses in the near-infrared region, with
time duration in the range 10 < Δt < 50 fs, as well as phase
modulated fs pulses, satisfy the condition Δkz

0 = Δω0/vgr < k0. In

ACS Omega http://pubs.acs.org/journal/acsodf Mini-Review

https://doi.org/10.1021/acsomega.4c02996
ACS Omega 2024, 9, 20648−20657

20652

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02996?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


this case in the spectral kernel of equation (18), the difference
=k k k

v z0 0
gr

cannot be replaced by k0 and we will look

for a solution of equation (18) for the translated wavenumber’s
=k kz v0

gr
. With respect to the transverse spectra, we still

have the condition

+ = +k k k v k k k( )/( / ) ( )/ 1.x y x y
2 2

0 gr
2 2 2 2

(27)

Therefore, we can expand the spectral kernel in equation (18) in
a Taylor series and restrict ourselves to the first term in the
expansion
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The solution (18), keeping in mind the Taylor expansion (28),
for such kind of pulses transforms into
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As Δk/k0 < 1, we can use the series (1 − Δk/k0) −1 ≈ 1 + Δk/k0
+ (Δk/k0) 2 + ···, and the solution (29) becomes
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As it can be seen from equation (30) in the first approximation
again we have a Fresnel’s spectral kernel. In the second
approximation, as there is a linear dependence on Δω/vgr = Δkz,
the pulse grows very weakly in the z direction, but the
deformation is still in the plane orthogonal to the direction of
propagation. This weak enhancement in the z direction leads to
a weak decrease of the diffraction length
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(31)

It is not difficult to show that the spectral kernel in equation
(29), corresponds to the Akhmanov-Brabec-Boyd (ABB)
approximation13,17 of the amplitude equation (16) in dispesion-
less media after removal of the second derivative in the z
direction from equation (16). Then, we end up with

=ik
A
z

A
v

A
z

2
2

.0
gr

2

(32)

The main difference of (32) from the Leontovich one (23) is
that in the solution (29) of equation (32) the spectral width of
the laser pulse is taken into account via the translated
wavenumber k̃ = k0 − Δkz. However, the reduction of the
wavenumber leads to a reduction of the length of the Fresnel’s
zone too. For instance, the Fresnel’s domain shrinks from 20 to
18.5 m for a 20 fs pulse. In the case of pulses with time duration
greater than 100 fs, the reduction of the Fresnel’s zone is
negligible. In Figure 1, we present the side projection of the
evolution of a Gaussian pulse with time duration 20 fs, as a
solution of equation (32), with spectral kernel (29) at a distance
of two reduced diffraction lengths. As it can be expected, the
diffraction picture again is of a Fresnel’s type, with enlargement
of the pulse in the plane, orthogonal to the propagation
direction.

The typical petawat laser system produces femtosecond laser
pulses solely in the time region 10 < Δt < 50 fs. That is why in
vacuum tubes the ABB equation (32) determines the Fresnel
zone more accurately. Thus, for engineering these tubes, instead
the Leontovich equation (23), calculations must be performed
with the aid of ABB (32). In this regime a limitation up to one/
two reduced diffraction length(s) holds also, where a similar to
the Fresnel diffraction enlarging of the laser pulse in a plane,
orthogonal to its propagation direction, can be observed.

As mentioned in the above two paragraphs, for engineering
laser facilities with spectrally limited laser pulses with time
durations from nanoseconds up to 10 fs, as well as for the
transportation of these pulses by vacuum tubes, the calculation
of Fresnel type diffraction by equations (23) or (32) must be
restricted up to one/two diffraction length(s), where the Taylor
expansions (21) and (28) are strongly convergent.

It is natural that the following main question raises: What
equation describes pulse propagation on arbitrary distances up
to a hundred diffraction lengths? The answer will be given
hereafter.

Figure 1. Side projection of the Intensity profile of a Gaussian pulse with time duration 20 fs, as solution of equation (32), at a distance of two reduced
diffraction lengths zdiffr = kσ̃ 0

2 = (k0 − Δω0/vgr) σ0
2 at z = 0 (left panel), z = zdiffr(middle panel) and z = 2zdiffr(right panel). As it can be expected, the

diffraction picture is of a Fresnel’s type, with enlargement of the pulse in the plane, orthogonal to the propagation direction.
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6. DIFFRACTION OF BROAD-BAND PULSES (ΔKZ
0 =

Δω0/VGR ≈ K0): SOLVING THE AMPLITUDE EQ (13)
IN GALILEAN FRAMEWITHOUTAPPROXIMATIONS:
λ(3) TYPE DIFFRACTION

The analysis provided above shows that paraxial optics is
applicable only at a few diffraction lengths for narrow-band
optical pulses. The ABB modified equation (32) determines the
paraxial diffraction in a plane, orthogonal of the direction of
propagation, on a reduced distance and with reduced diffraction
length. Diffraction of broad-band pulses is quite different from
narrow band ones and it is not in a plane, orthogonal to the
propagation direction. For the first time, laser pulses with time
durations of 4−6 fs in the frame of a wave equation were
investigated numerically by Christov,18 who obtained an
unexpected parabolic deformation of the intensity profile,
outside of the plane, which characterizes the Fresnel diffraction.
Later, by numerically solving the Maxwell’s equation in a
vacuum for attosecond pulses, (which is equal to analyzing the
same wave equation), such parabolic deformation of the pulse
was obtained by other authors.19 This type of diffraction with
parabolic deformation of the intensity profile was dubbed λ(3)

diffraction. A few years later the authors of ref 20 analytically
solved the wave equation (13) for an initial Gaussian pulse. It
was shown that depending on the number of cycles inside the
pulse, there are different kinds of diffractions. For pulses with 2−
4 cycles inside the pulse, as well as for phase modulated
broadband ones,21 at two-three diffraction lengths, typical λ(3)

diffraction was obtained. While the solution for narrowband
ones (with more than 5−10 cycles inside the pulse), at the same
distances, only Fresnel’s diffraction can be seen. We determine
one important dependence: with decreasing of the spectral
width of the pulse from broad-band to narrow-band, the λ(3)

diffraction shows up at long distances from the source, while at a
few diffraction lengths the solution is typical to Fresnel’s type
one.
To see the actual three-dimensional deformation of a laser

pulse due to diffraction, as well as to create a Fourier code for
numerically or analytically solving the amplitude equation (13),
it is more convenient to transform it in Galilean coordinates.
The linear amplitude equation (13) in Galilean coordinates (z =
z − vgrt; t = t), when the second order of the group velocity
dispersion is neglected β = k0vgr2 k″ ≪ 1, takes the form
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The amplitude equation (33) is equal to the wave equation but
this time written in Galilean coordinates
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when the electric field is presented as

= [ ]E x y z t A x y z t ik z( , , , ) ( , , , )exp .0 (35)

As mentioned in Section 5, the Leontovich and ABB equations
are valid up to one/two diffraction length(s), while the
amplitude equations (13) and (33) are obtained using the
convergence of the series equation (9) and are correct over a
range from single cycle pulses up to ns regime. Therefore, these
equations are valid on the propagation distance of the laser
pulse.20

To solve equation (33), we proceed by applying a three-
dimensional Fourier transform to the amplitude function of the
kind: Â(kx, ky, kz − k0, t) = F[A(x, y, z, t) ], where F is the three-
dimensional Fourier transform in the (x, y, z) space coordinates.
In the (kx, ky, kz − k0, t) Fourier space equation (33) transforms
into the one-dimensional second order ordinary differential
equation of the kind

+ + + =i
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gr gr
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(36)

where Δkz = kz − k0 = Δω/vgr is wavenumber’s spectral variable
of the laser pulse. The fundamental solution of equation (36)
reads
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When we investigate broad band pulses, as Δkz
falf−max ≈ k0, the

relation (kx
2 + ky

2) /(k0 − Δkz) 2 is no longer a small parameter
and a Taylor expansion, as it was performed in the previous cases
of narrow band pulses, is not possible. Thus, we solve equation
(37) without the use of approximations for the initial Gaussian
pulse. The solution of the amplitude equation in the real space

Figure 2. Side projection of the evolution in vacuum of the electrical field of a broad-band Gaussian pulse with time duration 6 fs (λ0 = 800 nm), as
numerical solution of equation (33). Left panel (z = 0) and right panel (z = 2zdiffr).
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here as well can be obtained by analytical or numerical solution
of the inverse Fourier transform
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The expression under the square root is always positive. Thus,
the numerical inverse Fourier transform in real space may be
obtained always.
Using equation (38) we can solve equation (33) numerically.

The ensuing results showing the behavior of the amplitude of
electrical field in vacuum are depicted on Figure 2. Notice that at
a distance of two diffraction lengths, a typical λ(3) diffraction
shows up. By increasing the time duration of the pulse
(decreasing its spectral width), the λ(3) diffraction is shifted in
the faraway domain with respect to the source. It is worth
mentioning that the numerical result repoduces exactly the
analytical solution obtained in ref 20.

7. CONCLUSIONS
The popular models describing laser pulse propagation in
transparent media usually use a paraxial approximation in the
linear component and do not take into account that the named
approximation is limited on the propagation distance.
Alternatively, as it can be seen from the above analysis, in the
femtosecond domain the pulse can be easily transformed from
narrow-band to broad-band.
The evolution dynamics and the diffraction regime of these

two types of pulses are quite different. While the narrow-band
pulses diffract following Fresnel’s type diffraction law, at a
distance up to few diffraction lengths, broad band ones diffract in
the λ(3) regime at the same distance. The analytical and
numerical investigations of laser pulse propagation governed by
the amplitude equations (13)−(33) show that by increasing the
time duration of the broad-band pulses (a decrease of its spectral
width), and then transforming them to narrow-band ones, the
λ(3) diffraction is shifted in the faraway domain with respect to
the laser source. To conclude, the nonparaxial amplitude
equation (13) and its representation in Galilean frame (33)
correctly describe the pulse diffraction without restriction on the
distance and the time duration of the pulses. Thus, in future
papers we foresee to investigate nonparaxial type equations
taking the dispersion and nonlinear effects into consideration.
It is important to point out that the λ(3) type diffraction plays a

key role in the production of petawatt laser systems, as well as for
creating electron mirrors for these systems. When the spot size
of the pulse is on the order of a few optical periods and the
duration is less than 10 fs, the pulses with millijoule energy can
produce intensities above 1018 W/cm2.22 These types of lasers
were dubbed λ(3) type lasers since at one/two diffraction
length(s) the pulses diffract in the λ(3) regime. The standard
optics fails at such intensities and the λ(3) type electron e-
bunches can be used for electron mirror manufacturing.19 Thus,
the following question arises: Is it possible for this process to be
managed and for electron mirrors with dif ferent focal planes to be
produced? In ref 21, we answer positively to this question,
suggesting that by using chirped pulses and changing the sign
and the value of the chirp parameter this process can bemanaged
and it is possible to obtain parabolic intensity profiles with

different curvatures and sign with respect to the z axis. By
properly tuning the chirp parameters of the 5−25 fs pulses, the
process of generation of electron bundles with arbitrary forms
can be controlled. Thus, different kinds of converging or
diverging electronic mirrors can be produced.
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