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Opportunities and challenges for time-
resolved studies of protein structural
dynamics at X-ray free-electron lasers

Richard Neutze

Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, 40530 Gothenburg,
Sweden

X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time

structure, providing X-ray pulses of a few tens of femtoseconds in duration;

and their extreme peak brilliance, delivering approximately 1012 X-ray pho-

tons per pulse and facilitating sub-micrometre focusing, distinguish XFEL

sources from synchrotron radiation. In this opinion piece, I argue that

these properties of XFEL radiation will facilitate new discoveries in life

science. I reason that time-resolved serial femtosecond crystallography and

time-resolved wide angle X-ray scattering are promising areas of scientific

investigation that will be advanced by XFEL capabilities, allowing new

scientific questions to be addressed that are not accessible using established

methods at storage ring facilities. These questions include visualizing ultrafast

protein structural dynamics on the femtosecond to picosecond time-scale,

as well as time-resolved diffraction studies of non-cyclic reactions. I argue

that these emerging opportunities will stimulate a renaissance of interest in

time-resolved structural biochemistry.
1. Introduction
Synchrotron radiation has had dramatic impact on the life sciences. The most visible

application of synchrotron radiation is structural biology, which will soon pass the

milestone of 100 000 structures deposited in the Protein Data Bank (www.pdb.org),

of which approximately 90% are now solved using synchrotron radiation. Many

majorchallenges in structural biology have yielded high-resolution X-ray structures,

including large protein : RNA complexes [1], DNA complexes [2] and challenging

membrane protein structures [3]. G-protein-coupled receptors (GPCRs), long

believed to be intractable to crystallization and crystallography due to their inherent

flexibility, have recently yielded to a combination of ingenious protein engineering

[4,5] and cryo-microcrystallography at synchrotron-based experimental stations [6].

Other life science applications of synchrotron radiation include the development of

X-ray microscopy and coherent X-ray imaging of biological samples such as

unstained frozen cells [7,8]. Moreover, recent technical advances in single particle

electron microscopy (EM) have led to spectacular progress with EM structures of

frozen single particles reported to near atomic resolution [9,10]. Electron tomo-

graphy of entire cells [11] is approaching the long-term dream of recovering

three-dimensional images of cells to a resolution that enables individual proteins

and macromolecular assemblies to be recognized.

X-ray free-electron lasers (XFELs) facilitate entirely different structural

approaches by providing extremely short X-ray pulses with approximately

1012 X-ray photons/pulse that can be focused to a sub-micrometre focal spot

[12]. This corresponds to a jump in peak X-ray brilliance of ten orders of mag-

nitude over storage ring sources: which is the difference between a casual walk and
travelling at the speed of light [13]. Thus, XFEL radiation represents an example of

disruptive technology, whereby technical advances create fundamentally new

opportunities for scientific research. Early life science applications of XFEL
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radiation [14] have focused upon the development of serial

femtosecond crystallography (SFX) as a high-resolution struc-

tural method [15–21]; the application of time-resolved

approaches to SFX [22,23]; and the development of coherent

X-ray imaging of single viruses [24] and cells [25]. In this

commentary, I discuss this recent progress and argue that

XFEL radiation should be viewed as a complement to syn-

chrotron radiation and single particle EM that will open up

new scientific opportunities as well as accelerate the rate of

progress in structural biology. A future challenge for XFEL

sources is to enable discoveries in life science that could not

be realized using synchrotron radiation or cryo-EM. I believe

that one important avenue will be to probe the structural

dynamics of biomolecules from atomic to cellular length

scales on time-scales from femtoseconds to milliseconds.
Soc.B
369:20130318
2. Diffraction before destruction
Fourteen years ago, we combined molecular dynamics simu-

lations with X-ray scattering calculations to argue that

femtosecond X-ray pulses would facilitate a new regime with

respect to the X-ray exposure that can be tolerated by biological

samples [26]. By rapidly collecting X-ray scattering data from

a sample undergoing an X-ray damage-induced Coulomb

explosion, we reasoned that it would be possible to recover

interpretable diffraction data if the X-ray exposure was shorter

in duration than the time-scale needed for a biological sample

to explode. The idea that extremely intense X-ray pulses could

facilitate the recording of X-ray scattering images before a

biological specimen is destroyed was previously mooted by

Solem & Baldwin [27], but that discussion was not quantitative

with respect to radiation damage processes and hypothesized

that sub-nanosecond soft X-ray sources being developed in

the 1980s would attain the necessary peak brilliance.

Further quantitative studies expanded and improved upon

the physical model of the radiation damage process [28]

and explored possible approaches for aligning and inverting

X-ray scattering data from single particles [29–31]. The

upshot of this body of theoretical work is that the major con-

clusions of our analysis [26] have stood the test of time: X-ray

pulses of a few tens of femtoseconds or shorter will create a

new opportunity for pushing back the traditional radiation

damage limits of structural biology [32,33]; at the upper

limits of the allowed X-ray fluence, it will be possible to collect

interpretable X-ray scattering data from single large biological

molecules such as viruses; and interpretable X-ray diffraction

data will be recoverable from protein crystals only a few unit

cells across. These considerations have featured among several

early experiments at the Linac Coherent Light Source (LCLS)

[14], the world’s first hard XFEL [12], and experimental data

have demonstrated that the diffraction power of microcrystals

falls off significantly as the X-ray pulse duration is extended

beyond 70 fs [34].
3. Serial femtosecond crystallography
One early life science application of XFEL radiation was our

demonstration that it was possible to collect interpretable dif-

fraction data from microcrystals of the large membrane

protein complex photosystem I [15]. This achievement by

Chapman et al. was founded upon several parallel technical

advances including the first lasing at the LCLS [12]; the
commissioning of the first LCLS beamline which operated

at a wavelength of approximately 6 Å [35]; the construction

of a versatile in-vacuum X-ray detector environment [36];

the development of microjet technologies for sample injection

[37]; and the development of new software analysis tools for

processing and merging serial crystallography data [38,39].

What these pioneering experiments showed was that it was

possible to collect interpretable X-ray diffraction data using

extreme intensity XFEL pulses from a series of measurements

from independent crystals of micrometre to sub-micrometre

size, even though each and every microcrystal exposed to

the XFEL beam was vaporized. The idea of diffraction

before destruction [26] was an experimental fact!

Johansson et al. [16] also demonstrated that membrane

protein microcrystals could be grown in a lipidic sponge phase

environment and injected directly into the focused LCLS

beam. Unlike nano/microcrystals of photosystem I [15], the

microcrystals of the Blastochloris viridis photosynthetic reaction

centre were not isomorphous to their larger crystal phase form

[40], packing in a new space-group and having one very long

(398 Å) cell axis. When shorter wavelength X-rays became avail-

able at the coherent X-ray imaging (CXI) beamline [41] of the

LCLS these microcrystals diffracted to 2.8 Å resolution and

data were processed and the structure refined to 3.5 Å resolution

[20]. Despite the relatively low multiplicity (approx. 27) in these

studies, convincing electron density was recovered (figure 1a,b)

and no evidence of X-ray-induced radiation damage were

observed within the structure. Other membrane protein SFX

structures include photosystem II to 5.7 Å resolution [23], and

the human serotonin receptor, a GPCR [21], has yielded a crystal

structure to 2.8 Å resolution (multiplicity of 1150), for which

somewhat larger crystals were grown using a lipidic cubic

phase (LCP) crystallization matrix [43]. Because of the extremely

high medical importance of GPCRs [5], which form a major class

of pharmaceutical targets, SFX studies of this family of mem-

brane proteins are likely to become an important future

application of XFEL radiation in biology.

SFX structures to high resolution have been recovered

from microcrystals of the soluble protein cathepsin B [18]

(2.1 Å resolution; 7808 multiplicity) grown in vivo within

an insect cell expression host [44]. This is an extremely ele-

gant approach to the problem of micro-crystallization, but it

remains to be seen if in vivo crystallization can be developed

into a widely used generic approach for challenging pro-

blems in structural biology. Proof of principle studies of

microcrystals of the tried-and-trusted model system lyso-

zyme both currently hold the resolution record for an SFX

structure at 1.9 Å resolution [17] and have demonstrated

the possibility of heavy-atom phasing of protein structures

[19]. This demonstration of de novo phasing by Barends et al.
using XFEL radiation is an important milestone since it lays

the foundations for solving structures of macromolecules

without known homology models, which was by no

means obvious given the challenges of merging diffraction

data from thousands of randomly oriented microcrystals of

varying shape and size.
4. Potential impact of serial femtosecond
crystallography

SFX holds promise for accelerating the rate of progress in

challenging problems in structural biology since it creates
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Figure 1. SFX and time-resolved Laue diffraction studies of the photosynthetic
reaction centre of Bl. viridis (RCvir). (a) Injection of RCvir microcrystals into an
XFEL beam using the Spence microjet. (b) SFX structure of RCvir solved to 3.5 Å
resolution. (c) Close-up view of the SFX electron density map near the special
pair (P960) and near TyrL162. (d ) Similar view as in (c), but of a Laue diffraction
electron density map to 2.95 Å resolution. All 2Fobs – Fcalc electron density maps
(blue) are contoured at 1.0s. (e) Difference density (green positive density; red
negative density, contoured at 4.0s) illustrating the structural changes induced
by light (the movement of TyrL162 towards the special pair) captured using
time-resolved Laue diffraction. These figures are reproduced with permission
from [16] (a), [20] (b,c) and [42] (d,e, with modifications).
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new opportunities to extract structural information from

thousands of microcrystals that are too small to yield com-

plete data using synchrotron radiation. On the other hand,

XFEL-based SFX will ultimately be judged against the

extent to which new structural insights emerge that would

not be accessible using synchrotron radiation or single par-

ticle cryo-EM. To this end, the first proof-of-principle studies

at the LCLS using model systems of known structure have

been important, but higher resolution X-ray structures of

photosystem I [45], photosystem II [46], the photosynthetic

reaction centre [40] and lysozyme [47] have all been

solved using synchrotron radiation. Given the pace of devel-

opments, examples will surely soon emerge where

diffraction data recorded at an XFEL is of higher quality

than that attainable at a synchrotron source. Moreover,

one key aspect is that diffraction data recorded from radi-

ation sensitive proteins do not show signs of radiation

damage [17,20] and this can be very important for some

proteins such as photosystem II [23] for which X-ray-

induced reduction of the manganese cluster has been a

hot issue.
Another challenge with early SFX approaches is the

volume of protein required for XFEL studies using the

Spence microjet [37,48], which consumes approximately 1 ml

of crystallization drops per hour. As a major challenge of diffi-

cult structural biology targets is producing purified protein for

crystallization, it is not realistic to expect that hundreds of milli-

grams of crystals can routinely be made available for XFEL

studies. This issue is being addressed through the development

of new injection technologies, including the highly viscous

LPC microjet [21,49] that uses approximately 1% of the

volume of the liquid phase microjet.

SFX has already motivated a rethink of how diffraction

data can be collected using dedicated microfocus protein crys-

tallography beamlines at a storage ring. The advent of rapid

readout X-ray detectors [50] and X-ray choppers [51] creates

the possibility of recording serial crystallography data from

thousands of microcrystals either delivered at room tempera-

ture in a slow moving LCP microjet [49], using other sample

delivery technologies [52], or using multiple crystals frozen

within cryo-loops. The need to merge crystallographic data

from dozens of large crystals has been well known to crystallog-

raphers studying virus particles [53], which typically produce

crystals with very large unit cell and are therefore very sensitive

to mosaic spread when freezing. XFEL-based SFX has added a

new dimension to this challenge by demonstrating that data

from tens of thousands of microcrystals can be merged success-

fully. This idea should be adapted and pushed to its limits using

synchrotron radiation [6], since the X-ray dose of 33 MGy used

in high-resolution studies at the LCLS of the reaction centre [20],

cathepsin B [18] and lysozyme [17] is consistent with the dose

that can be delivered to frozen crystals using synchrotron radi-

ation [33]. The potential advantages of synchrotron base serial

crystallography will be the relative ease of access to storage

ring facilities, user familiarity in transporting frozen crystals

to an experiment and the maturity of support technologies.

Synergies will emerge as scientists at both storage ring and

XFEL sources collaborate with users to accelerate the pace of

progress in life science, with micro-crystallization conditions

being optimized at storage rings but the published data ulti-

mately being collected at an XFEL; or microcrystal leads being

identified first using XFEL radiation on unfrozen samples but

these conditions being optimized to yield larger crystals suitable

for cryo-data collection at a storage ring.
5. Time-resolved Laue diffraction and time-
resolved serial femtosecond crystallography

XFEL-based time-resolved structural studies [54] create

opportunities for discoveries in life science that are not acces-

sible using synchrotron radiation. Since 1996, the push to

record ultrafast time-resolved movies of protein structural

changes using Laue diffraction [55–60] has become limited

by the electron bunch duration of approximately 100 ps.

XFEL radiation offers extremely brilliant X-ray pulses of

approximately 40 fs, and thus opens up new possibilities

for ultrafast time-resolved diffraction studies of biomolecules.

The classical Laue diffraction approach, of collecting both

dark reference and light-activated images for each and

every oscillation from the same crystal, may be difficult to

apply at XFELs because self-amplified stimulated emission

(SASE) produces an X-ray spectrum that is stochastic, with

considerable pulse-to-pulse variation. Spectral fluctuations
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are difficult when processing Laue diffraction data due to the

need to normalize the measured scattering intensities against

the X-ray fluence through the crystal. XFEL seeding [61]

provides a potential solution to the problem of SASE but

at the cost of a very narrow XFEL bandwidth, which is

advantageous in most applications but not appropriate for

time-resolved Laue diffraction. This is because a narrow

bandwidth results in many observations being partials and

demands that many different oscillation angles be sampled,

making the experiment sensitive to laser pump and X-ray

probe induced damage. It is therefore likely that recovering

convincing time-resolved electron density changes on the

ultrafast time-scale from a single large crystal will only be

possible for exceptionally robust crystals, if at all.

We previously performed a time-resolved Laue diffraction

study of large crystals of the Bl. viridis photosynthetic reaction

centre [42] and observed a light-induced movement of TyrL-

162 towards the special pair of bacteriochlorophylls P960 3 ms

after photoactivation (figure 1e). It is striking that the 2mFobs-

DFcalc SFX electron density recovered from the same reaction

centre by merging diffraction data recorded from 1175 micro-

crystals (figure 1d, [20]) is very similar to the quality of the

2mFobs-DFcalc Laue diffraction map recovered from merging

data from three large crystals (figure 1d). This suggests that

time-resolved SFX offers an alternative path to achieving

high-resolution structural information on ultrafast protein

dynamics at an XFEL. This optimism comes with the caveat

that it remains to be demonstrated that the merging of partial

reflections from microcrystals of different sizes, as well as the

influence of pulse-to-pulse variations in the XFEL spectrum

and intensity, will yield intensity estimates sufficiently accurate

to measure small laser-induced structural changes to

high resolution.

Three advantages are apparent for time-resolved SFX

when compared with time-resolved Laue diffraction

approaches using large crystals: (i) microcrystals are much

smaller and therefore have lower optical density, which

allows a more homogeneous excitation of molecules within

microcrystals; (ii) since the sample is continuously replaced

the experimental data are not sensitive to the accumulated

X-ray- and pump laser-induced damage, and (iii) for the

same reasons, the systems of study are not restricted to prob-

ing reactions that return to their resting state, potentially

opening up the study of chemically driven enzymatic reac-

tions at room temperature to time-resolved diffraction.

Moreover, because SFX neatly avoids the presence of X-ray

damage-induced artefacts in the electron density, this may

prove telling for high-resolution studies of chemical reactions

for which artefacts of X-ray damage have been controversial

in cryo-trapping studies [62]. These points are critical for

the field of time-resolved crystallography to expand its

sphere of systems of study and become a more mainstream,

integrated approach within structural biology.

The first attempts to apply time-resolved SFX to study

reaction dynamics in microcrystals probed a complex of photo-

system 1 and ferodoxin, which showed disordering of the

microcrystals a few microseconds after photoactivation [22];

and time-resolved SFX studies of photosystem II, which

revealed that the oxygen evolving cluster is not photo-reduced

by X-rays and the S2 state cannot be distinguished from the S1

(resting) state at 6 Å resolution [63]. In my view, these pioneer-

ing efforts to develop time-resolved SFX at an XFEL lay

promising ground for future time-resolved studies of a broader
set of biological reactions than have been probed using

time-resolved Laue diffraction to date.
6. Time-resolved wide angle X-ray scattering
Solution phase time-resolved wide angle X-ray scattering

(WAXS) is another promising technique for observing struc-

tural changes in proteins. This method builds upon earlier

studies of the reaction dynamics of small photochemical mol-

ecules [64–68] and was first extended to probe the ultrafast

dynamics of proteins by Cammarata et al. [69], who recorded

WAXS data following the photo-dissociation of carbon mon-

oxide from tetrameric haemoglobin and cytochrome c. A

series of later studies probed the reaction dynamics of other

light-triggered reactions such as the photo-dissociation of

CO from the haem groups of myoglobin [60,70–72] and

homodimeric haemoglobin [69], as well as chromophore iso-

merization-driven reactions within photoactive yellow

protein [73,74], bacteriorhodopsin [75] and proteorhodopsin

[75–77].

Figure 2a illustrates the time-resolved WAXS difference

data recorded from bacteriorhodopsin from 360 ns to

100 ms after photo-excitation [75] after the effects of heating

on the WAXS difference data were removed. Oscillations

are observed in the difference WAXS data that correlate

with changes within the protein structure. To fit the differ-

ence WAXS data (figure 2b), difference spectra were

predicted using structural changes modelled from move-

ments of a-helices that had previously been observed in

low-temperature trapping [78] and mutation [79] studies of

bacteriorhodopsin [80] (figure 2c).

The advantage of time-resolved WAXS is that it is a generic

approach for which protein movements are not restricted

by the packing of a crystal lattice and the quality of the

scattering data that can be recovered is not compromised by

these movements. The disadvantage is that the structural

information is much less detailed than that recovered

using diffraction methods, and while a number of structural

refinement approaches have been explored [60,74,75,

77,81], there are not yet any agreed standards for structural

refinement against difference WAXS data. What should also

be appreciated is that time-resolved WAXS observes only

very small experimental difference in the X-ray scattering

data (DS(q)/S(q) � 0.1–1.0%) and hence the beamline and

detector stability, and photon counting statistics, have all

been limiting factors that have only been overcome due to

constant technical advancements at dedicated storage ring

time-resolved beamlines.

XFEL applications of time-resolved WAXS appear to be

particularly promising. First and foremost, a completely

new possibility arises to perform time-resolved WAXS studies

with sub-picosecond resolution. It will be exciting to see

whether these promising approaches can truly deliver the

dream of observing ultrafast structural changes in light-

sensitive proteins on the sub-picosecond time-scale. At this

time-scale, energy absorbed by buried chromophores will

be rapidly dissipated. It was hypothesized almost three dec-

ades ago that some of this energy is dissipated as a protein

conformational change that propagates at the speed of

sound out from an epicentre and was coined a protein

quake [82] as a nanoscopic analogy to the propagation of

energy during an earthquake. Whether or not global ultrafast
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Figure 2. Time-resolved WAXS studies of light-driven structural changes in bacteriorhodopsin. (a) Time-resolved WAXS difference data (DS(q,Dt)) as a function of
the time-delay (Dt) following photoactivation by a short visible laser pulse. (b) Two difference WAXS basis spectra extracted from spectral decomposition of the data
shown in (a) (dots), and the theoretical fits to this data (solid lines), for an intermediate time-scale (black) and slower (red) component of the data. (c) Refined
conformational changes in bacteriorhodopsin recovered by a best-fit analysis to the experimental difference WAXS basis spectra shown in (b). These figures are
reproduced with permission from [75].
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structural changes play any functional role in light-sensitive

proteins [82–86] is a matter of considerable debate, and

time-resolved WAXS at an XFEL offers a completely new

approach for addressing this question.

A related scientific issue that will be observable using

ultrafast time-resolved WAXS at an XFEL is the question as

to how fast functionally important protein structural changes

can occur. For example in bacteriorhodopsin, a light-driven

proton pump, low-temperature crystallography methods
have established that retinal isomerization displaces a key

water molecule early on in the photocycle [80,87]. It is there-

fore of considerable interest to measure the time-scale at

which local water movements can induce global protein con-

formational changes, and these most rapid motions were not

captured in our earlier work using synchrotron radiation [75]

(figure 2). Owing to the remarkable X-ray fluence, XFEL-

based time-resolved WAXS studies on the picosecond to

nanosecond time-scales will have major signal-to-noise
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benefits over synchrotron-based studies, allowing better

quality data to be recorded to characterize the most rapid

protein motions. Moreover, it may be possible to adapt the

microjet sample injection developed for SFX to time-resolved

WAXS studies [37,48]. If successful, this will mean that X-ray

and laser-induced damage does not accumulate within the

sample since each sampled volume is exposed only once to

the pump laser and X-ray probe. By alternating light-and-

dark images during data collection, it should be possible to

account for fluctuations in the XFEL spectrum and the micro-

jet itself, although robust statistical methods will need to

be adapted from synchrotron-based time-resolved WAXS

applications to deal with these factors.

A fundamental and very exciting development of XFEL-

based time-resolved WAXS is the potential application of

angular correlations when using an ultrafast X-ray probe

[88,89]. The idea is that because the XFEL pulses are so

short, proteins appear to be frozen in time during the X-ray

exposure and this means that angular correlations that are

usually washed-out in storage ring-based SAXS or WAXS

studies are present in the XFEL-based experimental data. To

fully exploit these new opportunities, considerable effort

will be needed to minimize experimental noise and drift in

solution phase XFEL experiments. Nevertheless, since time-

resolved WAXS data are collected on a two-dimensional

detector, it only makes sense to explore if the structural infor-

mation that can be extracted from a time-dependence

difference signal can be enriched by searching for angular

correlations. I believe that these benefits, along with continu-

ous development of time-resolved WAXS at storage ring

sources, will see the sphere of application of time-resolved

WAXS expand to probe the structural dynamics of a more

diverse sample of proteins on time-scales from femtoseconds

to seconds.
7. Generic approaches to reaction triggering
Time-resolved diffraction studies of protein reaction

dynamics in four dimensions have been hamstrung by a

lack of generic approaches to reaction triggering. One of the

most promising aspects of XFEL-based approaches to time-

resolved serial crystallography is the possibility to probe

the structural dynamics of proteins and other macromol-

ecules in their crystalline form without the requirements

that the reaction is cyclic and returns to its resting state.

This shift is potentially transformative for the entire field

and arises because diffraction data are collected from each

and every microcrystal only once. Two key limitations of

time-resolved Laue diffraction are the need (in practice, not

in principle) to study photo-reversible reactions; and the

high-sensitivity to disorder of the Laue method, meaning

that the very structural change that you wish to observe

may make the crystals unsuitable for Laue diffraction.

I foresee the potential for significant growth in possible

approaches to reaction triggering using serial crystallography

such as: rapid chemical mixing of reactants and microcrystals

in microfluidic devices; slower mixing using caged com-

pounds in combination with triggering the release of the

reactant using a light or UV laser pulse; or slower mixing

of reactants and microcrystals near 08C and using short IR

pulses used to heat the microcrystals before they interact

with X-ray beam, thereby driving the reaction across a
specific rate-limiting reaction barrier; the use of intense THz

pulses to stimulate specific dynamic modes within proteins

[90]; or the use of applied AC electric fields to drive reson-

ances within molecules on the kHz to GHz frequencies [91];

or engineering light-sensitive triggers into proteins direc-

tly [92]. If several of these approaches prove successful

then the opportunity arises for time-resolved crystallography

and time-resolved WAXS to become considerably more

mainstream structural techniques than they are today.
8. Conclusion
Synchrotron radiation has become a profoundly successful

tool for structural biology. The first applications of synchro-

tron radiation in biology were motivated by the desire to

record images of muscle contraction with millisecond time-

resolution [93]. Although diffraction was demonstrated

using synchrotron radiation in 1971 [94], no one at the time

could have foreseen that, a generation later, thousands of

X-ray structures of macromolecules would be solved

annually using synchrotron radiation, or that powerful

methods for phasing structures based upon anomalous dif-

fraction [95,96] would emerge from the application of

synchrotron radiation to structural biology. Similarly, single

particle cryo-EM is a very beautiful technique that is rapidly

advancing towards atomic resolution [9,10]. While some

might argue that XFEL-based SFX [15] and coherent diffrac-

tive imaging [24] must compete with these mature

structural methods, I believe that the challenge is to under-

stand where storage ring data and cryo-EM studies can be

complemented by the novel scientific opportunities created

by XFEL radiation. At the end of the day, XFEL-based life

science will be judged on the extent to which important

new biological insights emerge that could not have been

attained with other structural approaches.

In this opinion piece, I argue that one area of application

where XFEL radiation has a key advantage is in time-resolved

diffraction and WAXS studies of protein reaction dynamics,

both because of the time-scale of the X-ray pulses accessing

a completely new domain in structural biophysics and

because of the extreme peak brilliance offering huge gains

in terms of signal-to-noise over that which can be achieved

using synchrotron radiation. XFEL radiation thus creates

new opportunities to explore structural and functional

hypotheses on atomic distances on time-scales from femto-

seconds to seconds. In my view, this is an exciting time to

participate in molecular biophysics because, as when life

scientists first turned to synchrotron radiation [94,97], the

potential for new discoveries using XFEL sources is immense.

While it is likely that the most important future applications

of XFEL radiation in biology are only now being imagined, I

believe that protein structural dynamics and the functional

influence of protein dynamics within the cell is one important

sphere of life science on which these fourth generation X-ray

sources will shed new light.
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