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Abstract: Metabolic syndrome is a constellation of five risk factors comprising central obesity,
hyperglycaemia, dyslipidaemia, and hypertension, which predispose a person to cardiometabolic
diseases. Many studies reported the beneficial effects of honey in reversing metabolic syndrome
through its antiobesity, hypoglycaemic, hypolipidaemic, and hypotensive actions. This review
aims to provide an overview of the mechanism of honey in reversing metabolic syndrome. The
therapeutic effects of honey largely depend on the antioxidant and anti-inflammatory properties of
its polyphenol and flavonoid contents. Polyphenols, such as caffeic acid, p-coumaric acid, and gallic
acid, are some of the phenolic acids known to have antiobesity and antihyperlipidaemic properties.
They could inhibit the gene expression of sterol regulatory element-binding transcription factor
1 and its target lipogenic enzyme, fatty acid synthase (FAS). Meanwhile, caffeic acid and quercetin in
honey are also known to reduce body weight and fat mass. In addition, fructooligosaccharides in
honey are also known to alter lipid metabolism by reducing FAS activity. The fructose and phenolic
acids might contribute to the hypoglycaemic properties of honey through the phosphatidylinositol
3-kinase/protein kinase B insulin signalling pathway. Honey can increase the expression of Akt and
decrease the expression of nuclear factor-kappa B. Quercetin, a component of honey, can improve
vasodilation by enhancing nitric oxide production via endothelial nitric oxide synthase and stimulate
calcium-activated potassium channels. In conclusion, honey can be used as a functional food or
adjuvant therapy to prevent and manage metabolic syndrome.

Keywords: metabolic syndrome; honey; obesity; hyperglycaemia; hyperlipidaemia; obesity; hyper-
tension

1. Introduction

Metabolic syndrome is a constellation of five risk factors that predispose an individual
to type 2 diabetes (T2DM) and cardiovascular disease (CVD) [1]. Previously known as
“Syndrome X” by Reaven, metabolic syndrome was described as the tendency of glucose
intolerance, hyperinsulinemia, hypertension, and dyslipidaemia occurring simultaneously
rather than by chance alone [2]. The idea of introducing a diagnostic criterion for metabolic
syndrome was first attempted by the World Health Organization (WHO) in 1999, which
includes insulin resistance and glucose intolerance in addition to other components, such
as elevated blood pressure, dyslipidaemia, obesity (which is determined by waist/hip
ratio, or body mass index (BMI)), and microalbuminuria, as a diagnosis of metabolic
syndrome. Although the definitions by Reaven and the WHO are more hyperglycaemia
centric, other organizations, such as the International Diabetes Federation (IDF), American
Heart Association (AHA), and the National Heart Lung and Blood Institute (NHLBI), have
also put forth their classification and diagnostic criteria, which has a more neutral approach.
The most recent classification for the diagnosis of metabolic syndrome, known as the Joint
Interim Statement (JIS), was proposed to unify the previous criteria [1,3]. The JIS criteria
for the clinical diagnosis of metabolic syndrome include:
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1. Elevated fasting blood glucose (FBG) ≥ 7.0 mmol/L (or drug treatment for ele-
vated glucose).

2. Elevated blood pressure (systolic blood pressure (SBP) ≥ 130 mmHg and/or diastolic
blood pressure (DBP) ≥ 85 mmHg) (or drug treatment for hypertension).

3. Elevated serum triglyceride (TG) ≥ 1.7 mmol/L (or drug treatment for elevated TG).
4. Reduced high-density lipoprotein (HDL-C) (1.0 mmol/L in male and 1.3 mmol/L in

female) (or drug treatment for reduced HDL-C).
5. Elevated waist circumference (WC) (according to population and country-specific def-

initions).

According to the IDF consensus on the worldwide definition of metabolic syndrome,
the worldwide prevalence of metabolic syndrome in the adult population is estimated to
be 20–25% [4]. It is estimated that around 12–37% of the Asian population and 12–26%
of the European population suffer from metabolic syndrome [5]. In other words, about
25% of the world population is affected by this condition [6]. A systematic review of the
prevalence of metabolic syndrome in the Asia Pacific demonstrated that close to 20% of
the adult populations were affected by metabolic syndrome [5]. Malaysia has the highest
metabolic syndrome prevalence at 34.3% compared to other South East-Asian countries,
such as Indonesia (28.9%), the Philippines (11.9%), and Singapore (20.2%) [7].

Lifestyle changes continue to be the primary approach in treating metabolic syndrome,
while drug therapy focuses on treating each metabolic syndrome component [8]. Often,
patients present multiple conditions and require multiple drugs, resulting in polypharmacy [3].
Due to the increasing metabolic syndrome prevalence, polypharmacy increases the financial
burdens to the national healthcare system and the patients themselves [9]. In addition, non-
compliance, side effects of medications, drug-to-drug interactions, and numerous visits to
physicians can escalate national and personal healthcare burdens. Therefore, prevention is far
more economical in managing the epidemic of metabolic syndrome [3].

In recent years, various studies have demonstrated the use of natural ingredients, such as
cinnamon, ginger, and other plant-derived therapeutics, as a dietary intervention in preventing
or treating metabolic syndrome [10–12]. Some of the apitherapy agents intensively investigated
include honey, propolis, pollen, bee venom, and royal jelly [13]. Honey is speculated to be a
potent metabolic syndrome preventive agent due to its antioxidant, anti-inflammatory [14],
hepatoprotective [15], antihypertensive [16], and antiobesity properties [17].

Honey is a natural by-product from the flower nectar and aerodigestive tract of honey
bees, which contains various complex biochemical components. Fructose (36%) and glucose
(31%) are the main carbohydrate constituents of honey. Other constituents found within
honey include mineral, proteins, vitamin, organic acids, flavonoids, phenolic acid, and
enzymes [18]. The antioxidant property of honey is strongly correlated with its phenolic
content and colour intensity [19]. Due to its exceptional medicinal value, honey has been
used widely in alternative therapy.

The purpose of the review is to provide an overview of the mechanism of honey in
preventing or managing metabolic syndrome. A better understanding of the antimetabolic
properties of honey will facilitate its incorporation in the management of metabolic syndrome.

2. Pathophysiology of Metabolic Syndrome

Metabolic syndrome can be contributed by various factors, such as diet, physical
inactivity, and genetic predisposition [20]. In the following section, the pathogenesis of
each component of metabolic syndrome is discussed.

2.1. Obesity

Obesity is one of the main components of metabolic syndrome. According to the JIS
criteria, central adiposity is determined by waist circumference. The cut-off values for
central obesity based on waist circumference differ by country. For example, they are 102 cm
(40 inches) in Caucasian men and 88 cm (34.6 inches) for Caucasian women. Meanwhile,
the values are 90 cm (35 inches) in Asian men and 80 cm (32 inches) in Asian women [1].
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Abdominal obesity is principally caused by increased consumption of calorie-dense food
(energy intake) as well as reduced physical activity (energy expenditure), leading to the
formation of adipose tissue as a storage for the excessive energy [3].

Obesity is closely related to various chronic diseases, such as CVD, T2DM, non-
alcoholic fatty liver disease (NAFLD), and cancer. At the same time, it is also associated
with a state of low-grade inflammation. Inadequate blood supply to adipose tissue can lead
to hypoxia, causing the release of free fatty acid (FFA), plasminogen activator inhibitor-1
(PAI-1), and cytokines, such as tumour necrosis factor-alpha (TNFα), interleukin-1-beta
(IL-1β), and interleukin-6 (IL-6). The alteration in FFA release results in the accumulation
of lipids and ectopic fat and impairs insulin sensitivity when exposed to other insulin-
sensitive tissues, such as skeletal muscle. Furthermore, the cytokines further activate the
inflammatory program, therefore aggravating inflammation and insulin resistance [21].
Meanwhile, PAI-1 is found abundantly in abdominally obese subjects and exerts its effect
by inhibiting tissue plasminogen activator (tPA); therefore, it increases the risk of cardio-
vascular events [3]. Besides this, adipose tissue also secretes adipokines, such as leptin,
adiponectin, and resistin [22]. Leptin overstimulation can lead to resistance, therefore
thwarting satiety. Subsequently, it will affect glucose homeostasis, pancreatic ß cell func-
tions, and other insulin-sensitive tissues [3,20,23]. Adiponectin acts as a protective protein
hormone, which regulates lipid and glucose metabolism and increases insulin sensitiv-
ity by increasing glucose transport in the muscle and enhancing fatty acid oxidation [3].
Resistin shares a similar structure to adiponectin, but it promotes insulin resistance by
hepatic gluconeogenesis. Its expression is three times higher in preadipocytes than mature
adipocytes, suggesting its potential role in adipogenesis [22].

2.2. Hyperglycaemia

Insulin resistance is the impairment of glucose metabolism marked by an abnormal
response to a glucose challenge. Previously, Reavan has referred to metabolic syndrome
as “insulin resistance syndrome” because he believes that it is the unifying mechanism
leading to the development of metabolic disorders [2,24]. Nutrient-induced toxicity due to
overnutrition can lead to insulin resistance in tissues like skeletal muscle and heart tissues,
which normally respond to insulin for glucose uptake. Insulin resistance is an adaptive
mechanism of the tissues to avoid damage due to nutrient overload [25]. Adipokines plays
an important role in fuelling insulin resistance. High FFA levels could cause a failure to
limit glucose entry into cells, thus resulting in glucolipotoxicity [26]. Similarly, cytokines
like TNFα or IL-1β promote insulin resistance by inhibiting insulin receptor substrate-1
(IRS-1), which plays a role in transmitting signals from insulin to intracellular pathways,
such as the phosphoinositide 3-kinase/protein kinase B (PI3k/Akt) and extracellular signal-
regulated kinase/mitogen-activated protein kinase (Erk/MAPK) pathway, leading to a
reduction in glucose uptake. This event will consequently increase fasting glucose and
reduce insulin-mediated glucose clearance. In this case, insulin cannot produce a normal
insulin response in the target tissues, causing the β cells to produce more insulin, leading
to hyperinsulinaemia. Over time, the lack of insulin production eventually leads to an
inability to correct insulin resistance, which inadvertently gives rise to hyperglycaemia
and T2DM [3]. Adiponectin is an anti-inflammatory adipokine, which enhances glucose
transport in muscles and improves insulin sensitivity. The adiponectin level is conversely
related to insulin resistance [27,28].

With metabolic syndrome, insulin resistance may contribute to the pathogenesis of
diseases, such as NAFLD, polycystic ovary syndrome, T2DM, and atherosclerotic cardio-
vascular diseases [29–32].

2.3. Dyslipidaemia

Dyslipidaemia is characterized by reduced HDL-C, as well as increased very-low-
density lipoprotein cholesterol (VLDL-C), TG, and low-density lipoprotein cholesterol
(LDL-C) levels. This atherogenic lipid composition is the key component of the CVD
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risk factor, especially in T2DM individuals [33]. The JIS criteria consider reduced HDL-
C and elevated TG for metabolic syndrome [1]. The changes in lipid metabolism and
release are associated with FFA flux secondary to insulin resistance. The flux of FFA
released from insulin-resistant tissues into the liver in a state of adequate glycogen will
promote TG, apolipoprotein B (apo B) and VLDL-C production. The ability of insulin to
impede FFA release leads to enhanced hepatic VLDL-C production, which may progress to
fatty liver [34,35].

On the other hand, high VLDL-C and TG results in lower HDL-C and increased LDL-C
levels because VLDL-transported TG is exchanged for HDL-transported cholesteryl ester
(CE) via cholesteryl ester transport protein (CETP). Therefore, there is a high amount of
atherogenic cholesterol-rich VLDL particles and TG-rich but cholesterol-depleted HDL
particles in circulation. TG-rich HDL is hydrolyzed by the enzymes hepatic lipase or
lipoprotein lipase, and HDL remnants are washed out from the systemic circulation,
resulting in low HDL-C levels. Meanwhile, high-level VLDL-TG also enables CETP to
promote the transfer of TG into LDL in exchange for LDL-transported CE. The TG-rich
LDL undergoes hydrolysis by hepatic lipase, leaving a small dense LDL remnant [35]. The
small dense LDL is a powerful risk factor for CVD, as it is considered highly atherogenic.
It is easily oxidized and binds more readily to proteoglycan in the arterial wall [33].

Another important source of TG and VLDL production is via de novo fatty acid (FA)
synthesis or lipogenesis [34]. Horton et al. showed that hepatic lipogenesis is regulated by
the transcription factor sterol regulatory element-binding protein-1-c (SREBP-1c) [36]. The
expression of SREBP is augmented by insulin in insulin target tissues, such as liver, skeletal
muscle, and fat tissues [37,38]. SREBP binds to sterol regulatory element (SRE) found in
multiple genes, subsequently activating cascades of enzymes involved in biosynthesis
pathways, such as 3-hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase and fatty
acid synthase (FAS) [39]. FAS is an important subsequential component of lipid synthesis,
which mainly functions to catalyze the synthesis of palmitate from acetyl-CoA and malonyl-
CoA [40]. In rat studies, dietary carbohydrate (fructose) can increase the transcriptional
rates of FAS by enhancing the stability of FAS mRNA in the liver [41,42].

Therefore, the proatherogenic lipid composition present in dyslipidaemia contributes
to metabolic syndrome-induced cardiovascular disease risk.

2.4. Hypertension

Hypertension is an elevation in blood pressure. Approximately 80% of individuals with
metabolic syndrome suffer from hypertension [43]. The AHA guideline defines hyperten-
sion as SBP > 130 mmHg and DBP > 80 mmHg [44]. Studies indicated that excess adiposity
might play an important role in the pathogenesis of hypertension. As evidence, 65–75% of
the risk factor for primary hypertension is contributed by obesity and excess weight gain.
Visceral adiposity may result in a mild to moderate increase in several components of the
renin-angiotensin-aldosterone system (RAAS), which includes angiotensin II (AT-II) and
aldosterone [45]. Apart from this, obesity may also increase Ras-related C3 botulinum toxin
substrate 1 (Rac 1), a guanosine triphosphate (GTP) binding protein that stimulates miner-
alocorticoid (MR) receptor, causing reabsorption of sodium, and subsequently increasing
the intracellular volume, thus leading to an elevation in blood pressure [46,47].

Insulin resistance has also been linked to hypertension because insulin can cross the
blood-brain barrier (BBB) to the central nervous system (CNS) and activate the systemic
nervous system (SNS). Insulin also upregulates AT-II receptor and reduces nitric oxide
(NO), which incites peripheral vascular resistance. Therefore, blockage of AT-II receptor,
angiotensin-converting enzyme (ACE), or MR receptors may attenuate sodium retention,
volume expansion, and elevation of blood pressure [43,44].

The chronic inflammation and oxidative stress that occur in metabolic syndrome could
also contribute to endothelial dysfunction, which is the primary cause of many cardio-
vascular diseases, including hypertension. Diminished production/bioavailability of and
response to NO, a proinflammatory state, and an imbalance between relaxing/contracting
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factors of the endothelial due to oxidative damage are postulated to be the major con-
tributing factors of endothelial dysfunction. These changes will progress to alternation in
vascular tone, phenotypic and microstructural changes of the vascular epithelial, which
results in hypertension [48].

2.5. The Role of Oxidative Stress and Inflammation in Metabolic Syndrome

Metabolic syndrome is closely linked with oxidative stress, which occurs when reac-
tive oxygen species (ROS) generation overwhelms the cellular antioxidant capacity. ROS
resulting from normal physiological processes could cause oxidative damage to cellular
constituents, such as proteins, lipids, and DNA, leading to various cellular dysfunction.
Cells are usually protected from oxidative damage by antioxidant enzymes, such as su-
peroxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT), as well
as non-enzymatic antioxidants, such as glutathione, vitamin C, and vitamin E [49]. In
metabolic syndrome, the balance between ROS and antioxidant could be broken. For
instance, the increased oxidation of excess FFA by mitochondrion via beta-oxidation or
oxidation of FFA-derived acetyl CoA through the tricarboxylic acid cycle (TCA) cycle
generates electron donors, such as nicotinamide adenine dinucleotide and dihydroflavine-
adenine dinucleotide, which can cause oxidative stress [50]. FFA, especially palmitate,
stimulates diacylglycerol synthesis and activates protein kinase C (PKC), which activates
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which converts molecu-
lar oxygen to its superoxide radicals. The persistent release of FFA from overaccumulation
of fat may also activate NADPH oxidase locally (within the adipose cell) or remotely (in
other cells), which exacerbates ROS production in obese individuals [51,52]. A study also
found that postprandial lipoproteins, especially chylomicrons and VLDL, generate oxygen
radicals on the endothelial surface, which reacts with NO and decrease its bioavailabil-
ity [53,54]. This event will subsequently lead to vascular dysfunction. Therefore, oxidative
stress is involved in the pathogenesis of atherosclerosis, hypertension, and T2DM related
to metabolic syndrome [55].

Metabolic syndrome is also associated with a state of low-grade inflammation char-
acterised by increased production of cytokines and activation of inflammatory signalling
pathways [56]. Chronic oxidative stress transpiring in the adipose tissue may be the first
trigger of inflammation, leading to propagation of metabolic syndrome [56]. Obesity is
related to a concurrent increase in ROS and expression of NADPH oxidase, and a decrease
in the expression of antioxidant enzymes, which are associated with altered adiponectin,
IL-6, and monocyte chemoattractant protein (MCP-1) production [57]. Adipose tissue is
known to express various adipokines, such as TNF-α, IL-6, IL-1β, leptin, adiponectin, and
MCP-1 [58,59]. TNF-α was reported to be high in the adipose tissue of obese individuals,
and its level was correlated positively with insulin resistance as it interferes with the insulin
signalling transduction via serine-phosphorylation of IRS-1 [60,61]. Other cytokines that
are also associated with obesity and insulin resistance are IL-6 and IL-1β [62,63]. These cy-
tokines upregulate obesity and play an important role in the pathophysiological processes
underlying metabolic syndrome, T2DM, and CVD [56]. Furthermore, the proinflammatory
transcription factor, nuclear factor-kappa B (NF-κB), is also associated with obesity, insulin
resistance, and low-grade inflammation [64]. NF-κB regulates the expression of genes that
control the expression of inflammatory gene production [65]. Therefore, together with
TNF-α and IL-6, its most important activators, NF-κB contributes to metabolic syndrome
manifestations [66,67].

The vicious cycle of oxidative stress and inflammation in metabolic syndrome drives
the progression of this condition. A natural compound or mixture with both antioxidant
and anti-inflammatory properties could break this cycle and relieve metabolic syndrome.

3. The Mechanisms of Honey in Reversing Metabolic Changes

Given the role of inflammation and oxidative stress in the development of metabolic
syndrome, honey, with the capacity to quench these processes, could prevent metabolic
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syndrome. The therapeutic effects of honey large depend on the antioxidant and anti-
inflammatory properties of its polyphenol and flavonoid content. The phenolic acid and
flavonoid profiles of honey vary based on factors, such as climate, geographic factors,
and floral abundance [68]. A study on the total phenolic contents and colour intensity of
different types of Malaysian honey reported a positive correlation between total phenolic
content (TPC) and colour intensity of honey, whereby Kelulut honey had the highest value
of TPC of 784.3 mg GAE/kg and other honey, such as Tualang, Pineapple and Borneo,
had TPC values of 589.2, 602.4, and 510.4 mg GAE/kg, respectively [69]. The polyphenols
and flavonoids are potent antioxidants because they can donate hydrogen and hydrogen
groups to scavenge free radicals in oxidative stress. For example, quercetin, caffeic acid
(CA), and chlorogenic acid are polyphenols that possess iron-chelating and iron-stabilizing
properties, which prevents free radical formation, making them great antioxidants [70–72].
Furthermore, polyphenols, such as apigenin, quercetin, and kaempferol, may also exert
their anti-inflammatory properties by modulation of enzymes involved in proinflammatory
activities, such as nuclear factor-kappa B (NF-κB), activator protein-1 (AP-1), or nuclear fac-
tor erythroid 2-related factor 2 (Nrf2) [73–75]. These bioactive compounds may contribute
synergistically to the antimetabolic effects of honey.

3.1. Anti-Inflammatory and Antioxidant Properties of Honey

As illustrated in the previous section, metabolic syndrome is closely linked with
oxidative stress and inflammation. Studies have shown that honey can protect against
the activation of NF-κB, the key transcription factor of inflammation. An in vitro study
reported that 5–20% manuka honey inhibited the activation of NF-κB and AP-1 in H. py-
lori-induced NF-κB and AP-1 DNA-binding activity in gastric epithelial cells and down-
regulated the expression of cyclooxygenase-2 (COX-2) [76]. Hussein and colleagues also
reported the suppression of NF-κB (p65 and p50 gene expression) by Gelam honey at 1.0
and 2.0 g/kg body weight for 7 days in a Carrageenan-induced paw oedema model in rats.
Gelam honey at 1 or 2 g/kg also inhibited the nuclear transcription of NF-κB, followed
by a subsequent reduction in COX-2 and TNFα [77]. Another animal study by Aziz and
colleagues also observed a significant decrease in NF-κB, IL-1β, and TNFα expression, as
well as a significant increase in the antioxidant CAT after 28 days of treatment with 1 and
2 g/kg body weight SBH in diabetic rats [14].

On the other hand, honey could activate the nuclear localization of Nrf2, which is the
key regulator of the cellular antioxidant defence. Activation of Nrf2, in turn, facilitates the
transcription of several Nrf2 target genes that control antioxidant defence and autophagy.
Honey activates AMPK and endogenous enzymatic antioxidants, such as SOD, CAT,
and GPX [78]. Manuka honey was reported to prevent oxidative damage and preserve
mitochondrial functionality via activation of the AMPK/Nrf2 signalling pathway, with a
subsequent increase in the expression of antioxidant enzymes, such as SOD and CAT [79].
Another study by Ranneh and colleagues reported that SBH suppressed lipopolysaccharide
(LPS)-induced chronic subclinical systemic inflammation (CSSI) and oxidative stress in
rats. SBH also reduced NF-κB, p65, and p38 MAPK and upregulated Nrf2 expression
in the liver, kidney, heart, and lungs [80]. A study by Sabitha and colleagues reported
that p-CA suppressed ethanol-induced oxidative stress and apoptosis by suppressing
CYP2E1 and stimulating Nrf2 and its target protein expression in rat liver tissue. Therefore,
p-CA is an effective antioxidant by enhancing Nrf2 signalling [81]. Furthermore, honey
is also known to reduce malondialdehyde (MDA) levels, which is a product of lipid
peroxidation with high reactivity and toxicity, making it one of the most reliable biomarkers
of oxidative stress [82]. A study found that supplementation of Tualang honey 1 g/kg for
12 weeks in spontaneously hypertensive rats reduced malondialdehyde (MDA) levels and
downregulated the activity of glutathione-S-transferase (GST) and CAT, while it moderately
upregulated Nrf2 mRNA expression [16].
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3.2. Antiobesity Properties of Honey

An in vitro study on Pineapple honey showed a significantly reduced lipid droplet
size by 33.78% to 70.36% and reduced lipid accumulation in treated 3T3-L1 adipocytes,
suggesting honey might limit the storage of lipids in adipocytes [83]. Malaysian Gelam and
Acacia honey were reported to reduce weight gain and BMI in rats with obesity induced by
a high-fat diet (HFD). Rats that were fed Gelam honey ad libitum for 4 weeks also showed
a reduction in the adiposity index compared to the HFD group, showing Gelam honey
can prevent excessive adipose tissue formation [84]. Similar results were demonstrated
by Rafie and colleagues using stingless bee honey (SBH) from Heterotrigona itama. The
rats showed reduced BMI, percentage body weight gain, adiposity index, and relative
liver weight after a 6-week honey supplementation (500–1000 mg/kg) [85]. Ramli and
colleagues also observed a reduction in body fat and omental fat mass in rats supplemented
with 1 g/kg/day of Kelulut honey for 8 weeks [86]. Romero-Silva and colleagues observed
a significantly lower weight gain as well as smaller fat cells in rats supplemented with a
hypercaloric diet containing 20% honey (unknown source) compared with the sucrose-fed
rats for 8 weeks [87].

In addition, human interventional studies also found a similar finding marked by a
reduction in body weight, body fat, and lipid profile after consumption of 70 g of natural
unprocessed honey collected from Iran for 30 days [88]. Furthermore, a randomised open-
labelled controlled clinical study by Pai and colleagues reported a significant reduction in
body weight, BMI, WC, hip circumference, and lipid profile in obese patients treated with
unprocessed and processed honey (collected from India). The honey was supplemented at
48 g for 48 days in these patients [89].

Honey is rich in polyphenols known to reduce body weight and fat mass, thus
explaining its antiobesity properties. A study by Liao and colleague reported that a
reduction in body weight as well as a decrease in the ratio of various adipose tissue
mass (epididymal, retroperitoneal, and mesenteric fat) and body weight in mice given a
high-fat diet with 0.02% and 0.08% w/w CA for 6 weeks [90]. A similar study with the
supplementation of 50 µg/day of quercetin for 8 weeks in mice fed a high-fat diet also
reported a reduction in fat mass and body weight [91]. Another animal study reported
CA and chlorogenic acid supplementation (0.02% w/w) for 8 weeks in mice fed a high-fat
diet significantly reduced BW by 8% and 16%, respectively. Furthermore, the weight
of the epididymal white adipose tissue of mice supplemented with CA and chlorogenic
acid was lower than the control group by 22% and 46%, respectively. In this experiment,
supplementation with CA and chlorogenic acid also reduced plasma leptin, indicating the
alleviation of leptin resistance [92]. Meanwhile, an in vitro study concerning the effects
of GA on lipolysis found that GA (250 µM 48 and 72 h) inhibits proliferation but induces
apoptosis in 3T3-L1 preadipocytes. As evidence, cells treated with 50 µM GA for 12 h
showed an increase in Fas (CD95)/Fas Ligand (FasL; CD95L) and p53 expression. These
proteins are involved in the extracellular pathway in apoptotic signalling [93]. However,
the actions of these polyphenols might be different compared to honey because the content
and their interactions with other compounds need to be considered.

Besides, fructo-oligosaccharides (FOSs) are also known to alter lipid metabolism.
FOSs in honey are resistant to human digestive enzymes and could act as probiotics.
Various studies reported that the administration of these fructans promotes a reduction
in weight gain and energy intake in rats [94]. A study from Kaume et al. observed that
dietary supplementation of 5% FOSs (w/w) could significantly lower total lipids by 12%
with a subsequent reduction in liver weight in obese Zucker rats [95]. Daubioul and
colleagues also observed that the body weight of FOS-fed Zucker rats was significantly
lower than control rats after 4 weeks of treatment. A histological examination of the liver
revealed a reduction in fat cells of the rats fed with 10% FOS (w/w). Besides, FOS also
decreases malic enzyme (ME) activity, a lipogenic key enzyme in providing NADPH for
fatty acid elongation by FAS. Therefore, FOS can inhibit the synthesis of long-chain fatty
acid [96]. Similarly, Agheli and colleagues reported a reduction of FAS activity after FOS
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supplementation in insulin-resistant Sprague-Dawley rats [97]. Delzane and Kok showed a
reduction in the activity of lipogenic enzymes, such as acetyl-CoA carboxylase (ACC), ME,
and FAS after FOS supplementation by modifying the gene expression of these enzymes. Of
note, FAS mRNA was reduced by 40% in FOS-fed rats compared to the control group [98].

A summary of the antiobesity properties of honey is presented in Figure 1.
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3.3. Antihyperglycaemic Properties of Honey

Honey is a sweet substance with a relatively low glycaemic index, making it a suitable
sugar substitute. The fructose present in honey contributes to its sweet taste. The major
source of fructose used by the food industry as a sweetener is derived from cane sugar or
high-fructose corn syrup. Fructose is a potent and acute regulator of liver glucose uptake
and glycogen synthesis. It forms TG more effectively and is more lipogenic than glucose
despite having a similar chemical structure [99]. In the liver, fructose bypasses the regular
steps of glycolysis, catalyzed by glucokinase or hexokinase and phosphofructokinase.
Instead, fructose is transported by insulin-independent glucose transporter (GLUT-5) and
is metabolized to fructose-1-phosphate by the enzyme fructokinase or ketohexokinase [100].
High fructose intake results in postprandial hypertriglyceridaemia and an increase in
visceral adipose deposition. This event exacerbates hepatic triglyceride accumulation,
protein kinase C activation, and hepatic insulin resistance due to the continuous portal
delivery of fatty acid to the liver [39]. On the other hand, honey can normalise circulating
glucose levels because its fructose content can prolong gastric emptying and lowers food
intake [78]. The slow absorption of fructose within the intestinal tracks might prolong
interaction between fructose and the intestinal receptor, which might result in satiety [18].

The hypoglycaemic properties of honey have been illustrated in rodent models of
diabetes, healthy subjects, and diabetic patients. These effects might be contributed by
the components of honey, such as fructose, and phenolic acids. A study reported that
administration of 1.0 to 2.0 g/kg of Nigerian honey for 3 weeks significantly reduced
hyperglycaemia in alloxan-induced diabetic rats [101]. Another animal study also reported
similar findings with 1.0 and 2.0 g/kg body weight of SBH from Geniotrigona thoracica in
diabetic rat models by suppressing FBG levels after 28 days of treatment. Additionally,
histopathological changes, expression of oxidative stress, inflammation, and apoptosis
markers within the pancreatic islet were improved in conjunction with the increase in the
expression of insulin in the islet [14].

In a human intervention study, 30 days of 70 g of honey (collected from Iran) was
reported to reduce FBG compared to overweight individuals fed with sucrose [88]. In
obese girls, supplementation of 15 g honey for 6 months caused a reduction in BMI and
the area under the concentration–time curve (AUC) in an oral glucose tolerance test and
insulin [102]. Agrawal and colleagues observed a higher degree of tolerance to honey with
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a significantly lower glucose level in patients with diabetes or impaired glucose tolerance
after consumption of 90 g of unprocessed natural honey from India in 300 mL of water,
at a 30-min interval up to 2 h [103]. A case-control study in Egypt involving children
and adolescents with type 1 diabetes mellitus also recorded a lower glycaemic index and
incremental index in both the diabetic and control group after honey (unspecified source)
consumption at a calculated dose (dose in g = subjects’ body weight in kg × 1.75 with a
maximum of 75 g) diluted in 200 mL of water, every 30 min postprandial for 2 h [104].

Honey could modulate the key components of the insulin signalling pathway,
P13k/Akt [78]. The development of insulin resistance is characterised by an increase
in NF-κB, MAPK, and IRS-1 serine phosphorylation. However, pretreatment of oxidative
stress-induced HIT-T15 cells with Gelam honey extract (20, 40, 60, and 80 µg/mL) and
quercetin (20, 40, 60, and 80 µM) for 24 h, prior to stimulation with 20 and 50 mM glucose,
reported an increase in the expression of Akt and decreased expression of IRS-1 serine
phosphorylation, NF-κB, and MAPK [105]. In addition, a study by Tapia and colleagues
also observed lower serum glucose in rats fed with 10% honey ad libitum for 4 months.
Interestingly, long-term honey consumption in the presence of a high-fat diet did not
significantly increase the insulin concentration. Honey was reported as the sweetener that
increased phosphorylation of IRS-tyrosine and Akt and lowered the protein abundance
of NF-κB, which indicates better insulin signalling. It was also observed that honey sig-
nificantly increased white adipose tissue GLUT-4 expression in rats, an insulin-sensitive
glucose transporter that moves glucose into the adipose tissue, indicating better insulin
sensitivity [106]. A summary of the antihyperglycaemic properties of honey is presented
in Figure 2.
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3.4. Antihyperlipidaemic Properties of Honey

Many studies on the hypolipidaemic effects of honey have been conducted. A study by
Samat et al. reported that the consumption of Gelam and Acacia honey (dose unspecified)
for four weeks reduced TG and cholesterol in rats fed a high-fat diet (HFD) [84]. In another
report, supplementation of SBH from Geniotrigona thoracica honey 1.0 and 2.0 g/kg body
weight for 28 days could increase the HDL-C level but reduce TG, TC, and LDL-C levels
in streptozotocin-nicotinamide-induced diabetic male rats [14]. This beneficial effect was
replicated in human studies, whereby the consumption of 70 g of natural unprocessed
honey dissolved in 250 mL of tap water for 30 days in overweight and obese individuals
caused a 3.3%, 4.3%, and 19% reduction in TC, LDL-C, and TG [88].

The natural compounds in honey contribute to its lipid-lowering effects. Polyphenols,
such as CA and p-coumaric acid (P-CA), commonly seen in all honey possess numer-
ous bioactive properties including antioxidant, anti-inflammatory, and lipid-lowering
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actions [18]. Studies on CA and p-coumaric acid have shown that both compounds can
reduce the mRNA expression of SREBP-1c and FAS and inhibit their activity [90,107].

FFA is the main player in the synthesis of TG in hepatocytes. In metabolic syndrome,
lipolysis in adipose tissue increases, resulting in enhanced FFA delivery to the liver [108].
Both SREBP-1c and FAS are key regulators to FFA synthesis, and their dysregulation is the
primary source of hypertriglyceridaemia [109]. In recent studies, phenolic compounds can
activate 5′adenosine monophosphate-activated protein kinase (AMPK), which mediates the
reduction in SREBP-1c protein expression by preventing SREBP-1c nuclear translocation,
subsequently suppressing FAS synthase expression [107,110].

According to Liao and colleagues, CA reduced the TG and cholesterol content in
oleic acid-induced hepatic lipogenesis in HepG2. Furthermore, CA also enhanced the
phosphorylation of AMPK and ACC, which are lipid oxidation-related proteins. CA also
downregulated the lipogenesis gene expression of SREBP-1 and its target gene FAS in the
presence of oleic acid [90].

Gallic acid (GA) and catechin can also be found in honey. Chang and colleagues’
study showed that oleic acid significantly increased FAS, SREBP-1, and phosphorylated
AMPK expression in high-fat diet-treated mice. An extract containing GA and catechin
reduced FAS expression by 6% and SREBP-1 by 23%. This observation indicated that
GA and catechin might attenuate hepatic lipid accumulation by regulating FA and TG
synthesis [111]. Another study by Kim and colleagues demonstrated that p-CA (up to
40 µg) increased the phosphorylation of AMPK and ACC, and the expression of carni-
tine palmitoyltransferase-1a in HepG2 cells, suggesting enhanced fatty acid β-oxidation.
Furthermore, p-CA also reduced lipid accumulation in HepG2 cells, implying its ability
to attenuate FA synthesis. The authors also implied that p-CA might inhibit the lipid
uptake of HepG2 cells [107]. The effects of these individual compounds might not fully
recapitulate the antihyperlipidaemic potential of honey, as they might act in synergy with
other components to achieve the overall effects. A summary of the antihyperlipidaemic
properties of honey is presented in Figure 3.
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3.5. Antihypertensive Properties of Honey

Flavonoids present in honey, such as quercetin and kaempferol, show promising re-
sults in the treatment of cardiovascular diseases [112]. A study by Sanchez and colleagues
reported that treatment with 10 mg/kg of quercetin for 13 weeks lowered blood pressure
and heart rate in spontaneously hypertensive rats. This was achieved by upregulating
eNOS and p47 protein expression and reducing NADPH-oxidase-mediated superoxide
anion generation, which attenuated endothelial dysfunction [113]. Another in vitro study
showed that quercetin (>0.1 µM) increased the conductance of calcium-activated potassium
channel (BKca) currents in rat coronary artery rings. Given that BKca regulates coronary
artery tone in vivo, quercetin could induce vasodilatation [114]. Kuhlmann and colleagues
reported quercetin improves endothelial dysfunction by inducing BKca-dependant en-
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dothelial hyperpolarisation in human endothelial cells derived from the umbilical cord
vein (HUVEC) (with maximum effect achieved at 50 µM/L). This event led to an influx of
extracellular calcium ions, resulting in increased NO production [115]. Similarly, an in vitro
study demonstrated that quercetin exerted vasodilatory effects on the human umbilical
artery. In a double-blind randomised placebo-controlled study, healthy volunteers were
given capsules containing placebo, 200, or 400 mg quercetin randomly in 3 consecutive
weeks. The result showed that quercetin increased the brachial diameter [116].

In addition, quercetin also reduced endothelial proliferation by 56% and increased
cyclic guanosine monophosphate (cGMP) level by 5 fold due to NO formation [115].
An in vitro study by Shen and colleagues indicated that quercetin improved endothelial
dysfunction in the mouse abdominal aorta and aortic ring. At a dose of 5 and 10 µM,
quercetin significantly increased acetylcholine-mediated endothelial-dependant relaxation
in the presence of hypochlorous acid (HOCl) by 34% and 78%, respectively. Incubation
with 10 µM quercetin 2 h prior to treatment with HOCl also restored eNOS activity in aortic
tissue. Quercetin activated eNOS activity, subsequently increasing NO production [117].

Meanwhile, pre-treatment of kaempferol in HUVEC was reported to suppress the ex-
pression of NF-κB by LPS significantly. In addition, TNFα was increased in LPS-stimulated
endothelial cells, which was significantly decreased with kaempferol. Altogether, the results
suggest that kaempferol improves barrier integrity, and inhibits the activity of cell adhesion
and migration to endothelial cells by inhibiting NF-κB expression and TNFα production,
thereby promoting its benefits in the treatment of vascular inflammatory disease [118]. The
individual effects of these bioactive compounds in honey and their interactions contribute
to its overall antihypertensive effects. A summary of the antihypertensive properties of
honey is presented in Figure 4.
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4. Conclusions

Honey is a potential agent in reversing metabolic syndrome through its antiobesity,
hypoglycaemic, hypolipidaemic, and hypotensive actions. These properties are exerted
through the components in honey, like polyphenols, which act as potential lipogenic en-
zyme inhibitors. Through synergistic actions, these polyphenols can limit weight gain
and adipose tissue formation. The antioxidant and anti-inflammatory effects of these
polyphenols also prevent endothelial dysfunction and ultimately, hypertension. Honey
is shown to improve insulin sensitivity and normalize glucose metabolism despite its
carbohydrate content. In conclusion, honey can be used as an adjuvant therapy for preven-
tion of metabolic syndrome in general, by mechanisms such as reducing oxidative stress
and inflammation. Thus, it a beneficial food substance that can be incorporated for the
prevention and management of metabolic syndrome.
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