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ABSTRACT Metagenomic sequencing of active-layer cryosols from the Canadian
High Arctic has yielded a nearly complete genome for an atmospheric CH4-oxidizing
bacterium belonging to upland soil cluster � (USC�). This genome contains genes
involved in CH4 metabolism, H2 metabolism, and multiple carbon assimilation path-
ways.

Recent studies have shown that mineral cryosols from the Canadian High Arctic Axel
Heiberg Island (AHI) act as CH4 sinks during the summer (1), drawing CH4 from both

the atmosphere and underlying hypoxic cryosols (2, 3), and harbor metabolically active
upland soil cluster � (USC�) proteobacteria (1). Twenty-one metagenomic data sets of
active-layer cryosols (4) from long-term core incubation experiments were used to
construct the draft genome of this USC�. Sequencing and sample collection methods
were published by Chauhan et al. (4).

Raw reads were filtered using the Princeton University Galaxy server using “filter by
quality” to keep reads having 90% of the bases with a Phred score of �30. Nextera
transposase adaptor sequences and the last five bases at the 3= end were removed
using Trim Galore. IDBA-UD v1.1.1 (with the settings mink � 20, maxk � 100, and
step � 20) was used to create 21 individual assemblies and 1 coassembly from reads
longer than 50 nucleotides (nt) (5). Bins were created using MetaBAT v0.32.4 (6) (–very
sensitive option), evaluated using CheckM v1.0.6 (7), and annotated using PROKKA
v1.12-beta (8) and BLAST v2.2.29� (9). Default parameters were used for all software
unless otherwise specified. The coassembly yielded a 90.56% complete genome with
0.31% contamination, containing a USC�-like particulate methane monooxygenase
�-subunit (pmoA) gene. CheckM assigned this genome as an unknown species within
the Beijerinckiaceae.

As CheckM analysis indicated that 4 of the 21 individual assemblies had unknown
Beijerinckiaceae bins (6.43 to 36.49% complete), we extracted Beijerinckiaceae reads
from these 4 metagenomes (SRA accession numbers SRR1586250, SRR1586265,
SRR1586287, and SRR1586310). We then mapped the quality-filtered reads onto the
USC� bin and four Beijerinckiaceae genomes having different phylogenetic distances
from USC� (10), namely, Methylocapsa acidiphila B2 (NZ_ATYA01000001), Methylocella
silvestris BL2 (NC_011666), Methylocystis sp. strain SC2 (NC_018485), and Methylosinus
trichosporium OB3b (NZ_ADVE02000003), using Bowtie2 v2.3.2 (11). All mapped reads
were pooled and reassembled using SPAdes v3.10.1 (12). Binning using MetaBAT
v0.32.4 (–very sensitive option) yielded a single bin. Evaluated by CheckM v1.0.6, this
final genome had slightly improved completeness and less contamination (Table 1).
This genome was annotated using PROKKA v1.12-beta (8), BLAST v2.2.29� (9) against
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the SILVA SSU v128 and NCBI databases, and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) automatic annotation server v2.1 (13). A phylogenetic tree using
single-copy genes (14) was created using Anvi’o v5.2 (15) phylogenomic analysis for
Beijerinckiaceae genomes selected by referencing Tveit et al. (10). Average nucleotide
identity (ANI) and average amino acid identity (AAI) values were calculated using the
scripts ani.rb (with the options –win, 1,000; –step, 200; –len, 700; –id, 70) and aai.rb
(with the options –len-fraction, 0.8; –id, 20), respectively, from the enveomics package
v1.4.4 (16).

The USC� AHI genome belongs within the Beijerinckiaceae (Fig. 1) and possesses a
416-nt-long 16S rRNA gene that is 98.1 to 98.6% similar to published USC� 16S rRNA
genes (10, 17). Its pmoA and pmoB genes match 99.7 to 100% with DNA and RNA
sequences previously reported from AHI that were phylogenetically determined as the
high-affinity form for CH4 oxidation (1). USC� AHI is able to assimilate C from CH4 and
from CO2 via the serine cycle, the reductive glycine pathway, and the Calvin-Benson-
Bassham cycle. USC� AHI can utilize various carbon sources via the pentose phosphate
and Entner-Doudoroff pathways, including acetate in its tricarboxylic acid (TCA) cycle,
although the acetate transporter gene (actP) is absent. The [NiFe] group 1h hydroge-
nase for H2 metabolism is also present.

Data availability. The draft genome sequence of USC� AHI has been deposited
at NCBI GenBank under the accession number VDMG00000000 (BioSample number
SAMN11877018 and BioProject number PRJNA545288). The version described in this

TABLE 1 Statistics summary of the coassembled and reassembled USC� genomesa

CheckM output Beijerinckiaceae bin from coassembly USC� AHI genome from reassembly

Marker lineage o__Rhizobiales (UID3654) o__Rhizobiales (UID3654)
No. of genomes 92 92
No. of markers 481 481

No. of marker sets 319 319
0 copies (missing) 36 32
1 copy 444 449
2 copies 1 0
3 copies 0 0
4 copies 0 0
�5 copies 0 0

Completeness (%) 90.56 91.64
Contamination (%) 0.31 0.00
Strain heterogeneity (%) 0.00 0.00
No. of unique markers (of 43) 42 42
No. of multicopy markers 0 0
Insertion branch UID UID3666 UID3666
Taxonomy (contained) k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;

o__Rhizobiales;f__Beijerinckiaceae
k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;

o__Rhizobiales;f__Beijerinckiaceae
Taxonomy (sister) Unresolved Unresolved
GC content (%) 59.1 59
Genome size (Mbp) 3.03 3.26
Gene count 3,388 3,928
Coding density (fraction) 0.82 0.81
Translation table 11 11
No. of descendant genomes 3 3

Lineage
GC content (%)

Mean 60.6 60.6
SD 2.6 2.6

Genome size (Mbp)
Mean 4.28 4.28
SD 0.13 0.13

Gene count
Mean 3,861 3,861
SD 86 86

a Values that are different between the two draft genomes are marked in bold font.
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paper is VDMG01000000. The raw reads of 21 metagenomes have been deposited at
the NCBI Sequence Read Archive under the accession number SRP047512 (4).
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