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Abstract

The data explosion in the last decade is revolutionizing diagnostics research and the healthcare
industry, offering both opportunities and challenges. These high-throughput ‘‘omics’’
techniques have generated more scientific data in the last few years than in the entire history
of mankind. Here we present a brief summary of how ‘‘big data’’ have influenced early
diagnosis of complex diseases. We will also review some of the most commonly used ‘‘omics’’
techniques and their applications in diagnostics. Finally, we will discuss the issues brought by
these new techniques when translating laboratory discoveries to clinical practice.
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Computational techniques in early diagnosis

The ability to provide effective treatments in the early stages

of a disease tends to lead to significantly better outcomes for

the patient when compared with providing the same treatment

at a significantly later stage of progression. This is particu-

larly true for a number of diseases such as cancer and

cardiovascular diseases, where any time lost can be a matter

of life or death. However, early diagnosis of these diseases

may be difficult using traditional biochemical methods due to

their asymptomatic nature and the lack of efficient detective

technologies. In the last decade, an exponential increase in the

amount of data has been produced by various high-throughput

‘‘omic’’ technologies and we have now effectively entered the

era of ‘‘big data’’. Although requiring massive computational

resources and advanced data processing and analysis methods,

‘‘big data’’ approaches to diagnostic medicine and biomarker

development have been successfully applied to the early

detection of complex chronic diseases. In some cases, this has

given us a deeper understanding of the molecular pathogen-

esis of disease. In this review, we will discuss the current state

of ‘‘big data’’ and computational techniques for early-stage

disease diagnosis and how advances in these techniques may

promote a better understanding of complex diseases.

‘‘Big data’’ in disease diagnosis

Although great progress has been made within the last few

decades, classical biomedical research methodology is

still facing a challenge with diagnosis of complex diseases.

These are typically associated with the effects of multiple

genes in combination with lifestyle and environmental factors.

One of the reasons for this difficulty in early diagnosis (or

prediction) is that changes in traditional biomarkers can be

too subtle at the asymptomatic stage to efficiently distinguish

patients from normal individuals (Chen et al., 2012), and

useful information can often be masked by the ‘‘noise’’

generated from naturally occurring variation within a given

population. Therefore, many groups have suggested that

diagnosis should be considered in a more comprehensive

manner. Hampel et al. (2011) suggested that a combination of

multiple biomarkers as well as genetic predisposition and

environmental factors should all be taken into account for

early diagnosis and personalized therapies of complex

diseases such as Alzheimer’s disease. However, such studies

require large-scale measurements on a large number of

individuals to eliminate over-fitting of predictive models.

With the development of high-throughput ‘‘omics’’ tech-

niques and the reduction in prices per sample, these types of

analyzes are now a reality. An enormous number of data have

been generated, providing a global view with rich information

on diseases and their diagnosis.

One of the largest projects is The Cancer Genome Atlas

(TCGA, http://cancergenome.nih.gov/), which contains clin-

ical information, histopathology slide images and molecular

information from over 8000 tissue samples of 34 types of

cancer. The goal of TCGA is to improve early detection of

cancer and treatment by understanding how DNA mutations

interact to drive cancers. However, the interpretation of such
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rich information seems to be a ‘‘big data problem’’. Big data

is a concept that varies in different fields. In biomedical

research, ‘‘big data’’ essentially refers to computational

analyses that help scientists make sense of the chaos of

extremely large experimental and clinical data sets.

Conceivably, big data are already impacting disease diagno-

sis. For example, by studying a large sample set, Chen et al.

(2011) achieved considerable high specificity (98.9% and

91.9%) for non-invasive prenatal diagnosis of trisomy 13 and

trisomy 18 using maternal plasma DNA sequencing.

Big data in disease diagnosis shares the same IT challenges

as in other fields, including data storage, transfer, access

control, and management (Marx, 2013; Schadt et al., 2010).

Another challenge is the computational modeling of complex

biology systems. Due to the large scale and diversity of the

data, non-optimized models may fall into Non-deterministic

Polynomial-time hard (NP hard) problems whose time com-

plexity increases super-exponentially (Schadt et al., 2010).

Moreover, sampling bias should not be neglected. According to

the study of Kaplan et al. (2014), bigger data are not always

better, since large sample studies sometimes can magnify biases

associated with error resulting from sampling or study design.

Computational ‘‘omics’’ techniques

Diseases with an identifiable genetic component play a role in

nine of the ten leading causes of death in the United States

(Hoyert & Xu, 2012). A positive association between genetic

variation and disease may not only help diagnose diseases at an

early stage but also predict disease onset before the initiation of

pathogenesis. Genome-wide association study (GWAS) is one

of the most common statistical approaches that involves rapidly

scanning millions of markers (single-nucleotide polymorph-

isms, SNPs) at the same time across genomes to find genetic

variations associated with a common complex disease (Visscher

et al., 2012; Wellcome Trust Case Control, 2007). Liu et al.

(2014) reported that the inclusion of the GWAS genetic variants

data significantly improved their breast cancer naı̈ve Bayes

diagnostic model. As technological improvements continue to

decrease DNA sequencing costs, whole genome sequencing

(WGS) or whole exome sequencing (WES, sequence protein-

coding genes only) becomes more practical for clinical

applications and might be a potential alternative to GWAS as

it provides more information on whole genomes (Berg et al.,

2011). However, WGS/WES generates large quantities of data

that require tremendous computational capacity for analysis

such as sequence alignment, variant calling, filtering, and

identifying disease susceptibility genes. In fact, sequence data

are produced significantly faster than current computational

resources can handle (Stein, 2010). Thus, more efficient

algorithms and/or more powerful hardware need to be deve-

loped in the future (Ding et al., 2014). However, this may lead

to an ‘‘arms race’’ between hardware and software resulting in

increased rates of obsolescence in the field. Therefore, it is clear

that data acquisition (hardware) and analysis (software) cannot

be pursued independently of each other.

Gene expression (transcriptomics) profiling provides an

opportunity for accurate, definitive diagnosis (Wen et al., 2013;

Wiseman et al., 2013). High-throughput mRNA sequencing

(RNA-Seq) is one of the most popular techniques in

transcriptomics since this technology allows for investigating

both known transcripts and uncovering new ones. Since

transcripts (RNAs) need to be converted to cDNA and then

sequenced, RNA sequence assembly algorithms for short, low-

quality reads without references are required (Martin & Wang,

2011). While microarray suffers from a number of limitations

compared with RNA-Seq (e.g. unbiased detection of transcripts,

increased dynamic range, increased specificity/sensitivity, and

increased detection of rare/low-abundance transcripts), it can be

used to measure large numbers of gene expression levels

simultaneously. In addition to regular clinical diagnosis, many

recent articles reported the success of applying microarray in

prenatal diagnosis (Shaffer et al., 2012; Wapner et al., 2012).

Proteomics can also be used for the biomarker detection of

early-stage disease such as cancer (Mehrotra & Gupta, 2011;

Rahman et al., 2011), cardiovascular disease (Delles et al.,

2010; Gerszten et al., 2011), Alzheimer’s disease (Craig-

Schapiro et al., 2011), and other chronic diseases (Good et al.,

2010; Zurbig et al., 2012). Mass spectrometry (MS)-based

proteomics can help identify all differentially expressed

proteins and their post-translational modifications during

disease progression that can be used as biomarkers for early

diagnosis and monitoring disease treatment (Colinge &

Bennett, 2007). The data process of MS relies heavily on

open access public proteomics databases. Both our own group

and others in the field have employed the use of high-

throughput ELISA technology such as Luminex and

Meso Scale to examine panels of proteins (typically numbering

between 20 and 60) in chronic diseases such as osteoarthritis

(Heard et al., 2013) and traumatic injuries (Helmy et al., 2012).

Metabolomics, while a younger field than the rest, is rapidly

expanding in the diagnostics field in ‘‘post-genomic era’’.

Metabolic characteristics and changes in patients are influ-

enced not only by which genes are transcribed, but also the

composition of material that the cells obtain from their micro-

environment. Many reviews have discussed the application of

metabolomics in diagnostics using high-throughput techniques

such as nuclear magnetic resonance spectroscopy (NMR) and

MS. Madsen et al. (2010) made a comprehensive summary of

metabolomics in cancer, diabetes, cardiovascular, and other

complex disease diagnosis. Zhang et al. (2012) pointed out that

saliva metabolomics is a potential method for personalized

therapy and treatment monitoring. However, the type of data

analysis is crucial for metabolomics-based diagnosis: in some

cases, one single marker from the metabolic profile might be

sufficient to detect the disease specifically, in most cases,

machine learning techniques are applied to recognize and

classify metabolic profiles or fingerprints between normal and

disease states. The most widely used are linear discriminant

analysis (LDA), artificial neural networks (ANN), and support

vector machines (SVM). Principal component analysis (PCA)

is often employed for data dimension reduction before model

training in order to lower the chance of over-fitting the model.

Another way to avoid model over-fitting is to apply cross-

validation techniques at the model training step.

System biology

Not until the completion of the Human Genome Project was it

realized that gene sequence alone was insufficient to identify
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all the biologic origin of a disease. The function of each

protein and the complexities of protein–protein interactions

are critical for understanding physiological processes. In

addition, recent studies show that non-coding parts of the

genome produce small conserved ribonucleic acids (non-

coding RNA, ncRNA) that control molecular and cellular

processes (Alexander et al., 2010; Tutar, 2012). Thus, in order

to develop effective diagnostic techniques and disease treat-

ments, genomics, transcriptomics, and proteomics should be

studied integrally and systematically as a whole system.

Through a system-based approach, Lusis et al. integrated

genomic, molecular, physiological data with traditional gen-

etic and biochemical methods to study complex disease

including diabetes and cardiovascular disease. He pointed out

that analyzing the individual components of the whole system

is far from sufficient, since in reality, these components

interact with each other and these interactions play crucial

roles in development of diseases (Lusis et al., 2008).

A number of recent studies have successfully applied

network models in describing and simplifying such complex

systems (Akutekwe & Seker, 2014; Barabási et al., 2011;

Gilman et al., 2011; O’Roak et al., 2012; Vandin et al., 2011,

Vidal et al., 2011). In these studies, network topology is used to

investigate biological networks including metabolic networks,

protein–protein interaction networks, gene regulatory networks,

transcriptional profiling networks, etc., and their interactions.

For example, in the gene network clusters created by Gilman

et al. (2011) using NETBAG (network-based analysis of

genetic associations), many proteins are found to participate in

the formation of autism. These proteins may become new

biomarkers for the diagnosis of autism. In another study

conducted by Akutekwe & Seker (2014), a biomarker identi-

fication method used a dynamic Bayesian network to model the

temporal relationship among stratified features for early

diagnosis of ovarian cancer. Gstaiger et al. tried to bridge the

gap between genotype and phenotype by studying the inference

of genetically perturbed molecular networks based on a

combination of genomics, proteomics, and phenomics data

(Gstaiger & Aebersold, 2009). All these innovative strategies

may provide a deeper understanding of disease development

and help us discover new indicators for early-stage diseases.

Early diagnosis of osteoarthritis

Osteoarthritis (OA), one of the leading causes of chronic

disability worldwide, is a form of arthritic disease character-

ized by the progressive destruction of articular cartilage.

The pathogenesis of OA is multifactorial: aging, injury, and

genetic predisposition may all be contributing factors that

cause joint cartilage degeneration. Currently, clinical diagnosis

of OA relies on radiographic assessment, pain symptoms, and

mobility of the joint. Unfortunately, OA develops asympto-

matically its early stages and when it becomes detectable,

extensive and irreversible deterioration of joint has already

occurred. Therefore, there is a need for new diagnostic

methods, such as new specific biological markers, to detect

OA at before such deterioration happens. However, without

understanding the biological mechanisms of OA, the search for

effective early biomarkers among billions of molecules is like

finding a ‘‘needle in a haystack’’. In the past few years,

development ‘‘omics’’ and bioinformatics techniques have

impacted the etiology and diagnostics of complex diseases like

OA. High-throughput fast screening of biomarkers at the whole

‘‘omic’’ level becomes a reality. As an example, we describe

recent progress and challenges in early-stage OA diagnosis

using these high-throughput techniques.

Genomics in OA diagnosis

Genome-wide association studies have examined thousands of

SNPs in the whole genome and OA. So far, approximately 15

OA susceptibility loci have been identified by GWAS,

although some of them are gender or racial specific

(Tsezou, 2014). Elliott et al. (2013) found significant overlap

between OA and height and OA and body mass index (BMI)

by comparing OA and BMI GWAS data, suggesting that OA

and obesity may share genetic background. In a more

comprehensive mate-analysis study, Rodriguez-Fontenla

et al. (2014) summarized nine GWAS of OA, they identified

two genes (COL11A1 and VEGF) that are significantly

associated with hip OA development.

In order to find the rare variants that are missed in

common GWAS studies, Boer et al. conducted a whole

exome-sequencing study of 1524 participants, of whom 199

had hip OA. Besides three genes already identified in

previous GWAS studies, they found that gene fibroblast

growth factor 3 (FGF3) may contribute to hip OA by

suppressing endochondral bone formation (Boer et al.,

2014). Unfortunately, to our knowledge, this is the only

OA-related whole genome/exome sequencing study published

to date. To obtain a better understanding of the genomic

architecture of OA, additional whole genome large-scale NGS

studies on various cohorts should be undertaken.

Several recent genome-wide DNA epigenetic studies using

high-throughput arrays have revealed new potential OA

biomarkers. DNA methylation (one of the common DNA

epigenetic modifications in promoter regions of genomic

DNA) may influence DNA stability, chromatin structure, and

regulate gene expression. Several studies have examined the

genome-wide DNA methylation profile of human articular

chondrocytes in cartilage and trabecular bone samples from

OA patients and healthy controls to identify profiles of DNA

methylation in OA disease (Delgado-Calle et al., 2013;

Fernandez-Tajes et al., 2014). All these studies found

significant differential methylation levels in certain genes

between the patient and normal groups, and it is possible that

these methylation sites and the genes in which they are

contained could be used as new diagnostic markers for OA.

Transcriptomics in OA diagnosis

Many microarray-based gene expression studies on various

tissue types from OA patients have identified differentially

expressed genes and profiles that could contribute to the

development of new biomarkers. For example, Blom et al.

(2014) identified approximately 200 differentially expressed

genes (fold change�± 2) in synovium, whereas in peripheral

blood, 86 genes were expressed with at least 1.5-fold difference

(Ramos et al., 2014). As increased evidence indicates that

the subchondral bone plays a major role in the initiation

and progression of OA, Chou et al. (2013) performed a
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whole-genome gene expression study of subchondral bone.

They found a total of 972 genes that were differentially

expressed (fold change�± 2) between normal and OA bone

samples. Interestingly, these studies identified only very few of

the same differentially expressed genes, suggesting that in OA,

disease-related gene expression changes with time, or may be

highly tissue and/or patient specific. Although a few molecular

models can explain a small portion of tissue-dependent gene

expression regulation, the full regulation mechanisms in

different tissues are not clear (Fu et al., 2012). Nevertheless,

it is essential that we consider the complex (and in some cases,

non-canonical) roles of genes and their pathways in diverse

tissue and cell types. Hence, it is important that different

studies use expression data from the same tissues to maintain

comparability and assess the association between genes

and disease.

Proteomics and metabolomics in OA diagnosis

Although proteomics and metabolomics approaches in OA

diagnostic studies are relatively new, they have already

identified a great number of potential disease biomarkers.

A broad range investigation of proteomic profiles in different

tissues has been conducted, including femoral head, humeral

head, meniscus, explants, etc. (Hsueh et al., 2014). Additional

studies are more focused on human body fluid as the harvest

is comparatively non-invasive and consequently easier to

translate to clinical practice. Serum and urine are the most

commonly used body fluids for proteomic analysis of OA

(Takinami et al., 2013). However, since they are spatially

removed from the affected tissues it is possible that some key

proteins may be diluted. Synovial fluid (SF), although

sometimes difficult to obtain, can be studied as a compromise

between non-invasiveness and sensitivity (Balakrishnan et al.,

2014). A metabolomics analysis of synovial fluid has

successfully classified OA phenotypes into two metabolically

distinct subgroups using the concentration of acylcarnitine,

which may be related to the carnitine metabolism pathway

(Zhang et al., 2014). These types of studies will help to

unravel the complex pathogenesis of OA and simplify new

biomarker discovery by dividing OA into several subtypes.

A problem with proteomic and metabolomic studies of

early OA is that abnormal protein or metabolite expression is

relatively dynamic compared with gene mutation. Usually

samples are obtained from patients who are already clinically

diagnosed with OA; therefore, the proteomic and metabo-

lomics profiles can only represent the status of the patients at

the advanced or even end stage of the disease. Without

knowing the biomarker profile changes during OA progres-

sion, we should be careful in assuming that differentially

expressed proteins or metabolites in late OA are also potential

biomarkers for early OA diagnosis. Takinami et al. (2013)

conducted a study which followed knee OA patients for

2 years to overcome this problem. However, OA is known to

have a much longer pathogenic in some patients (even up to

decades), and some evidence shows that cartilage degener-

ation which could ultimately lead to OA can start in youth.

Therefore, it is essential to develop long term follow-up

studies now, so that the next generation will be able to benefit

from these types of diagnostic studies in OA.

System biology in OA diagnosis

Extensive ‘‘omics’’ data have been screened so far and many

biomarkers have been proposed, but their sensitivity or

specificity is not high enough for clinical use and the

reliability varies among studies (Table 1). One possible

explanation for this is the multifactorial pathogenesis of OA:

aging, injury, and genetic predisposition may all act as

contributing factors, and consequently, single biomarker

diagnostics are not efficient enough to comprehensively

classify all early-stage OA patients of various etiologies.

Although system biology is an effective technique for

complex disease research, very few studies have been

conducted on OA. Olex et al. (2014) integrated time-course

microarray gene expression data from a mouse model into a

PPI network. However, mice are known to have a much

different genetic response than humans following an injury,

and mouse models might be poor representatives of the

human inflammatory response (Seok et al., 2013). Nacher

et al. (2014) applied a PageRank-based diffusion algorithm to

recognize OA-related proteins in a chondrocyte protein

network and found that protein Q6EEV6 could play a key

role in OA development. In another similar study, some of the

top hub genes in the PPI network are also differentially

expressed, indicating that these genes may be potential targets

for OA diagnosis and treatment (Wang et al., 2014).

All these studies share some common limitations. First,

further genetic and experimental studies are needed to

eliminate the possibility of false positive results from compu-

tational analysis. Second, all these studies are trying to find one

or several biomarkers, which departs from the original purpose

of system biology study in complex disease: to study complex

intracellular and intercellular networks as a whole. Lack of

effective methods to interpret biologic network results might

be one of the reasons. Pilot works are needed to put

computational analysis into perspective in the future.

Importance of patient cohort characterization

Although high-throughput ‘‘omics’’ platforms coupled with

the application of complex bioinformatics approaches have had

a number of successes in identifying potential biomarkers in

complex diseases such as cancer (Wang et al., 2009; Zhang

et al., 2013), sepsis (Lukaszewski et al., 2008), arthritis (Heard

et al., 2014; Swan et al., 2013) and others, it is important to

realize that some, if not all complex diseases have numerous

associated co-morbidities and risk factors. Therefore, it is

essential to have extremely well-characterized patient cohorts

to be sure we are not identifying biomarkers associated with

those co-morbidities and/or risk factors. This is particularly

important in diseases where no early diagnostic tests exist to

assist in the confirmation/validation of the novel biomarkers.

Conclusion

The high-throughput ‘‘omics’’ techniques bring new energy

to diagnostics, offering a comprehensive data resource from

micro (e.g. genomics) to macro (e.g. phenomics). Facing the

‘‘big data’’ generated by such techniques, more powerful

computational resources and efficient models or algorithms

are needed for data storage, transfer, and mining. Systems

biology is one of the most successful methods for studying
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biologic processes and integrating multiple data resources.

Many studies have applied network models in describing

etiopathogenesis and immune responses that may help the

discovery of novel biomarkers for early diagnosis. However,

we should be careful when applying such models, especially

when there is uncertainty regarding the bias of clinical data

and no other diagnostic tests are available for validation.
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