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Abstract: Bone sarcomas are commonly characterized by a high degree of intra-tumor heterogeneity,
which in part is due to the presence of subpopulations of tumor cells presenting stem cell properties.
Similar to normal stem cells, these cancer stem cells (CSCs) display a drug resistant phenotype and
therefore are responsible for relapses and tumor dissemination. Drug resistance in bone sarcomas
could be enhanced/modulated during tumor evolution though the acquisition of (epi)-genetic
alterations and the adaptation to changing microenvironments, including drug treatments. Here we
summarize findings supporting the involvement of pro-stemness signaling in the development of
drug resistance in bone sarcomas. This include the activation of well-known pro-stemness pathways
(Wnt/β-Cat, NOTCH or JAT/STAT pathways), changes in the metabolic and autophagic activities,
the alteration of epigenetic pathways, the upregulation of specific non-coding RNAs and the crosstalk
with different microenvironmental factors. This altered signaling is expected to be translated to the
clinic in the form of biomarkers of response and new therapies able to overcome drug resistance.

Keywords: bone sarcoma; osteosarcoma; cancer stem cells; drug resistance; stemness signaling;
tumor microenvironment; metabolism; epigenetics; microRNAs

1. Introduction: Cell Heterogeneity and Cancer Stem Cells in Bone Sarcomas

Bone sarcomas comprise a rare group of malignancies, which represent less than 0.2%
of cancer diagnoses [1]. Among this group of tumors, osteosarcomas (35% of primary
malignant bone tumors), chondrosarcomas (25%) and Ewing sarcomas (16%), each com-
prising several sub-entities, represent the most common subtypes [1,2]. Osteosarcomas and
chondrosarcomas are characterized by a complex and variable genomics, where only few
genes, such as TP53, RB, ATXR or PTEN in osteosarcomas [3–5] and IDH1/2, COL2A1 or
TP53 in chondrosarcoma [6,7], were commonly mutated in a significant number of patients.
On the other hand, Ewing sarcomas are genetically stable tumors, characterized by the
presence of cytogenetic translocations, involving ETS transcription factors, with EWS/FLI1
being the most common [8]. Despite their relatively low incidence, bone sarcomas represent
a medical challenge due to their aggressive behavior and lack of significant improvement
in their treatment protocols for decades. Therapeutic options for bone sarcomas have
remained largely unaltered since the late 1970s and mainly rely on a surgical resection
with adequate margins, combined or not, with pre- and/or post-operative radiotherapy
and/or chemotherapy (doxorubicin, ifosfamide, methotrexate, cisplatin, etc.) [9,10]. While,
a high proportion of tumors initially respond well to these treatments, more than 30% of
patients with localized osteosarcoma and more than 80% with metastatic/relapsed disease
still succumb to the disease, owing to the appearance of resistant tumor subclones [10,11].

The majority of osteosarcomas and Ewing sarcomas arise during puberty in areas
of actively growing bone areas, like the metaphysis of long bones. Another portion of
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osteosarcomas and chondrosarcomas develop in adulthood and might be associated with
a deregulation of the bone remodeling process [12]. The development of these bone
tumors may be linked to an imbalance between the demand of progenitor cells during
periods of increased bone formation and remodeling and the limited expansion capacity of
normal stem cells [13]. This results in the appearance of pre-malignant stem/progenitor
cells, which would alter bone homeostasis and initiate tumor formation after suffering
sequential mutations targeting differentiation and proliferation pathways. In this regard,
mesenchymal stem/stromal cells (MSCs) represent a subset of adult multipotent stem
cells present in the bone marrow and other tissues that constitute a source of progenitors
for mesodermic tissues, including bone [14,15]. Experimental evidence suggests that
osteosarcomas and chondrosarcomas may arise upon the malignant transformation of
MSCs or their derived progenitors along the osteo/chondroblastic lineage [16–23]. There is
also evidence regarding the role of MSCs as cell-of-origin for Ewing sarcoma, but a neural
origin for these diseases have also been proposed [24–26].

Soon after tumor growth initiates, bone sarcomas begin to gain cellular heterogeneity
through a process of clonal genetic evolution driven by tumor adaptation to changing
microenvironmental conditions, including drug treatments. Furthermore, tumor hetero-
geneity may also be acquired through a differentiation-driven mechanism guided by a
subpopulation of tumor cells that have acquired stem cell-like properties through the
action of several genetic and epigenetic influences and microenvironmental signals. [27,28].
Normal adult stem cells, such as MSCs, are long-lived cells that direct continuous tis-
sue remodeling/regeneration processes through the derivation of a panel of specialized,
short-lived cells that ultimately perform tissue-specific functions. Similar to normal stem
cells, the cancer stem cell (CSC) subpopulations that emerge and evolve during tumor
growth are capable of self-renewal and differentiation into less tumorigenic progenies
within the tumor. They are also considered to be the only subset of tumor cells able to
sustain and (re-)initiate tumor growth [27,29,30]. Both sources of intra-tumor heterogeneity
are thought to cooperate to drive tumor growth in a process where different CSC subpopu-
lations coexist and direct the evolution of tumor clones in a highly dynamic process, by
which differentiated tumor cells may re-adopt an stemness state. Relevant to the sarcoma
development course, the presence of CSCs is linked to drug resistance and tumor recur-
rence, invasion and metastasis, making them one of the main factors driving the long-term
maintenance of the disease [16,31–33]. Similar to normal stem cells, CSCs display several
properties that may render them resistant to chemotherapeutic drugs and other xenobiotic
compounds. This includes: (i) The expression of detoxification mechanisms, such as efflux
pumps of the ABC family or aldehyde dehydrogenase (ALDH) enzymes; (ii) a high DNA
repair capacity; (iii) the altered expression of apoptotic regulatory factors; and (iv) the
adoption of a quiescent state [16,27,29,34–37]. In addition, the cell plasticity observed in
CSC hierarchies may also constitute an important driver of drug resistance. Finally, these
properties are also highly influenced by signaling from the surrounding milieu and the
physical properties of specific microenvironments [27,29,38,39].

CSCs subpopulations in bone sarcomas have been identified according to the above
described stem cell-related properties and/or marker expression [31,33,40,41]. Most com-
mon methods used to isolate CSCs in sarcomas include: (i) Culture of floating 3D colonies
(sarcospheres), a property associated to the self-renewal ability of stem cells; (ii) the sorting
according to the expression of specific surface markers expressed by normal stem cells
such as CD133, STRO1, CD117, CD271, ABCG2, etc.; (iii) the isolation of subpopulations
with high enzymatic activity of ALDH1; iv) the identification of a “side population” able to
exclude fluorescent dyes, a feature associated to the expression and activity of ABC pumps;
or (v) the tracking of subpopulations that express stem cell-associated genes. Isolated CSC
subpopulations should be able to regenerate non-stem cells, present in the initial culture,
display increased levels of pluripotency markers (e.g., SOX2, OCT3/4) and drug efflux
transporters (e.g., ABCG2), and demonstrate enhanced ability to initiate tumor growth
in vivo. In any case, it should be noted that CSCs in bones sarcomas are heterogeneous
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and the different methods may involve selecting different CSCs subpopulations within the
tumor mass. Interestingly, whichever isolation method was chosen, CSCs subpopulations
usually proved to be more resistant to drugs employed in the clinical treatment of bone
cancer, such as doxorubicin, methotrexate or cisplatin [42–58] (Table 1). Moreover, resistant
bone sarcoma models, generated by serial exposure to chemotherapeutic drugs, show exac-
erbated stemness qualities when compared with their non-resistant counterparts [36,59–66]
(Table 2). Besides, it has been established a correlation between expression of stemness
markers and a worse response to chemotherapy in osteosarcoma patients [62].

Table 1. Reported drug resistance in bone sarcoma CSCs.

Method of
CSC Isola-

tion/Characterization
Bone Sarcoma Models

Drug Resistance

Ref.
Drug Fold

Resistance *

Sphere formation MNNG/HOS (OS)
DOX
CIS

MTX

2.67
2.23
8.33

[49]

MG63 (OS), HTB166 (EWS) DOX
CIS

N/Q
N/Q [44]

CD133

Human primary, Saos2, MG63,
U2OS, HOS, MNNG/HOS,

143B (OS)

DOX
CIS

MTX

N/Q
N/Q
N/Q

[45]

Human primary, STA-ET8.2, TC71,
A4573, 5838 and other

5 lines (EWS)

DOX
ETO
VNC

N/Q
N/Q
N/Q

[48]

STRO-1/CD177 318-1, K7M2 (OS) DOX 1.47, 1.73 [42]

CD271
Saos2, U2OS, MNNG/HOS (OS) CIS 2.16, 1.42, 1.65 [51]

Saos2, MNNG/HOS (OS) CIS
EPR

N/Q
N/Q [57]

CD24 Human primary, MG63,
MNNG/HOS, U2OS, OSC228 (OS)

CIS
EPR

N/Q
N/Q [58]

CD49f UT2, TTC606 (OS)
CIS
IDR
PTX

6.56, >1.74
1.77, NA
2.10, NA

[55]

Side population

OS1, OS2, OS5 (Human
Primary, OS)

DOX
CIS

MTX

1.33, 1.8, 1.67
1.09, 2.01, 1.07
1.46, 1.43, 0.94

[53]

Human primary (OS)
DOX
CIS

MTX

N/Q
N/Q
N/Q

[50]

OS65 (OS)

ETO
5-FU
CIS
PTX
GEM
OXP

N/Q
N/Q
N/Q
N/Q
N/Q
N/Q

[52]

SK-ES-1 (EWS) DOX
CIS

1.64
1.92 [54]

CADO-ES1 (EWS)
DOX
CIS
ETO

N/Q
N/Q
N/Q

[47]

ALDH activity Human primary (OS/CDS/EWS) DOX
DSF

N/Q
N/Q [46]

Human primary, TC71, MHH-ES,
SK-ES-1, A4573 (EWS)

DOX
ETO

N/Q
N/Q [43]

hTERT Human primary, MG63,
MNNG/HOS, 143B (OS) DOX N/Q [56]

* Fold resistance = IC50 CSCs/IC50 non-CSCs; OS: osteosarcoma, EWS: ewing sarcoma, CDS: chondrosarcoma,
DOX: doxorubicin, CIS: cisplatin, MTX: methotrexate ETO: etoposide, VNC: vincristine, EPR: epirubicin, IDR:
idarubicin, PTX: paclitaxel, GEM: gemcitabine, OXP: oxaliplatin, DSF: Disulfiram; N/Q: IC50 Not quantified.
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Table 2. Enrichment of CSCs after drug treatment.

Bone Sarcoma
Models

Drug Resistance Induction Characterization of CSC
Phenotype Ref.

Drug Method Fold Resistance *

MG63 (OS) 3AB Exposure to 3AB 5 mM
for 100 days N/Q

Sphere formation, pluripot.
factors, ABC transporters, CSC

markers, MSC features,
tumorigenic growth

[59,60]

U2OS, MG63 (OS) MTX Exposure to MTX 100 or
300 ng/mL for 5 days N/Q Sphere formation, SP, CSC

markers, tumorigenic growth [63]

HOS (OS) CIS Exposure to CIS 2 µM
for 3 days N/Q

SP, sphere formation, pluripot.
factors, VEGF signaling,

tumorigenic growth
[64]

143B, U2OS (OS) CIS Exposure to CIS 5 µM
for 24 h 1.54, 1.75

Sphere formation, MSC features,
pluripot. factors, CSC markers,
NOTCH signaling, tumorigenic

growth

[66]

HOS, MG63, MHN,
MNNG/HOS,

OHS, U2OS (OS)

DOX
MTX
CIS

Exposure to DOX (0.91,
0.31, 0.92, 0.46, 0.52,

0.92 µM), MTX (8, 20, 22,
22, 5, 7 nM) or CIS (3.72,

7.55, 15.87, 3.3, 4.17,
12.48 µM) for 24 h

N/Q
N/Q
N/Q

ALDH activity, pluripot. factors,
ABC transporters,

WNT/β-Catenin signaling,
tumorigenic growth

[62]

Human primary,
U2OS,

KHOS/NP (OS)
DOX Exposure to DOX (50,

100, 100 nM) for 24 h N/Q Sphere formation, CSC markers,
migration, tumorigenic growth [61]

HOS, MG63,
U2OS (OS) DOX Exposure to DOX (14, 28,

28 nM) for 6 months 4.0, 4.0, 6.0 Multidrug resistance, ABC
transporters, migration [36]

MG63 (OS) DOX
Exposure to increasing
doses of DOX (from 2.5

to 1000 ng/mL)
10.53

Multidrug resistance, pluripot.
factors, CSC markers, sphere

formation, tumorigenic growth
[65]

* Fold resistance = IC50 resistant/IC50 parental; OS: osteosarcoma, DOX: doxorubicin, CIS: cisplatin, MTX: methotrexate, 3AB:
3-Aminobenzamida, N/Q: IC50 Not quantified, SP: Side population.

Altogether, these data provide evidence for a link between stemness and drug resis-
tance in bone sarcomas. Below, we will review different pro-stemness mechanisms used by
CSCs to develop drug resistance in bone sarcomas.

2. Mechanisms Involved in Cancer Stem Cell-Mediated Drug-Resistance
2.1. Stemness-Related Signalling Pathways

Several studies have contributed to establish a link between therapy resistance and
abnormal activation of growth and/or survival signaling pathways in CSCs [67] (Figure 1).
Among them, the Wnt/β-Catenin pathway is the most studied in osteosarcoma regarding
their role in drug resistance. Conventional chemotherapeutic drugs such as doxorubicin,
cisplatin and methotrexate, effectively induce the expression of stem cells markers (i.e.,
SOX2, OCT4, KLF4 or Nanog) and multidrug resistance-related transporters (i.e., ABCG2
or ABCB1) in osteosarcoma cells through the activation of the Wnt/β-Cat pathway [62].
Interestingly, disruption of this pathway with the tankyrase inhibitor IWR-1 reverses these
effects by reducing the levels of AXIN2, a negative regulator of the Wnt signaling, and
results in impaired CSCs proliferation and viability. Moreover, this treatment was able to
re-sensitize osteosarcoma CSCs to doxorubicin, both in vivo and in vitro [68]. Similarly, the
β-catenin/transducin β-like protein 1 (TBL1) inhibitor tegavivint reduced the expression
of ALDH1 and impaired primary tumor growth, as well as distal metastatic development
in two PDX mice models derived from doxorubicin-resistant tumors. Consistently, this
treatment also restored the sensitivity of these cells to doxorubicin and the combination
of both drugs resulted in increased survival of mice models [69]. Another study showed
that knockdown of the three prime repair exonuclease 1 (TREX1) enhanced stemmness
properties and resistance to cisplatin and doxorubicin in osteosarcoma cells through the
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E2F4-mediated activation of the Wnt/β-catenin pathway [70]. Other factors have also been
involved in the regulation of the Wnt/β-catenin-mediated induction of stemness in rare
subtypes of bone sarcomas. This is the case of the melatonin specific membrane receptor
1B (MTNR1B) in recurrent chordoma where this receptor has been found downregulated
and inversely correlated to the levels of OCT4. Moreover, its levels were lower in spheres
than in the corresponding adherent cells [71]. Interestingly, the activation of MTNR1B
could sensitize cells to cisplatin as it mediates melatonin-induced inhibition of the Wnt/β-
Catenin pathway by preventing β-Cat phosphorylation by SRC. In line with this finding,
the combination of cisplatin with melatonin or dasatinib (a SRC inhibitor) resulted in an
improved response to chemotherapy in mice xenografts [71].

Figure 1. Mechanisms involved in Cancer Stem Cell-mediated drug-resistance in bone sarcomas. Tumor response to
chemotherapeutic drugs is frequently characterized by the activation of stemness-related pathways such as WNT/β-catenin
and Notch signalling. Autophagy, epigenetic regulation and the expression of certain non-coding RNAs may also modulate
CSC response to anti-cancer therapies. Within the bone microenvironment, the crosstalk between sarcoma cells and the cell
types that regulate bone homeostasis may initiate a vicious circle resulting in a dysregulated bone lysis and the release of
bone matrix growth factors (BMP, TGF-β or FGF) that promotes tumor growth and stemness. In addition, the crosstalk
signalling between MSCs and tumor cells may also result in increased drug resistance and more aggressive phenotypes
(higher invasive and metastatic potential) through the activation of pro-stemness factors, such as STAT3, or the metabolic
reprogramming in sarcoma cells. Finally, hypoxic and/or acidic microenvironments may also contribute to CSC-mediated
drug resistance in bone sarcomas.
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Notch signaling also plays relevant roles in stem cells-mediated resistance in osteosar-
coma. This pathway has been found activated in resistant osteosarcomas, where it was
positively correlated to stem cell-like properties. The expression of Notch1 intracellular
domain (NICD1) and several Notch targets like Hes1, Hes5 and HeyL, were found to
gradually increase in normal adjacent tissues, chemosensitive tumors and chemoresistant
tumors. Besides, the mRNA levels of OCT4 mimicked this gain pattern too, suggesting
a link between resistance and stemness in osteosarcoma [72]. Consequently, two studies
found that different γ-secretase inhibitors (GSI), not only decreased the CSC-like phenotype
but also restored chemosensitivity in cisplatin-resistant cell lines [66,72]. As a clue to the
mechanism behind this re-sensitization, blockade of NOTCH signaling with GSI was found
to be associated to the inhibition of AKT and ERK signaling [72]. A subsequent study con-
firmed that Notch overexpression in osteosarcoma cells is linked to chemoresistance along
with increased tumorigenicity, invasion and stemness. The authors also demonstrated that
this role of Notch signaling in osteosarcoma was mediated by Ephrin B1 [73].

Other studies have shown the involvement of the JAK/STAT pathway in osteosarcoma
resistance. It has been found that Interleukin 6 (IL-6) promotes epithelial-to-mesenchymal
transition (EMT), stemness and chemoresistance in osteosarcoma cells through the hyper-
activation of STAT3 through a mechanism mediated by osteopontin (OPN) [74]. Relevantly,
the treatment of osteosarcoma CSCs with cinobufagin, a steroid lactone used in Chinese
medicine, was able to reduce their levels of IL-6, p-STAT3 and OPN, resulting in an atten-
uated stem-like phenotype and decreased tumor growth [75]. Osteosarcoma cells might
also gain stemness properties and tumorigenic potential upon drug treatment through the
activation of a VEGF/VEGFR1/ERK autocrine signaling [64]. This work shows that the
block of this signaling through the depletion of VEGFR1 or the inhibition of ERK signaling
led to the reduction of CSC-associated properties and an enhanced response to cisplatin
in vivo [64].

Several members of the Krüppel-like family of pluripotency factors also plays relevant
roles in regulating the CSC phenotype and drug resistance in osteosarcoma. Thus, KLF4
expression was associated to the development of drug-induced stemness phenotypes in
osteosarcoma cells via a mechanism that seems to be mediated by the activation p38 MAPK
signaling [76] and can be inhibited by statins [61]. Similar findings have been reported for
KLF8, which was described to control cancer stem cell-like features through a signaling axis
involving the regulation of SOX2 expression by miR-429 [77]. In addition, the oncogenic
gain-of-function of the tumor suppressor TP53 has been associated with an increase in
CSC subpopulations in colon cancer cells treated with doxorubicin [78]. In bone sarcomas,
the presence of TP53 gain-of-function mutants have been found to promote a stemness
phenotype in a drug-resistant osteosarcoma model [79]. In this line, the reactivation of a
functional TP53 pathway underlay the antitumor effect observed after triggering CD99
signaling in Ewing sarcoma. This mechanism, which appears to be specific for tumor cells,
also resulted in a significantly increased response to doxorubicin [80]. Finally, the role of
efflux pumps of the ABC family in mediating drug resistance in osteosarcoma CSCs has
recently been addressed. This study proposed that the acquisition of a multidrug resistance
in osteosarcoma is a multi-step process where the expression of different components of the
ABC family of transporters are mediating distinct resistant phenotypes [36]. Furthermore,
it has been suggested that the high apoptotic threshold of osteosarcoma stem cells to
doxorubicin treatment is mainly dependent on the drug concentration reached inside tumor
cells which is governed by efflux transporters activity. Therefore, the inhibition of the
expression of ABC pumps may result in an enhanced uptake of doxorubicin accompanied
by the up-regulation of pro-apoptotic protein BAK, the suppression of anti-apoptotic BCL-2
and increased commitment of CSCs towards apoptosis [81].

2.2. Regulation of Metabolism

CSCs have often been reported as quiescent, slow-growing cells that present a low
metabolic rate when compared with the highly proliferative cells shaping the bulk of the
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tumor [37,82]. Through quiescent states, CSCs could survive treatments with chemother-
apeutic drugs, aimed to target rapidly dividing cells. Therefore, quiescence provides an
advantage to CSCs, as well as an opportunity for cancer to regrowth after therapy. Sarco-
spheres, derived from MNNG/HOS cells, had low metabolic activity following irradiation,
as determined by fluoro-deoxyglucose (FDG) uptake, which was also accompanied by
low production of reactive oxygen species (ROS) [49]. These results not only suggest that
sphere-forming cells could be kept in a quiescent state, but also that they might develop
improved intrinsic antioxidant capacity, which could offer them resistance to conven-
tional therapies that target proliferating cells. In line with this reasoning, the inhibition of
metabolic activity with 2-deoxy-D-glucose (2DG, a glucose competitive inhibitor) or met-
formin (an oral biguanide medicine widely used for type 2 diabetes treatment) can increase
the sensitivity of bone sarcoma stem cells to conventional chemoterapeutic drugs [83,84].
Metformin treatment of stem cells isolated from HOS, Saos-2 or MG-63 osteosarcoma
cell lines lead to a significant reduction in the IC50 value for cisplatin, doxorubicin and
5-fluorouracil. This sensitization was caused by a weakening of the glucose metabolism
that was mediated by glycolytic enzyme pyruvate kinase M2 [84]. Interestingly, metformin
could also attenuate the stemnes phenotype in osteosarcoma cells. Therefore, the treatment
of osteosarcoma cells with this drug resulted in a reduced formation of self-renewing
sarcospheres, a decreased expression of pluripotency markers (Nanog, OCT3/4) and the
induction of cell death in CSC subpopulations [85,86]. These effects were mediated by
the activation of AMPK and the subsequent inhibition of mTOR signaling and autophagy
dysregulation [85,86]. The same effect was detected in Ewing sarcoma cells, since the
suppression of the stemness-related phenotype was evident after treatment with 2DG,
metformin or a combination of both. In this case, the proportion of cells displaying high
ALDH activity, the number of sarcospheres or the mRNA levels of OCT3/4, SOX2 and
Nanog dropped significantly with the treatment. Importantly, 2DG was also able to raise
the efficacy of doxorubicin and the PARP inhibitor talazoparib [83].

2.3. Autophagy

Moreover, autophagy, which related to the regulation of metabolic homeostasis, is a
self-degradative process, crucial for balancing sources of energy at critical times, both in the
development and in response to nutrient stress. It has been demonstrated that autophagy
participates in the homeostasis of osteosarcoma CSCs. The number of autophagosomes, as
measured by immunofluorescent LC3-II puncta, increased in osteosarcoma CSCs selected
either by their improved ability to form sarcospheres [86,87], enhanced ALDH1 activity [88]
or augmented expression of the CSC marker CD271 [51,57]. In addition, osteosarcoma
CSCs also displayed higher levels of essential genes for autophagy, such as Beclin1, Atg5 or
Atg7. As a result, CSCs benefited from increased resistance to unfavorable circumstances,
like nutrient scarcity and hypoxia [57,87] or even chemotherapeutic treatment [86,88]. It
has been shown that the IC50 for cisplatin or epirubicin in both Saos2- and MNNG/HOS-
CD271+ cells decreased after siRNA knockdown of Atg5 or Atg7 [57]. Moreover, autophagy
inhibition through treatment with a catechin from green tea (Epigallocatechin gallate or
EGCG) successfully re-sensitized CSCs isolated from Saos2 and U2OS cells to doxorubicin.
Besides, this treatment also reduced the expression of pluripotency markers and the
formation of sarcospheres in osteosarcoma CSCs [88]. Other compounds that are able to
dysregulate the authophagic activity, such as the antipsyhcotic drug thioridazine, may also
promote cell death through the induction of autosis in osteosarcoma CSCs [87]. In any case,
the role of autophagy in osteosarcoma stemness is complex and a role for autophagy as a
negative regulator of CSCs under certain circumstances has been also proposed. In this
work, metformin-mediated induction of autophagy disturbed the homeostasis of stemness
and pluripotency of osteosarcoma CSCs and was suggested to play a role in the anti-tumor
mechanisms induced by this drug [86].
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2.4. Epigenetic Regulation of Stemness in Bone Sarcoma Stem Cells

From DNA methylation to histone modifications, epigenetic events are key to CSCs
plasticity as they offer an effective and versatile method for rapidly changing cellular
expression programs. In cell lines derived from Ewing sarcoma, endogenous EWS/FLI1
can bound to the promoter region of EZH2 and regulate its expression in a dose-dependent
manner [89]. EZH2 is part of the polycomb repressor complex 2, where it contributes to
gene silencing through the tri-methylation of lysine 27 on histone 3 (H3K27me3). The
blockade of EZH2 expression in Ewing sarcoma cell lines decreased overall H3K27me3 and
increased histone H3-acetylation (H3K27ac). Interestingly, this blockade was accompanied
by the downregulation of stemness-related genes, such as the nerve growth factor receptor,
and the upregulation of genes involved in neuroectodermal and endothelial differentiation
like GAP43, EPHB2 or GFAP [89,90]. Moreover, suppression of EZH2 expression in Ewing
sarcoma cell lines inhibited contact-independent growth, favored cell differentiation, and
reduced tumor growth as well as metastatic dissemination in vivo [82]. These data suggest
a role for EZH2-dependent epigenetic regulation in the maintenance of an undifferentiated
and stem-like phenotype in Ewing sarcoma, as has been reported in prostate tumors,
breast cancer and glioblastoma [91,92]. In addition, higher protein expression of EZH2 was
detected in osteosarcoma patients where it significantly correlated with shorter disease
free and overall survival. Strikingly, patients with metastasis at the time of diagnosis
presented a significant up-regulation of this factor, which was preferentially located at
the nucleus [93]. In accordance with this, mRNA levels for EZH2 significantly increased
in those osteosarcoma patients who developed metastasis within 5 years after the initial
diagnosis. Similar to what was described for Ewing sarcoma, the abrogation of EZH2
expression in osteosarcoma cells was able to decrease cellular growth, migration, invasion
and clonogenicity. Furthermore, the depletion of this factor also resulted in a reduction
in the levels of the stem cell marker CD44 and Notch3, in addition to the activation of
pro-apoptotic pathways [93].

Also in osteosarcoma, the expression of the histone methyltransferase SETD2 has
been found to be downregulated in a small cohort of patients when compared with their
paired normal tissues [94]. Through the loss and gain of expression experiments, the
authors demonstrated that SETD2 acts as a tumor suppressor gene in osteosarcoma cell
lines. This factor not only controls tumorigenesis in vivo, but also affects CSCs properties
and chemosensitivity by regulating the Wnt/b-catenin pathway [94]. On the other hand,
other histone methyltransferase, such as NSD2, have been reported to negatively regulate
apoptotic signaling, while enhancing CSC properties and chemoresistance in osteosarcoma
cells through a mechanism mediated by H3K36me2 modifications in key apoptotic and
pluripotency genes and the activation of ERK and AKT pathways [95]. In addition, nicoti-
namide N-methyltransferase (NNMT), another methyltransferase previously implicated
in different metabolic disorders and cancer development, has also been associated to the
acquisition of a stemness state in osteosarcoma [96]. Therefore, the levels of this enzyme
were elevated in sphere-forming cells versus control cells and positively correlated with
the expression of CSC-associated factors like CD133 or SOX2 [96].

Finally, the leukemia-inhibitory factor (LIF) has been recently reported as an essential
factor under the control of super-enhancers that are specific to osteosarcoma [97]. The
expression of LIF was significantly higher in osteosarcoma cell lines and tumors and
its expression levels were positively correlated to the stem cell core fators SOX2 and
Nanog. Moreover, the treatment of osteosarcoma cells with recombinant LIF protein
improved sphere-formation, augmented their invasiveness and increased the expression of
CSC-related genes, such as CD133, SOX2, Nanog and OCT4. Further investigations have
demonstrated that the expression of LIF and downstream pro-stemness effects are regulated
by the H3K27me3 demethylase UTX, which is able to join LIF promoter and modulate the
super-enhancer signals that control LIF transcription [97]. Therefore, the UTX inhibitor
GSK-J4 is able to reduce the endogenous levels of LIF in osteosarcoma cells through in
combination of epigenetic signals that affect NOTCH1 signaling, including an increase of
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H3K27me3 and a decrease in H3K27ac at LIF gene locus. This chemical impairment in
LIF expression was accompanied by a reduction in CD133 or CD117 levels and a decrease
in the sarcosphere forming potential. Further, spheres treated with GSK-J4 were less
tumorigenic than their untreated counterparts when injected in immunocompromised
mice. Interestingly, these changes were reverted after the addition of LIF recombinant
protein [97]. Overall, the summarized studies highlight the relevant role that epigenetic
mechanisms play in the modulation of CSCs properties, including drug resistance in bone
sarcomas.

2.5. Non-Coding RNAs

MicroRNAs (miRNAs) are small, regulatory RNA molecules that can simultaneously
modulate the expression of their respective target genes in a very specific way. Therefore,
miRNAs have become key regulators of tumor cell growth, proliferation and survival.
Moreover, different studies have demonstrated that miRNAs can modulate the sensitiv-
ity of CSCs to anti-cancer therapies [98]. In bone sarcomas, an increasing collection of
studies are contributing to define the key role that miRNAs play in the regulation of CSC
subpopulations (Figure 2).

Figure 2. Role miRNAs in stemness and drug resistance in bone sarcomas. MicroRNAs (miRNAs) are regulatory RNA
molecules that can simultaneously modulate the expression of a panel of target genes and thus control different cell
phenotypes. The process of miRNA transcription and maturation and the enzymes involved in the different steps are shown
in the left part of the figure. Right-hand side panels show relevant miRNAs whose upregulation (↑) or downregulation (↓) has
been associated with stemness, chemoresistance, metastatic dissemination and/or lower patient survival in bone sarcomas.

The analysis of the miRNA profiles of CSC (CD133high) and non-CSC (CD133low)
subpopulations derived from osteosarcoma SaOS2 cells, identified 20 miRNAs that were
upregulated in CD133high cells [45]. Among them, miR-133a was also found to be upregu-
lated in the CD133high fraction of osteosarcoma biopsies and was significantly correlated
with poor prognosis. Strikingly, miR-133a levels in another osteosarcoma cell line (143B)
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augmented after treatment with doxorubicin or cisplatin, thereby suggesting the role of
this miRNA in the chemoresistance phenotype of osteosarcoma cells. To further test this
possibility, the authors treated with cisplatin orthotopic xenografts generated from 143B
cells silenced for miR-133a. The combination of chemotherapy with the abrogation of miR-
133a expression effectively inhibited the formation of lung metastasis and prolonged mice
survival. Moreover, the mRNA of four direct targets of miR-133a (SGM2, UBA2, SNX30
and ANXA2) showed an inverse response to the levels of this miRNA in osteosarcoma cells
and were correlated with poor prognosis in patients [45].

Adopting a similar approach, another study identified miR-499a as a key factor in
the regulation of the resistance to EGFR inhibitors, such as erlotinib in osteosarcoma
CSCs [99]. The authors showed that CD166 marks a subpopulation of osteosarcoma cells
with stem-like properties that were also resistant to erlotinib thanks to a TGFβ-induced
EMT-associated kinase switch. Subsequent investigation demonstrated that overexpres-
sion of miR-499a could revert TGFβ-induced resistance both in vitro and in vivo through
the control of SHKBP1 transcription. These results provide a rationale for using the
SHKBP1/miR-499a ratio as a predictive biomaker of response to erlotinib in osteosar-
coma [99].

Besides miR-133a and miR-499a, other miRNAs have been related to the maintenance
of the CSC phenotype in osteosarcoma. Upon upregulation, the levels of miR-29b-1 [100],
miR-382 [101], miR-26a [102] and miR-34a [103], impair CSCs growth and self-renewal
capability as well as induce a decrease in the expression of stem cell markers like SOX2,
CD133, ALDH1, Nanog or OCT3/4. Interestingly, high levels of miR-29b-1, miR-382 and
miR-26a were also associated with increased sensitivity to doxorubicin, and in the case
of miR-29b-1, also to cisplatin and etoposide [100–102]. Noteworthy, overexpression of
all miRNAs but miR-29b-1, seem to have an impact over CSCs migration and invasion
abilities. Upregulation of miR-382 decreased invasion both in vivo and in vitro by reducing
the expression of EMT markers like vimentin and fibronectin. Interestingly, the diminished
expression of this miRNA is frequently observed in osteosarcoma patients that suffer
from metastatic relapse, and its levels correlate directly to metastasis-free survival and
inversely to recurrence rate [101]. Elevated levels of miR-26a are also associated with better
survival and reduced risk of metastasis in osteosarcoma patients, which is in agreement
with the decrease in tumor latency observed in vivo for osteosarcoma cells that overexpress
miR-26a [102]. Although there are no clinical data for miR-34 in osteosarcoma, it has been
reported that its overexpression reduces the tumorigenic potential of osteosarcoma cells
while favoring the expression of osteogenic markers. Similarly, miR-34 has been suggested
to work as a tumor-suppressor factor in Ewing sarcoma patients [104]. Its expression was
typically lower in patient samples with respect to the healthy controls, and even lower in
cases with metastatic disease. Moreover, miR-34 was significantly correlated with the risk
of recurrence as those patients displaying high levels of the miRNA presented increased
disease-free survival. Interestingly, the authors also found that response to chemotherapy
was slightly better in tumors bearing high levels of miR-34 [104].

On the other hand, the upregulation of miR-19a and miR-135b causes the opposite
effect in osteosarcoma CSCs. CD133+ cells displayed higher levels of miR-19a than their
negative counterparts. In addition, knockdown of this miRNA significantly decreased
the proportion of CD133+ cells and regulate cell proliferation, migration and viability
in osteosarcoma CSCs by modulating the PTEN/PI3K/Akt pathway [105]. A similar
behavior was observed for miR-135b. Its overexpression not only favored sarcosphere
growth and cell invasion, but also augmented the expression of CD133, ALDH1, Nanog
and OCT4 [106]. In mice, suppression of miR-135b effectively abrogated CSC-induced
tumorigenesis, lung metastasis formation and relapse after cisplatin treatment. Moreover,
in clinical samples, high levels of miR-135b were associated with poorer disease-free and
overall survival of osteosarcoma patients. It is worth mentioning that the authors also
found that the effects seen upon miR-135b upregulation could be reverted by miR-200,
which negatively regulated Notch signaling in osteosarcoma cells [106].



J. Clin. Med. 2021, 10, 2621 11 of 19

Besides miRNAs, other types of non-coding RNAs, such as long non-coding RNAs
(LncRNAs), have been involved in the regulation of stemness and drug-resistance in bone
sarcomas. DANCR and MALAT1 are two lncRNAs that have been found to promote stem-
ness in osteosarcoma. The levels of both lncRNAs are positively correlated with the mRNA
expression of CD133, SOX2 or CD90, and their upregulation in osteosarcoma cells led to
an increase in the formation of sarcospheres [107,108]. Interestingly, the effects of both
lncRNAs are exerted through activation of the Akt signaling due to the competitive binding
of the lncRNA to a regulatory miRNA. Although the effectors are different for each of them.
While the binding of DANCR to miR-33a-5p results in higher levels of AXL, a member of
the Tyro3-Axl-Mer (TAM) receptor tyrosine kinase subfamily [108], MALAT1 augmented
the expression of RET proto-oncogen by competitively binding miR-129-5p [107]. The
expression of both lncRNAs was higher in osteosarcomas than in the tissue adjacent to the
tumor. Moreover, their expression was correlated with reduced disease-free and overall sur-
vival [107,108]. A third lncRNA, the SOX2 Overlapping Transcript variant 7 (SOX2OTv7)
has been linked to stemness in osteosarcoma [88]. The overexpression of this lncRNA
resulted in enhanced sphere formation in U2OS and SaOs2 cells. Moreover, SOX2OTv7
levels increased after doxorubicin treatment and contributed to trigger a doxorubicin-
induced pro-survival autophagic activity. Importantly, EGCG may reduce the stemness
properties and improve the anti-proliferative effects of doxorubicin in osteosarcoma cell
lines by decreasing SOX2OTvt7-associated signaling [88]. A role for other lncRNAs has
been reported, such as MSC-AS1 and TTN-AS1 in osteosarcoma progression and drug re-
sistance [109,110]. Although, the involvement of osteosarcoma CSCs in the drug resistance
phenotype mediated by these lncRNAs has not been addressed, the silencing of lncRNA
MSC-AS1 resulted in the inactivation of pathways with reported roles in stemness such as
PI3K/AKT signaling [110].

Finally, circular RNAs (circRNA) are covalently closed RNA molecules that have
also been recently reported to have roles in cancer stemness and drug resistance [111].
In osteosarcoma, several circRNAs has been found upregulated in chemoresistant mod-
els and related to poor prognosis, proliferation, invasion and drug resistance [112–115].
Among them, circUBAP2 were reported to enhance resistance to cisplatin in osteosarcoma
through a mechanism involving the activation of pro-stemness pathways, such as WNT
signaling [116].

3. Influence of Tumor Microenvironment in CSCs and Drug Resistance in
Osteosarcoma

Bone sarcomas emerge in a rich environment where tumor cells are closely interacting
with with local microenvironmental cell types, such as MSCs, cancer-associated fibroblasts
(CAFs), osteoblasts, osteocytes, osteoclasts, chondrocytes, or immune infiltrates [38,117].
Specific physical properties of specific bone microenvironment niches, as well as, support-
ive signaling generated by the crosstalk between tumor cells and the surrounding milieu,
are known to play key roles in the gain of heterogeneity and stemness and the acquisition
of drug resistant phenotypes [17,38,118–121] (Figure 1). A paradigmatic example of the
interaction of tumor cells with the microenvironment is the “vicious cycle” initiated by
tumor cells with osteolytic potential. These cells are able to produce paracrine factors (like
PTHrP, TGF-β or IL11) that stimulate bone resorption through a RANKL–RANK-mediated
activation of osteoclasts. The subsequent bone lysis results in a dysregulated release of
growth factors from the bone matrix (BMP, TGF-β or FGF), which in turn, may enhance
tumor growth and promote stemness in cancer cells [38,118,120]. Also, a low oxygen envi-
ronment may constitute a supportive niche for bone sarcoma CSCs and alter the response
to anti-tumor drugs. Thus, osteosarcoma cell lines cultured under hypoxic conditions may
develop resistance to different chemotherapeutic agents through mechanisms dependent or
not on the activation of the hypoxia-inducible factor 1α (HIF1α) [122,123]. Again, WNT/b-
catenin signaling seems to be key in the mediation of hypoxia-induced chemoresistance in
osteosarcoma cells [124].
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Within the osteosarcoma microenvironment, MSCs is the cell type with more precisely
described interactions with osteosarcoma stem cell subpopulations. MSCs may secret a
wide array of growth factors that are able to regulate the proliferation and/or the differen-
tiation of themselves and other components of the bone microenvironment [118,125–127].
Conditioned medium (CM) from MSC cultures or extracellular vesicles (EVs) extracted
from this CM [128] have been shown to protect osteosarcoma cell lines against death caused
by nutrient deprivation [129,130] or drug-induced apoptosis [131,132]. In addition, it was
demonstrated that MSCs activate the proliferation of osteosarcoma cells in vitro as well
as accelerate local growth in vivo [131,133]. Furthermore, CM and EVs from MSCs may
enhance the migration [129,134] and invasive potential [134,135] of osteosarcoma cells.
Accordingly, MSCs may interact with osteosarcoma CSCs to increase the levels of adhesion
molecules, such as the intercellular adhesion molecule 1 (ICAM-1), that are responsible for
tumor extravasation [136]. These findings might explain the higher metastatic potential
observed for osteosarcoma cells exposed to or co-injected with MSCs [134,137,138]. In-
terestingly, MSCs can also exacerbate stemness in osteosarcoma cell lines. Therefore, the
exposure of osteosarcoma CSCs to MSCs result in an increased expression of stem factors
(i.e., Nanog, OCT4 or SOX2) and enhanced sphere formation potential [136,139].

The mechanisms underlying the role of MSCs in promoting aggressiveness, recur-
rence and metastatic potential in bone sarcoma cells are in part dependent on the release
of bioactive EVs containing anti-apoptotic proteins, bioactive lipids, mi-RNAs and lncR-
NAs [129,130]. Two miRNAs that have been related to cell survival and proliferation,
miR-21 and miR-34a, were detected in EVs derived from serum-deprived MSCs [130].
Moreover, the lncRNA plasmacytoma variant translocation 1 (PVT1), transported in MSCs-
derived EVs, was found to promote proliferation and migration in osteosarcoma cells [140].
The authors demonstrated that EVs containing PVT1 increase the metastatic potential of
tumor cells through the upregulation of ETS Transcription Factor ERG [140].

MSCs in bone microenvironment may also be «educated» by bone sarcoma cells
through the release of EVs to the microenvironment (Figure 1). In this bidirectional
crosstalk, TGF-β-containing tumor-produced EVs are able to induce the production and
secretion of pro-tumor factors like IL-6 by MSCs [125,137]. Closing the feedback circuit
between MSCs and bone sarcoma cells, several works have identified STAT3 as the main
pro-stemness and pro-tumorigenic factor induced by MSC-released IL-6 in osteosarcoma
cells [74,132,136,137,141–143]. This signaling has also an impact in the development of
drug resistance. Thus, it has been shown that STAT3 activation by IL-6 is essential for
MSCs-induced chemoresistance. Therefore, blocking of STAT3 signaling by AG490, a
JAK2 inhibitor, or the knockdown of IL-6 using siRNA could re-sensitized drug-resistant
osteosarcoma cells to doxorubicin and cisplatin [74,132]. Interestingly, the expression of
STAT3 was higher in osteosarcoma patients displaying resistant tumors and it was also
associated to a poorer outcome [132]. Similarly, serum IL-6 levels were found to be higher in
patients presenting metastasis or higher TMN stage [74]. Besides IL6, other MSC-derived
factor, such as IL-8, were reported to enhance the pro-tumorigenic properties of bone
sarcoma cells. The release of this cytokine from MSCs was shown to promote resistance
to cell anoikis and pulmonary metastasis through the activation of the C-X-C chemokine
receptor 1 (CXCR1)/AKT pathway [138]. Finally, MSCs may also be re-educated by
osteosarcoma cells through a mutual metabolic reprogramming process, which may result
in an increased acidification of tumor microenviroment [144]. Notably, tumor acidosis
is also an important pro-tumor factor, which may promote survival, chemoresistance
and stemness of osteosarcoma cells by acting directly in tumor cells or by activating the
NFκB/IL6 axis in MSCs [145,146].

Altogether, these findings highlight the relevance of the bone microenvironment in
the development of osteosarcomas and the modulation of their response to anti-tumor
treatments. Therefore, different therapies aimed to counteract the pro-tumorigenic signal-
ing between tumor cells and the surrounding microenvironment are being explored. These
strategies, recently reviewed elsewhere [10,118,127], include the targeting of dysregulated
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osteoclast activity, hypoxic signaling, angiogenesis, immune system components, including
tumor associated macrophages and immune checkpoints. Moreover, blocking the crosstalk
between tumor-educated MSCs and tumor cells using IL6- and TGFβ inhibitors may also
represent useful therapeutic options to be explored in the future [137].

4. Conclusions

There is a consensus about the need to target drug resistant CSCs to reduce the high
rate of relapses observed in sarcomas. Here, we recapitulate evidence for intrinsic and drug-
induced phenotypic stem cell state transitions that reinforce the suspected link between
stemness and drug resistance in bone sarcomas. The inhibition of the pro-resistance
mechanisms involved in the acquisition of resistant phenotypes is being investigated as
therapies in preventing drug resistance in bone sarcomas.

Further advances are expected to come from “omics” analyses of CSCs, which are
still rare in bone sarcoma [65,147,148]. These studies will result in the integration of
transcriptomic, epigenomic, proteomic and/or metabolomic data to establish networks
of altered signaling in CSCs. In vivo cell tracking of CSC subpopulations and single-cell
analyses will also be key for confirming the current knowledge on the topic and ensure
new mechanisms driving drug resistance are identified [149,150]. This altered signaling
is expected to be translated to the clinic in the form of biomarkers of response and new
therapies able to overcome drug resistance in bone sarcomas.
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