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Abstract: Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable
levels and has been effective in prolonging the lives of HIV infected individuals. However, cART is
not capable of eradicating HIV from infected individuals mainly due to HIV’s persistence in small
reservoirs of latently infected resting cells. Latent infection occurs when the HIV-1 provirus becomes
transcriptionally inactive and several mechanisms that contribute to the silencing of HIV transcription
have been described. Despite these advances, latent infection remains a major hurdle to cure HIV
infected individuals. Therefore, there is a need for more understanding of novel mechanisms that
are associated with latent infection to purge HIV from infected individuals thoroughly. Caveolin
1(Cav-1) is a multifaceted functional protein expressed in many cell types. The expression of Cav-1
in lymphocytes has been controversial. Recent evidence, however, convincingly established the
expression of Cav-1 in lymphocytes. In lieu of this finding, the current review examines the potential
role of Cav-1 in HIV latent infection and provides a perspective that helps uncover new insights to
understand HIV latent infection.
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1. Introduction

The development of HIV vaccines with adequate protection remains elusive. However, there are
encouraging studies that will help promote HIV vaccine development. The phase 2b clinical trial in
Thailand RV144 showed a reduced acquisition of HIV infection with a 31% efficacy [1]. Although these
results are significant and raised hopes, we have not yet reached the goal of attaining an effective
HIV vaccine. Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable
levels and has been effective in prolonging the lives of HIV infected individuals. The suppression of
viral replication achieved by many patients on antiretroviral therapy (ART) initially raised hopes for
virus eradication. It is now well documented that HIV persists in a small reservoir of latently infected
resting CD4+ cells of patients on ART [2–7]. HIV establishes latent infection in the blood and lymphoid
tissues as well as multipotent hematopoietic progenitor cells in the bone marrow [8,9]. Besides,
monocytes, dendritic cells, and macrophages can contribute to viral persistence as latently infected
cells [10–15]. The central nervous system (CNS) is another important target for HIV infection [16–18].
Many drugs are restricted from crossing the blood–brain and blood–CSF barriers and are therefore
suboptimal in penetrating the CNS. Consequently, the CNS serves as a viral reservoir that remains
untouched to cART therapy. Residual viral reservoirs in the gastrointestinal (GI) and genitourinary
tract, as well as lymphoid tissues in patients under drug treatment, can be an additional obstacle
for curing HIV [7,19–24]. Despite the advancement of combinatorial drug therapies that have aided
in treating HIV infected patients and helped prolong life successfully, current drug therapy is not
curative due to HIV’s ability to establish a latent infection that persists in reservoir cells. Consequently,
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HIV infected individuals will remain on cART treatment throughout their lives. Thus, the use of cART
has converted HIV infection into a manageable chronic disease. Although a manageable disease HIV
infected individuals under cART are prone to other Non-AIDS diseases [25–27]. This enforces the need
for a complete understanding of HIV latent infection and subsequently find a strategy for eradication
and cure.

Latent infection occurs when the HIV-1 provirus becomes transcriptionally inactive, and several
contributing mechanisms already identified as repressive chromatin structure, transcriptional
interference from adjacent transcriptional units, increase in histone deacetylase (HDAC) and
methyltransferase (HMT) activity and DNA methylation of proviral DNA [28–32]. Reactivation
of HIV latent infected cells in the presence of cART would ideally allow for recognition of latent infected
cells by the immune system and consequently clearance and cure. Several strategies have been described
and examined to reverse latent infection to target and eradicate HIV [28–33]. A latent reversing agent
(LRA) is one approach as a “shock and kill” strategy in combination with cART to achieve functional
cure HIV infection [33–37]. Examples of LRAs tested include protein kinase C (PKC) agonists (e.g., PMA,
prostratin, bryostatin, and ingenol molecules) [33,36,38–43] and histone deacetylase inhibitors (HDACi;
e.g., vorinostat/SAHA, panobinostat, and romidepsin) [33–35,44–51], indirect activator of Akt signaling
pathways (Disulfiram) [33,52–55], and CCR5 antagonist (maraviroc) [56]. A recent promising study
of reactivation virus in latently CD4+ T cells with the HDACs inhibitor vorinostat shows the cells
were susceptible to HIV antigen-specific CD8+ T cells mediated killing in vitro [34]. However, further
evidence suggests this process alone may not be sufficient. Global activation of T cells to reactivate
virus to target for therapeutic has resulted in a toxic level of immune activation [28,30,32,57,58].
A variety of molecules that induce HIV transcription or inhibit HDACs or HMTs also suffer from
lack of specificity, and their safe and efficient in vivo application and clinical trials have yet to be
established [28,30,32,34,44,59–62]. Furthermore, LRAs are inefficient and have limitations in disrupting
latency in other cell types such as macrophages and microglial cells. Alternative approaches are
emerging to tackle HIV latent infection based on HIV latent promoting agents (LPAs) and proviral DNA
scission. The LPA approach is described as “block and lock,” and the principle behind is to effectively
silence (block) the promoter region and restrict (lock) viral transcription subsequently impairing viral
rebound. For the induction of latency, several methods have been used; however, all these efforts
can be categorized in three groups. First approach was to use small inhibitory RNA (siRNA) or
natural long non-coding RNA (lncRNA) to prevent either the transcription of HIV-1 RNA or initiate a
repressive chromatin modification at the proviral DNA. The most common among these approaches
were, siPromA, LTR363, si2A, and S4. All these targeted NF-κB binding region of the proviral DNA to
modify the chromatin structure to make them inaccessible for transcription. The second approach
was to prevent the Tat, the potent transactivator of HIV-1 transcription. The third approach was
used to modulate the signaling by small molecule inhibitors of mTOR pathway. Recently, the use of,
the clustered regularly interspaced short palindromic repeats (CRISPR), which rely on CRISPR RNAs
(crRNAs) to direct cleavage of complementary sequences via the nuclease activity of CRISPR-associated
(Cas9) protein system, has exploded and become a great tool to knock out genes. HIV provirus deletion
has been accomplished in vitro using the CRISPR/Cas9 system [63–65]. Although targeting proviral
genome using CRISPR/Cas9 provided initial success, general variability in viral sequences and escape
from the CRISPR by mutation posed hurdles in successful use of the technology [66,67]. Despite
these advances, latent infection remains a major hurdle to cure HIV infected individuals. Therefore,
to accomplish a complete purge of latent reservoir, further research is critical to understand better
the factors that influence and maintain HIV latency. Major critical factors that are missing include
complete understanding of the mechanism HIV latency, cell membrane cues that sends the signal for
the establishment of latent infection, and markers that help identify latently infected cells.
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2. Caveolin-1

One molecule that can be important in HIV latent infection is Caveolin 1 (Cav-1). Contrary to
the previous belief, recent findings show that human T cells can express Cav-1 [68–70]. Along with
this finding, the multiple functions of Cav-1 with relevance to cell regulation can have important
implications in HIV latent infection. Caveolin 1 (Cav-1), a 21–24-kDa scaffolding protein, is an
important structural component of the caveolae organelle [71]. Cav-1 is also important in establishing
specific lipid microdomains (non-caveolar caveolin lipid raft (NCCLR)) and helps compartmentalize
signal pathways. Functional studies have shown that Cav-1 is involved in a wide range of cellular
processes (Table 1), including cell cycle regulation, signal transduction, endocytosis, cholesterol
trafficking, and efflux [72–78]. Furthermore, Cav-1 engages in crosstalk with the actin cytoskeleton
and contributes to mechanosensing and adaptation to various mechanical stimuli and environmental
changes that include microbe infection [70,79–86]. Therefore, Cav-1 regulates multiple signaling
cascades as well as provides crosstalk with different molecules, and altered expression or/and any
perturbation of Cav-1 positioning in the vicinity of the plasma membrane can affect signaling and
crosstalk of different biological molecules. Cav-1 is highly expressed in terminally differentiated
or quiescent cells, including muscle cells, adipocytes, endothelial cells, monocytes, macrophages,
dendritic cells, microglia, and astrocytes [74,87–97]. Initially, it was thought that lymphocytes do not
express Cav-1 [74,87–97]. However, several recent reports reveal both T and B primary lymphocytes
express Cav-1 at low levels [68–70,83,98,99]. The expression of Cav-1 protein at times can be difficult
to detect by standard methods. Further studies reveal that Caveolin-1 is important in B cell antigen
receptor (BCR) and T cell antigen receptor (TCR) basal membrane organization and also reorganization
upon stimulation. Several of the proteins that interact with Cav-1 are suggested to be involved in
TCR-regulated membrane dynamics and intracellular signaling [68,69,83,100–102]. Cholesterol plays
an important role in the resting or activation TCR either by stabilizing the resting TCR conformation or
by increasing sensitivity to antigen and cooperation, respectively [83,103–112]. Since Cav-1 is engaged
in cholesterol trafficking and efflux, it can regulate the conformational stage of TCR or other lipid
rafts. In addition, Cav-1 is an essential component of the lipid raft platform for the recruitment of
signaling proteins to the plasma membrane. Signal transduction most probably happens by linking the
plasma membrane and the actin cytoskeleton [83,113]. Therefore, regulation of TCR and other lipid
rafts integrates environmental cues such as the concentration of ligand or cholesterol metabolism to
modulate TCR responses and T cell resting/activation. NCCR can, thus, regulate membrane dynamics
compartmentalization upon receptors activation.

Table 1. Functions of Cav-1.

Functions of Cav-1 Reference

Component of lipid rafts [71]
Cell cycle regulation [72]

Cell signaling [79,114,115]
Endocytosis [76]

Cholesterol trafficking [73,74,78]
Cytoskeletal rearrangement [113]

Mechanosensing [81,82]
B cell signaling [83]
T cell signaling [83]

Cytokine production [85,114]
Cellular senescence [72]

Cell death [74]
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3. Potential of Cav-1 in Keeping the Chromatin Open

Cav-1 maintains its presence at the cell surface and segregates different signaling components for
the ligand-dependent signaling. In diabetes and ozone injury [116] models, Cav-1 negatively regulates
PI3K signaling, a signaling that prevents latency by the activation of NF-κB p65. The expression of
Cav-1 itself is prevented by the activation of NF-κB [117]. In macrophages, Cav-1 association with
TLR4 prevents pro-inflammatory cytokine production [114] that could add to the viral replication by
further activation of NF-κB. Additionally, TLR4 signaling triggers a cascade to degrade Cav-1 by a
ring-type E3 ubiquitin ligase, zinc, and ring finger 1 (ZNRF1) [118]. Cav-1 deficient mice maintain a
constant inflammatory state; however, T cells deficient in Cav-1 tend to develop into non-inflammatory
regulatory T cells. Further research is needed to reconcile these counterintuitive findings. In several
human inflammatory diseases, Cav-1 was found lower than the normal levels, suggesting a strong
anti-inflammatory role of Cav-1. The cytokine and TLR signaling simultaneously trigger cascade for
Mitogen Associated Protein Kinases that control chromatin structure by various mechanisms. Based
upon these correlations, we can predict Cav-1 can prevent the transcription of HIV-1 proviral DNA at
different levels. Since Cav-1 also ushers signaling components to lipid raft, a careful assessment of
Cav-1 in different cells and different condition is necessary (Figure 1).
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Figure 1. Cav-1 is present on the cell surface interactions with signaling molecules. When triggered,
signaling molecules, such as Toll-like receptors, activate directly and indirectly by cytokine production
NFkB. Viral promoter at the 5’ end of the proviral DNA contains the promoter that has NFKB binding
site for viral transcription. Cav-1 directly or indirectly interacts with TLR signaling and mTOR pathways
to reduce the activation of NFkB and thus the transcription of proviral DNA.

4. Caveolin-1 and the Potential Link to HIV Latent Infection

The participation of Cav-1 in environmental cues makes this molecule an important regulator
of cell physiology. Interestingly, activation or antigenic stimulation of the TCR results in enhanced
expression of Cav-1 in both CD4+ and CD8+ T cells [68–70,83,98,99]. In complete lack of Cav-1 genes
in CD8+, T cells cripple their function by LFA-1 redistribution and polarity [69,70]. Based on these
findings, higher Cav-1 would benefit the host by more active T cell function. However, hyperactivation
of CD8+ T cells has not been reported in HIV-1 infected patients. The major caveat of such studies is
complete lack of Cav-1. The function of most of the signaling molecules depends upon their relative
concentration. A complete lack of a molecule suggests a prominent role in the system; however,
it cannot provide a clear picture for its position. Future experiments should be carried out with a varied
expression of Cav-1 to know its real function. Several molecules modulate the expression of Cav-1 by
different mechanisms [86]. The expression of Cav-1 is activated or enhanced by microbes and microbial
byproduct lipopolysaccharide (LPS) or oxidative stress [85,119–121], strengthening the notion that
Cav-1 role in sensing environmental cues. Oxidized low-density lipoprotein (oxLDL) or simvastatin also
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upregulates the expression Cav-1 [75,122]. Furthermore, cholesterol is an important modulator of Cav-1
expression. In addition, cellular growth factors can modulate Cav-1 expression through transcriptional
mechanisms [123–126]. Multiple studies suggest that both HIV infection and antiretroviral drugs induce
reactive oxygen species (ROS) production in HIV infected individuals [121,127], which subsequently
can result in induction of Cav-1 expression. Such regulation of Cav-1 expression implies that Cav-1 is a
critical molecule for cell survival and adjustment to stress.

Oxidative Stress: Oxidative damage has been linked to cellular senescence in aging animals as
well as stress induced premature senescence. Cellular senescence is a mechanism of irreversible growth
arrest to protect against proliferating aging cells and/or damaged cells to halt transmission of damage
to daughter cells [128]. The HIV proteins Tat, Nef, Vpr, and gp120 have been shown to independently
increase ROS while decreasing antioxidants establishing HIV-mediated oxidative stress [Reviewed
in [127]]. Extensive studies also suggest that cART is a major contributor of ROS increase in HIV
infected patients [127,129–134]. ROS is involved in a variety of cellular processes including proliferation,
differentiation, host-defense, and wound healing ((Reviewed in [135]). The levels of increased ROS
production is regulated by antioxidants such as superoxide dismutase glutathione peroxidase, catalase
and vitamins E and C, and glutathione [135]. Uncontrolled increased levels of ROS lead to damage of
macromolecules and causes cellular apoptosis and senescence [136–144]. ROS, therefore, promotes
oxidative stress, which then results in cellular dysfunction and tissue destruction. Enhanced ROS
production by HIV, thus, will advance the breakdown of cellular tight junctions of the epithelium at the
mucosal surface as well as the blood-brain barrier vasculature, amplifying HIV infection. Furthermore,
increased levels of ROS production due to HIV infection and/or cART treatment contribute to HIV
associated vascular disease. Therefore, oxidative stress is a central contributing priming factor to
many parameters leading to pathogenesis in HIV infected individuals irrespective of ART treatment.
Oxidative damage has been linked to cellular senescence in aging animals as well as stress induced
premature senescence.

Cav-1 and HIV inhibition: Caveolin 1 (Cav-1) plays a major role in controlling cellular
senescence [119]. Several studies have shown that oxidative stress upregulates Cav-1 and enhanced
expression of Cav-1 plays a central role in stress-induced cellular senescence [119]. Therefore, in response
to environmental cues, Cav-1 can be induced to promote growth arrest of cells. Relevant to such
notion, low expression of Cav-1 expression correlates with transformed cells, and inverse relationship
between Cav-1 expression and cell transformation is established [83,145–147]. Furthermore, Cav-1
modulates cell cycle progression [72,83,145,148–150]. Cell cycle analyses show that Cav-1 maintains
cell cycle at the quiescent stage, whereas the deletion of Cav-1 results cell cycle to progress from G0
to G1 and G2/M phases [72,83,148]. For example, Caveolin 1 is important in the regulation of cyclin
D [149,151]. Previous studies of gene expression patterns in combination with epigenetic information
revealed that the cell cycle regulator cyclin D2 might have an important role in maintaining the
HIV latency [152], implicating a role for Cav-1 plays in HIV latency. Similar to other activators,
we and others have demonstrated that HIV infection induces Cav-1 expression in macrophages [153].
Since the recent finding that Cav-1 expresses in human lymphocytes, we have also established HIV
infection enhances the expression of Cav-1 in T cells (Unpublished results). Furthermore, we have
previously demonstrated inhibition of HIV replication in Cav-1 over-expressing primary CD4+T cells
and monocyte-derived macrophages [115,153,154]. The mechanism of induction of Cav-1 during HIV
infection is not completely understood. Lin et al. [153] established that Tat is important in Cav-1′s
upregulation at the transcriptional level, and this upregulation involves p53 protein. The study further
shows that the p53 expression level is not affected by HIV infection. However, the phosphorylation of
p53 at Ser15 and Ser46 is enhanced significantly. This suggests that the level of p53 activity plays an
important role enhancement of Tat-mediated Cav-1 expression. Inhibitor of the p38 mitogen-activated
protein kinase (MAPK) blocked the phosphorylation of the p53, subsequently reducing the induction
Cav-1 significantly. These results suggest that in HIV-infected cells, Tat mediates activation of p38
MAPK, promoting the phosphorylation of p53, subsequently upregulating Cav-1 expression. However,
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further studies are needed to determine the factors and pathways involved in the mechanisms of
Cav-1 up-regulation by HIV. These include epigenetic elements such as upstream factors as well as
transcription factors and cis-acting elements. For example, the promoter region of Cav-1 NF-KB
cis-element important for Cav-1 expression and regulation has not been examined in the context of the
induction of Cav-1 expression mediated by HIV infection.

Caveolin-1 present on the cells surface and acts as an entry point for various infectious agents,
including HIV-1. HIV-1 infects immune cells, mainly dendritic cells, macrophages, and T cells.
The virus spread either by actively transferred to T cells from dendritic cells [155], direct interaction
of virion with their cognate receptor, or through the virological synapses (VS) [156]. Dendritic
captured virion presented on the dendrites, which are formed with actin filaments, and inhibition of
Caveolin-interacting tetraspanin and dynamin prevented the process [155]. When a free virion interacts
with a CD4/CXCR4 on T cells, they form a cluster; a requisite event for the viral attachment is controlled
by Filamin-A, a Caveolin-interacting molecule [157,158]. These interactions among viruses and other
cytoskeletal molecules are critical for transporting the cytoplasm for replication and finally reaching
the nucleus. There is a defined role for the T cell synapse to occur for the caveolin-1 [70], which is
needed for T cell activation. It is still unclear whether virological synapse on T cells for viral spread
requires Caveloin-1; however, for efficient VS to form, it requires various actin-associated proteins
that may be interacting with the Cav-1. Like the entry, viral budding also needs actin cytoskeletal
rearrangements attached to Caveolin-1 at the surface [159]. Similarly, there is limited information on
the mechanism of inhibition of HIV replication by Cav-1. Since Cav-1 participates in many cellular
functions, the inhibition of HIV can involve several mechanisms (Figure 2). Two independent studies
have demonstrated that Cav-1 inhibits HIV replication by transcriptional repression mediated through
NF-κB [115,160]. However, the upstream factors involved in transcriptional repression mediated
through NF-κB by Cav-1 is not known. Wang et al. [161] has proposed a potential mechanism for
Cav-1’s ability to inhibit HIV replication that involves the association of Cav-1 and the HIV envelope.
Cav-1 significantly suppressed Env-induced membrane hemifusion by possible interaction with the
gp41. The env glycoprotein stimulates viral transcription and increases infection by modulating
cellular machinery [162]. The increase in Cav-1 expression during HIV infection along its possible
interaction and sequestration of Env can result in inhibition of Env mediated manipulation of cellular
machinery to stimulate viral transcription and infectivity of virus progeny, subsequently contributing
to HIV latent infection. Since surface lipid composition is essential in cell fusion of the block Env
mediated fusion with target cells during an increased expression of Cav-1 may have to do with Cav-1’s
role in cholesterol metabolism. Cav-1 is an essential regulator of cholesterol metabolism. Furthermore,
Cav-1 is vital in cholesterol transport from the ER to the cell membrane. An increase in Cav-1 expression
leads to the restoration of cholesterol efflux impaired by HIV via Nef and negatively affects virus
replication [154]. Therefore, the specific interaction of Env with Cav-1 blocking fusion with target
cells and the role of Cav-1 in cholesterol trafficking have important implication the establishment of
HIV persistent in the patient under cART. Since cholesterol plays an important role in the resting or
activation TCR, the HIV Env binding and/or fusion can lead to similar signal transduction affecting cell
physiology. Furthermore, since Cav-1 is engaged in cholesterol efflux, an increase in its expression can
modulate the confirmation stage of the lipid rafts and essential component of the lipid raft platform
for the recruitment of signaling proteins to the plasma membrane. These changes would have an
impact on several cellular functions, including the resting and cycling status of cells and including the
establishment of HIV latent infection (Figure 2).
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