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Genetic hearing loss crosses almost all the categories of hearing loss which includes the following: conductive, sensory, and 
neural; syndromic and nonsyndromic; congenital, progressive, and adult onset; high-frequency, low-frequency, or mixed 
frequency; mild or profound; and recessive, dominant, or sex-linked. Genes play a role in almost half of all cases of hearing 
loss but effective treatment options are very limited. Genetic hearing loss is considered to be extremely genetically 
heterogeneous. The advancements in genomics have been instrumental to the identification of more than 6,000 causative 
variants in more than 150 genes causing hearing loss. Identification of genes for hearing impairment provides an increased 
insight into the normal development and function of cells in the auditory system. These defective genes will ultimately be 
important therapeutic targets. However, the auditory system is extremely complex which requires tremendous advances in 
gene therapy including gene vectors, routes of administration, and therapeutic approaches. This review summarizes and 
discusses recent advances in elucidating the genomics of genetic hearing loss and technologies aimed at developing a gene 
therapy that may become a treatment option for in the near future.
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Introduction

The World Health Organization reported that 466 million 
people worldwide suffers from hearing loss and estimated to 
rise over 900 million by 2050 [1]. Hearing loss means not 
able to hear as well as someone with normal hearing or a 
hearing threshold of more than 25 decibels in one or both 
ears. Hearing loss can also be classified as either conductive, 
sensorineural or mixed hearing loss. Conductive hearing 
loss is when there is a problem conducting the sound waves 
along the outer ear, tympanic membrane (eardrum) and 
ossicular chain of the middle ear towards the cochlea. 
Sensorineural hearing loss (SNHL) is when there is problem 
translating the sound vibrations into electrical signals in the 
sensory hair cells (HCs) inside the cochlear or damage in 
transmitting the information involving the afferent nerves 
towards the brain. This communication between the ear and 
brain can be damaged by aging, acoustic overexposure and 
ototoxic drugs. Heredity also plays a big part wherein genes 
for hearing are mutated or genes may increase the 
susceptibility to ear damage or deterioration from aging.

Hearing loss causes an annual global deficit of US $750 
billion [2] which offers a high demand for an effective 
solution. Conductive hearing loss can be surgically managed 
in most patients. In contrast, SNHL is mostly irreversible 
and results in permanent hearing loss. However, hearing 
rehabilitation is possible thru hearing devices that can either 
be worn externally or implanted. Despite the advances in 
hearing aid and cochlear implant technologies, the quality of 
perceived sound still cannot mimic that of the normal ear. 
Impaired speech perception in noisy environments and 
musical sound perception are the biggest hurdles of cochlear 
implants [3, 4]. 

Scientist around the world are working on genomics- 
based research and development in hearing science. In this 
review, we consolidated the genes that are currently 
identified to be associated with hearing loss. We reviewed 
ways in which genes are used to restore or protect hearing 
and ways to deliver the genes to their target cells such as viral 
and non-viral vectors. We also discussed the various 
strategies used in gene therapy such as gene replacement, 
slicing and editing.

http://crossmark.crossref.org/dialog/?doi=10.5808/GI.2018.16.4.e20&domain=pdf&date_stamp=2018-12-30
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Fig. 1. Inheritance pattern of identified genes for genetic hearing loss. 
Drawn with data adapted from Hereditary Hearing Loss Homepage [6].

Genetic Hearing Loss
Syndromic vs. nonsyndromic hearing loss

Clinically, hearing impairment may be associated with 
other disorders (syndromic) or it may only be a symptom 
(nonsyndromic). Syndromic hearing loss occurs with 
malformations of the external ear, together with other 
malformations in other organs or organ systems. Nonsyn-
dromic hearing loss has no associated visible deformities or 
the external ear or any related medical conditions, but could 
be associated with problems of the middle or inner ear.

Deafness genes

Genes are responsible for hearing loss among 50%‒60% of 
children born with hearing loss [5]. According to the 
Hereditary Hearing Loss Homepage [6] to date, there is a 
total of 112 non-syndromic hearing loss genes that has been 
identified (Fig. 1), 71 autosomal recessive (Table 1) [7-125], 
45 autosomal dominant (Table 2) [126-207], and 5 X-linked 
and 1 non-syndromic genes (Table 3) [208-218]. The most 
common cause of severe-to-profound nonsyndromic hearing 
loss in most populations is the autosomal recessive 
mutation of GJB2. While the most common cause of 
mild-to-moderate hearing loss is the autosomal recessive 
mutation on STRC [219]. On the other hand, about 30% of 
inherited hearing loss is associated with a syndrome [220]. 
Syndromic hearing impairment tends to be less genetically 

heterogeneous than nonsyndromic, but more than one locus 
has been identified for several syndromes. There are 
currently 11 syndromes (Table 4) [221-265] associated with 
hearing loss with a total of 47 syndromic hearing loss genes 
with 27 autosomal recessive, 13 autosomal dominant, 4 
autosomal dominant or recessive and 2 X-linked recessive 
pattern of inheritance.

Relevance of genomics in hearing loss

With the rapid advancement of genomics, it became 
possible to establish high-resolution genetic and physical 
maps, genomic and cDNA libraries which made it easier to 
correlate the genes for hearing loss. The establishment of the 
human fetal cochlear cDNA library gave way to the cloning of 
majority of the genes identified related to hearing loss [266]. 
Screening strategies can be made in combination with 
next-generation sequencing platforms to study sets of 
deafness subjects who are likely to have the same defective 
gene to effectively diagnose patients with genetic hearing 
loss [267].

Gene therapy

As mentioned above, genetic hearing loss can now be 
screened in utero. In principle, gene therapy can fix a genetic 
mutation like the ones involving hearing genes removing or 
replacing the defective gene or supplying the absent gene.

However, compared to other target organs for gene 
therapy, there are several obstacles related to the anatomy of 
the inner ear. The cochlea is a spiraled and fluid-filled cavity 
in a bony labyrinth that is very vulnerable to changes which 
affect the conversion of sound vibration into electrical 
signals. Consequently, maintaining this homeostasis is the 
biggest challenge in delivering any kind of therapeutic 
products into the inner ear. Different routes of admini-
stration have been explored with various purposes, such as 
efficiency in transduction and reduced cochlear toxicity. The 
most successful way to deliver therapeutic agents to the 
cochlea is an intracochlear approach through the round 
window membrane (RWM). The RWM is a semipermeable 
soft tissue separating the middle and inner ear. It allows low 
molecular weight molecules to up to molecules with 
molecular weight 45,000 under normal physiological 
conditions [268]. Direct injection through the RWM can also 
be done with a microsyringe and a narrow-gauge needle. 
Another option is to insert material inside the cochlear cavity 
to create an opening, in a procedure called a cochleostomy. 
This was the approach used by our group to inject material 
into the three cochlear cavities (scala vestibule, scala media, 
and scala tympani) [269, 270].
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Table 1. Autosomal recessive non-syndromic hearing loss genes and loci as modified from the Hereditary Hearing Loss Homepage [6]

Locus (OMIM) Location Gene (OMIM) Key references (PubMed)

DFNB1A 13q12 GJB2 [7, 8]
DFNB1B 13q12 GJB6 [9]
DFNB2 11q13.5 MYO7A [10-12]
DFNB3 17p11.2 MYO15A [13, 14]
DFNB4 7q31 SLC26A4 [15, 16]
DFNB5 (see note 1) 14q12 Unknown [17]
DFNB6 3p14–p21 TMIE [18, 19]
DFNB7/11 9q13–q21 TMC1 [20-22]
DFNB8/10 21q22 TMPRSS3 [23-25]
DFNB9 (see note 2) 2p22-p23 OTOF [26, 27]
DFNB10 See DFNB8 - -
DFNB11 See DFNB7 - -
DFNB12 10q21–q22 CDH23 [28, 29]
DFNB13 7q34–36 Unknown [30]
DFNB14 7q31 Unknown [31]
DFNB15/ 72/95 3q21–q25,19p13 GIPC3 [32-34]
DFNB16 15q21–q22 STRC [35]
DFNB17 7q31 Unknown [36]
DFNB18 11p14–15.1 USH1C [37-39]
DFNB18B 11p15.1 OTOG [40]
DFNB19 18p11 Unknown [41]
DFNB20 11q25-qter Unknown [42]
DFNB21 11q TECTA [43]
DFNB22 16p12.2 OTOA [44]
DFNB23 10p11.2–q21 PCDH15 [45]
DFNB24 11q23 RDX [46]
DFNB25 4p13 GRXCR1 [47]
DFNB26 (see note 3) 4q31 GAB1 [48]
DFNB27 2q23–q31 Unknown [49]
DFNB28 22q13 TRIOBP [50, 51]
DFNB29 21q22 CLDN14 [52]
DFNB30 10p11.1 MYO3A [53]
DFNB31 9q32–q34 WHRN [54, 55]
DFNB32/105 1p13.3–22.1 CDC14A [56, 57]
DFNB33 9q34.3 Unknown [58]
DFNB35 14q24.1–24.3 ESRRB [59, 60]
DFNB36 1p36.3 ESPN [61]
DFNB37 6q13 MYO6 [62]
DFNB38 6q26–q27 Unknown [63]
DFNB39 7q21.1 HGF [64]
DFNB40 22q Unknown [65]
DFNB42 3q13.31–q22.3 ILDR1 [66, 67]
DFNB44 7p14.1–q11.22 ADCY1 [68, 69]
DFNB45 1q43–q44 Unknown [70]
DFNB46 18p11.32–p11.31 Unknown [71]
DFNB47 2p25.1–p24.3 Unknown [72]
DFNB48 15q23–q25.1 CIB2 [73]
DFNB49 5q12.3–q14.1 MARVELD2/BDP1 [74-76]
DFNB51 11p13–p12 Unknown [77]
DFNB53 6p21.3 COL11A2 [78]
DFNB55 4q12–q13.2 Unknown [79]
DFNB59 2q31.1–q31.3 PJVK [80]
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Table 1. Continued

Locus (OMIM) Location Gene (OMIM) Key references (PubMed)

DFNB60 5q23.2–q31.1 SLC22A4 [81]
DFNB61 7q22.1 SLC26A5 [82]
DFNB62 12p13.2–p11.23 Unknown [83]
DFNB63 11q13.2–q13.4 LRTOMT/COMT2 [84, 85]
DFNB65 20q13.2–q13.32 Unknown [86]
DFNB66 6p21.2–22.3 DCDC2 [87]
DFNB66/67 6p21.31 LHFPL5 [88-90]
DFNB68 19p13.2 S1PR2 [91, 92]
DFNB71 8p2221.3 Unknown [93]
DFNB72 See DFNB15 - -
DFNB73 1p32.3 BSND [94]
DFNB74 12q14.2–q15 MSRB3 [95, 96]
DFNB76 19q13.12 SYNE4 [97]
DFNB77 18q12q–21 LOXHD1 [98]
DFNB79 9q34.3 TPRN [99]
DFNB80 2p16.1–p21 Unknown [100]
DFNB81 19p Unknown [34]
DFNB82 1p13.1 (see note 4) [101]
DFNB83 See DFNA47 - -
DFNB84 12q21.2 PTPRQ/OTOGL [102, 103]
DFNB85 17p12–q11.2 Unknown [101]
DFNB86 16p13.3 TBC1D24 [104, 105]
DFNB88 2p12–p11.2 ELMOD3 [106]
DFNB89 16q21–q23.2 KARS [107]
DFNB90 7p22.1–p15.3 Unknown [108]
DFNB91 6p25 SERPINB6 [109]
DFNB93 11q12.311–q13.2 CABP2 [110]
DFNB94 - NARS2 [111]
DFNB95 See DFNB15 - -
DFNB96 1p36.31–p36.13 Unknown [112]
DFNB97 7q31.2q31.31 MET [113]
DFNB98 21q22.3-qter TSPEAR [114]
DFNB99 17q12 TMEM132E [115]
DFNB100 5q13.2–q23.2 PPIP5K2 [116]
DFNB101 5q32 GRXCR2 [117]
DFNB102 12p12.3 EPS8 [118]
DFNB103 6p21.1 CLIC5 [119]
DFNB104 6p22.3 FAM65B [120]
DFNB105 See DFNB32 - [57]
DFNB106 11p15.5 EPS8L2 [121]
DFNB108 1p31.3 ROR1 [122]

Note 1: DFNB5 was reported originally as DFNB4.
Note 2: DFNB9 was reported originally as DFNB6.
Note 3: DFNB26 is suppressed by dominant modifier DFNM1.
Note 4: The gene at the DFNB82 locus was initially reported as GPSM2 [123], but this gene was later determined to cause 
Chudley-McCullough syndrome [124, 125].

Viral vs. non-viral gene delivery

Gene transfection to inner ear cells have mostly utilized 
replication defective viral vectors (Table 5) [271-280]. For 
example, adenoviruses were used to transfer gene markers 
such as β-galactosidase and red fluorescent protein as well 

as functional genes such as glial-derived neurotrophic factor 
(GDNF) to the auditory system [270, 281, 282]. Another 
example is the use of adeno-associated viral vectors (AAV), 
such as AAV1, 2, 6, 8, and Anc80L65, which showed greater 
transfection efficiency in inner ear delivery [283]. Recently, 
the USH1 protein network component harmonin (USH1C) 
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Table 2. Autosomal dominant non-syndromic hearing loss genes and loci according to Hereditary Hearing Loss Homepage [6]

Locus (OMIM) Location Gene (OMIM) Key references (PubMed)

DFNA1 5q31 DIAPH1 [126, 127]
DFNA2A 1p34 KCNQ4 [129, 130]
DFNA2B 1p35.1 GJB3 [132]
DFNA2C - IFNLR1 [134]
DFNA3A 13q11–q12 GJB2 [8, 135, 136]
DFNA3B 13q12 GJB6 [138]
DFNA4A 19q13 MYH14 [139, 140]
DFNA4B 19q13.32 CEACAM16 [142]
DFNA5 7p15 GSDME [144, 145]
DFNA6 4p16.3 WFS1 [148-151]
DFNA7 1q21–q23 LMX1A [152, 153]
DFNA8 See DFNA12 - -
DFNA9 14q12–q13 COCH [157, 158]
DFNA10 6q22–q23 EYA4 [160, 161]
DFNA11 11q12.3–q21 MYO7A [164, 165]
DFNA12 11q2224 TECTA -
DFNA13 6p21 COL11A2 [169, 170]
DFNA14 See DFNA6 - -
DFNA15 5q31 POU4F3 [172]
DFNA16 2q24 Unknown [174]
DFNA17 22q MYH9 [176, 177]
DFNA18 3q22 Unknown [179]
DFNA19 10(pericentr.) Unknown [181]
DFNA20 17q25 ACTG1 [183-185]
DFNA21 6p21 Unknown [187]
DFNA22 6q13 MYO6 [189]
DFNA23 14q21–q22 SIX1 [191, 192]
DFNA24 4q Unknown [194]
DFNA25 12q21–24 SLC17A8 [196, 197]
DFNA26 See DFNA20 - -
DFNA27 4q12 REST [199, 200]
DFNA28 8q22 GRHL2 [202]
DFNA30 15q25–26 Unknown [204]
DFNA31 6p21.3 Unknown [206]
DFNA32 11p15 Unknown [128]
DFNA33 13q34-qter Unknown [131]
DFNA34 1q44 NLRP3 [133]
DFNA36 9q13–q21 TMC1 [22]
DFNA37 1p21 COL11A1 [137]
DFNA38 See DFNA6 - -
DFNA39 (see note 1) 4q21.3 DSPP [141]
DFNA40 16p12.2 CRYM [143]
DFNA41 12q24-qter P2RX2 [146, 147]
DFNA42 5q31.1–q32 Unknown [141]
DFNA43 2p12 Unknown [154]
DFNA44 3q28–29 CCDC50 [155, 156]
DFNA47 9p21–22 Unknown [159]
DFNA48 12q13–q14 MYO1A [162, 163]
DFNA49 1q21–q23 Unknown [166]
DFNA50 7q32.2 MIRN96 [167, 168]
DFNA51 9q21 TJP2 [171]
DFNA52 4q28 Unknown [141]
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Table 2. Continued

Locus (OMIM) Location Gene (OMIM) Key references (PubMed)

DFNA53 14q11.2–q12 Unknown [173]
DFNA54 5q31 Unknown [175]
DFNA56 9q31.3–q34.3 TNC [178]
DFNA57 19p13.2 Unknown [180]
DFNA58 2p12–p21 Unknown [182]
DFNA59 11p14.2–q12.3 Unknown [186]
DFNA60 2q21.3–q24.1 Unknown [188]
DFNA64 12q24.31–q24.32 SMAC/DIABLO [190]
DFNA65 16p13.3 TBC1D24 [193]
DFNA66 6q15–21 CD164 [195]
DFNA67 20q13.33 OSBPL2 [175]
DFNA68 15q25.2 HOMER2 [198]
DFNA69 12q21.32–q23.1 KITLG [201]
DFNA70 3q21.3 MCM2 [203]
DFNA73 12q21.31 PTPRQ [205]

Note 1: Mutations in DSPP dentinogenesis imperfect associated with hearing impairment in some families.
Note 2: MYO1A has been called in to question as the causative gene for DFNA48 [207].

Table 3. Other non-syndromic hearing loss genes and loci as 
modified from the Hereditary Hearing Loss Homepage [6]

Locus (OMIM) Location Gene (OMIM) Key references 
(PubMed)

X-linked
  DFNX1a Xq22 PRPS1 [208]
  DFNX2 Xq21.1 POU3F4 [209]
  DFNX3 Xp21.2 Unknown [210, 211]
  DFNX4 Xp22 SMPX [212]
  DFNX5 Xq26.1 AIFM1 [213]
  DFNX6 Xp22.3 COL4A6 [214]
Y-linked
  DFNY1 Y Unknown [215]
Modifier
  DFNM1 1q24 METTL13 [48]
  DFNM2 8q23 Unknown [216]
AUNA-Auditory Neuropathy [217, 218]
  AUNA1 13q14-21 DIAPH3

aPrevious nomenclature designated X-linked loci as DFN but this 
has been changed to DFNX.

gene delivery using synthetic Anc80L65 vectors to treat 
hearing loss in mice with Usher syndrome restored complex 
auditory and balance behaviour similar to near wild-type 
levels with up to 90% transduction efficiency [276]. AAV2/8 
vectors that encode wild-type whirlin (WHRN) gene restored 
inner hair cells (IHC) but not outer hair cells and auditory 
function [272]. AAV2/1 vectors were injected in 
transmembrane channel like 1 (TMC1) mutant mice restored 
moderate hearing function with minimal auditory- 
brainstem-response threshold [284]. A similar viral capsid 
and a promoter that restricted expression to IHCs partially 

restored auditory function in mice deficient in the IHC gene 
encoding for vesicular glutamate transporter 3 (VGluT3) 
[271]. Furthermore, the cellular tropism of a novel 
adeno-associated bovine virus vector efficiently transduced 
cochlear and vestibular HC and supporting cells without 
pathological effects outperforming other viral vectors [285]. 

The concept of gene therapy seems straightforward, but 
numerous problems and risks exist that prevent gene 
therapy using viral vectors [286]. Even with all the potential 
benefits of gene therapy, the utilization of viral vectors in the 
clinical setup is hindered by the possibility of tumorigenesis 
and unexpected adverse effects from virus integration in 
human DNA. Therefore, non-viral delivery systems are 
developed as an alternative to harness gene therapy. These 
non-viral vectors include cationic liposomes and other 
non-liposomal polymers along with the use of biolistic 
materials and electroporation (Table 6) [287-301]. 

Cationic liposomes are phospholipid vesicles that fuses to 
the cellular membrane due to their cationic charge, thereby 
releasing the DNA to the cytoplasm [302]. Cationic liposomes 
can be easily prepared in large amounts, non-infectious and 
has a large gene capacity. Meanwhile, synthetic and naturally 
occurring polycationic polymers attract negatively charged 
phosphates of the DNA [303]. These include polyethy-
lenimine, dextran, chitosan, PLGA and among others. 
Cationic polymers are also easy to prepare and non- 
immunogenic. However, both types have low transfection 
yields and may still provoke an acute immune response.

Another mode of gene transfection makes use of 
DNA-coated gold microparticles and bombarded into a 
targeted cellular surface by a pressure pulse of compressed 
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Table 4. Syndromic hearing loss genes according to Hereditary Hearing Loss Homepage [6]

Gene (OMIM) Location Inheritance Key references (PubMed)

Alport syndrome
  COL4A3 2q36.3 Autosomal recessive [221]
  COL4A4 2q36.3 Autosomal recessive [221]
  COL4A5 Xq22.3 X-linked recessive [222]
Branchio-Oto-Renal syndrome
  EYA1 8q13.3 Autosomal dominant [223]
  SIX5 19q13.32 Autosomal dominant [224]
  SIX1 14q23.1 Autosomal dominant [225]
CHARGE syndrome
  SEMA3E 7q21.11 Autosomal dominant [226]
  CHD7 8q12.2 Autosomal dominant [227]
Jervell & Lange-Nielsen syndrome
  KNCQ1 11p15.5–15.4 Autosomal recessive [228]
  KCNE1 21q22.12 Autosomal recessive [229, 230]
Norrie disease
  NDP Xp11.3 X-linked recessive [231, 232]
Pendred syndrome
  SLC26A4 7q22.3 Autosomal recessive [233]
  FOXI1 5q35.1 Autosomal recessive [234]
  KCNJ10 1q23.2 Autosomal recessive [235]
Perrault syndrome
  HSD17B4 5q23.1 Autosomal recessive [236]
  HARS2 5q31.3 Autosomal recessive [236]
  CLPP 19p13.3 Autosomal recessive [237]
  LARS2 3p21.31 Autosomal recessive [238]
  TWNK 10q24.21 Autosomal recessive [239]
  ERAL1 17q11.2 Autosomal recessive [240]
Stickler syndrome
  COL2A1 12q13.11 Autosomal dominant [241]
  COL11A1 1p21 Autosomal dominant [242]
  COL11A2 6p21.32 Autosomal recessive/dominant [243]
  COL9A1 6q13 Autosomal recessive [244]
  COL9A2 1p34.2 Autosomal recessive [245]
Treacher Collins syndrome
  TCOF1 5q32–q33.1 Autosomal dominant [246]
  POLR1D 13q12.2 Autosomal dominant [247]
  POLR1C 6p21.1 Autosomal recessive [247]
Usher syndrome
  MYO7A 11q13.5 Autosomal recessive [248]
  USH1C 11p15.1 Autosomal recessive [249]
  CDH23 10q22.1 Autosomal recessive [250]
  PCDH15 10q21.1 Autosomal recessive [251]
  SANS/USH1G 17q25.1 Autosomal recessive [252]
  See Note A 15q25.1 Autosomal recessive [253]
  USH2A 1q41 Autosomal recessive [254]
  ADGRV1/VLGR1/GPR98 5q14.3 Autosomal recessive [255]
  WHRN 9q32 Autosomal recessive [256]
  CLRN1 3q25.1 Autosomal recessive [257]
Waardenburg syndrome
  PAX3 2q36.1 Autosomal dominant [258]
  MITF 3p13 Autosomal dominant [259]
  SNAI2 8q11 Autosomal recessive [260]
  SOX10 22q13.1 Autosomal dominant [261]
  PAX3 2q36.1 Autosomal dominant or recessive [262]
  EDNRB 13q22.3 Autosomal dominant or recessive [263]
  EDN3 20q13.32 Autosomal dominant or recessive [264]
  SOX10 22q13.1 Autosomal dominant [265]
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Table 5. Viral vectors used in gene therapy for genetic hearing loss studies

Viral vector Example Load Animal Route of administration Reference

Adenovirus Ad5-CMV-Atoh1-GFP Atoh1 Guinea pig Cochleostomy (scala media) [274]
Ad5-CMV-Math1.11D Math1 Guinea pig Cochleostomy (scala media) [275]
Ad28-CMV-GFP ＋ Ad28-GFAP-Atoh1 Atoh1 Mouse Round window (scala tympani) [278]

Adeno-associated virus AAV-mVGLUT3 VGLUT3 Mouse Round window (scala tympani) [271]
AAV8-CMV-whirlin-GFP WHRN Mouse Round window (scala tympani) [272]
AAV2/Anc80L65.CMV.trunc-harm USH1C Mouse Round window (scala tympani) [276]
BAAV-β-actin-GFP β-actin Rat Cochleostomy (scala media) [279]

Herpes simplex virus pHSV-blc-2 BCL2 Rat Organ of Corti explants [280]
pHSV-BDNF-LacZ BDNF Rat Spiral ganglia explant [273]

Lentivirus Lenti-HOX-GFP
Lenti-WOX-GFP

GFP Mouse Round window (scala tympani) [277]

Table 6. Non-viral vectors used in gene therapy for genetic hearing loss studies

Non-viral vector Example Load Animal Route of administration Reference

Cationic liposomes Liposomes β-gal plasmid Guinea pig RWM after cochleostomy [287]
Liposomes eGFP plasmid Mouse Gelfoam on RWM [288-290]
Lipofectamine 2000 Math1 Rat OC-derived cell line [291]

Cationic 
non-liposomal 
polymers

Polybrene Integrin antisense 
oligonucleotide

Rat OC-derived cell line [292]

Dendritic polymers (HPNP) eGFP plasmid Rat Sponge on RWM/
cochlear explants

[293]

Polyethylenimine (PEI) eGFP plasmid Guinea pig Scala tympani injection [294]
PLGA nanoparticles Fluorescent dye 

(Rhodamine)
Guinea pig Gelfoam on RWM [295]

Biolistic Gold particles using Gene gun MyoXVa Mouse OC explants [296, 297]
Electroporation Electroporation Math1 Rat OC explants [298, 299]

Electroporation Math1 Mouse In utero [300, 301]

RWM, round window membrane; eGFP, enhanced green fluorescent protein; OC, organ of Corti; PLGA, poly(lactic-co-glycolic acid).

helium gas [304]. These are not immunogenic and results in 
a very good in vivo activity. Electroporation is also used to 
create transient pores in the lipid membrane, allowing the 
transfection of plasmid DNA, using electric field pulses 
[305]. However, these methods may cause significant tissue 
damage during the procedure and need surgery for targeted 
internal organs. Gene transfer is also limited to the targeted 
area only.

Gene therapy strategies

Gene replacement using cDNA
Gene replacement is basically delivering a functional 

cDNA with the correct coding sequence to supplement a 
nonfunctional mutant gene of interest in specific cell types 
[306]. The ideal application of gene replacement is in genetic 
disorders caused by mutations leading to loss in phenotype, 
such as recessive diseases. However, effectivity of this gene 
therapy is limited by the duration in which gene is delivered 
during development of target organs. If the mutation begins 
during prenatal development, gene replacement may not be 

able to recover normal physiology after significant malfor-
mations. In addition, an extended expression of the 
exogenous sequence must be maintained if the mutated gene 
is expressed into adulthood. Dominant deafness mutations 
are less likely to be recovered with gene replacement 
strategies but other approaches can still be utilized.

Gene silencing using RNA interference 
Dominant hearing loss mutations in heterozygous 

animals can be “silenced” or negatively regulated by 
suppressing the mutant allele while allowing expression of 
the wild-type allele to overcome the consequences of the 
mutation. Gene silencing can be achieved at the trans-
criptional level by preventing the mRNA from being 
transcribed. At the post-transcriptional level, gene silencing 
occurs with use of RNA interference (RNAi) to prevent 
mRNA translation [307]. The central role in RNAi is played 
by two types of short complementary small RNA—
microRNA (miRNA) or small interfering RNA (siRNA). In 
an acoustic overexposure study in mouse, siRNA was found 
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to be able to silence the expression of AMP-activated protein 
kinase which causes HC loss and cochlear synaptopathy 
[308]. The main advantage of this method its sequence 
specificity which makes it very suitable for silencing 
dominant mutations without affecting wild-type sequences 
or off target sequences [309].

Gene editing using CRISPR/Cas9 system
Another gene therapy approach that recently gained much 

attention to edit genome sequences is the use of the 
CRISPE/Cas9 system. This approach is derived from 
prokaryotic immune systems for resistance to phages and 
plasmids [310]. It is the most recent and advanced 
programmable nuclease adapted for genome engineering 
which allows for the precise direct manipulation of genome 
sequences in the inner ear [311]. Engineered nuclease-based 
enzymes are used to find a target genome sequence and to 
introduce single- or double-strand DNA, which stimulate 
innate DNA repairing machinery. 

CRISPR/Cas is considered as the most pervasive and 
easy-to-use system with multiple applications. Cas9 require 
the presence of a protospacer adjacent motif (PAM) 
immediately following the DNA target sequence which 
enables the system to be very specific but at the same time 
limits its clinical application [312]. To date, much effort has 
been directed toward the design of CRIPSR nucleases with 
altered PAM specificities and diminished off target activities 
allowing even more applications [313].

Clinical Application and Conclusions

Gene therapy is making a comeback after safety concerns 
during the late 1990s and early 2000s hampered research. 
Gene therapy for genetic hearing loss is also getting one step 
closer into being a clinical treatment after several clinical 
trials have been approved but yet to bear results. Although 
gene therapy is a promising treatment option, its application 
is currently limited by the risk of side effects and is still under 
study to ensure that it will be safe and effective. In the 
meantime, there are 2,597 clinical trials undertaken in 38 
countries that have been either completed, are in progress, 
or approved involving gene therapy [314]. As we wait for 
preliminary results to ongoing clinical trials for gene therapy 
for hearing loss, there are already several syndromic hearing 
loss genes mentioned above wherein gene therapy trials have 
begun for their corresponding syndromes. These include the 
autosomal recessive gene MYO7A causing deaf-blindness in 
Usher syndrome [315]. Furthermore, lessons from different 
approaches in gene therapy in other systems can greatly 
influence the advancement in design and implementation of 
gene therapy for genetic hearing loss. Additional advances 

are expected in the coming years as the field of inner gene 
therapy moves toward the collective goal of developing novel 
and effective treatments for patients with genetic hearing 
loss.
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