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Purpose: Pupillary instability is a known risk factor for complications in cataract surgery. This study aims to
develop and validate an innovative and reliable computational framework for the automated assessment of pupil
morphologic changes during the various phases of cataract surgery.

Design: Retrospective surgical video analysis.

Subjects: Two hundred forty complete surgical video recordings, among which 190 surgeries were con-
ducted without the use of pupil expansion devices (PEDs) and 50 were performed with the use of a PED.

Methods: The proposed framework consists of 3 stages: feature extraction, deep learning (DL)-based
anatomy recognition, and obstruction (OB) detection/compensation. In the first stage, surgical video frames
undergo noise reduction using a tensor-based wavelet feature extraction method. In the second stage, DL-based
segmentation models are trained and employed to segment the pupil, limbus, and palpebral fissure. In the third
stage, obstructed visualization of the pupil is detected and compensated for using a DL-based algorithm. A
dataset of 5700 intraoperative video frames across 190 cataract surgeries in the BigCat database was collected
for validating algorithm performance.

Main Outcome Measures: The pupil analysis framework was assessed on the basis of segmentation per-
formance for both obstructed and unobstructed pupils. Classification performance of models utilizing the
segmented pupil time series to predict surgeon use of a PED was also assessed.

Results: An architecture based on the Feature Pyramid Network model with Visual Geometry Group 16
backbone integrated with the adaptive wavelet tensor feature extraction feature extraction method demonstrated
the highest performance in anatomy segmentation, with Dice coefficient of 96.52%. Incorporation of an OB
compensation algorithm improved performance further (Dice 96.82%). Downstream analysis of framework output
enabled the development of a Support Vector Machine—based classifier that could predict surgeon usage of a
PED prior to its placement with 96.67% accuracy and area under the curve of 99.44%.

Conclusions: The experimental results demonstrate that the proposed framework (1) provides high accuracy
in pupil analysis compared with human-annotated ground truth, (2) substantially outperforms isolated use of a DL
segmentation model, and (3) can enable downstream analytics with clinically valuable predictive capacity.

Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures
at the end of this article. Ophthalmology Science 2025;5:100597 © 2024 by the American Academy of Ophthal-
mology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

Cataract surgery is one of the most commonly performed
surgeries worldwide and is essential to addressing prevent-
able blindness. In 2015, there were more than 20 million
surgeries performed worldwide, of which 3.6 million cases
were in the United States and 4.2 million cases were in the
European Union.' Performing cataract surgery requires
access to the crystalline lens, which in turn requires
adequate dilation and stability of the pupil. The pupil is
typically pharmacologically dilated for cataract surgery
through the use of medications administered
preoperatively and/or intraoperatively. Most active surgical
maneuvers in cataract surgery take place within the
boundaries of the pupil because the cataract is
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anatomically located behind the iris, and access to the
cataract requires passage of instruments through the pupil.
Medications, operating microscope illumination, and
surgical maneuvers can alter the shape, size, and
appearance of the pupil during different surgical phases.

A typical cataract surgery can be broken into 11 active
surgical phases: Paracentesis, Medication and Viscoelastic
Insertion, Main Wound, Capsulorrhexis Initiation, Capsu-
lorrhexis Formation, Hydrodissection, Phacoemulsification,
Cortical Removal, Lens Insertion, Viscoelastic Removal,
and Wound Closure.” These surgical steps involve different
instrumentation and result in varying appearances of the
pupil intraoperatively.
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In the past decades, many studies have been proposed to
investigate changes in the pupil related to cataract surgery.””
? Ordifiaga-Monreal et al recently investigated pupil di-
ameters of 109 randomized eyes preoperatively and 3
months postoperatively using pupillometer software of the
Topolyzer Vario.” This group found that pupil size was
reduced after cataract surgery but also saw that the
reduction was larger in men than in women. Ba-Ali et al
sought to evaluate the postoperative trajectory of pupil
changes for patients undergoing cataract surgery.” Maximal
pupil diameter reduction was observed 3 weeks
postoperatively but subsequently recovered 3 months after
surgery. The relation of cataract surgery to pupil size was
also investigated by Rickmann et al.” In that study, the
pupil size of healthy participants was measured with the
infrared-video PupilX pupillometer at different illumina-
tion levels before and after cataract surgery. This group also
saw that pupil diameter decreased after cataract surgery but
increased back to preoperative levels 4 weeks after cataract
surgery.

Prior work examining pupillary changes related to cata-
ract surgery has primarily focused on changes between
preoperative and postoperative measurements of the pupil,
ignoring intraoperative changes. Furthermore, most studies
of surgery-related pupillary changes have relied on
specialized pupillometry hardware not suitable for intra-
operative use. Even when intraoperative pupil measure-
ments have been obtained, they have been obtained
manually and for very few time points.’

Previous studies demonstrated that an adequately dilated
pupil is a prerequisite for safe cataract extraction.'’"”
Vision-threatening complications of cataract surgery have
been shown to be associated with pupillary instability.'*
Intraoperative floppy iris syndrome (IFIS) is associated
with an increased risk of severe complications (odds
ratio = 2.82), including posterior capsular rupture.'’
Although IFIS was first reported in association with use of
alpha-antagonist drugs such as tamsulosin,'®'” 77% of
IFIS cases are not associated with alpha-antagonists, mak-
ing it difficult for surgeons to prepare for pupillary insta-
bility. Large-scale studies involving the automated
intraoperative tracking of pupillary morphology along with
patient clinical history and medication lists could aid in the
identification of additional medications, systemic condi-
tions, and intraoperative findings that may indicate increased
risk for IFIS, without the need for manual measurements
that disrupt surgical flow and increase surgical time.

Pupillary dynamics are important beyond cataract sur-
gery, and they affect the execution of vitreoretinal and
corneal surgeries as well. In Descemet membrane endothe-
lial keratoplasty (DMEK), for example, the timing of pu-
pillary dilation and miosis plays an important role. Early
dilation assists in retroillumination of the endothelium
(facilitating descemetorrhexis), whereas later miosis is vital
for protecting graft endothelial cells. Thus, although the
context of the present study is cataract surgery, it is likely
that applications for intraoperative pupil analysis exist for
other domains of ophthalmic surgery as well. For example, a
pupil analysis system could be applied in DMEK triple
procedures to study regimens of mydriatic and miotic
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medications to achieve the optimal combination of dilation
for phacoemulsification and Descemet stripping and subse-
quent miosis for DMEK graft injection and positioning.
Similarly, a pupil analysis system could be utilized to
identify patients undergoing retinal surgery who may
require pupil expansion devices (PEDs) to maintain
adequate visualization throughout surgery prior to decom-
pensation of the surgical view.'®"”

In this study, we propose and validate a novel compu-
tational framework to track and analyze changes in pupil
morphology during cataract surgery. The proposed frame-
work consists of three primary parts: feature extraction,
anatomy segmentation, and obstruction (OB) detection/
compensation. This approach is designed to address the
primary difficulties encountered in a standard system for
recognizing pupils. These challenges include (1) the po-
tential for interference or OB caused by surgical in-
struments, eyelids, drapes, and similar structures; (2) the
cropping of the pupil due to decentration in the camera
sensor’s field of view; and (3) variations in magnification. It
is hoped that this framework will enable the large-scale
study of pupillary changes in not only cataract surgery,
but ophthalmic surgery in general. Such studies will be
necessary to identify clinical and intraoperative risk factors
for pupillary instability as well as to develop intraoperative
early warning systems for surgeons.

Methods

BigCat Dataset Collection

One hundred ninety high-definition video recordings of cataract
surgeries performed by surgeons at University of Michigan’s
Kellogg Eye Center were collected in the period from 2020 to
2023. The study was approved (HUMO00160950) by the Michigan
Medicine IRB (IRBMED) in May 2019. To obtain the high-quality
videos in the dataset, Zeiss high-definition 1-chip imaging sensors,
which were integrated into Zeiss Lumera 700 microscopes, were
used for recording the cataract surgeries at 1920 x 1080 resolution
and a frame rate of 30 frames per second (FPS). In addition, hor-
izontal white-to-white distances were measured in millimeters
preoperatively for all eyes in the dataset using Lenstar LS 900
optical biometers (Haag-Streit, EyeSuite software V.i9.1.0.0). Pe-
riods of inactivity prior to surgery and after completion of surgery
were trimmed. Frames were extracted from the video stream at a
frequency of 15 FPS. This strategic down-sampling was imple-
mented to reduce the overall time required for subsequent analyses
while retaining essential temporal information. The extracted
frames were resized to dimensions of 480 x 270 pixels using
bilinear interpolation to maintain sufficient video frame quality
while minimizing time consumption.

To generate a dataset for the development and testing of models
for anatomy recognition and analysis, the surgical videos were then
processed to extract 23 random frames from each of 11 surgical
phases. Ground truth surgical phase annotations were performed by
trained human annotators for all frames within all 190 videos.
Randomized selection of frames by phase was performed to ensure
that pupil obscuration by a variety of surgical instruments associ-
ated with different phases of surgery was adequately represented in
the dataset. In addition, because the Medication and Viscoelastic
Insertion, Phacoemulsification, and Viscoelastic Removal phases
have highly varied appearances (due to transient pupil distortion
from viscoelastic instillation, nucleus disassembly, and eye
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rotation, respectively), an additional 2 frames per phase were
randomly selected for these 3 phases. We further expanded the
dataset by incorporating 2 additional frames from each video
during which no active surgical maneuvers were being performed,
termed a “No Activity” phase. The resulting dataset consisted of
5700 frames that were resized to 480 x 270 pixels and stored in
24-bit Portable Network Graphics format without editing. The
number of images corresponding to each surgical phase in the
collected dataset is shown in Table 1.

Ground truth manual segmentations of anatomical components
of the eye—the palpebral fissure, limbus, and pupil—were per-
formed manually on all images in the dataset by trained human
annotators. This annotation process was conducted using MAT-
LAB version R2022a (The MathWorks) in conjunction with a
Wacom One drawing tablet (Wacom Co, Ltd) to ensure the ac-
curacy of the annotations. The videos within the dataset were
randomly divided into training, validation, and testing subsets
consisting of 60%, 20%, and 20% of the dataset, respectively. As a
result, the training set consisted of 3420 images from 114 surgical
videos, the validation set comprised 1140 images from 38 videos,
and the remaining 1140 images from 38 videos were allocated for
the testing set. This data splitting strategy aims to ensure a balanced
distribution of data for training, validation, and testing, resulting in
improved model reliability.

Data Preprocessing and Feature Extraction

Significant variations in pupil appearance can occur during cataract
surgery due to the presence of surgical instruments, hydration of
the crystalline lens material, nuclear disassembly, and eventual
replacement of the crystalline lens with the intraocular lens
implant. Accordingly, even DL models can benefit from the utili-
zation of tailored feature extraction methods for the task of se-
mantic segmentation.”” In order to overcome these challenges, we
propose the incorporation of an image preprocessing method in this
phase to extract meaningful image features and attempt to improve
downstream segmentation performance. A schematic of the overall
framework is depicted in Figure 1.

In this study, we employ the adaptive wavelet tensor feature
extraction (AWTFE) method,”’ described previously by our
research group, for feature extraction. The primary objectives in
employing the AWTFE method at this stage are (1) to eliminate
irrelevant information in the context of segmentation tasks and
(2) to extract and enhance the distinctive features of the pupil,
limbus, and palpebral fissure within the image. Given the high
variance within captured video frames, the AWTFE method
emphasizes object boundaries, textures, shapes, and other

Table 1. Number of Images Included from BigCat by Surgical

Phase
Surgical Phases Number of Images
No Activity 380
Paracentesis 380
Medication and Viscoelastic Insertion 760
Main Wound 380
Capsulorrhexis Initiation 380
Capsulorrhexis Formation 380
Hydrodissection 380
Phacoemulsification 760
Cortical Removal 380
Lens Insertion 380
Viscoelastic Removal 760
Wound Closure 380

distinctive attributes relevant to the segmentation of the
anatomical landmarks of interest. Sample output of the AWTFE
method is depicted in Figure 2.

The AWTFE method was originally proposed for pupil region
feature extraction to improve the accuracy of DL-based pupil
segmentation models. Specifically, based on tensor theory and the
wavelet transform, we first represent the correlations among spatial
information, color channels, and wavelet subbands of a video
frame by constructing a third-order tensor. We then utilize higher-
order singular value decomposition to adaptively eliminate
redundant information and estimate pupil feature information.
Using the AWTFE method, features relevant to the pupil region are
identified, significantly improving the performance of DL-based
segmentation models. In a previous study,'” we conducted
additional experiments to demonstrate that the AWTFE method
can be extended to effectively extract and highlight features of
other regions, such as the iris. The impact of the AWTFE
method on anatomy segmentation performance is described in
the following section.

DL-based Anatomy Recognition

In the proposed framework, the accuracy of the analysis results
heavily relies on anatomy segmentation. In this stage of the
framework, the pupil, limbus, and palpebral fissure, are segmented
within the video frames. Segmentation of the limbus and palpebral
fissure was necessary for OB detection and compensation, as
described in the next section. Three state-of-the-art DL-based
segmentation models (UNet,”> LinkNet,” and Feature Pyramid
Network [FPN]24) and 4 distinct convolutional backbone
networks (Visual Geometry Group 16 [VGG16],” ResNet50,%°
DenseNet169,>” and MobileNet’®) were considered to select an
optimal combination for the anatomy segmentation task.
Accordingly, 12 model-backbone combinations were studied in
total. Backbone networks were each pretrained on the ImageNet
dataset.”” Two instances of each model—backbone combination
were considered, 1 utilizing the AWTFE method for preprocessing
of images, and 1 using raw input images. Accordingly, 24 models
were studied in total. The implementations of the segmentation
models can be found in  https:/github.com/qubvel/
scgmcntationfmodcls.3 0

The training set sizes were equivalent for all 24 models studied,
with or without utilizing the AWTFE method. Training was per-
formed with batch size of 32. All images were downsampled to
224 x 224 pixels for the input to the segmentation models. The
images were preprocessed by subtracting the mean Red, Green, and
Blue values, which were computed on the training set, from each
pixel. The Adam algorithm with an initial learning rate of 0.0001
was used as the optimizer for the segmentation models. The
learning rate was then decreased by 0.1 when the validation loss
stopped improving. Each model was trained for a maximum of 200
epochs, corresponding to 21 400 training iterations. Early stopping
was implemented to avoid overfitting. To reduce overfitting and
enhance the generalizability of the model, data augmentation was
utilized for training all models in this study. In particular, random
cropping, flipping, and changing of Red, Green, and Blue color
channel intensity were applied for the data augmentation. The
trained weights achieving the lowest validation loss during the
training process were saved and utilized for validation.

In this study, the performance of the segmentation models was
evaluated with precision and recall as the primary metrics, which
are determined as follows:

TP

Precision = ————
recision TP T FP7

(O]
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Fig. 1. The proposed intraoperative pupil analysis framework for cataract surgery.

TP
. @)
TP + FN

where TP, FP, TN, and FN denote the true positive, false pos-
itive, true negative, and false negative rates, respectively. In
addition, the performance of the models was also evaluated by
using the Intersection Over Union and Dice Coefficient, which are
determined as follows:

Recall =

_ P
" TP+ FP+FN’

IoU 3)

2 x TP
2xTP+FP+FN’

Obstruction Detection and Compensation

@

Dice =

The quantitative assessment of intraoperative pupil morphologic
changes in cataract surgery presents challenges despite the ability
to utilize DL models for semantic segmentation of the pupil region.
In particular, 3 primary challenges are (1) the potential for inter-
ference or OB caused by surgical instruments, eyelids, drapes, and
similar structures, (2) the cropping of the pupil due to decentration

Fig. 2. Anatomic feature extraction using the AWTFE method. A, Original cataract surgery images in the dataset. B, Corresponding feature-extracted
images generated by the AWTFE method. AWTFE = adaptive wavelet tensor feature extraction.
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in the camera sensor’s field of view, and (3) variations in magni-
fication, as shown in Figure 3A, B. To address those challenges,
our proposed framework introduces an Obstruction Detection and
Compensation algorithm. This algorithm relies on automated
segmentations of the pupil, palpebral fissure, and limbus
generated during the segmentation phase to identify and
compensate for OBs. Furthermore, to ensure accuracy across
diverse magnification settings, the computed pupil size is
ultimately normalized by utilizing the predicted limbus size.

The OB classifier utilizes a pair of masks generated by the DL
models for the palpebral fissure and pupil, denoted as M, and M,
respectively, to ascertain the presence of OB within a given frame.
Initially, contours of both the palpebral fissure and the pupil are
determined by binarizing the respective masks and applying edge
computation through a Canny filter,”" as illustrated in Figure 4.
Subsequently, points g;(x4,v,) and p;(x,,y,) along the contours
of the palpebral fissure and pupil are vectorized to enable the
calculation of the Euclidean distance, D;;, between these 2
vectors as follows:

(xq'xp)z + (yq‘yp)2 )

The smallest computed Euclidean distance value is then compared
against an OB threshold, 7. If the distance is larger than 7, the
pupil region is devoid of OB, and the pupil size can be simply
determined via the original pupil mask M, generated by the DL
model. In contrast, if the pupil is identified as an obstructed region
based on the OB threshold 7, the subsequent steps involve deter-
mining obstructed and unobstructed segments. This is accom-
plished by calculating the minimum distance between each pupil
point p;(x,,y,) and all palpebral fissure points g;(x,, y,). If the
minimum value is larger than 7, p;(x,,y,) is treated as an unob-
structed point, and vice versa. Subsequently, an ellipse, which is
considered an estimate of the pupil region, is fitted using the un-
obstructed points.*” By considering solely the unobstructed pupil
points, the estimated ellipse eliminates noise caused by
obstructed points on the pupillary boundary. To this end, the
estimated pupil size P can be established by computing the area
of the fitted ellipse. The results of this process are shown in
Figure 3C.

The magnification of images within a recorded video may vary
due to operating microscope adjustments made by surgeons during
surgery. To address this challenge, the pupil size, which was pre-
viously estimated as shown, was normalized using the corre-
sponding size of the (OB-compensated) limbus region. In contrast
to the pupil, the size of the limbus region is physically fixed and
cannot be significantly altered under normal circumstances during
phacoemulsification. However, the size of the segmented limbus
can also be affected by inaccuracies resulting from surgical OBs.
Therefore, to ensure the accuracy of the system, the actual size of
the limbus, denoted as L, is first estimated by the OB compensation
algorithm described here using the predicted masks of the palpebral
fissure and limbus. The size of the pupil region at k" frame Py is
then normalized with respect to the size of the corresponding
limbus region L; as follows:

D,J:

P = Py x 2, ©
Ly

where L is determined as the limbus region computed directly
from the predicted mask of the first frame by the DL model. This
ensures that the computed size of the pupil region at k" frame P; is
adjusted for any magnification changes made intraoperatively. To
enable evaluation of the pupil size in absolute terms, the size of
P™ was finally converted to millimeters using each eye’s hori-
zontal white-to-white distance, which was measured preoperatively

for all eyes in the dataset.

In order to assess the effectiveness of this approach, we eval-
uated the performance of the proposed framework in its capability
to classify obstructed frames and estimate the actual size of the
pupil using 1140 images selected randomly from 38 videos in the
test set. The images were manually classified into pupil OB and
nonobstruction (NOB) classes by 2 trained annotators. Accord-
ingly, 22.45% of the testing set (256 images) belonged to the OB
class and 77.55% of the testing set (884 images) were in NOB
class. Furthermore, the actual pupil region, including the obstructed
region not visible to the camera in the images of the OB class, was
manually estimated and annotated to be used as the ground truth
for the experiment.

Downstream Analysis Example: Prediction of
Pupil Expansion Device Use

In order to examine the utility of the output of the pupil analysis
framework described here, we investigated whether the timecourse
of pupillary area was predictive of surgeon usage of a PED in a
separate dataset.

The use of a PED by an experienced surgeon is an indication
that the surgeon detects pupillary characteristics that may impair
successful completion of the surgery. A PED is preferably placed
prior to the creation of the anterior capsulotomy so as to avoid
inadvertently capturing the capsulotomy edge with the PED.
Accordingly, we investigated whether the pupil area time series
generated by our framework for the surgical phases prior to the
initiation of the capsulorrhexis (excluding PED placement in those
cases that involved PED placement) could be used to predict
whether a PED would later be placed.

We first constructed a dataset that included the mean pupil sizes
during 3 early surgical phases of cataract surgery: Paracentesis,
Medication and Viscoelastic Insertion, and Main Wound, across 50
cases with PED placement and 50 cases without PED placement. Itis
important to note that all 100 videos utilized for the analysis were
completely separate from the training set of the BigCat dataset. In
order to identify the surgical phase within PED videos, we employed
the CatStep surgical phase classification model.” It is noted that the
CatStep model utilized was not previously trained on PED videos.
Hence, we conducted manual validation of its phase classification
results to ensure the accuracy of phase boundaries in the PED
videos. The videos in the dataset were randomly divided into
training (70%) and testing (30%) sets, maintaining the balance of
classes in the training and testing sets. We investigated the
capacity of classification models, including Support Vector
Machine (SVM),3 3 K-Nearest Neighbors,34 Random Forest,*”
Decision Tree,”® Naive Bayes,37 and Logistic Regression,38 to
predict PED usage based on the averaged pupil size time series.
All experiments in this study were implemented on a workstation
with a 24-Core Xeon Intel CPU, with 128 GB RAM and 4 NVI-
VIA RTX 2080 Ti GPUs running Ubuntu.

Results

In this section, the performance of the proposed framework
is presented in detail for each of its components. Addi-
tionally, we present an analysis of pupillary changes by
phase of surgery. To demonstrate the potential for down-
stream analyses utilizing the pupil analysis framework, we
also evaluate the performance of algorithms for predicting
PED use based on the pupillary size timecourse derived
from the framework.
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Fig. 3. Sample obstruction compensation results. A, Obstruction and decentration video frames. B, Pupil segmentation masks generated by the deep
learning model. C, Overlay images of pupil masks generated by the obstruction compensation algorithm.

Feature Extraction and Anatomy Segmentation

The anatomy segmentation performance of the DL models
considered is detailed in Table 2. The FPN architecture
combined with the VGG16 backbone demonstrated the
highest mean Dice coefficient (95.03%) across the 3
anatomic segmentation classes (pupil, limbus, and
palpebral fissure) compared  with  all  other
model—backbone combinations.

The performance of every model-backbone combination
was improved through the addition of feature extraction
using the AWTFE method (P < 0.0001). Mean Dice co-
efficients across the 3 segmentation classes of all investi-
gated models were improved by up to 2.23%. The FPN-

6

VGG16 architecture with AWTFE feature extraction out-
performed all other models considered, with a Dice coeffi-
cient of 96.52%. The FPN-VGG16+AWTFE model
outperformed the original FPN-VGG16 network by 1.49%.
Accordingly, the FPN-VGG16+AWTFE model was
selected for incorporation into the pupil analysis framework.

Obstruction Detection and Compensation
Performance

In order to optimize the performance of the obstruction
detection component of the proposed framework, we first
examined the impact of threshold values, Tp, on the accu-
racy of the obstruction classifier for pupil on the 1140
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Fig. 4. Schematic depicting the obstruction classifier embedded in the proposed pupil analysis framework.

images in the validation set. As shown in Figure 5, the
highest classification performance (Dice) was obtained
with 7 = 8 With this value of 7, the edge
detection—based classifier achieved a Dice coefficient of
79.12%. The classification performance gradually decreased
with increasing values of 7. By using the proposed frame-
work with T = 8, with obstruction compensation applied as
described in the Methods section, a Dice coefficient of
96.82% for pupil segmentation was achieved across the
1140 test set images.

Utilization of obstruction detection led to an increase in
pupil segmentation performance by 0.51%, as shown in

Figure 6A. The Dice coefficients for all 11 active phases of
surgery were significantly higher with obstruction detection
and compensation than without obstruction detection (P =
0.0002).

Of the 1140 images in the test set, 256 (22.45%) had
obstructions (OB class), whereas the remaining 884 did not
(NOB class). To evaluate more directly the impact of the
obstruction detection and compensation system when ob-
structions were present, performance was assessed further
on the OB subset. The framework with obstruction detection
and compensation achieved a Dice coefficient of 93.12%),
whereas the framework without obstruction detection

Table 2. Segmentation Performance of Deep Learning Models With and Without the AWTFE method on the Validation set

Network Architecture Backbone Network Precision (%) Recall (%) ToU (%) Dice (%)
UNet MobileNet 94.09 94.69 89.52 94.15
UNet + AWTEFE 95.86 95.89 92.28 95.66
LinkNet 93.47 93.90 88.27 93.14
LinkNet + AWTFE 95.52 95.49 91.63 95.27
FPN 93.53 93.97 88.37 93.46
FPN + AWTEE 95.67 96.33 92.45 95.79
UNet DenseNet169 94.72 94.92 90.28 94.63
UNet + AWTEE 96.47 96.57 93.45 96.39
LinkNet 94.43 94.60 89.74 94.31
LinkNet + AWTFE 96.08 96.44 92.99 96.13
FPN 94.20 94.78 89.68 94.28
FPN + AWTEFE 96.39 96.49 93.26 96.31
UNet ResNet50 94.86 95.12 90.57 94.77
UNet + AWTEFE 96.64 96.49 93.49 96.41
LinkNet 94.35 94.68 89.71 94.28
LinkNet + AWTFE 95.99 96.63 93.04 96.14
FPN 94.61 94.79 90.06 94.417
FPN + AWTEE 96.36 95.99 92.79 95.98
UNet VGG16 94.96 95.04 90.58 94.79
UNet + AWTEE 96.63 96.03 93.11 96.18
LinkNet 94.25 94.65 89.63 94.19
LinkNet + AWTFE 96.33 96.07 92.85 95.99
FPN 94.99 95.45 91.00 95.03
FPN + AWTEE 96.41 96.87 93.66 96.52

Bold fonts indicate the better performance across models.

AWTFE = adaptive wavelet tensor feature extraction; FPN = Feature Pyramid Network; loU = Intersection Over Union; VGG16 = Visual Geometry

Group 16.
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Fig. 5. Classification performance of the obstruction classifier on 1140
images of 38 surgical videos.

yielded only 90.88% (P = 0.0014). Phase-wise perfor-
mance differences in the OB subset are depicted in
Figure 6B.

The processing time required by the proposed analysis
system for an obstructed frame was approximately 19.10
milliseconds (ms) from start to finish. Of the 19.10 ms, the
obstruction detection and compensation component required
only 4.30 ms. These findings reveal that the proposed sys-
tem is well-suited for real-time intraoperative applications,
with a throughput of over 52 FPS while maintaining the
accuracy described here.

Phase-Based Pupil Reaction Analysis

To analyze phase-based changes in pupil size, we randomly
selected 15 videos from the testing set (none determined to
have IFIS and none requiring a PED) and executed the
framework on the entire videos. The pupil size timecourses
for 4 surgical cases analyzed using the proposed framework
are depicted in Figure 7. The mean pupil sizes within the 11
active surgical phases relative to the initial pupil size
determined at the beginning of each surgery are shown in
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Figure 8. An increase in pupil size is seen following the
Medication Injection (buffered lidocaine and epinephrine)
and Viscoelastic Insertion. During this phase, the pupil
size increased by an average of 9.64% compared with the
initial pupil size.

The Main Wound phase was consistently followed by a
reduction in pupil size, a pattern evident in all trajectories
plotted in Figure 7. This phase shows the highest mean pupil
size, which then gradually decreased in subsequent phases,
including  Capsulorrhexis  Initiation,  Capsulorrhexis
Formation, and Hydrodissection, as detailed in Figure 8.
The reduction in pupil size may be related to loss of
viscoelastic through the main wound during these phases.
Ultimately, the pupil size post—Wound Closure closely
approximated the preoperative pupil size (higher by just
0.99% relative to the initial size).

PED Use Prediction Performance

In order to evaluate the utility of the pupil size timecourse
output by the proposed framework for downstream analyses,
attention was then turned to a dataset of 50 videos with PED
placement and 50 videos without PED placement (as
described in the Methods section). In comparison with
standard surgeries performed without PED, pupil size dur-
ing the initial phases (Paracentesis, Medication and Visco-
elastic Insertion, and Main Wound) of PED surgeries were
not significantly different (P = 0.375).

Six classification models were trained using pupil size
timecourses from the dataset of 50 PED and 50 non-PED
videos. Only the timecourses from the Paracentesis, Medi-
cation and Viscoelastic Insertion, and Main Wound phases
were included for this analysis in order to simulate surgeon
decision-making. In our experiment, all classification al-
gorithms were trained on the training set consisting of the
pupil size timecourses of 70 surgeries and validated on the
testing set, which included 30 surgeries. The performance
of the classification models on the testing set is shown in
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Table 3 and Figure 9. Among the 6 machine learning
models, the Random Forest and SVM models achieved
the highest classification accuracy at 96.67% and the
highest area under the curve (AUC) of 99.33% and
99.44%, respectively. These experimental results
demonstrate that the intraoperative pupil size across early
surgical phases can be effectively utilized to predict
surgeon PED usage in cataract surgery.

We then employed the mentioned machine learning
models trained with preoperative pupil size data alone

instead of using pupil size timecourses. Preoperative pupil
size was determined at the initial frame of each surgical
video using our proposed system. Our primary objective
was to evaluate the effectiveness of using the timecourse
generated by our proposed system compared with the
traditional approach of relying on preoperative pupil size
measurements performed by surgeons in clinic or at the
beginning of surgery. The models trained on preoperative
pupil size alone achieved lower performance compared with
those trained on pupil size timecourses from the early
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Table 3. Pupil Expansion Device Usage Prediction Performance of
Machine Learning Models

Preoperative Pupil Size

Pupil Size Timecourse

Models Accuracy (%) AUC (%) Accuracy (%) AUC (%)
Naive Bayes 83.33 87.00 93.33 93.33
KNN 76.67 87.33 83.33 89.44
Logistic Regression 83.33 87.22 90.00 97.74
Decision Tree 73.33 73.33 93.33 93.33
SVM 83.33 87.00 96.67 99.44
Random Forest 73.33 86.56 96.67 99.33

Bold fonts indicate the better performance.
AUC = area under the curve; KNN = K-Nearest Neighbors; SVM =
Support Vector Machine.

surgical phases. Notably, Logistic Regression achieved the
highest performance among the models trained on preop-
erative pupil sizes with an accuracy of 83.33% and an AUC
of 87.22%, which are significantly lower than the highest
performance of the machine learning model achieved on the
pupil size timecourses by 13.34% and 12.22%, respectively.
These results indicate that prediction of PED usage can be
more performed more accurately using timecourses gener-
ated by proposed intraoperative pupil analysis framework
than using preoperative pupil size alone.

Discussion

In the present study, we have proposed and validated a
computational framework for intraoperative analysis of pu-
pil morphology during cataract surgery. The system in-
volves 3 primary stages: feature extraction, anatomy
segmentation, and obstruction detection/compensation. In
the feature extraction stage, we employed the AWTFE
method, previously developed by our group, to generate
feature-rich versions of video frames for the effective seg-
mentation of relevant anatomical structures. When com-
bined with state-of-the-art DL-based segmentation models,
the AWTFE method significantly improved segmentation
performance for all models considered. The FPN model
with VGG16 backbone and AWTFE feature extraction
(FPN-VGG16+AWTFE) was found to have the highest
performance in validation and was ultimately chosen for
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incorporation into the framework. The final model achieved
a Dice coefficient of 96.52% when evaluated on the held-out
testing set.

In other previous studies, the pupil region recognized by
DL models is used directly for analysis without any post-
processing (obstruction detection and compensation).””*’
Consequently, this leads to unreliable results, as the pupil
and limbus regions are frequently obstructed by other
objects during surgery. In order to ensure the reliability of
the system in delivering precise intraoperative analysis of
pupillary changes, we introduced a novel obstruction
detection/compensation  component. This innovation
addresses typical issues arising from obstructions and
varying image scales in cataract surgery videos. Our
findings demonstrate that when employing the proposed
obstruction detection and compensation algorithm, the
system can achieve an overall Dice coefficient of 96.82%
for pupil segmentation and can improve segmentation
performance by 2.24% for frames in which obstructions
were present. Because pupil-obstructed frames comprised
22.45% of the randomly selected test set, obstruction
detection and compensation are likely to be essential for
ensuring the reliability of downstream time-series analyses
of pupillary metrics.

The run-time assessment revealed that the proposed
analysis system can fully process an obstructed frame in
under 19.10 ms, achieving throughput of over 52 FPS.
Because cataract surgeries involve a mix of obstructed and
unobstructed frames, 52 FPS represents a lower bound on
throughput for the proposed system running on the
described hardware. The high throughput (>30 FPS) and
high accuracy of the proposed system indicate its potential
for future real-time intraoperative use as part of a broader
decision support or analysis system.

We utilized the proposed system to examine pupil tra-
jectories through the various phases of cataract surgery.
Findings such as (1) the increase in pupil size after medi-
cation and viscoelastic injection, (2) the reduction in pupil
size during the course of phacoemulsification, and (3) the
reduction in pupil size after viscoelastic removal align with
typical surgeon experience.

To demonstrate the potential for downstream analysis of
the pupil morphology timecourse generated by the proposed
framework, we performed additional experiments to assess
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Fig. 9. The performance comparison for prediction of pupil expansion device usage of the classification models using the pupil timecourses and the pre-
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confusion matrix of the preoperative pupil model. C, The confusion matrix of the pupil timecourse model. PED = pupil expansion device.
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the ability to predict PED usage using output from the
framework. Using only pupil morphology data in the first 3
phases of surgery (Paracentesis, Medication and Visco-
elastic Insertion, and Main Wound), it was possible to create
an SVM classifier with 96.67% accuracy and 99.44% AUC
in predicting the eventual use of a PED during surgery. The
performance of this approach was significantly higher than
what could be achieved with preoperative pupil size data
alone. The final pupil timecourse-based SVM could serve as
part of a decision support system for trainees or early stage
attending surgeons and demonstrates the potential for
building upon the output of our proposed framework.
Limitations of the study include the utilization of surgical
videos from a single institution. However, the AWTFE
method has previously been validated on the external
Cataract Dataset for Image Segmentation dataset,’’ and the
BigCat dataset utilized here is the largest database of deeply
annotated surgical video in the world,”* comprising over 4
million frames in total. Furthermore, the proposed
framework is seen as a starting point for intraoperative
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