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Preface 

Contained within this volume are the scholarly contributions presented in both oral and poster 
formats at Fully3D 2023: The 17th International Meeting on Fully Three-Dimensional Image 
Reconstruction in Radiology and Nuclear Medicine. This conference convened from July 16-21, 
2023, at Stony Brook University in New York. 

For ease of reference, all papers are organized alphabetically according to the last names of the 
primary authors. 

Our heartfelt appreciation goes out to all participants who took the time to submit, present, and 
revise their work for inclusion in these proceedings. 

Collectively, we would also like to express our profound gratitude to our generous sponsors, 
detailed in subsequent pages, who have played an instrumental role in offering awards and 
facilitating the various conference activities. 

Additionally, our thanks extend to the diligent reporter who collated invaluable feedback from 
attendees, which can be found in the pages that follow.  
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Stony Brook University Hosts 17th International Fully3D Imaging Conference  

By Liza N. Burby 

Worldwide leaders in the field of medical imaging algorithms gathered for a five-day conference 
in Stony Brook University’s Charles B. Wang Center to discuss the latest advancements, 
highlighting Stony Brook and the Renaissance School of Medicine as a major player in medical 
imaging science. 

Nearly 200 scientists, students and industry researchers from around the world met for the 17th 
International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, 
known as Fully3D 2023, a biennial research conference sponsored for the first time by Stony 
Brook University (SBU), Stony Brook Medicine and in particular the Department of Radiology. 
They gathered in the Charles B. Wang Center Sunday, July 16 through Friday, July 21 to present 
the latest research on the mathematics and theory behind X-ray CT (computed tomography), PET 
(positron emission tomography) and SPECT (single photon emission computed tomography) 
imaging.  

The focus of the conference is Image reconstruction – the process of taking the raw data from 
medical imaging systems and generating optimized 3D images that radiologists use to diagnose 
disease. It brought together the brightest minds in the field, including keynote speakers Dr. 
Lihong Wang, an inductee in the National Academy of Inventors and the National Academy of 
Engineering; Dr. Kris Krishna Kandarpa, Director of Research Sciences and Strategic Directions 
at the National Institute of Biomedical Imaging & Bioengineering; Dr. Bahaa Ghammraoui, a 
medical imaging scientist at the US Food and Drug Administration; and Dr. Yvonne Lui, Vice 
Chair for Research at New York University and President of the American Society of 
Neuroradiology. Their topics ranged from photoacoustic, light-speed and quantum imaging, to 
recent advancements in medical imaging technologies, including quantitative molecular imaging 
using PET and SPECT, photon energy-resolving X-ray CT, and artificial intelligence (AI) 
machine-learning methods. In addition, Stony Brook’s own were represented as doctoral 
candidate Tianyun Zhao gave an oral presentation and five others presented posters at the 
conference, including Xiaoyu Duan, who won a poster award that was selected by a committee 
of esteemed scientists independent of Stony Brook. 

A Major Player  

The first Fully3D imaging meeting was held in 1991 at Corsendonk, Belgium, where 65 world 
experts and trainees in the field met on a college campus to exchange their ideas. Fully 3D 2023 
had 180 attendees with over half from Europe and Asia. For many it was the first in-person 
conference they attended since the pandemic. The choice for SBU to serve as host was a natural 
fit since it has been at the forefront of medical imaging research for decades, serving as the 
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birthplace of MRI technology and diagnostic CT colonography (CTC), and making important 
contributions in the development of X-ray, CT, PET, SPECT, MRI, optical and multimodality 
imaging. The new and growing PET Research Center (including the BAHL Molecular Imaging 
Laboratory and Cyclotron) has imaging capabilities that rival the best in the world and was the 
site of a tour enjoyed by many attendees at the event. 
 

Fully3D 2023 was co-chaired by three professors doing research in imaging science who are 
affiliated with the Department of Radiology: Dr. Jerome Z. Liang, Professor of Radiology, 
Biomedical Engineering, Electric and Computer Engineering, and Computer Science, who has 
attended nearly all of the previous conferences; Dr. Paul Vaska, Professor of Biomedical 
Engineering and Radiology; and Dr. Chuan Huang, former Associate Professor of Radiology 
who is now at Emory University, but returned to work on this conference. All three co-chairs 
have national and international reputations in the field of medical imaging, particularly in 
reconstruction of low-dose CT (including CTC), hardware and methods for high-resolution and 
quantitative PET and SPECT, and advanced AI algorithms for PET and MRI clinical utility.      

Liang said that the biennial conference gives attendees a chance to come together to stay on top 
of the medical imaging field. “Medical imaging hardware has been evolving over the years 
resulting in better spatial resolution and improved measurements,” Liang said. “This conference 
was focused on what to do with the raw data from the scanners—image reconstruction, its 
mathematical process and the different modalities—and turning it into something that 
radiologists and other medical experts can look at. There are new techniques with AI that are 
being used, which were highlighted in the sessions, as well as techniques being used to improve 
the images. This is a very active field of research that’s not just producing new algorithms, but 
also evaluating them.” 

Vaska said the conference enhanced Stony Brook’s status as a major player in medical imaging 
science. “Attendance exceeded expectations and the audience during the talks was deeply 
engaged, asking pertinent questions throughout all discussion periods,” he said. “Poster sessions 
were also well attended and resulted in many lively discussions. There was a strong consensus 
that the keynote talks covered highly relevant topics, and the speakers themselves said they were 
impressed with the caliber of the conference. We were also complimented on the venue, campus 
and staff who were most professional and supportive.”           

Keynote speaker Lui said in addition to finding the Stony Brook location an easy trip from the 
city, she appreciated the interactions. “I enjoyed speaking with the attendees and organizers. I 
hope my discussion on our work using deep learning to advance MR image reconstruction was 
useful. I’m a neuroimager by training and a practicing radiologist,” she said. “It was great to 
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interact with imaging scientists and hear the latest advances in reconstruction and consider how 
these could be useful in practice.” 

Practical Applications 

Virtually all the major breakthroughs in image reconstruction have been presented throughout the 
history of this conference, according to Dr. Grant T. Gullberg from the University of California, 
San Francisco, who was also a 2023 presenter and has attended nearly every meeting. “This then 
translates to the technological advances beyond medicine, including the airlines where CT scans 
can be used to detect a crack in an engine blade,” he said. 

Dr. Rolf Clackdoyle from the Université Grenoble Alpes in France agreed, adding that while the 
scientists’ main mandate is to publish and produce new research generally in radiology and 
nuclear medicine, “the receiving end of that is also industry that wants to develop new tools. The 
homeland security field learns a lot from the medical imaging field and copies the technology 
and adapts it. The main place our research leads to is medicine, but the same technology is used 
to scan luggage in the airport.”         

The Stony Brook poster award winner, Duan, a fifth year PhD student in biomedical engineering 
and in medical physics, said her work—which is focused on breast imaging when there’s a 
suspicious lesion—is an example of the practical applications of what the conference is all about.  
“Our clinical motivation is to avoid having a woman called back after an annual screening and 
make it clear for the radiologist to distinguish if a lesion is benign or malignant, reducing the 
patient’s anxiety and the cost.”  

Duan added that beyond the industry applications was the opportunity for her to meet colleagues 
from all over the world and to hear other presentations.        

Tianyun Zhao, a third year PhD biomedical engineering student working in Stony Brook’s 
Department of Radiology, said that’s what made the conference meaningful for him. Not only did 
he volunteer, but he also gave a presentation on using anatomical MRI to improve PET imaging 
performance without the need for large amounts of training data, which led to useful feedback 
from researchers whose work he’s studied.             

“This conference allowed me to see a lot of people whose papers I’ve read before but never had 
the chance to meet,” Zhao said. “I was able to communicate and meet with the person who did 
the research rather than just interpret from their paper. Networking and exploring this field 
means I can have better knowledge of the whole imaging field.”  

Ten-time attendee Dr. Margaret Daube-Witherspoon of the University of Pennsylvania agreed a 
major benefit of this conference is the ability to network during meals as well as sessions. “This 
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week I've gotten a few ideas on how to do motion correction in our work and some specific ideas 
that help us reconstruct PET data. It’s also just getting up to speed on CT and especially the 
deep-learning methods,” she said. “The importance of the conference overall is to maintain a 
connection with experts in my field and expand my knowledge base.” 

Advanced Details 
Dr. Yuxiang Xing of Tsinghua University in China who earned her PhD in electrical engineering 
from Stony Brook in 2003, has been attending the conference for more than 15 years and 
stressed the significance of this supportive scientific community. “With all the cutting-edge 
science and technology, I learned a lot. This conference is always about the most advanced 
technology problems. I think Stony Brook should host more of these kinds of conferences. We 
need this kind of support we’ve gotten from the radiology department. We have a lot of young 
investigators, so this is a very good community to help them with their career and interest in this 
area and their contributions to this work.” 

For Dr. Emil Sidky from the University of Chicago, who has been attending since 2003, this 
conference has always been about the details.  “For me, this is my favorite conference, because 
I’m an image reconstruction nerd.  This is the one where we can talk about the details of the 
algorithms and the image formation and the mathematics and all these details that for everybody 
else their eyes glaze over,” he said.  “There’s a lot of very technical questions also.  In a normal 
radiology conference it wouldn’t be like that because you mostly have radiologists or clinical 
businesses who don’t really care that much about what’s happening inside the scanner.  But for 
us, it’s a formation of the image so we’re really focused on a lot of the theoretical details of how 
that image is formed.” 

According to Dr. Chuan Huang, the conference allowed for a relaxed, free exchange of ideas. 
“The feedback we’ve gotten had been enthusiastically positive.  And many of the attendees 
developed long-term friendship through the professional network opportunity provided by this 
conference, and some of them have seen each other for the past 20 to 30 years, which is also part 
of the attraction of this event.”    
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A Generic Software Design for Computed Tomography in Modern C++

Shiras Abdurahman1, Robert Frysch1, Tim Pfeiffer1, Oliver Beuing2, and Georg Rose1

1Institute for Medical Engineering and Research Campus STIMULATE, Otto-von-Guericke-Universität, Magdeburg, Germany
2AMEOS Klinikum Bernburg, Bernburg, Germany

Abstract In this paper, we propose a flexible software design for CT
systems of various detector and acquisition geometries using mod-
ern C++. It is based on the generic design of CT data processing
algorithms utilizing a high-level abstraction of CT geometry. We
also introduce a new toolkit, GCT, to reconstruct images from the
parallel-beam (1D and 2D), fan-beam (line and arc-shaped detectors),
cone-beam (flat-panel and cylindrical detectors), and rebinned pro-
jections using FBP/FDK algorithm demonstrating that the proposed
design can be used for the development of scalable and maintainable
CT reconstruction software.

1 Introduction

Developing novel reconstruction and artifact reduction algo-
rithms is an active area of research in Computed Tomography
(CT). To support this effort, flexible, easy-to-use, versatile,
and open-source reconstruction software is essential. Al-
though many open-source libraries and toolkits are available,
most support one or a handful of detector and projection
geometries. In practice, researchers need to reconstruct im-
ages from various scanners of distinct CT geometries. Most
textbooks discuss the reconstruction of 2D images from one-
dimensional parallel and fan-beam (arc- and line-shaped de-
tectors) projections [1]. Their software implementations are
widely used for learning, comparative assessment, and the
rapid development of novel artifact reduction algorithms.
Flat detector-equipped Cone-Beam Computed Tomography
(CBCT) systems are ubiquitous for imaging in radiation
therapy, interventional radiology (C-arm CBCT), and Non-
Destructive Testing (NDT) [2]. Multi-Slice or Multi-Row De-
tector clinical CT systems (MSCT or MDCT) employ cylin-
drical detectors for projection acquisition. In addition, most
MSCT scanners perform axial rebinning to transform pro-
jections from cone-beam to oblique-parallel (cone-parallel)
projection geometries [3]. The reconstruction from the re-
binned projections is computationally efficient due to the
simplified backprojection operation. Besides, it preserves
the uniform resolution and noise texture in the axial images
[4]. Finally, the reconstruction software must support 2D/3D
parallel projection geometry to reconstruct volume from syn-
chrotron projections.
As per the survey of open-source toolkits found in [5], the
number of toolkits supporting a wide range of CT geome-
tries is minimal, and the majority are developed for axial
cone-beam reconstruction from the flat detector projections.
Consequently, researchers have to rely on various toolkits for
image reconstruction. They are written in multiple languages
(C, C++, MATLAB, and Python) and utilize different geome-

try conventions and coordinate systems (e.g., DICOM LPS
[6], and IEC 61217 [7]). Many of these toolkits employ a
single model to describe the projection geometry (e.g., pro-
jection matrix for cone-beam projections), and conforming
to that model often requires additional effort (e.g., simula-
tion of parallel geometry by placing the X-ray source at a
large distance) and computations (e.g., the transformation
of projections from cylindrical to flat detector by interpola-
tion). In this scenario, a single but versatile toolkit in which
different geometries can be easily configured is very appeal-
ing. The most challenging aspect of building such a toolkit
is developing software design aligned with modern design
guidelines and best practices. Such design should enable the
incremental and independent addition of new features (e.g.,
supporting new detector geometries) while preserving the
common interface to algorithms. The design should facilitate
the development of reconstruction software that is easy to
change, extend and test [8].

Utilizing the generic programming techniques of modern
C++, we present a software design supporting a wide range
of CT geometries. Rather than merely using templates, the
proposed design is based on conceptualizing CT geometry
from tiny building blocks and identifying variation and cus-
tomization points where the changes can be expected and
software can be extended [8]. At the same time, we refrain
from "over-generalization," and entities and functionalities
are differentiated via specialization, making API "hard to
be misused." The design eliminates code duplication and
enables the development of extendable and maintainable
software. We also introduce a reconstruction toolkit GCT
(Generic CT) to reconstruct images from the parallel-beam
(1D and 2D), fan-beam (line and arc-shaped detectors), cone-
beam (flat-panel and cylindrical detectors), and rebinned
projections using FBP/FDK algorithm. GCT is implemented
in C++ 20 where the numerical computations are accelerated
in CUDA C++ (https://gitlab.stimulate.ovgu.de/
shiras-abdurahman/gct.git). Though currently, GCT
supports only analytical reconstruction from axial scan pro-
jections, the generic description of CT geometry discussed
in the paper can be used for spiral and iterative reconstruc-
tions, CT projection simulation, and artifact correction. The
present paper describes only the design and implementation
details of CT data processing and reconstruction (relevant
to the Fully3D conference). The operational control of CT
system components, user interface, and reading, display, and
storage of images are beyond the scope of the paper.
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2 Materials and Methods

The proposed design divides CT geometry into system and
rotation angle-specific projection geometries. The system
geometry is invariant during the scan, and the projection
geometry describes the transformation between the World
(WCS) and Detector Coordinate Systems (DCS). The essen-
tial component of system geometry is the type of detector
with which projections are recorded. To describe how detec-
tor elements are arranged and the ray-sampling is performed
(type of projection), the following one-dimensional (1D) de-
tectors are defined:

1. DetFanArc: Equi-angular sampled arc-shaped detector
for fan-beam projection.

2. DetFanLine: Equi-distant sampled line-shaped detector
for fan-beam projection.

3. DetParallel: Equi-distant sampled detector for parallel
projection.

It is to be noted that the above detectors are merely abstrac-
tions and do not necessarily represent the geometry of the
physical detector since detectors of any shape can be used to
acquire parallel projections. However, in GCT, DetParallel
has to be used to reconstruct images from parallel projections.
The type definitions of the 1D detectors can be found in List-
ing 1 where the modeling of common behavior (information
about sampling) is realized by composition.

1 struct SamplingInfo1D
2 {
3 unsigned int num_samples ;
4 float sampling_width ;
5 };
6 struct DetFanArc
7 {
8 SamplingInfo1D sampler ;
9 };

10 struct DetFanLine
11 {
12 SamplingInfo1D sampler ;
13 };
14 struct DetParallel
15 {
16 SamplingInfo1D sampler ;
17 };

Listing 1: 1D Detectors. The projection geometry and the
FBP reconstruction algorithms associated with 1D detectors are
described in [1].

As listed in Table. 1, several 2D detectors can be conceptu-
alized as the permutations of two 1D detectors representing
detector row (front view) and column (side view) geometries.
The generic 1D/2D detector can be defined in modern C++
using variadic templated std::tuple type as shown in Listing
2.

1 DetFanLine fl{ sampling_info_fl };
2 DetFanArc fa{ sampling_info_fa };

DetRow DetCol Detector geometry
DetFanArc 1D arc detector
DetFanLine 1D line detector
DetParallel 1D parallel detector
DetFanArc DetFanLine 2D cylindrical detector
DetFanLine DetFanLine 2D flat detector
DetParallel DetParallel 2D parallel detector
DetParallel DetFanLine 2D rebinned detector
DetFanArc DetFanArc 2D spherical detector

Table 1: The conceptualization of 1D and 2D detectors for parallel,
fan-beam, rebinned and cone-beam projections. DetRow and Det-
Col can be considered as the cross-section of the source-detector
pair in the axial and sagittal planes.

3 auto line_det = std :: make_tuple (fl);
4 auto cyl_det = std :: make_tuple (fa , fl);

Listing 2: 1D or 2D Detector types.

To model the unified cone-beam projection geometry (Listing
3) for 2D flat and cylindrical detector projections, we utilize
parameters described in [9]. Along with the rotation angle,
the cone-beam projection geometry parameters (as a whole
or subset of them) could be used for all detectors listed in
Table. 1. However, we decided to employ detector-dependent
projection geometry parameters (Listing 4) to ensure that the
users are not exposed to parameters they do not need and to
prevent the passing of wrong parameter values.

1 // Vector in World Coordinate System (WCS)
2 struct VecWCS3D
3 {
4 float x, y, z;
5 };
6 struct ConeBeamGeom
7 {
8 float src_det_dist_mm , src_iso_dist_mm ;
9 float det_row_cent_pix , det_col_cent_pix ;

10 VecWCS3D src_pos ;
11 VecWCS3D det_row_dir , det_col_dir ,

src_det_dir ;
12 };

Listing 3: Cone-beam projection parameters. Please refer [9] for
the detailed explanations of individual parameters and the geometry
computations.

1 struct FanBeamGeom
2 {
3 float src_det_dist_mm , src_iso_dist_mm ;
4 float det_row_cent_pix ;
5 VecWCS2D src_pos ;
6 VecWCS2D det_row_dir , src_det_dir ;
7 };
8 template < typename DetRow , typename ... DetCol >
9 struct ProjGeom ;

10

11 // For 2D flat detector cone -beam projection .
12 template <>
13 struct ProjGeom <DetFanLine , DetFanLine >
14 {

2 
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15 ConeBeamGeom pg;
16 };
17 // For 2D cylindrical detector cone -beam

projection .
18 template <>
19 struct ProjGeom <DetFanArc , DetFanLine >
20 {
21 ConeBeamGeom pg;
22 };
23 // For 2D parallel projection .
24 template <>
25 struct ProjGeom <DetParallel , DetParallel >
26 {
27 float det_row_cent_pix , det_col_cent_pix ;
28 float rot_ang_rad ;
29 };
30 // For 2D rebinned (cone - parallel ) projection .
31 template <>
32 struct ProjGeom <DetParallel , DetFanLine >
33 {
34 float src_det_dist_mm , src_iso_dist_mm ;
35 float det_row_cent_pix , det_col_cent_pix ;
36 float rot_ang_rad , src_pos_z_mm ;
37 };
38 // For 1D arc detector fan -beam projection .
39 template <>
40 struct ProjGeom <DetFanArc >
41 {
42 FanBeamGeom pg;
43 };
44 // For 1D line detector fan -beam projection .
45 template <>
46 struct ProjGeom <DetFanLine >
47 {
48 FanBeamGeom pg;
49 };
50 // For 1D parallel projection .
51 template <>
52 struct ProjGeom <DetParallel >
53 {
54 float det_row_cent_pix , rot_ang_rad ;
55 };

Listing 4: Detector-dependent projection geometry.

Finally, the complete CT geometry is composed by detector
and projection geometries of the entire scan (Listing 5).

1 template < typename DetRow , typename ... DetCol >
2 struct CTGeom
3 {
4 std::tuple <DetRow , DetCol ...> dg;
5 std::vector <ProjGeom <DetRow , DetCol ...>> pg;
6 };

Listing 5: Complete CT geometry. CTGeom is a polymorphic
(static) abstraction and can be used to describe the geometry of CT
systems of various trajectories and projection geometries.

The piece-wise conceptualization of detector geometry en-
ables the compile-time evaluation of projection and recon-
structed image dimensions as shown in Listing 6. Since
DetCol is variadic and optional (Listing 5), the presence of
the second template argument facilitates the 3D volumetric
reconstruction from 2D images, while its absence implies
the 2D image reconstruction from 1D projections. This will

help to develop a generic type signature for reconstruction
function (Listing 7), and the user has to pass appropriate
geometry, projection, and image objects to make 2D or 3D
reconstruction feasible. Hence, the compiler enforces the
correct usage of API without additional documentation and
numerous overloaded functions.

1 template < typename ... DetCol >
2 constexpr size_t projDim ()
3 {
4 return sizeof ...( DetCol ) + 1u;
5 }
6 template < typename ... DetCol >
7 constexpr size_t imgDim ()
8 {
9 return sizeof ...( DetCol ) + 2u;

10 }

Listing 6: Compile-time evaluation of projection and
reconstructed image dimensions.

1 template < typename PixType , size_t Dim >
2 struct Proj;
3 template < typename PixType , size_t Dim >
4 struct Img;
5 template < typename DetRow , typename ... DetCol >
6 void reconFDK ( CTGeom <DetRow , DetCol ...> const

&cg , Proj <float , projDim < DetCol ... >() >
const &p, Img <float , imgDim < DetCol ... >() >
&i);

Listing 7: The FDK reconstruction function.

The design allows the specialized implementations of 2D and
3D data processing algorithms. Although 2D reconstruction
is possible using 3D reconstruction toolkits by considering
1D projection as the 2D projection image with a single row,
extra effort is needed to set the appropriate geometry param-
eters. If the back projection operation utilizes in-built 2D
interpolation of GPU, the projections should contain at least
two rows. GCT eliminates these constraints by having a ded-
icated implementation to reconstruct 2D images from the 1D
projections without any changes to the interface. By avoiding
unnecessary computations, specialized 2D processing also
enhances computational efficiency.
The design enhances the extendability of the reconstruction
software. If the projection geometry can be described by a
single model for all projections, detectors of any shape can
be integrated. The FDK reconstruction for a new detector
type can be realized by adding type and underlying function
specializations without any changes to the runFDK function
or the implementations specific to existing detector types.
The absence of necessary specializations will result in errors
during compilation preventing incorrect results or run-time
errors. The compiler acts as a guide to the developer by
pointing out missing type and function definitions enabling
incremental and independent addition of new features with-
out modifications to the existing code. Like runFDK, most
data processing functionalities requiring CT geometry can
be implemented as high-level meta-functions. Hence, code
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duplication can be significantly reduced since a small fraction
of underlying functionalities needs to be specialized (e.g.,
computing weight for cosine weighting) without re-writing
boilerplate code. The feasibility of template kernels in the
CUDA programming model also helps in this regard. Con-
ceptualizing CT geometry from a small number of types
also helps to avoid defining multiple concrete classes (e.g.,
FlatDetectorGeom, LineDetGeom).
On the other hand, the software can be easily changed to meet
new requirements. Although we employed the geometry
parameters shown in Listing 3, the projection matrix can also
be utilized to model the projection geometry of the CBCT
system with flat detectors. Changing to projection matrices
could have been difficult if we used a single concrete type for
projection geometry since they apply only to flat detectors.
By making detector-dependent, the projection geometry can
be modified at only one place without affecting others (line
15 of Listing 4).
As per the guidelines described in [8], the major single-
purpose image processing tasks are implemented as the non-
member and non-friend functions (free functions). Exploiting
the template argument deduction, static polymorphism is re-
alized by overloading free functions. In addition, the free
functions greatly enhance the software testability without in-
troducing artificial dependencies [8]. Unit testing is difficult
for a data processing task like backprojection where the input
and output are images. On the other hand, the core compu-
tations of backprojection are the coordinate transformations
involving projective and affine mappings. These functional-
ities can be extracted, made into free functions, and tested
with known projection geometry parameters without unnec-
essary instantiations. The same transformation functions can
be reused while implementing forward projection eliminating
code duplication.
The proposed design is based on the selection of geometry
at compile-time. In many situations, it can only be known
at run-time if the program relies on the user input via com-
mand line arguments, GUI, or the DICOM file. We intend
to move the decision-making and conditional branching to
the "front end" of the reconstruction software. As a result,
numerically intensive computations can be freed from branch
prediction, thread divergence, and dynamic binding through
virtual functions, resulting in improved code readability and
performance.

3 Results

Fig. 1 displays the reconstructed images from the C-arm
CBCT (flat detector), MSCT (cylindrical detector), and
synchrotron (2D parallel) projections. The reconstructions
were performed using the FDK algorithm of GCT software.
Though they are not shown, GCT also contains specialized
FDK reconstruction implementations for 2D rebinned, 1D
parallel, and 1D fan-beam (arc and line detectors) projec-

(a) (b) (c)

Figure 1: Images reconstructed from: (a) flat detector (C-arm
CBCT) projections; (b) cylindrical detector (MSCT) projections;
(c) synchrotron (2D parallel) projections.

tions.

4 Conclusion

We have proposed a software design for CT data processing
and reconstruction supporting diverse detector and projection
geometries. The design will be valuable for developing com-
mercial and open-source CT reconstruction software. We
have also introduced a new reconstruction toolkit GCT to re-
construct images from various axial scan projections. GCT is
in active development, and many features will be added in the
coming months, including spiral and iterative reconstructions,
artifact correction algorithms, and multi-GPU support.
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Abstract Deep Learning denoising is increasingly popular to refine the 

image quality in tomographic imaging. It typically requires training from 

the images themselves. Very often the images are not artifact-free. 

Especially, in cone-beam CT with circular scan trajectories, by the nature 

of cone beam geometry, measured line integrals diverge and the image 

reconstruction accuracy diminishes very quickly. In this paper, we try to 

answer the question of whether we should avoid artifact regions when 

training Deep Learning models, as applied to CT image denoising. We 

use simulated phantom data as well as real data examples.   

1 Introduction 

 

Improvement of image quality by deep learning (DL) 

methods are getting increasingly popular in tomographic 

imaging [1-6]. Many different ways of applying 

convolutional neural networks to learn local noise 

properties and restore the diagnostic quality with the aim of 

dose reduction and faster imaging throughput have been 

presented over the years. Cone beam microCT is yet another 

imaging modality that greatly benefits from DL denoising, 

often, applied in the image domain after the image has been 

reconstructed by traditional analytical algorithms. At the 

same time, an important part of a DL workflow is how 

training data are sourced. Good quality, unbiased, and 

representative training data are crucial to the DL 

algorithms’ success. Cone beam CT is quite special in this 

regard since when using a strictly circular trajectory, only 

the regions of the object that are very close to the circle 

plane can be reconstructed exactly [7-8]. Cone beam 

artifacts commonly result in image blurring and distortion 

of structural information, increasingly saturating the 

reconstructed image volume further away from the main 

circle plane due to missing data.  

This paper is trying to answer the practical question of how 

robust Deep Learning denoising methods are when the 

training data are contaminated with cone-beam geometry-

related artifacts.  

2 Materials and Methods 

 

Two three-dimensional artificial phantoms: Shepp-Logan 

and foam phantom [9-10] were employed in this study 

(Figure 1). The 3D digitized image volume has been 

forward projected in a cone-beam geometry with a circular 

acquisition trajectory. Additive Poisson noise has been 

added to the projection data. In-house implemented FDK 

image reconstruction algorithm was used for reconstructing 

the training dataset. For the Shepp-Logan phantom, the 

same slice of the 2D phantom was duplicated across the 

entire Z-range of 512 slices. For the foam phantom, two 

random variations of internal bubble distributions were 

generated: one for training the models, and another one for 

inference testing. The input phantom images that were used 

for forward projection and data creation had 512x512x512 

voxel dimensions. The images were reconstructed with 

matching 512x512x512 voxel dimensions as well. The 

cone-beam geometry was extended to create a larger cone 

angle of approximately 45% so that only approximately 250 

slices in the middle are considered to be mostly artifact-free. 

A 180 + fan angular range was used, as the cone beam 

artifacts are typically more pronounced in this case, with 

one example shown in Figure 2, which compares the 

difference in reconstructed image quality between the 

central slice (slice index 256) and side slice (slice index 

485). 

For the DL denoising method, we are using Noise2Noise U-

Net architecture network, with standard augmentation 

parameters, trained over two independent noise realizations 

of the same dataset [11-12]. As shown in Figure 3, the 

training data were truncated to produce a normally defined 

image volume, matching simulated detector dimensions 

“Incl. CB”, artifact free volume (“Excl. CB”), as well as 

volume that consisted entirely of artifacts “CB only”, as a 

hypothetical worst-case scenario.  

 
              (a)              (b) 

Figure 1. Digital phantoms used in this study: (a) Shepp-Logan; (b) foam 
phantom. 

 
              (a)              (b) 

Figure 2. Shepp-Logan phantom. (a) reconstruction with added noise 
(central slice), (b) one of the slices in the peripheral range, showing 
strong cone-beam artifacts. 
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Figure 3. Coronal cross-section through the foam phantom reconstructed 
dataset, demonstrating the three ROIs that were used in this study. 

The images were analyzed visually, as well as the values of 

MSE and SSIM [12] were calculated from the resulting 

images.  

To supplement the study with some real data results, we 

used a rock sample dataset, acquired using Carl Zeiss 

Xradia Versa X-ray Microscope in cone-beam geometry. 

The dataset dimensions were 1000x1000 pixels with 200 

projection views for each noise realization, much lower than 

normally would be used with a standard reconstruction 

algorithm. 

3 Results 

In Figure 4, we show the results for the Shepp-Logan 

phantom. As one can see, there is a negligible difference 

between the first two methods to train the denoising model, 

while CB-only model produced worse image. The results 

for the foam phantom (Figure 5) are quite similar, with the 

CB-only model (c) looking somewhat worse. 

 
 (a)          (b)    (c)  

Figure 4. Shepp-Logan denoising results, central cross-sectional slice 
256 shown. (a) denoised using “Incl. CB” trained model, (b) denoised 
using “Excl. CB” (CB artifact-free); (c) denoised using “CB only” (CB 
artifact region). 

 
(a)          (b)    (c)  

Figure 5. Foam phantom denoising results, central cross-sectional slice 
256 shown. (a) denoised using “Incl. CB” trained model, (b) denoised 
using “Excl. CB” (CB artifact-free); (c) denoised using “CB only” (CB 
artifact region). 

No significant differences were observed in the training loss 

curves behavior either (Figure 6). Mostly minor variations 

in MSE and SSIM were noted, with CB only trained model 

showing larger errors in the case of the foam phantom 

(Table I). 

 

 
Figure 6. Training loss curves for the Shepp-Logan (top) and foam 
phantom (bottom). 

 Incl. CB Excl. CB CB only 

MSE(SSIM) MSE(SSIM) MSE(SSIM) 

Shepp-

Logan 

0.055392 
(0.96796) 

0.061462 
(0.970223) 

0.060763 

(0.966148) 

Foam 

phantom 

0.83354 
(0.935229) 

0.849188 
(0.936431) 

0.933166 
(0.928041) 

Table I. Quantitative results showing MSE and SSIM (in parenthesis) 
values, for both phantoms using the three ways to train the model, as 

described above.  

Finally, in Figure 7 we show the results for the rock sample, 

reconstructed from real data, 200 projection views, acquired 

with about 20 degrees cone angle. Overall, consistently with 

previously observed artificial data, there is no big difference 

between the model trained over the whole volume and the 

volume that excluded the CB artifact region. Both models 

have achieved excellent denoising and image quality 

improvement over the image reconstructed with the 

classical algorithm. In this case, we did not use the CB 

artifact region only for training.  

 
(a)          (b)    (c)  

Figure 7. Reconstructed real data with rock sample: (a) noisy input to the 

DL denoising algorithm reconstructed with FDK; (b) denoised with DL 
model trained over the whole volume (“Incl. CB”); (c) denoised with the 
DL model trained over the volume excluding CB artifacts (“Excl. CB”). 
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4 Conclusion 

Based on the results presented in this paper, we find that 

deep learning denoising is quite robust and performs well 

even when the training data contains a significant amount 

of CB artifacts. We speculate that cone-beam artifact 

mainly affects the structural or anatomical information 

content but not the noise texture distribution, which can still 

be successfully learned during the training. This is 

confirmed by both simulated and real data.  

Certainly, this finding has been observed only for limited 

use cases as well as the conclusion could still be dependent 

on the particular network architecture, data augmentations, 

hyper-parameters, etc. If the model can still be trained with 

similar accuracy excluding cone-beam artifact regions, it 

still makes sense to avoid those regions for the sake of 

shorter training data preparation and easier data storage 

requirements. Additionally, there can be a difference in 

noise appearance as dependent on sampling between central 

slices and periferal regions, which can bias the network 

training process.  

We still expect that in the case if deep learning algorithms 

are used not simply for denoising but for tasks that involve 

knowledge of the structural information - feature 

identification or segmentation tasks (tumor localization and 

classification, fractures detection), the conclusion could be 

different as well, and those algorithms can be more sensitive 

to the cone beam artifacts in the training data.  
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Abstract Fast classification methods are of interest to decide if 

computationally expensive processing methods like metal artifact 

correction (MAC) should be launched automatically to improve 

interventional C-arm cone beam CT (CBCT) images. Simple threshold-

based classification methods are possible if the voxel values of the CBCT 

image represent HU values. If this is not the case (e.g., to reduce 

calibration effort) these methods are not reliable. We present a 

classification method that makes no assumption on the quantitative voxel 

value scale of an image. It is based on a coarse histogram of min-max 

normalized voxel values. A linear support vector classifier (SVC) is used 

to separate the histograms of images without metal from those of image 

with metal. Tests on datasets of a cadaver study led to very good 

classification rates of 99-100%. 

1 Introduction 

 

A major application of mobile C-arm systems is the 

visualization of anatomical structures and implants during 

surgical interventions. In many of these interventions the 

correct placement of metal objects (like screws or plates) 

with respect to bone structures shall be verified. In some 

cases, cone beam CT (CBCT) acquisitions are performed, 

and 3D images are reconstructed, to check the positioning 

of the metal object in 3D. However, metal objects are often 

surrounded by strong artifacts in these images, hampering 

the exact identification of their position. Thus, metal artifact 

correction (MAC) methods have been put in place [1,2].  

MAC methods, especially common 2nd pass methods [1], 

are computationally expensive. Thus, a computationally 

cheap decision whether MAC processing is necessary or not 

(i.e., whether the reconstructed image contains metal or 

not), is helpful. Also for other purposes, e.g., regarding the 

interventional workflow, fast methods clarifying whether a 

metal object has been inserted or not might be of interest. 

The simplest method for the classification task detecting 

whether an image contains metal or not, is to apply a metal 

segmentation threshold to the image [1]. This requires that 

the voxel values of the reconstructed image represent HU 

values. To reconstruct an image on the HU scale, the 

primary flux intensity during the scan of the object has to 

be known. Since in some scenarios the primary flux is 

modulated during the scan to reduce dose, it has to be 

determined individually for each acquired projection, which 

requires additional calibration effort. 

Sometimes this effort is avoided, since even with a very 

rough approximation of the primary flux, the quality of the 

reconstructed images is adequate for diagnostic tasks 

relating to high contrast structures like bone and metal 

objects. However, the voxel values in the images do not 

represent HU values and the threshold-based metal 

classification mentioned above is not reliable.  

In this abstract a computationally cheap method is 

introduced to classify if a given 3D image contains metal or 

not. This method does not rely on any relation of the 

reconstructed voxel values to the HU scale and works 

robustly as long as the contrast between objects in the image 

is not compromised and voxel values are not strongly 

clipped.

 

 

Figure 1: Maximum intensity projections (MIP) through 3D images of scans representing the different anatomies and configurations with and without 

metal. 
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2 Materials and Methods 

 

The following investigations are based on 96 datasets 

acquired in a cadaver study with a C-arm system. The 

datasets cover different anatomical regions (ankle, knee, 

hip, wrist, shoulder, head, thorax, spine) with different 

metal configurations (no metal, clamps, fiducial markers, 

wires, bronchoscope, screws). A brief overview is given in  

Figure 1. These scenarios were scanned with different scan 

protocols, varying the frame rate and the tube settings (fixed 

kVp and varying kVp). For each of the 96 scans, 3 

reconstructions were performed with different volume sizes 

(256³, 394³, and 512³ voxels), resulting in overall 288 

images. 

The metal detection method introduced here is based on a 

coarse histogram of an image. It is motivated in the 

following on two datasets, one without and one with metal 

(see Figure 2). 
 

 
Figure 2: MIP through 3D images of a knee dataset without (left) and 

with metal (clamp, right). 

Since it is assumed that the HU scale is unknown and the 

gray value scale is varying between the images, histograms 

of min-max normalized voxel values are considered in the 

following. I.e, the range of voxel values of each image is 

linearly mapped onto a range from zero to one. 

It is expected that the histograms of images without and 

with metal are different, if the voxel values in dark areas 

(values lower than air) and of metal are not clipped. This is 

due to the fact, that voxels representing metal have much 

higher values than voxel representing air, soft tissue, or 

bone. Furthermore, metal artifacts lead to voxel values 

much lower than those of air. The effect on the histograms 

of normalized voxel values is illustrated in Figure 3. The 

main peaks (representing the value range of air, soft tissue 

and bone) in the histograms of images with metal are much 

narrower and higher than for images without metal due to 

the much higher range of voxel values before normalization. 

The histograms show a strong dependency on the volume 

size, which can be reduced by normalizing the histogram 

entries, to represent probabilities instead of number of 

occurrences (see Figure 4). 

The resulting normalized histograms have probabilities 

very close to zero for voxel values > 0.5, with very low 

visible differences between images without and with metal. 

This can be improved by taking the log of the normalized 

histograms, as shown in Figure 4, disclosing significant 

differences in shape for normalized voxel values > 0.5. The 

different shape is due to the fact, that for cases without 

metal the voxel value range > 0.5 represent mainly bone, 

while for cases with metal it represents mainly metal, which 

on the one hand covers a much smaller volume fraction, and 

thus results in much lower probabilities, and on the other 

hand generates a much broader range of voxel values 

(compared to the air and soft value range) than bone. 
 

 
Figure 3: 200 bin histograms of the two knee dataset shown in Figure 2  

for three different volume sizes (256³ / 384³ / 512³ voxels) 

 
Figure 4: Normalized 200 bin histograms of the two knee datasets shown 

in Figure 2 for the three different volume sizes (2563 / 3843 / 5123 voxels) 

Due to the strong differences illustrated in Figure 4 for cases 

without and with metal, a histogram with only very few bins 

can be used as basis for a classifier. In Figure 5 it is shown 

that even for only 12 bins differences are clearly visible. 

The straightforward approach chosen here for a classifier 

discriminating cases without and with metal is a hyperplane 

in the 12-dimensional space of the 12 bin histograms that 

separates these two case classes. The task of finding such a 

hyperplane is exactly the task solved by a linear Support 

Vector Classifier (linear SVC) [3]. Advantageously, the 

linear SVC determines the hyperplane such that the margin 

between the two classes is maximized, promising good 

generalization. 

9 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

 

 
Figure 4: Logarithm of the normalized 200 bin histograms of the two 

knee dataset shown in Figure 2 for three different volume sizes (256³ / 

384³ / 512³ voxels) 

 

 
Figure 5: Logarithm of the normalized 12 bin histograms of the two knee 

dataset shown in Figure 2 for three different volume sizes (256³ / 384³ / 

512³ voxels) 

At runtime, the computation of the linear SVC is very 

simple. Given the 12 logarithmized histogram values vi 

(i = 1…12) the classifier output is the logical state of the 

following inequality ∑ 𝑣𝑖 ⋅ 𝑐𝑖
12
𝑖=1 +  𝑐0 > 0 with 𝑐𝑖 

(i = 0…12) being the 13 parameters of the SVC defining the 

hyperplane. 

 

3 Results 

 

The 12 bin histograms of all 96 datasets of this study are 

visualized in Figure 6 and Figure 7, verifying that the 

conclusions drawn on the histogram shapes in Figure 4 and 

Figure 5 generalize well over a wide range of scenraios. 

A training of a linear SVC (python sklearn.svm.SVC [5]) 

with all available 288 images leads to a correct 

classification rate of 100%. An overfitting is very unlikely 

since the linear SVC has only 13 free parameters. Still, a 

leave-one-out test [4] was performed. For this, not only one 

image was taken out per training, but all three images were 

taken out that were reconstructed with different volume 

sizes for one dataset under consideration. Classification rate 

of the training data is 100% in all 96 leave-one-out tests, 

and for only one left-out dataset a misclassification occurs. 

The histograms belonging to the three images reconstructed 

for this dataset are denoted by the black arrow in Figure 6. 
 

 
Figure 6: Logarithm of the normalized 12 bin histograms of all 

reconstructions of all datasets with metal. 

 

 
Figure 7: Logarithm of the normalized 12 bin histograms of all 

reconstructions of all datasets without metal. 

 

4 Discussion 

 

It has been illustrated that the classification whether a 

CBCT image contains metal or not is robustly possible with 

a linear SVC based on a coarse histogram, even if the 

correlation of the voxel values to the HU scale is completely 

unknown. To ensure a good performance of the classifier, 

strong clipping of the voxel values for very low and high 

values has to be avoided. 

As can be seen in Figure 6 (black arrow), the shapes of the 

histograms for the dataset failing in the leave-one-out test 

deviate somewhat from the histograms of all other datasets, 

illustrating that a good representation of all reasonable scan 
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scenarios in the training data is crucial to avoid out-of-

distribution errors in the classification, even for this simple 

model with very low number of parameters. It is however 

remarkable that the leave-one-test did not fail for the 

histograms denoted with the gray arrow in Figure 6. 

 

5 Conclusion 

 

The computational effort of the classification is very low, 

and can thus be used to take fast decisions if further 

processing steps are necessary or helpful, like, e.g., 2nd pass 

metal artifact correction. 
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Abstract—We address the clipping-induced bias problem aris-
ing from electronic noise in energy-integrating Spectral CT at
ultra-low dose, and we show that with proper treatment these
kind of systems can deliver quantitative Spectral CT images even
at ultra-low dose levels.

I. INTRODUCTION

Spectral CT imaging with simultaneous multi-energy ac-
quisition can be realized with either energy-integrating [1]
or photon-counting detectors. One commonly cited advantage
of photon-counting detectors is their lack of electronic noise,
and this has been shown to lead to improved HU stability in
Spectral CT images at ultra-low dose, compared to energy-
integrating detectors [2]. However, a proper attention to the
effects of electronic noise at ultra-low dose can lead to a
marked improvement in Spectral HU stability for energy-
integrating detectors, which we aim to show in the following
sections.

A. Problem Statement

For a monochromatic approximation in energy-integrating
(scintilator-based) CT, the measured signal (for each detector)
is typically expressed as

s = P(Nαe
−l) +Dσ (1)

where P is a Poisson random variable with mean Nαe
−l, Nα

is an initial number of photons at a tube current α, l is the
line integral of attenuation along a given ray path, and Dσ is a
zero-mean Gaussian random variable with standard deviation
σ, that models the electronic noise of the detector [3]. Prior to
image reconstruction the measurements s are converted into
the ”logarithm” or ”line integral” domain by

p = − log

(
s

Nα

)
(2)

A problem occurs at low dose when the electronic noise is of
similar magnitude to the detected number of photons: some-
times the measurement s can be negative, and the logarithm
is undefined for values ≤ 0. Typically negative measurements
are clipped to some small positive number, but this clipping
introduces a bias to the measurements (as illustrated in Figure
1) that results in image artifacts and inacurate HU values. Here
we refer to the clipped measurements as sc, and we can go
back and forth between clipped measurements and line-integral
values by

pc = − log

(
sc
Nα

)
(3)

Fig. 1. An illustration of the bias introduced by clipping negative signals.

In a previous publication [4], we demonstrated a method to
correct for the clipping-induced bias, even in the case when
access to the original un-clipped measurements is lost (this
is typically done on many commercial CT scanners because
the logarithm operation compresses the dynamic range of the
data, thus reducing disk storage requirements). The previous
study used only simulated data for the demonstration. This
study extends the previous one by applying the method to real
measured data from a commercial CT scanner, and also by
demonstrating the improvements at ultra-low dose for Spectral
CT as well as for conventional images.

II. METHODS

A. Data Acquistion
All data are acquired using a CT 7500 Spectral Detector

scanner (Philips Healthcare) at 120 kVp tube voltage. The
Spectral Detector design consists of a dual-layer energy-
integrating scintilator which simultaneously measures photons
of low and high energies separately. Axial low dose scans are
performed at 10 mAs (0.8 mGy), and for comparison ground
truth (GT) images we used a scan at 320 mAs (26 mGy). The
phantom scanned is the Multi-Energy CT Phantom (from Sun
Nuclear) with inserts detailed later below in Figures 3 and 4.

B. Bias Correction
The method for bias-correction is the same as in our previ-

ous abstract [4], repeated here more briefly for the reader’s
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convenience. For electronic noise Dσ with a fixed, known
standard deviation σ, the mean of the true (un-clipped) signal
is a monotonic function of the mean of the measured (clipped)
signal sc. Thus, if we can estimate the mean of the measured
signal s̄c, we can directly find the correct value for the mean of
the un-clipped signal s. We call this mapping function Fσ(s̄c)
(since it depends on the electronic noise level σ) and note
that it can be computed analytically or through Monte-Carlo
simulations with Poisson and Gaussian random variables, or
by measurement on a real CT system.

We estimate the mean of the clipped signal with a large 3D
smoothing filter (9x9x25) applied to the unlogged clipped data
sc to generate smoothed data sm. The smoothed data is then
input into the correction function Fσ to generate a sinogram
of the estimated mean of the true (unclipped) signal:

s̄t = Fσ(sm) (4)

The final step in the method is to use this (low-res) mean
sinogram to correct the measured data. We can’t simply
replace the measured data by the true mean sinogram s̄t,
since it does not have sufficient resolution. We know the
mean bias overall by sm − s̄t, but we cannot simply subtract
that bias from each point in the noisy clipped data data sc,
because then additional data points would become negative
and clipped. This additional clipping can happen even if we
subtract the bias from the denoised clipped data sdn. To
avoid these problems, we make use of the logarithmic identity
log(a−c) = log(a)+log(1−c/a) to generate a low-frequency
additive correction to the logged raw or denoised data. The
final bias correction formula is thus:

pcorr = − log

(
sdn
Nα

)
− log

(
s̄t
sm

)
(5)

Figure 2-(a) shows an example low-dose logged sinogram
(pc), from the low-energy detector layer. White points in the
image represent clipped values, where 0 or negative signal was
measured, and the logarithm is clipped to some large positive
value. Figure 2-(b) shows the estimated bias correction that
is derived from this sinogram, using the methods described
above. The bias correction is given by the second term in Eq.
5 above.

For the dual-energy applications shown here, the bias cor-
rection is computed and applied separately for the low- and
high-energy sinograms that we get from the spectral detector
acquisition.

C. Projection Denoising

Even without electronic noise, some method of projection
denoising or other approach is needed to tame the noise and
bias from the logarithm non-linearity at ultra-low dose [5], [6].
Projection denoising here uses the TV method previously de-
scribed in [7], delivering denoised data sdn = TVproj(sc), and
both nominal and bias-corrected data use the same denoising
method. Besides the bias correction, this is the only non-linear
processing applied until the image domain. We reconstruct
images at a 5 mm slice thickness using a linear FBP algorithm.

Fig. 2. Left = raw data sinogram of the Low-energy detector layer. Right
= computed bias correction by the proposed method (that is, the 2nd term in
Eq. 5).

D. Spectral Decomposition

The simultaneous dual-energy acquistion of the spectral
detector permits either projection- or image-domain decom-
position. In general it is well known that a projection domain
decomposition has advantages over an image-domain decom-
position, particularly in suppressing beam-hardening artifacts
[8]. For the special case of ultra-low dose scanning investi-
gated here, there are some advantages to an image-domain
decomposition, namely the averaging effect of backprojection
that reduces the low frequency noise which is challenging
to remove from the projection data alone. Thus for this
application we use a standard image-domain decomposition
defned as: [

Pp

Sp

]
=

[
c11 c12
c21 c22

]
×
[

Lp

Hp

]
(6)

where P and S are the photo-electric and scatter basis images,
where cij are the coefficients applied pixel-wise for all pixels
p in the input low and high-energy images L and H .

To deal with and reduce the anti-correlated noise in the
resulting Photo and Scatter basis images, we apply the de-
noising algorithm given in [9], a Huber-penalty minimization
that includes an anti-correlated noise model.

III. RESULTS

Figure 5 shows the reconstructed images of the low- and
high-energy detector layers with and without bias correction,
for a scan of 10 mAs. With no bias correction, there is a
dark shading which can be seen in the center of the phantom,
for both the low- and high-energy images. In the difference
images shown in the second row, additional strong negative
bias can be seen in some of the phantom pins (these are the
high-density calcium pins). The bias correction removes both
the dark shading in the background and the strong bias in
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Fig. 3. Position of the material pins inside the phantom.

Fig. 4. Error in HU from 320 mAs images measured in each of the pins.
The values in each pin (18mm diamter ROI) are averaged over 6 images to
achieve these numbers.

the pins, resulting in difference images that are nearly flat
compared to the high-dose images (except for increased noise,
which is expected at such low dose). The low- and high-
energy images are decomposed to photo/scatter basis images
as described above, and these are further used to generate
mono-energenic images at 70 and 140 kev, which are shown
next in Figure 6. As before, bias correction removes shading
in the phantom background as well as restoring errors inside
the pins, especially those of higher density.

A. Metrics

For a further quantitative comparison, Figure 4 shows the
HU error at low dose of the mean values of each material pin
in the phantom, at 70 kev mono-E, compared to the high-dose
images. Without bias correction, pin values show large errors,
depending on the pin composition and pin position within the

phantom. With bias correction, all pins show errors of less
than 6 HU, with the majority less than 4 HU. Of particular
interest is the observation that with the bias correction, the HU
stability at low-dose is comparable to that reported recently for
a commercial photon-counting detector-based scanner [2].

IV. CONCLUSION

A proper treatment of the bias arising from electronic noise
enables Dual Energy Spectral CT with energy-integrating
detectors to deliver greatly improved quantitative spectral
imaging, even at ultra-low dose levels. A more in-depth
comparison to CT systems with Photon-Counting detectors is
an avenue for future work.
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Fig. 5. Bias correction on separate Low and High-energy layer images at 10 mAs. The top row shows: (a) Low-energy image (b) Low-energy image + bias
correction (c) High-energy image (d) High-energy image + bias correction. The bottom row shows the difference from the corresponding ground truth 320
mAs images. Four images are avaraged to more easily visualize the bias effects through the noise. Window / Level = 150 / 0 HU.

Fig. 6. 70 and 140 keV mono-energetic images. The top row shows 10 mAs images: (a) nominal 70 kev (b) bias-corected 70 kev (c) nominal 140 kev (d)
bias-corrected 140 kev. The bottom row shows the corresponding difference images from the GT 320 mAs scan. Window / Level = 150 / 0 HU.
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Abstract
This paper evaluates the potential of convolutional sparse cod-
ing (CSC) for reducing noise and artefacts in 3DCT images in
the case of sparse acquisition configuration. The proposed CSC
method is tested on additive-manufactured metallic samples,
which present unique challenges for denoising applications due
to the fine structure of the material and the wide variety of
possible textures in the images. Results indicate that CSC
outperforms traditional dictionaries in denoising performance
and computation speed, making it a promising method for
large-scale tomographic imaging applications.

1 Introduction

X-ray Computed Tomography (CT) is a powerful imag-
ing technique for medical and industrial contexts, where
it faces the same objective of quickening the acquisition.
Even if the reason differs, reducing the dose to the pa-
tient in the first case and reducing the inspection time
in the second case, the challenge is similar and consists
in ensuring the best quality of the reconstructed image
from a limited number of projections.
Iterative reconstruction techniques have made it possible
to partially solve this problem thanks to regularisation
terms and a priori knowledge [1]. In recent years, these
iterative techniques have been further improved by the
theory and development of Compressed Sensing (CS),
which allows the reconstruction of high-quality images
despite a smaller number of views than the one required
for analytic filtered back-projection algorithms [2]. How-
ever, conventional CS-based CT reconstructions are
computationally expensive because the associated recon-
struction methods solve a high-dimensional system with
the ℓ1 norm. To overcome this problem, sparse coding, a
particular development of CS, uses a patch-based strat-
egy. By only processing small portions of the image, also
called blocks in 3D, it allows the description of a huge
volumetric image by overlapping blocks and thus reduces
the demand on digital resources. Many methods using
patches have been adapted to tomography in recent
years: Non-Local Means (NLM) [3], Block-Matching
4D (BM4D) [4], and in particular sparse coding on re-
dundant dictionaries [5]. The latter has been widely
successful thanks to their numerous applications but are
still not present in industrial 3D tomography, notably
because of the often too long computation time and the
artefacts due to the aggregation of patches. Indeed, each

block of the image is processed independently and often,
for each one, an optimisation must be applied, which
makes processing very long. Moreover, the blocks must
be overlapped to describe the image well, increasing their
number. To overcome these limitations, convolutional
sparse coding (CSC), also called shift-invariant sparse
coding, proposes a new formalism in which the continu-
ity of the image is taken into account [6]. This property
also allows the use of smaller operators. CSC proposes
a solution to the problems of numerical resources, com-
putation speed and reconstruction quality. This article
will compare dictionary-based and CSC algorithms on
industrial data from additive manufacturing for X-ray
tomography denoising.

2 Methodology

Sparse coding is a widely used technique in signal pro-
cessing and inverse problems. This technique assumes
that a signal x ∈ Rm can be reconstructed for a few
elements, called atoms, taken from an overcomplete dic-
tionary D ∈ Rm×n [7]. In the sparse coding framework,
each block xs of a signal x is encoded using a sparse
linear combination zs ∈Rm of atoms from the dictionary,
such that for each block xs ≈EsDzs, where Es repre-
sents an operator to extract the block xs. The problem
of finding a sparse representation is called sparse pursuit
and is the essential point of all sparse coding techniques.
Naturally, lots of methods have emerged to solve this
problem. The most used are the matching pursuit al-
gorithms which will greedily find a solution (OMP [8]),
and convex formulations called basis pursuit (Iterative
soft-shrinkage methods, LARS), which will solve this
problem with a ℓ1 norm constraint on the representa-
tion [9]. With these latter, the objective function to
reconstruct the signal becomes the following equation:

ẑ = argmin
z,(D)

1
2

∑
s

∥Dzs−Esx∥22 +λ
∑

s

∥zs∥1, (1)

where λ is a parameter that balances the data fidelity
and sparsity terms. The dictionary can also be learned
simultaneously as the sparse representation. In this
case, it becomes a variable of the previous equation,
and the problem is called dictionary learning.
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However, dictionary learning quickly becomes computa-
tionally infeasible with long signals and high dimensions.
The CSC thus appeared as an evolution of the dictionary-
based methods where the global dictionary is, in fact,
a banded circulant matrix of a local dictionary. This
structure imposes that the blocks are a superposition of
the local dictionary’s filters. The main advantage is that
there is no more need to learn a global dictionary made
of many atoms but just a small dictionary made of few
m filters. Moreover, image continuity is considered, and
all translations of the filters are possible. The sparse
representation is now obtained with the following:

argmin
z,(d)

1
2

∣∣∣∣∣∣∣∣ m∑
j=1

dj ∗zj−x
∣∣∣∣∣∣∣∣2

2
+λ

m∑
j=1
∥zj∥1, (2)

where dj represent the filters of the local dictionary,
x represent the image, and zj are the coefficient maps.
In the CSC framework, dictionary learning and basis
pursuit are generally done using Alternating Directions
Method of Multipliers (ADMM) [10]. By solving the
problem in the Fourier domain, [11] proposes a consid-
erable algorithm acceleration.
To compare traditional and convolutional dictionaries,
we have selected two denoising methods: unsupervised
and supervised.

2.1 Denoising with Basis Pursuit

The simplest way to denoise a 3D CT image is to find
its sparse representation and to reconstruct the signal
in the image basis. This method is straightforward and
allows to get rid of the roughness of an image. For
traditional dictionary learning, the dictionary is usually
learned on another tomographic image, obtained with
the same acquisition parameters and reconstructed with
the full set of projections.
For CSC, the training volume is first high-pass filtered
with a Tikhonov filter. Similarly, the coefficient maps
are determined on the high-pass filtered data because,
as mentioned in [12], CSC is not well-suited to represent
low frequencies. Therefore, high frequencies are denoised
separately, and then added back to the low frequencies.

2.2 Denoising with joint dictionaries

A second approach to denoise a signal is to use joint
dictionaries [13]. Two dictionaries are learned jointly on
the sparse and dense reconstructions of the same sample.
By forcing the two reconstructions to share the same
code or map coefficients but on a different basis, each
filter in the created ’sparse’ dictionary Ds and ’dense’
dictionary Dd are matched. The results of a basis pur-
suit in the ’sparse’ basis can then be used in the ’dense’
basis. Using reconstructions of different sizes, [14] even
proposes a super-resolution scheme. They also propose

an analytical method based on a convex formulation
to train both dictionaries simultaneously with classical
dictionary learning algorithms. The authors of [13] di-
rectly build the two dictionaries by extracting patches
at the same positions in the sparse and dense recon-
structions. Note that in both methods, to improve the
results, the image features in Ds are the voxel values
and the first and second-order gradient distributions.
Dd is only composed of voxel values.
We propose an intermediate method for the CSC be-
tween the analytical and direct methods. Thanks to
an ADMM optimiser, a dictionary Ds is learned on the
sparse data. Then, each filter is expressed as a linear
combination of blocks extracted from the sparse volume.
Using the same linear combination and blocks extracted
at the same locations in the dense reconstruction, we
create a ’dense’ version of our initial dictionary. This
technique takes advantage of the benefits of the analyti-
cal method, which finds the underlying signal structures,
but also of the simplicity and computational speed of the
direct method. As mentioned previously, the proposed
method can also use image features other than voxels.
It also has the advantage of requiring few numerical
resources, unlike the analytical method, which requires
solving a high-dimensional problem. The method is re-
capped in the Algorithm 1, and Figure 1 shows matched
filters in Ds and Dd.

Algorithm 1: Joint dictionary learning algo-
rithm.
Data: Sparse reconstruction Xs, Dense

reconstruction Xd

Result: Joint dictionaries Ds and Dd

Compute Ds by solving Eq. (2) with Xs

Extract blocks Bs and Bd at the same positions
in Xs and Xd

Concatenate its 1st and 2nd order derivatives to
Bs

Solve BsY = Ds

Dd←BdY

Figure 1: Examples of cross-sections from Ds (left) and their
match in Dd (right).
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3 Results

In this section, the previous techniques are tested on
three aluminium cubes created by Laser Powder Bed
Fusion (L-PBF) additive manufacturing process using
different process parameters (laser power and speed).
The 3D images are respectively of size 742×601×749,
744×777×723 and 679×670×627 voxels. A fourth cube
500×379×500 is used for training. Voxel size is 20
µm3. Figure 2 shows the cross-sections of the different
cubes used in this paper. Due to different additive
manufacturing processes, the samples have significant
texture variations. The sparse and dense images are
reconstructed using the FDK algorithm, respectively
with 100 and 900 projections regularly acquired around
the specimen. The SPORCO package is used for CSC
calculations [15].

Figure 2: Cross-sections of the aluminium cubes. The one on
the bottom right is used for training while the others are for

tests.

For basis pursuit, the λ parameter is set to 0.1.
Figure 3 shows that both traditional and convolutional
dictionaries allow a better contrast around the cracks
and holes. The edges of the image are sharper with
traditional dictionaries. With CSC, one can notice
some unexpected effects at the edges due to the
high-pass filter. The granular aspect of the image is
well-corrected between the cracks without losing the
image information. The CSC has a stronger smoothing
effect.

Then, for the classical joint dictionaries learning
problem, we have used the method as described in
[14] with the gradient in each direction as additional
image features. The dictionary size is 2560× 10240,

512 features are dedicated to the ’dense’ blocks, and
2048 are for the sparse blocks and their gradients. The
training is made using ADMM. The joint convolutional
dictionaries are made of 32 filters of size 83 voxels.
7680 random blocks were extracted to make Bs and Bd.
The denoised images, shown in Figure 3, appear to be
smoothed. The detection of porosities and cracks is
much easier. One can notice that CSC appears more
textured than traditional dictionaries, but the contrast
around little asperities is still good.

In Table 1, we report the Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM)
values for the 100-projections reconstructions of the
cubes before and after denoising. The volumes are com-
pared to dense 900-projections reconstructions. NLM
(with σ=0.05, 83 voxels block and 333 voxels search area)
and BM4D are also reported for comparison. However,
those methods do not improve image quality because the
initial image is too textured, and similarities between
blocks are hard to find.

Table 1: Image quality evaluation of the aluminium cubes
with different denoising methods.

PSNR[dB] / SSIM Cube 1 Cube 2 Cube 3
Before denoising 19.16/0.3871 22.70/0.3428 18.80/0.4561

NLM 19.12/0.3876 22.70./0.3428 18.80./0.4562
BM4D 19.09/0.3912 22.71/0.3442 18.80/0.4569

Basis Pursuit 22.56/0.5776 25.16/0.6087 26.59/0.7188
CSC Basis Pursuit 25.94/0.6431 25.41/0.6427 26.77/0.7272
Joint Dictionaries 24.19/0.5707 25.85/0.6802 26.67/0.7277

CSC Joint Dictionaries 25.26/0.5881 25.91/0.7051 26.71/0.7278

Results show the effectiveness of CSC for denoising
sparse tomographic reconstructions. CSC outperforms
traditional dictionaries in terms of both denoising per-
formance and computation time. CSC takes around 3
minutes to denoise a sample compared to 1 hour for
the traditional method, on a CPU Intel Core i9-11950H
2.60GHz.

4 Conclusion

We have presented two examples of denoising meth-
ods using traditional and convolutional sparse repre-
sentation for improving the reconstruction quality of
additive-manufactured aluminium cubes. Each method
has shown, on experimental data, an ability to denoise
reconstructions leading to easier analysis and control
of the studied samples. CSC has shown a better ca-
pacity to denoise tomographic volumes. CSC opens up
many possibilities and perspectives for tomographic re-
construction in the Plug-and-Play regularisation frame-
work. Many aspects are still to be treated, including
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Figure 3: Results of the different denoising techniques on the first cube.

classification, segmentation and determining physical
properties from map coefficients.
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Abstract Respiratory mismatch in clinical PET-CT is a common source 

of image artifacts due to inaccurate attenuation-correction, which 

typically seen as falsely low tracer uptake in the lower lung regions and 

adjacent organs. Various approaches were suggested to mitigate this 

problem but achieving practical, efficient, and robust solution is still non-

trivial. We propose a clinically practical method to correct respiratory 

mismatch effects, based on modeled image artifact evaluation and 

anatomical reshaping. In this method, standard reconstructed PET-CT 

images are evaluated, and relevant potential artifacts are analyzed. The 

artifact characteristics control a CT image reshaping model, which is 

based on predictable respiratory motion pattern, and provides corrected 

attenuation map for any final PET image reconstruction. Testing the 

method on numerous and diverse patient studies, in terms of imaging 

characteristics and clinical protocols, demonstrates accurate and robust 

artifact elimination. 

 

1 Introduction 

 

Attenuation correction in PET medical imaging is an 

important part of the image reconstruction process. 

Typically, attenuation correction coefficients are obtained 

from an associated anatomical image scan with CT or MRI. 

For achieving high quality functional images and reliable 

clinical diagnostics, the spatial matching or registration 

between the two modalities must be accurate, at least where 

the spatial gradient of the integral attenuation is large. 

Common sources of image misregistration are sporadic 

patient movement, and natural respiratory or cardiac organ 

motion. Although it would be ideal to achieve functional 

and anatomical image data acquired at the same patient 

motion phase, it is difficult to accomplish this with typical 

clinical protocols, where the PET is continuously acquired 

during free-breathing and the diagnostic CT scan in an 

arbitrary breath-holding state typically in an inspiration-

phase. Therefore, various attempts were conducted to 

algorithmically correct for this problem within the image 

reconstruction framework.  

In whole-body PET-CT, respiratory-motion functional-

anatomical mismatch often causes visible image artifacts in 

the lower lung regions and the upper abdomen organs below 

the diaphragm, such as the liver, spleen, and the stomach. 

In such cases, radiotracer uptake in lesions or other 

distinctive tissue segments may appear significantly lower 

or higher than the true uptake values. A common risk is that 

erroneously low observed uptake might mislead the 

physician to underestimate true clinical findings.  

Several methods were proposed for mitigating the problem. 

One approach is to use information from gated PET 

acquisition, either by data-driven or instrumental-based 

techniques [1-4]. The respiratory motion is estimated, and a 

derived deformation field is applied on the CT images to 

generate better adapted attenuation map.  A fundamental 

limitation is that it is not guaranteed that the deformed CT 

will match any of the PET gated phases since the breath-

holding organ positions can be different than any of those 

in free-breathing. In addition, some approximations are 

needed to initially reconstruct the gated PET phases without 

accurate attenuation maps. Another suggestion was to use 

4D CT data [5], inevitably with excess radiation dose to the 

patient. Alternatively, direct 3D image-based PET-CT 

registration can be utilized to some extent. However, 

sufficient structural similarity between the relevant 

functional and anatomical morphologies is not guaranteed, 

particularly in regions with severe artifacts. Using PET non-

attenuation-correction reconstruction to estimate the 

required attenuation map is also problematic due to the 

highly inaccurate and inhomogeneous images. Recently, 

methods utilizing Deep-Learning were also proposed [6-7]. 

For implementation in a wide clinical use, the chosen 

solution must be accurate, robust in various imaging 

conditions, fast, and seamless from the user perspective. To 

that end we propose and demonstrate a practical approach 

based on direct modeled artifact evaluation and CT image 

correction without any gating or dynamic data.    

 

2 Materials and Methods 

 

 
Fig. 1.  The main concept of the proposed method. 

 

The algorithm first evaluates the PET image artifacts 

directly from an initial standard PET image volume, and 

using the original CT. From that, key parameters are derived 

for controlling a modeled CT image data reshaping based 

on predictable anatomical respiratory motion pattern. The 

reshaped CT volume is used to reconstruct corrected PET 

images. The method is particularly focused on reducing the 
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most dominant respiratory-mismatch artifacts and not on an 

entire registration of the CT and PET image volumes. 

 

 
Fig. 2.  High-level algorithm flowchart. The left blocks are mostly related 

to the CT data processing, and the right blocks to the PET data. The lower 

green blocks are final reconstructions for the clinical diagnostics. 

 

Figure 2 shows the main algorithm steps. The input two 

image volumes are the original breath-holding CT and the 

single standard (non-gated) PET image volume, 

reconstructed using the original CT data for attenuation 

correction (also denoted CTAC). For any PET system type 

or selected final reconstruction method, a standard baseline 

PET recon is used for the artifact evaluation step. This, to 

maintain consistency in diverse conditions. 

The first step is identifying the relevant anatomical regions 

on the CT volume, including the lungs with their bottom 

region and its contour shape. The patient body mask is 

extracted as well. This section utilizes conventional image-

processing techniques similar to other published methods 

[8]. The exact region in which the anatomical reshaping 

model will be applied (fig. 4- A, B) is extracted with 

emphasis on accurate shape delineation, even in clinical 

cases of asymmetric or non-homogeneous lungs. 

The second step is estimating typical PET ‘background’ 

uptake values of the body soft tissues (between fat to soft-

bone densities) and of the lung volume. The body tissue 

background is estimated from a histogram analysis of the 

PET image values corresponding to the derived body mask, 

and a limited PET value range around the distribution’s 

median. The lung whole volume background is estimated 

separately as the median of the non-zero PET image values 

within the lung mask volume. The two background uptake 

values are determined in relative units of the PET image 

scale, independent of any quantitative SUV metric, which 

in clinical practice may be unreliable or inaccurate. 

The evaluation of potential low-value image artifacts on the 

PET volume in the relevant regions is based on eq. 1.  

  

 𝑴 = (𝑷 < (𝐵𝑙 ∙ 𝑅𝑙)) & ((𝐵𝑙 − 𝑷) > (𝐵𝑏 ∙ 𝑅𝑏))       (1) 
 

where 𝑴 is the volumetric mask of voxels identified as 

related to artifacts, 𝑷 is the volumetric array of PET image 

voxels which are within the segmented lungs and the 

determined analyzed region, 𝐵𝑙 and 𝐵𝑏 are the calculated 

background uptake values of the lungs and body 

respectively, and 𝑅𝑙 and 𝑅𝑏 are optimized ratio parameters. 

Steps 3 and 4 are illustrated in fig. 3. Using eq. 1, two 

different artifact severity weights are calculated, subject to 

two pre-determined 𝑅𝑙 values. The weights are summed 

along the z direction to form a 2D artifact severity map. A 

high-percentile analysis of the map values determines the 

required characteristic CT image dilation distance 𝑑 for the 

next step. An eccentricity analysis of the artifact map spatial 

distribution further determines the level of asymmetrical 

weighting between the right and left lung sides. The logic 

behind the model is that the whole relevant CT image region 

under the diaphragm will be dilated upward, as required, in 

a balanced or nearly homogenous manner depending on a 

basic shape. This, even if the detected PET image artifacts 

are more localized to specific areas. 

For the CT image conditional dilation process, 2D weights 

array of local maximal dilation is generated representing a 

modeled diaphragm motion phase-shift by: 

 

𝑫 = 𝑑 ∙ 𝑆𝑚𝑜𝑜𝑡ℎ2𝐷(𝑤𝑙 ∙ 𝑺𝑙 + 𝑤𝑟 ∙ 𝑺𝑟)                           (2)             

where 𝑺𝑙 and 𝑺𝑟 are the left and right halves of the filled 

lower lung region contour (fig. 4- B, C). The area’s weights 

are also divided into outer and inner mask shapes based on 

an observation that the diaphragm motion upward is slighter 

below the heart and the mediastinum. 𝑑, 𝑤𝑙 , and 𝑤𝑟 are 

determined from the artifact analysis step. Note that 𝑫 is not 

directly the CT reshaped volume morphology by itself. 

 

 
Fig. 3.  The artifact analysis key steps. A) Identified artifact voxels are 

assigned with high or low weights (red or yellow resp.) and are summed 

along the z axis. B) The 2D artifact severity map where grayscale pixels 

indicate high percentile values. The green dot is the body center. C) The 

derived modeled shape of maximal dilation weights (see also fig. 4-C).  
  

  
Fig. 4.  Key steps related to the anatomy from the CT images. A) The 

automatically identified lower lung region shown on inverse-grayscale 

MinIP view. B) The identified dilation-intended area (green) shown on 

the central axial CT slice. The inner contour and the middle line (dotted) 

are used to optimize the dilation weight model. C) The dilation weights 

from fig. 3-C shown on top of the CT. D) The two distance values 𝐷𝑥𝑦 

and c, used in eq. 3 below, for the conditional dilation process.  
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The CT image volume is reshaped using ‘conditional 

dilation’ model (step 5), schematically shown in eq. 3. 

                                                                                          (3) 

For each xy in a region mask run on z along an axial range:          

𝑽𝑥𝑦
′ (𝑧) = max(𝑽𝑥𝑦[(𝑧 − 𝑫𝑥𝑦 ): (𝑧 + 1)]),                                    

     𝑖𝑓: max(𝑽𝑥𝑦[(𝑧 − 𝑫𝑥𝑦 ): (𝑧 − 𝑫𝑥𝑦 + 𝑐 + 1)]) < 𝑡   

           stop for this xy 
 

where 𝑽′ and 𝑽 are the corrected and original CT volumes 

respectively, 𝑫 is the array of maximal dilation distance for 

each xy in the region mask. The z direction is positive 

toward the patient head.  𝑐 is a constant distance parameter 

(except adjustments for margins), and 𝑡 is a low-HU 

threshold. The last two parameters enable to identify local 

transition into lung regions (e.g., with 𝑐 = 8mm and 𝑡 =
−200HU). As illustrated in fig. 4-D, the soft tissue HU 

values fill the lower lung space to a distance determined by 

the dilation weights until the stopping condition is met. 

For the dilation process, the original CT sub-volume 

initially passes a high-HU thresholding to avoid influence 

of any local high-density values (e.g., bones, iodine), and 

these values are returned back after the reshaping. As a final 

step, a 3D fine smoothing is performed only on the relevant 

region of the reshaped CT image volume, to avoid any 

potential sharp edge effects in the reconstruction. An 

example of the final reshaped CT is shown in fig. 1.  

The algorithm’s parameters were optimized using 50 PET-

CT clinical cases with diverse characteristics and from 

different systems. Each of the main steps was optimized 

separately according to its sequential order. The accuracy 

metric was based on comparative assessment of 

intermediate steps using dedicatedly built analysis tools. 

This, since it is impractical to obtain ground truth data 

without full 4D PET-CT scans. The advantage in our 

approach is that the whole algorithm can be optimized step 

by step against intermediate results, and the fully corrected 

image reconstruction is used only for final verification.  

 

3 Results 

 

The correction algorithm was tested on more than 70 PET-

CT clinical studies with notable respiratory-mismatch 

artifacts representing practical diversity of imaging 

conditions. All cases were acquired and reconstructed using 

a standard protocol of non-gated free-breathing PET, and a 

diagnostic CT scan in an arbitrarily breath-holding state 

typically in inspiration-phase. In fig. 5 (and fig. 1), all cases  

were reconstructed using standard OSEM method. This, to 

enable on-par comparison with the image type used for the 

algorithm’s input. 

For testing the algorithm robustness, all the cases were 

processed with the same pre-optimized algorithm setting. 

The 12 example cases in fig. 5 include different tracers: 

cases A-I are with the radiotracer 18F-FDG, J with 68Ga-

DOTATATE, and K, L with 18F-PSMA. Cases B, C, H and 

K show lesions in both the liver and lungs, where it can be 

seen that the liver structures are reasonably corrected while 

the lung lesions above the artifact areas are unchanged. 

Cases F and G are with deliberately low administered 

radiotracer dose leading to high image noise. Case I 

demonstrates an uncommon scenario where the original 

attenuation correction led to over correction at the bottom 

of the lungs (black rims), for which the corrected image still 

enables to reduce the artifact intensity. Cases J and L are 

with substantially large mismatch. 

In all demonstrated cases the artifact elimination or 

reduction are very satisfactory. This was also carefully 

verified on a clinical workstation while reviewing the whole 

patient volume, and with variable image window.  

 

 

 

  

 
Fig. 5.  Clinical examples of respiratory-mismatch artifacts. 12 cases 

(frames A-L) are shown with original vs. corrected reconstructed PET 

image data, a selected coronal slice of each. On the original cases (upper 
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image in each frame), red arrows indicate the most visible artifact 

regions. The lower image in each frame shows the corresponding 

corrected results. For each case, the grayscale image window was set to 

best demonstrate the image artifacts (not necessarily as the clinical 

review window setting). In the example cases, the visualized affected 

organs are mainly the liver, spleen, stomach, and the spine. 

 

An optional technique to assist clinical reviewing (fig. 6) 

utilizes the algorithm’s analysis results for regional fusion 

visualization adjustment, in which the CT image volume is 

automatically shifted rigidly along the axial direction to 

better match with the PET image volume in the relevant 

correction regions. The shifting distance is derived from the 

algorithm’s results. Note that the CT and PET images are 

not morphologically deformed. Therefore, the diagnostic 

accuracy is fully maintained.  

   

 
Fig. 6. Regional fusion visualization adjustment. A) The original PET 

image volume having mismatch-related low-value artifacts, fused with 

the original diagnostic CT. B) The PET recon is corrected using the 

modified attenuation map, according to the described method. C) The 

corrected PET recon, fused with the rigidly shifted CT. 

 

In order to test the respiratory mismatch correction in a 

systematic way, without objective ground-truth references, 

we developed a verification method based on artificially 

modifying the CTAC volumetric data for imitating the 

original cause of respiratory mismatch artifacts (fig. 7). The 

procedure is as follows: a) A proper PET-CT case without 

noticeable respiratory-mismatch artifacts is selected; b) An 

artificial PET-CT spatial mismatch is generated by 

modifying the CTAC image data using a slab-shifting 

technique. In this approach, a CT image volume slab is 

automatically detected around the lower lung regions. The 

CT image data in the slab is copied, shifted in a constant 

length downward (e.g., 10 CT pixel-size units), and pasted 

into the original volume. Although the generated new CT 

volume is not exactly as it would be with true elastic 

respiration motion, it enables to mimic the main cause of 

the relevant artifacts in a simple way; c) The original PET 

raw data is reconstructed using the slab-shifted CTAC 

attenuation map, resulting in PET image volume with 

noticeable mismatch artifacts; d) The full respiratory-

mismatch artifact correction is applied using the artifact-

induced PET image volume with the slab-shifted CTAC as 

the inputs. As a result, a corrected CTAC image volume is 

generated; e) The original PET raw data is reconstructed 

using the corrected CTAC, and the resultant corrected PET 

image volume is compared to the original proper PET image 

volume. Note that this verification approach typically 

shows a worst-case scenario since additional attenuation 

artifacts may occur (e.g., near the heart and the ribs) 

compared to a situation involving true patient respiratory 

mismatch. In addition to the visualized assessment, we 

determined a quantitative analysis as follows: a) For each 

clinical case, the PET image value distribution is measured 

on a homogenous liver region, and the minimal value 

change to be considered with clinical significance is defined 

as 𝑆 = 𝐹𝑊𝑇𝑀 of the distribution; b) Calculate voxel-wise 

on the whole volume the differences 𝑑1 = 𝑎𝑏𝑠(𝐶 − 𝐷) and 

𝑑2 = 𝑎𝑏𝑠(𝐶 − 𝐸) (C, D, E are the image volumes e.g., as 

in fig. 7); c) Calculate the array’s ‘sum of square errors’                

𝑒1 = 𝑆𝑆𝐸(𝑑1) for 𝑑1 > 𝑆, and 𝑒2 = 𝑆𝑆𝐸(𝑑2) for 𝑑2 > 𝑆;             

d) Determine a relative correction improvement metric           

𝐼 = 1 − 𝑒2/𝑒1 . The results on a selected group of 20 

clinical cases provided 𝑚𝑒𝑎𝑛(𝐼) = 88 % (CI: 82, 93 %).      

The artifact correction accuracy can be also tested using the 

known technique of synthetic lesion insertion into the PET 

data and corresponding image reconstruction processes. 

 

 
Fig. 7. Correction verification method by inducing mismatch artifacts on 

originally proper PET-CT cases. A) Original CTAC. B) Slab-shifted 

CTAC (embedded in the red-mark range). C) Original PET recon. D) 

PET recon using the slab-shifted CTAC. E) Corrected PET recon, where 

the image data of B and D were used as the algorithm’s inputs.   

 

4 Discussion and Conclusions 

 

The demonstrated image artifact correction approach has 

substantial advantages relative to some previously proposed 

techniques: a) There is no need for gated PET acquisition or 

reconstruction following motion analysis, which may have 

their own inaccuracies; b) There is no assumption that the 

CT breath-hold lung position is identical to the inhale 

position of the free-breathing PET; c) Only standard PET 

and CT acquisitions and recons are needed; d) The 

algorithm optimization is efficiently accomplished by 

sequentially tuning the parameters of its main steps using 

special tools, sparing the need for end-to-end process with 

iteratively reconstructing the PET images multiple times; e) 

The algorithm is designed to be robust and adapting to 

various conditions like system type, reconstruction and 

image parameters, scan time, scanned body range, range of 

possible respiratory mismatch and artifact severity, tracer 

type and dose, tracer distribution, clinical conditions, and 

scan protocol; f) It well fits situations where severe artifacts 

exist with low structure correlation between the PET and 

CT images; g) The algorithm is programmatically efficient 
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and integrable within common recon workflows. It is also 

possible to first process the CT image data, and then 

applying the PET evaluation and correction steps only on 

the relevant axial regions after they are acquired; h) The 

method is inherently suitable for any PET detector and 

system technologies, and for any final reconstruction 

algorithm type. This even if the image artifact 

characteristics can be varied substantially [9-11]. 

The algorithm’s correction strategy utilizes the knowledge 

that the respiratory mismatch in the lower lung regions 

corresponds to different phases of the natural diaphragm 

motion that causes the organs beneath it to change shape 

and position, mostly up or down against the adjacent lung 

volume. These morphological changes are typically within 

predicted limits and constraints. Tissue deformation in 

additional areas and directions exist as well, but generally 

they are less pronounced in causing PET-CT reconstruction 

artifacts due to the smaller integral-attenuation gradients. 

Since the algorithm is intended to mitigate the most 

significant artifacts, and not necessarily to correct image 

registration in the whole body, the derived few key 

parameters from the artifact evaluation enable the 

appropriate CT image reshaping. The generated artificial 

anatomical volume is much closer to the underlying 

anatomy corresponding to the PET image volume, than the 

original CT volume is. This, even if the artificially reshaped 

CT volume has an approximate shape by itself. As a result, 

significantly improved attenuation correction and overall 

better image quality are obtained in all practical clinical 

situations. 
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Abstract In this work, we investigate dual-energy CT with non-
overlapping two-orthogonal-limited-arc (TOLA) scans. The TOLA
scan configuration consists of two limited-angular-range (LAR) arcs
of low- and high-kVp scans whose center lines are orthogonal to each
other. Real dual-energy data are collected from a clinical CT scanner
in axial mode, and reconstructed from by use of a one-step method for
accurate reconstruction with minimal LAR and beam-hardening (BH)
artifacts. The method encompasses a constrained optimization problem
with directional-total-variation (DTV) constraints on the monochro-
matic images and the DTV algorithm, as a new instance derived from
the non-convex primal-dual (ncPD) algorithm for numerically solving
the optimization problem. Qualitative and quantitative evaluations
are carried out including the assessment of artifacts reduction, profile
plots, and mean pixel values in the basis images. Results suggest
that the proposed one-step method can reconstruct from LAR data
collected with two orthogonal arcs of as low as 87◦ each and obtain
monochromatic images that are visually and quantitatively close to the
reference monochromatic image from full-angular-range data of 360◦.

1 Introduction

Dual-energy CT (DECT) has been used in clinical and indus-
trial imaging applications, for its improved material differen-
tiation and effective beam-hardening (BH) correction. DECT
with limited-angular-range (LAR) data can be potentially
used to reduce radiation dose and scanning time and avoid
collision between the scanner’s moving gantry and the im-
aged subject. There has been an increasing interest in DECT
with LAR data [1–4]. Previous investigations have shown
that separate constraints along the image grid’s individual
axes, such as the directional total variation (DTV) [5], can be
effective in reducing, and sometimes eliminating, the LAR ar-
tifacts in the reconstruction, while one-step and data-domain-
decomposition-based two-step methods have the potential to
obtain quantitatively accurate images in DECT from LAR
data. Among the two, one-step methods do not require over-
lapping rays from low- and high-kVp scans, thus enabling
flexible scan configuration designs with non-overlapping arcs.
This is especially desirable for DECT with LAR scans for
increasing the total angular coverage.
In this work, we investigate image reconstruction for DECT
with LAR data collected from two-orthogonal-limited-arc
(TOLA) scans, which have non-overlapping rays from low-
and high-kVp scans. A one-step method is proposed, includ-
ing an optimization problem considering the non-linear data
model and DTV constraints on monochromatic images and
a non-convex primal-dual-based algorithm for numerically
solving the optimization problem. The proposed method is
applied to real data collected from a clinical CT scanner in ax-

ial mode, with two full rotations for low- and high-kVp scans.
They are referred to as the full-angular-range (FAR) data, and
used as references for comparison. LAR data are then ex-
tracted from the FAR data to simulate the TOLA scans. Basis
images of water and iodine contrast agent are reconstructed
and then combined into monochromatic images at 75 keV for
visual inspection and also quantitative analysis. Images are
also reconstructed by use of the standard method in DECT,
i.e., reconstructing kVp images by use of the FBP algorithm
followed by an image-domain-based decomposition.

2 Materials and Methods

2.1 Data collection

Dual-energy data are collected with 80 and 135 kVp using
a clinical CT scanner in the axial mode. We extract data
from the central row in the 16-row detector, which forms a
2D fan-beam geometry. The source-to-rotation-center dis-
tance, source-to-detector distance, and fan angle of a curved
detector are 60 cm, 107 cm, and 49◦, respectively. The de-
tector has 896 elements. A full rotation of data are collected
for each of the low- and high-kVp scans, containing 1200
angular views evenly distributed over 360◦.

From the full rotation data, LAR data of TOLA scan con-
figuration, as shown in Fig. 1, are extracted. The TOLA
scan consists of two scanning arcs, corresponding to the low-
and high-kVp scans, subject to angular ranges α1 and α2,
respectively. The center lines of the two arcs, i.e., the line
connecting the origin of the x-y coordinate system and the
center of the scanning arc, are always orthogonal to each
other. While the angles of the two center lines w.r.t. the x or y
axis can change, i.e., the two lines can rotate in the x-y plane
around the origin, in the TOLA scan, in this work we focus
on the configuration with the two center lines overlapping
with the two axes of the x-y coordinate system, i.e., x & y axis,
as such a design would ensure that the scanning arc, of either
the low- or high-kVp scans, is symmetric w.r.t. the y- or x
axis, along which the DTV constraints are applied. We also
select α1 = α2 ≡ α and study different LARs with α = 87◦

and 138◦. The TOLA scan configuration can be readily im-
plemented on existing DECT scanners with dual-source or
slow-kVp-switching techniques.
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Figure 1: Two-orthogonal-limited-arc (TOLA) scan configuration with (a) non-overlapping (α = 87◦) and (b) partially overlapping
(α = 138◦) scanning arcs, where the center lines, i.e., the line connecting the origin with the center of the arc, for the low- and high-kVp
scanning arcs are orthogonal and overlap with the x and y axis in the 2D coordinate system.

2.2 Image reconstruction

Utilizing a material basis decomposition model with the non-
linear data model, the following optimization problem is
formulated for reconstructing basis images

b∗ = argmin
b

1
2
||g(b)−g[M ]||22

s.t. ||Dxfm(b)||1 ≤ tmx, ||Dyfm(b)||1 ≤ tmy,

fm(b)≥ 0,

(1)

where b is the congregate basis image vector consisting of
two basis images concatenated, g(b) the non-linear model
data for DECT [6], g[M ] the measured sinogram data,

fm(b) = µm1b1 +µm2b2 (2)

the monochromatic image at energy level m, as a linear com-
bination of the two basis images together with their cor-
responding linear attenuation coefficients, µm1 and µm2, at
energy level m, and Dx and Dy partial derivatives, approxi-
mated by the two-point difference operators, along the x and
y axes. The resulting `1 norm of the image partial deriva-
tives are referred to as the DTV of the image, which are
upper-bounded by the constraint parameters tmx and tmy. The
objective function and constraints in the optimization prob-
lem can take many forms. In this work, the former is selected
as the data-`2-divergence between the non-linear model data
and measured data. The constraints are designed to be DTV
and non-negativity constraints on the monochromatic im-
age(s), as they stand for the distribution of linear attenuation
coefficients and are often used for visual inspection. We use
two different energy levels, 50 and 100 keV, for constrain-
ing the basis images and consequently employ a total of 6

constraints, 2 DTV ones and 1 non-negativity one for each
energy level.

The optimization problem in Eq. (1) is non-convex, due to the
non-linear data model. The non-convex primal-dual (ncPD)
algorithm has been previously developed for numerically
solving the non-convex optimization problem in DECT based
on the non-linear data model [6]. In this work, we derive
a new instance of the ncPD algorithm, referred to as the
DTV algorithm, incorporating the DTV and non-negativity
constraints on the monochromatic images, to numerically
solve Eq. (1). The DTV algorithm is directly applied to
low- and high-kVp data of FAR and LAR for reconstructing
basis images. The standard FBP algorithm is also used to first
reconstruct low- and high-kVp images from the data. The pair
of kVp images is then decomposed into basis images using
an image-domain-based, 2×2 decomposition matrix. The
images reconstructed by use of the FBP algorithm are only
for demonstrating the typical LAR artifacts, if not accounted
for, under the data conditions studied in the work.

Just like any other algorithms, parameter selection is impor-
tant in the DTV algorithm. The images are reconstructed onto
an image grid of 432×656 square pixels of 0.8 mm. The low-
and high-kVp spectra at 80 and 135 kVp are simulated to best
match those from the scanner. The basis materials of water
and 20 mg/ml iodine are used, with their linear attenuation
coefficients looked up from the NIST database. Finally, the
DTV constraint parameters tmx and tmy are selected as those
yielding the monochromatic images with minimum artifacts.
Similarly, a Hanning kernel and a cutoff frequency of 0.5 are
selected for the FBP algorithm.
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Figure 2: Monochromatic images at 75 keV reconstructed by use of the DTV (top row) and FBP (bottom row) algorithms from real data
collected with the FAR scan (column 1) and the TOLA scan of different LARs α = 138◦ (column 2) and 87◦ (column 3). Displaying
windows: [-160, 240] HU for top row and column 1 of bottom row, [-1000, 1000] HU for columns 2-3 of bottom row.

2.3 Evaluation

With basis images reconstructed, monochromatic images at
75 keV are combined using Eq. (2) and inspected visually.
Image profiles are also plotted for quantitative analysis. Fur-
ther, basis image values within regions of interest, such as
aorta, are assessed since they are related to the quantification
of iodine concentrations.

3 Results

Prior to studies with real data, we have carried out simula-
tion studies with a chest phantom and noiseless DECT data
simulated with the TOLA scans. The results have shown that
the proposed one-step method can obtain monochromatic
images visually identical and quantitatively very close to the
truth images of the phantom from data of LAR as low as
as α = 60◦. This sets the performance upper-bound for the
method, while the real-data studies, with inconsistencies such
as noise, scatter, and decomposition error, are likely to be
more challenging. The results from the simulation studies are
now shown here to avoid distraction and will be presented at
the conference instead.
We first show monochromatic images at 75 keV reconstructed
by use of the DTV and FBP algorithms in Fig. 2. It can be
observed that the DTV monochromatic images from LAR
data are with no or minimal artifacts. The DTV images from
LAR data of α = 138◦ and 87◦ are visually close to the refer-
ence DTV image from FAR data. The FBP image from FAR
data does not show any LAR artifacts, however it appears
darker and with lower contrast than all the DTV images using

the same display window, indicating quantitative inaccuracy
resulting from uncorrected BH effect. The FBP image from
LAR data all show significant LAR artifacts of leakage and
distortion, as expected, that deteriorate with decreasing LAR.
The observations can be corroborated by the zoomed-in areas
in Fig. 3. ROIs of DTV images from LAR data of α = 138◦

and 87◦ resemble that from FAR data, while ROIs of FBP
images show DC shift and obscured anatomic structures due
to LAR artifacts.

Next, we show profile plots, along the yellow horizontal
line indicated in the top left panel of Fig. 2, of DTV and
FBP images from FAR and LAR data in Fig. 4. It can be
observed that the profiles of the DTV images from LAR
data generally overlap with that from FAR data, indicating
effective correction of both LAR and BH, while the profiles
of the FBP image from LAR data shows significant deviations
from that from FAR data.

Lastly, we compute mean pixel values (MPVs) within the
ROI around the aorta, as indicated by the blue circle in the
top left panel of Fig. 2, of the 20-mg/ml iodine basis images
reconstructed, as they can be related to the quantitative es-
timation of iodine contrast concentration. The results are
shown in Table 1. Using the MPV from the DTV reconstruc-
tion from FAR data as the reference, MPVs from the DTV
reconstructions from LAR data of α = 138◦ are close to the
reference value from FAR data, while bias exists for LAR
data of α = 87◦. On the other hand, MPVs from FBP recon-
structions from LAR data are under-estimated by almost an
order of magnitude.
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Figure 3: Zoomed-in areas, as enclosed by the red rectangular box in the top left panel of Fig. 2, of those monochromatic images at 75
keV in Fig. 2.
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Figure 4: Profile plots along the yellow horizontal line indicated in the top left panel of Fig. 2 in the monochromatic images reconstructed
by use of the DTV (left) and FBP (right) algorithm from FAR and LAR data.

Table 1: Mean pixel values within the ROI around aorta in the
20-mg/ml iodine basis images of the DTV and FBP reconstruction
from FAR and LAR data

360◦ 138◦ 87◦

DTV 0.72 0.71 0.19
FBP 0.44 0.19 0.07

4 Discussion and conclusion

In this work, we have investigated DECT imaging with
TOLA scans. The TOLA scan configuration consists of two
scanning arcs of low- and high-kVp scans that are non- or
only partially-overlapping. Image reconstruction is thus done
by use of a one-step method, including the DTV algorithm
that has been derived and tailored to numerically solve the
non-convex optimization problem with DTV constraints on
the monochromatic images. Real data are collected from a
16-row clinical CT scanner with two full rotations of low-
and high-kVp spectra, and qualitative (i.e., visual) and quan-
titative (i.e., profile plots and MPVs from basis images) eval-

uations have been carried. The results suggest that the DTV
algorithm can reconstruct from data collected with the non-
overlapping TOLA scan of as low as α = 87◦ and obtain
monochromatic images that are visually and quantitatively
close to the reference image from FAR data.
In this work, the TOLA scan configuration is positioned such
that the two center lines of the low- and high-kVp scanning
arcs overlap with the x and y axis in the 2D coordinate system.
We have also used real data scanned with a single object of
human abdomen. The performance of the proposed one-step
method for DECT image reconstruction with TOLA scans
could be affected by different scanned objects and/or TOLA
scan configurations that rotate certain degrees (e.g. 45◦ so
that the centerlines overlap with the two diagonal lines in the
coordinate system) w.r.t. the one used in the work. It is of
interest to study the impact of these parameters.
The image reconstruction is formulated as a constrained op-
timization problem, with constraints on monochromatic im-
ages. Different designs of constraints are available, such as
applying the DTV and non-negativity constraints on the basis
images directly, which would have a more direct impact on
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the basis images and might result in more accurate MPVs in
the basis images, to improve the quantitative estimation of
iodine concentrations. Such investigations will also be the
focus in our future works.
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Abstract In this paper, we proposed a new concept of stationary CT 
system (Multi-Segment Dual-Ring Stationary CT, MSDR-CT). MSDR-
CT consists of a source ring and a detector ring that can be implemented 
conveniently by splicing multiple segments of distributed sources and 
detectors. With advanced multi-spot X-ray source techniques, X-rays 
will be fired from different spots sequentially or simultaneously in a 
programmable manner. Hence, MSDR-CT enables ultra-fast and flexible 
data acquisition modes which presents great potential in pushing the 
temporal resolution to the order of millisecond for dynamic imaging. As 
a proof-of-concept study, we deducted a Hilbert transform analytical 
reconstruction method in a differentiation-backprojection-filtration 
format for this system configuration. Furthermore, the discontinuity 
between segments in the source or detector rings is a protogenetic 
problem for its practical implementation. A preliminary correction 
method is proposed to address this problem. Simulated experimental 
results with the Shepp-Logan phantom confirmed the feasibility of 
MSDR-CT.  
Key Words Computed Tomography, Stationary CT, High Temporal 
Resolution, Analytical Reconstruction 

1 Introduction 
X-ray computed tomography (CT) is one of the most 
important non-invasive imaging methods in clinical and 
industrial applications. Most of the current commercial CT 
scanners take the configuration where a source and a 
detector module are mounted on a heavy gantry and spin 
around the object to complete a scan[1]. Due to the 
mechanical limitation, the temporal resolution of current 
CT scanners is limited by the rotation speed of gantries, 
which presents challenges in dynamic imaging for the 
hearts, lungs, and small animals[2] as well as fast cargo 
inspection[3].  
In recent decades, various new systems have been proposed 
to accelerate the scanning process. There are mainly two 
categories: (1) Multisource rotational CT decreases the 
range of rotation in a complete scan by employing multiple 
X-ray sources and alleviate the limitation of the rotation 
speed. An initial attempt was conducted by Mayo Clinic 
known as the dynamic spatial reconstructor (DSR)[4]. 
Dual-source CT by Siemens halves the scanning time and 
still serves as a cutting-edge system for cardiac imaging at 
present.  Systems with more X-ray sources[5, 6] were also 
explored for further improving temporal resolution. (2) 
Stationary CT realizes a full scan by dozens or more 
sources distributed to cover a big range of angular directions. 
Hence, mechanical rotation is evitable and the temporal 
resolution could be extremely high[7]. Electron-beam CT 
was investigated for cardiac imaging of humans[8] and 
small animals[9]. But the high cost and limited signal-to-

noise ratio of reconstructed images prevented its 
commercial application[10]. Field emission electron 
sources are an alternative to thermionic sources for their 
instantaneous response and electronical controllability 
where carbon nanotubes (CNT) make ideal field 
emitters[11]. Incorporated by recent advances of multi-spot 
technologies, CNT-based stationary CT has drawn a lot of 
attention[12, 13]. To address the data deficiency problem 
caused by finite length of source and detector arrays, multi-
segment scanning with multiple imaging planes were 
explored[3, 10]. However, translation through all imaging 
planes is necessary to complete a scan which is a limitation 
for the temporal resolution.  
In this work, we proposed a new concept of stationary CT 
(Multi-Segment Dual-Ring Stationary CT, MSDR-CT) 
where the imaging optical structure is constructed by a 
source ring and a detector ring. A Hilbert transform 
reconstruction method and truncation correction methods 
are derived to validate the feasibility of MSDR-CT. 

 
Fig. 1 Diagrams of MSDR-CT. (a) Illustration for the system configuration: 
the red boxes and blue boxes represent the source modules and detector 
modules, respectively. Each source module contains multiple focal spots 
(gray circles). (b) Illustration of the system geometry: the orange dotted-

lines stand for the direction for Hilbert filtering in the   direction. 

2 Materials and Methods 

2.1 System Configuration 
A general system configuration diagram of MSDR-CT is 
shown in Fig. 1(a): SN  multi-spot X-ray source modules 

(the red boxes) and DN  detector modules (the blue boxes) 

are jointly arranged to form the source and detector rings. 
The two rings share the same central axis, but with a slight 
offset in their axial positions to avoid optical obstruction. 
Enabled by recent advance in X-ray source techniques, each 
source module contains multiple linearly distributed focal 
spots which can be fired and switched ultrafast (up to sub-
millisecond) under programmable automatic control. As 
long as signals from different views are separable, multiple 
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source modules may emit X-ray simultaneously (three spots 
are fired in Fig. 1(a)) with individual tube voltage and 
current setting to accelerate the data acquisition. Hence, the 
scanning by MSDR-CT can be both rapid and flexible per 
different scanning strategies to achieve millisecond CT 
imaging. However, this system configuration adds the 
complexity of the optical structure since the geometrical 
relationship between the sources and detectors varies for 
different focal spots. To support such a design, we present 
an analytical reconstruction method and examine the 
reconstruction results in subsequent sections.   

2.2 Analytical Reconstruction using a Hilbert 
Transform Method 
Because X-rays from each focal spot will be received by 
detector modules along a polyline, it is problematic to apply 
an FBP-type algorithm for reconstruction. Inspired by 
Noo’s method for circular trajectories[14], we deducted a 
Hilbert transform based method for the analytical 
reconstruction of MSDR-CT. Although the positional 
relation between the source and detector segments is 
different from one another (see Fig. 1(b)), the basic 
components of MSDR-CT could be formulated as a source 
segment indexed by i and a detector segment indexed by k 
as depicted in Fig. 2. Assuming the global coordinates 
attached to the object ( , )f x y  with the origin being O, the 

distance from the thi  source segment and thk  detector 

segment to O are denoted as SOD  and ODD  with the 

perpendicular foots from O  to the segments being SO  and 

DO respectively. i  and k  represent the rotation angles 

from the y-axis to line SOO  and line DOO . Each focal spot 

in the source module is indexed by its offset from SO  as 

 m- m+,l L L . A virtual detector (indexed by 

 m- m+,u U U ) passing O  and parallel to the physical 

detector is introduced for simplicity. Hence, if the ray is 
emitted by the focal spot ( , )i l , the projection collected by 

the virtual detector cell ( , )k u  is denoted as , ( , )
i k

p l u  . 

 
Fig. 2 Illustration for a general “single source to single detector” geometry 
of MSDR-CT.  
For notation simplicity, the offset between the source and 
detector rings is ignored here. As in[14], a Hilbert image 
can be produced by backprojecting the derivative of the 
projections  

 ( , ) 2 ( , )b x y H f x y                        (1) 

with ( , )b x y  being the DBP image, and H f  the Hilbert 

transform of f  in the   direction (see the orange dotted 

line in Fig. 1(b)). Hence, the reconstruction can be achieved 
by Hilbert inversion towards a DBP image. More 

specifically, ( , )b x y  can be achieved by the following 

three steps: 

 ① Projection weighting. Cosine weighting is applied 

according to the distance relationship as  

SO , ,

, 1/22 2
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( cos ) ( sin )
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      (2) 

where ,i k k i     denotes the intersection angle between 

the thi  source and thk  detector segments. 

② Differentiation.  
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③ Weighted backprojection with two boundary terms.  
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 is the projection 

view defined by the intersection angle between the ray path 

and the y-axis. Generally, one can derive ( , )b x y  by 

backprojecting over , [ , )i k      with the coordinate of 

the starting and ending focal spots being ( , )m mx y  (see Fig. 

1(b)). As the projection by MSDR-CT is 2  periodic in 

,i k , a signum function is introduced to extend the integral 

range to , [ , 2 )i k     . Two boundary terms are used to 

avoid taking the derivative of the signum function directly. 
( *, *)k u  stands for the projection point on the virtual 

detector coordinate which satisfies m- m+[ , ]u U U  for 
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Finally, the reconstruction is given by inverting the Hilbert 

image along ( sin ,cos )    


. Suppose that f  is zero 

for any 2 m- m+[ , ]t T T , the range of inverse Hilbert 

transform shrinks from ( , )   to m- m+[ , ]T T   
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where   is a small positive number, m- m-T T   , and  

m+ m+T T   . 1( , )C t  is a constant to uniquely determine 
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the values of f . Taking the knowledge that 

1 2( ) 0f t t   
   over the range 2 m- m- m+ m+( , ) ( , )t T T T T   , 

1( , )C t  can be obtained by 
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2.3 Truncation Correction for the Discontinuity 
between Segments 
In the previous sections, we assumed seamless connection 
between the source or detector segments. However, gaps 
and discontinuity are unavoidable in the mechanical 
assembly of source and detector rings which poses 
challenge for the implementation of MSDR-CT. 
The gaps in the source ring induce limited-angle problem. 
Taking the conjugation relationship of projections into 
consideration, the missing data may be compensated. The 
radon space of MSDR-CT is illustrated in Fig. 3. The gray 
region in Fig. 3(a) represents the radon space of each source 
segment. The “fan angle” of each segment spans over 

2 1[ , ]   where 1  and 2  are determined by the half-

length of the source array mL  and the radial distance to the 

origin denoted as [ , ]t R R   (see Fig. 2). For the thi

original segment ( 1i    ), the thn  and th( 1)n   

conjugate segments ( 1n    )  provide conjugate 

projections (shown as the purple region in Fig. 3(b)) with 
redundant or compensational information. To balance the 
redundancy and take advantage of the conjugate projection 

data, a weighting function , ( , )
i k

W l u   is proposed.  
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Fig. 3 (a) Diagram for the radon space of MSDR-CT; (b) Illustration of the 
conjugation relationship of MSDR-CT.  
The gaps between detector segments can be solved by data 
inter-/extra-polation, iterative reconstruction, and deep 
learning methods. Here, we simply use linear interpolation 
since only small gap is considered for now.  

3 Experimental Results 
We evaluated the feasibility of MSDR-CT and the proposed 
reconstruction method by numerical experiments on a 
Shepp-Logan phantom. The geometric parameters are listed 
in Table I. For the reconstruction, the direction of Hilbert 
filtering is horizontal with / 2  .  

TABLE I 
 PARAMETERS OF THE MSDR-CT CONFIGURATION 

Parameter Value 
Distance between the source and isocenter (mm) 510.85 

Number of source segments 11 
Number of focal spots in each segment 400 

Distance between focal spots (mm) 0.75 
Distance between the detector center and isocenter (mm) 461.65 

Number of detector segments 10 
Number of detector elements in each segment 600 

Size of detector element (mm) 0.5 
Dimension of reconstruction grids (pixels) 512 

Pixel size (mm) 0.25 

Preliminary results of the ideal MSDR-CT without 
discontinuity between segments are demonstrated in Fig. 4, 
where almost exact reconstruction (Fig. 4(b)) is achieved by 
the Hilbert transform method. Profiles in Fig. 4(c) quanti-
tatively confirm the consistency of the result to the phantom. 

 
Fig. 4 Evaluation of the reconstruction by the ideal MSDR-CT. (a) phantom; 
(b) reconstruction by the proposed method; (c) 1D profiles along the red 
vertical line in (a). The display window is [1,1.04]. 

We also evaluated the influence of the gaps in the source 
/detector rings. (1) Gaps in the source ring: The number 
of focal spots in each source module is decreased from 400 
to 350, which induces about 37.5 mm gap between two 
adjacent segments. Due to the incomplete angular coverage, 
the reconstruction (see Fig. 5(b)) suffers from obvious bias 
and streaking artifacts. Compensated by the conjugate 

projection with the proposed weighting , ( , )
i k

W l u  , the 

artifacts are removed (see Fig. 5(c)). (2) Gaps in the 
detector ring: We decreased the number of detector 
elements in each module from 600 to 596, which induces a 
2 mm gap between adjacent segments. The reconstruction 
without correction (Fig. 5(d)) is contaminated by artifacts. 
However, when the missing elements are compensated by 
the preliminary sinogram interpolation, the reconstruction 
is well recovered (see Fig. 5(e)). 
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Fig. 5 Evaluation of the reconstruction by MSDR-CT with discontinuity. (a) 
phantom; (b)(c) reconstruction w/o and w correction for the gap between 
source segments; (d)(e) reconstruction w/o and w correction for the gap 
between detector segments. The display window is [1,1.04]. 

4 Discussion 
Stationary CT has great potential in high temporal 
resolution imaging. We proposed a novel system (MSDR-
CT) that is of great potential for millisecond CT imaging. 
Mainly, it has three advantages: (1) Ultra-fast and flexible 
scan protocols. Different sources in MSDR-CT can be 
fired and switched ultrafast (up to sub-millisecond) at 
different technical parameters under programmable control 
which dramatically accelerates scanning. (2) Improved 
angular sampling. Recent advance in CNT multi-spot 
sources enables focal spots to densely and linearly 
distributed in a single source module which will 
significantly increases the angular sampling for stationary 
CT. (3) Easy implementation. The system could be 
constructed by splicing ready-made multi-spot source 
arrays and detector modules to formulate the source and 
detector rings. However, the optical structure of MSDR-CT 
is very complicated, which challenges the image 
reconstruction. We proposed a Hilbert transform method for 
the analytical reconstruction of MSDR-CT. Results in 
Section 3 confirm satisfying reconstruction is achievable 
for MSDR-CT, and validate the feasibility and efficiency of 
the system. As seamless assembly of multiple modules is 
impossible in practical implementation, we further explored 
the influence of discontinuity in the source or detector rings. 
Due to the gaps between the source or detector segments, 
reconstruction results will be contaminated by bias or 
inconsistent artifacts (see Fig. 5(b) and Fig. 5(d)), which 
indicates the reconstruction is rather sensitive to the 
continuity of the source and detector rings. To address this 
problem, preliminary correction methods are proposed. 
According to the analysis in Fig. 3, conjugate projections 
could compensate for gaps in the source ring by 
incorporating a weighting function to balance data 
redundancy and deficiency. Linear interpolation is a 
straightforward strategy to alleviate the detector data 
discontinuity. Simulated experiments verified the efficiency 
of the correction methods (see Fig. 5(c) (e)), and further 
validated the feasibility and implementability of MSDR-CT. 

However, when gaps get bigger, the incompleteness in 
sampling in the radon space will be severer. We are to 
research more advanced methods in future works. 

5 Conclusion 
Aiming at ultra-high temporal resolution imaging, we 
proposed a novel stationary CT MSDR-CT that is 
convenient to implement and capable of ultra-fast and 
flexible data acquisition modes per various protocols. As a 
proof-of-concept study, a Hilbert transform method and 
truncation correction methods are investigated to address 
the image reconstruction and discontinuity problems from 
the principle and practice aspects. Simulated experiments 
validated the feasibility and implementability of MSDR-CT. 
MSDR-CT is of great potential to promote real-time 
imaging of dynamic organs and objects to the order of 
millisecond. We will present further results of 3D imaging 
by MSDR-CT in the conference. 
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Abstract Interior tomography is a typical strategy for radiation dose 
reduction in computed tomography (CT), where only a certain region-of-
interest (ROI) is scanned. However, given the truncated projection data, 
ROI reconstruction by conventional analytical algorithms may suffer 
from severe cupping artifacts. In this paper, we proposed a new Deep-
Projection-Extraction based Reconstruction (DPER) for interior 
tomography. DPER works in dual domains where a sinogram-domain 
network (SDNet) estimates the contribution of the exterior region to the 
truncated projection and an image-domain network (IDNet) further 
mitigates artifacts. Unlike extrapolation-based methods, SDNet is 
intended to obtain a complete ROI-only sinogram via extraction instead 
of a fully non-truncated sinogram for both the ROI and exterior regions. 
We validated DPER with simulation on low-dose CT data. Results 
indicate that DPER can disclose more reliable structures, and achieve 
better image quality with better generalization performance than 
extrapolation-based methods. 
Key Words Computed Tomography, Interior Tomography, Deep 
Learning, Projection Extraction 

1 Introduction 
Interior tomography is commonly used when only a certain 
region of the patient is of interest. With X-ray flux 
collimated to the region-of-interest (ROI), dose exposure to 
the uninterested exterior region can be reduced. However, 
projection data will be truncated due to the limited field-of-
view (FOV) scan. If filtered back-projection (FBP) algori-
thm is employed, the truncated filtration will introduce 
severe cupping artifacts into the reconstructed ROIs which 
compromises important diagnostic information. 
In last decades, many works have gone into interior 
reconstruction. One straightforward method is sinogram 
extrapolation under certain assumptions for the exterior 
region [1, 2]. Other researchers explored exact interior 
reconstruction with various conditions of known sub-
regions[3, 4] and developed reconstruction methods under 
the differentiated back-projection (DBP) framework[5]. 
Besides, the sparsity model of ROIs is also integrated into 
reconstruction[6]. Given an ROI is piecewise constant or 
polynomial, it can be stably reconstructed via total variation 
minimization[6, 7]. However, in practical situations, the 
known subregions are not always available and the sparsity 
model may be violated. 
Recently, deep learning methods have yielded impressive 
performance in various ill-posed reconstruction problems. 
Some researchers proposed to use the FBP [8], DBP[9] 
reconstructions, or direct back-projected projection[10] as 
the input of U-Net for post-processing. Others focus on 
sinogram extrapolation [11] or combine it with an image-

domain network to form a dual-domain optimization[12]. 
However, the extrapolation-based methods learn to estimate 
the undetected projection to reflect the complete measure of 
both the ROI and the exterior region, which is very 
challenging especially when the ROI size is of a small 
portion. Intuitively, the truncated projection data can be 
viewed as the combination of a complete measure of the 
ROI and a truncated measure of the exterior region. Hence, 
exterior reconstruction is highly underdetermined with a big 
exterior region. Besides, if the scanning is coupled with 
other nonideal factors such as noise, extrapolation-based 
methods may not be efficient enough to deal with such 
distortions inside the truncated projection. 
In this work, we proposed a new dual-domain pathway for 
ROI reconstruction based on Deep-Projection-Extraction 
(DPER). Specifically, a sinogram-domain network (SDNet) 
estimates the contribution of the exterior region to the 
truncated projection, and an image-domain network (IDNet) 
further mitigates artifacts. Our experiments demonstrate 
that DPER can disclose more reliable structures and achieve 
a better image quality with better capability of generalizing 
to a higher noise level than extrapolation-based methods. 

2 Materials and Methods 

2.1 Formulation of Interior Tomography 
Let ( , )x y  being the attenuation map of an object, 

[0,2 )   the angle of projection views, and t  the 

coordinate of detector elements (see Fig. 1). We can 
formulate a full-view projection as  

 
FULL ( , ) ( , ) (x θ )d dp t x y t x y    


        (1) 

where x ( , )x y


 and θ (cos ,sin ) 


. 

 
Fig. 1 Illustration for interior tomography. 

For interior tomography, X-ray flux is collimated to fully 

cover a ROI ROI ( x )R 


  with the FOV restricted to 

[ , ]t R R   (see the red circle in Fig. 1). ( )R   represents 

the indicator function 
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Then, a low-dose interior projection can be formulated as  

 IN FULL p( , ) ( ) ( , )Rp t t p t n     (3)                

where pn  denotes the noise. If conventional analytical 

algorithms (such as FBP) are directly applied to INp , 

reconstructions will suffer from obvious cupping artifacts 
and biased value due to truncated filtration 

FBP IN

0

ˆ ( , ) d ( , ) ( cos sin )d
R

R

x y p t h x y t t


    


       (4) 

with ( )h   being the convolution kernel. It is important to 

achieve a non-truncated filtration for interior reconstruction. 

2.2 Existing Extrapolation-based Methods 

Intuitively, ROI  can be reconstructed from a non-truncated 

projection FULLp (see Fig. 2) with INp  unchanged inside the 

original FOV and an additional measure EXp  outside the 

FOV ( , ) ( , )t R R     : 

 

  
EX ( , ) 1 ( ) ( , ) (x θ )d d

 = 1 ( ) 1 ( x ) ( , ) (x θ )d d

R

R R

p t t x y t x y

t x y t x y

  

 

   

   







 



 
   (5) 

Various methods have been proposed to acquire EXp  via 

extrapolation either heuristically or in a data-driven manner. 
FOV extension is intended for the complete measure of 

EX (1 ( x ))R  


 . However, compared with EXp , the 

measured information about EX  in INp  can be rather 

limited especially when the ROI is relatively small. Further, 
when the interior projection is contaminated with other 
artifacts (such as noise and sparse sampling), extrapolation 
methods may not be able to efficiently recover the data 
inside the FOV, hence compromises the image quality. 

 
Fig. 2 Illustration for the extrapolation- and extraction- based pipelines. 

2.3 Projection Extraction 
Besides extrapolation, a non-truncated filtration is also 
achievable if projections are already complete over 

[ , ]t R R  . Given the rays passing through ROI only, a 

complete ROI-only projection ROIp  is generated 
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As ROI ROI( , ) ( ) ( , )Rp t t p t   , the filtration of ROIp   

within [ , ]t R R   is complete and ROI  can be well 

reconstructed. Unfortunately, in interior tomography, part 

of EX  is also scanned which contributes an additional 

background projection BGp (see Eq. (7)) to the projection 

inside the FOV. 

 
BG IN ROI

p
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     ( ) 1 ( x )) ( , ) (x θ )d dR R
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t x y t x y n

  

 

 

    
 

 
(7) 

Hence, INp  can be decomposed into two parts: a complete 

ROIp  from ROI  and a truncated BGp  from EX . In this 

paper, we introduce a new pathway (DPER) to reconstruct 
the ROI through extraction (see Fig. 2). Different from 
extrapolation, DPER only works on data inside the FOV to 

remove the contribution of EX  and estimate the ROI-only 

projection ROIp̂  without FOV extension. 

2.4 Network Architecture and Loss Function 
DPER works in dual domains (see Fig. 3): a sinogram-

domain network (SDNet) S ( )   extracts BGp , an FBP layer 

for domain transformation, and an image-domain network 

(IDNet) I ( )   further improves image quality. In practice, 

SDNet and IDNet employ modified U-Net as the backbone 
where the number of channels is decreased by half 

compared to the original version. As the estimation for BGp

requires global properties in the sinogram domain, we 
enlarge the receptive field (RF) of SDNet by three dilated 
convolution layers with dilation rate (1,1), (2,1), and (5,1) 
for each stage of SDNet. The objective function can be 
formulated as 

S I

S I
,

1 1
S IN ROI I S IN ROI2 2

ROI ROI2 2

ˆ ˆ, arg min

( ( )) ( ( ( )))
 { }

p p

 

 
 

 

    


 

 



 


 
(8) 

where 1  denotes the process of FBP reconstruction with 

RamLak filtration, 
S

  and 
I

  the network parameters for 

SDNet and IDNet respectively.   is simply set to 1. 

 
Fig. 3 Diagram for the network architecture of DPER. 
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Fig. 4 Comparison among different methods: ground truth (a), DPER (b), DD_ExDenoise (c), FBPConvNet (d), and FBP (e). The display window is [0.016, 
0.024]. SSIM and PSNR are in the bottom-left corner of each image. 

3 Results 

3.1 Experimental Set-up 
We evaluated our method based on datasets from AAPM 
Low Dose Grand Challenge and TCIA Low Dose CT Image 
and Projection Data. ROI scanning is simulated under an 
equidistant fan-beam configuration and the detailed 
geometry parameters are listed in Table I. Poisson noise is 
simulated with 105 incident photons per ray. Structural 
similarity index (SSIM) and peak signal to noise ratio 
(PSNR) are used for quantitative evaluation. The mean and 
coefficient of variation (CV) are employed to evaluate the 
stability of performance in the whole test set. 

TABLE I 
 PARAMETERS OF THE FAN-BEAM GEOMETRY 

Parameter Value 
Distance between the source and isocenter (mm) 410 

Distance between the detector center and isocenter (mm) 310 
Number of detector elements - truncated 512 
Number of detector elements - complete 1056 

Size of detector element (mm) 0.45 
Dimension of reconstruction grids - ROI 256 
Dimension of reconstruction grids - Full 512 

Pixel size (mm) 0.5 
Number of projection views over 2π 480 

We employed three methods as baselines for evaluation: the 
conventional FBP reconstruction, FBPConvNet, and a dual-
domain network (DD_ExDenoise) [12] where the 
sinogram-domain network employs two heads output for 
extrapolation outside the FOV and denoising inside the 
FOV respectively. All the methods were reproduced 
according to their original implementation. 

3.2 Experimental Results 
Three samples from different patients are displayed in Fig. 
4. FBP reconstructions are contaminated by severe bias and 
noise. FBPConvNet can recover the gray level but the noise 
cannot be well suppressed. DD_ExDenoise can remove the 
cupping artifacts and noise to a large extent. But some 

inconsistent artifacts and false positive structures can be 
observed (see the green circles and arrows in Fig. 4). 
Compared with all the methods above, DPER can produce 
the most reliable structures and consistent image quality 
(see the zoom-ins in Fig. 4). The quantitative metrics among 
all test slices are listed in Table II. We can find that DPER 
achieves the best SSIM and PSNR. 

TABLE II 
QUANTITATIVE METRICS AMONG ALL TEST SLICES (Photon 105) 

Metric 
SSIM PSNR 

Mean CV Mean CV 

FBP 0.4898 20.10% 12.382 30.01% 
FBPConvNet 0.9431 3.49% 37.434 6.48% 

DD_ExDenoise 0.9605 2.80% 39.771 8.76% 
DPER 0.9680 2.50% 40.980 7.00% 

We further evaluate the methods on the same test set but 
injected higher noise (corresponding to 5 x 104 photons) in 

projections. To adapt to the higher noise, models are 
finetuned on the same dataset from one patient for 10 
epochs where mixed noise levels corresponding to 5 x 104 

and 105 photons were employed.  The same slice is shown 
in Fig. 5 and the quantitative metrics are listed in Table III. 
FBPConvNet cannot adapt to the higher noise and produces 
images with obvious gray level deviation and drastically 
decreased PSNR. Though DD_ExDenoise may achieve 
better noise reduction, streaking and inconsistent artifacts 
are observed. DPER produces images of best quality with 
fewer artifacts and more identifiable structures than other 
methods, which validated its capability of generalizing to 
higher noise levels. 

TABLE III 
QUANTITATIVE METRICS AMONG ALL TEST SLICES (Photon 5x104) 

Metric 
SSIM PSNR 

Mean CV Mean CV 

FBP 0.4154 57.70% 12.234 30.21% 
FBPConvNet 0.9182 3.89% 32.512 6.51% 

DD_ExDenoise 0.9533 2.89% 37.532 6.13% 
DPER 0.9587 2.71% 39.301 6.61% 
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Fig. 5 Comparison among different methods on a higher noise level: DPER 
(a), DD_ExDenoise (b), and FBPConvNet (c). The display window is [0.016, 
0.024]. SSIM and PSNR are in the bottom-left corner of each image. 
For the extraction of BGp , dilated convolution is 

incorporated into SDNet to reach a larger RF. To validate 
the efficiency of the design, we compared the reconstruction 
from the dilated network with non-dilated network where 
SDNet employs the same backbone as IDNet. According to 
our experiments, both methods achieved similar results in 
the training set. However, reconstructions by the non-
dilated network suffer from severe ring artifacts in the test 
set (see the red arrows in Fig. 6). From the intermediate 
result from SDNet (see Fig. 6(b)), we may conclude that the 
artifact is mainly caused by SDNet though IDNet could 
subsequently alleviate it to a large extent (see Fig. 6(c)).  

 
Fig. 6 Comparison of the reconstruction of dilated and nondilated network: 
dilated network (DPER) (a), SDNet (b) and IDNet (c) reconstruction of the 
nondilated network. The display window is [0.016, 0.024].  

4 Discussion 
Interior tomography is an ill-posed problem due to the 
truncated projection data. Reconstructions by conventional 
algorithms such as FBP suffer from severe cupping artifacts. 
Although image-domain networks can alleviate most 
artifacts, the overall image quality is blurry which 
compromises the recognition of context structures (see the 
blue arrows in Fig. 4(d)). Compared with image-domain 
networks, dual-domain methods are more capable of 
revealing reliable structures with better generalization 
performance. Under the dual-domain framework, we 
proposed a new extraction-based reconstruction method 
DPER. The main difference between DPER and 
extrapolation-based pathways is how to alleviate the 
influence of the exterior region which is not fully measured. 
In the literature, extrapolation-based methods have been 
proposed to extend the truncated interior projection to 
acquire a non-truncated projection that contains the full 
measure of the exterior region. However, DPER learns to 
estimate the contribution of the exterior region inside the 
FOV to achieve an ROI-only projection without sinogram 
extension. DPER requires less prior information about the 
exterior region which may make the reconstruction more 
stable. As DPER only works on data inside the FOV, it can 

be more capable of jointly dealing with other nonideal 
factors such as noise in the interior projection compared 
with extrapolation-based methods (see the comparison with 
DD_ExDenoise in Fig. 4 and Fig. 5). As the contribution of 
the exterior region is to the whole FOV, the network could 
not efficiently extract it with limited RF (see Fig. 6(b)). 
Hence, dilated convolution is employed to expand the RF 
and promotes the extraction (see Fig. 6(a)). Although DPER 
has shown promising results for interior reconstruction, 
slight structural distortions and gray-level error may still 
happen. Fake structures can be observed when generalize to 
a different noise level (see the red circles in Fig. 5). We will 
address these problems in the conference. 

5 Conclusion 
In this paper, we established a new pipeline named DPER 
for interior tomography that works on extraction. Unlike 
extrapolation-based methods, DPER only focuses on data 
inside the FOV to extract the contribution of the exterior 
region and other artifacts. Experiments on low-dose interior 
tomography favored DPER in its potential of revealing 
reliable structures and good generalization.  
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Abstract Recent application of deep learning methods for image
reconstruction provides a data-driven approach to address the chal-
lenge raised by undersampled measurements or various types of noise.
In this work, we propose a general learning framework for X-ray
computed tomography (CT) image reconstruction that combines super-
vised and unsupervised learned models. We leverage both a dictionary
learning-based unsupervised solver and supervisedly trained neural
network reconstructors in two incarnations of the proposed framework
to simulate a fixed-point iteration process. Our experimental results for
denoising low-dose CT (LDCT) images demonstrate promising per-
formance of the proposed general framework compared to our recent
parallel and cascading SUPER methods for LDCT.

1 Introduction

X-ray computed tomography (CT) is widely used in clinical
practice to obtain images of bones, blood vessels, and soft tis-
sues inside the human body. Many commercial CT scanners
use the filtered-back projection (FBP) technique to produce
tomographic images from X-ray measurements. When the
X-ray dosage for CT measurements is low, which is desirable
to lessen potential harm to patients, the FBP method can lead
to compromised image quality. Model-based iterative recon-
struction (MBIR) methods [1] were proposed to address such
performance degradation in the low-dose X-ray computed
tomography (LDCT) setting.
Two classical MBIR formulations are non-adaptively regu-
larized least-square problems and dictionary learning-based
optimization problems. Edge-preserving (EP) regularized
least-square-based solver is an example for non-adaptive im-
age reconstruction. Dictionary learning-based methods [2]
provide improved image reconstruction quality compared
to non-adaptive MBIR schemes, but incur expensive com-
putations for sparse encoding. Recent penalized weighted
least square (PWLS) methods with regularizers involving
learned sparsifying transforms (PWLS-ST [3]) or a union
of learned transforms (PWLS-ULTRA [4]) have the advan-
tages of computational efficiency (cheap sparse coding in
transform domain) and the representation power of learned
models (transforms).
Deep learning-based approaches have also been successfully
applied for LDCT image reconstruction (see [5] for a re-
view). FBPConvNet [6] is a CNN-based refinement scheme
which operates in the image domain and maps the crude FBP-
reconstructed CT images to target images obtained under
full-dose setting. Another approach, WavResNet [7], learns

a set of filters used for constructing the encoder and decoder
of the convolutional framelet denoiser to refine crude LDCT
images.
Deep learning methods often require large dataset for train-
ing and may have degraded performance when applied to a
dataset with different underlying distribution than the train-
ing dataset. In comparison, sparsifying transform learning
methods only need small training datasets and have shown
improved generalization property to new data [4]. Ye et.
al. [8] proposed a unified supervised-unsupervised (Serial
SUPER) learning method for LDCT image reconstruction
that exploits both supervised deep learning models and un-
supervised transform learning (ULTRA) solvers. The Serial
SUPER method alternates between a neural network-based
denoising step and an optimization step with learned dic-
tionary regularization. In a similar spirit, Chen et al. [9]
proposed the Parallel SUPER method to simultaneously ex-
ploit the supervised module and unsupervised module, where
the output of supervised module and unsupervised module
are adaptively aggregated and such aggregation blocks iterate
to attain convergence to the final refined image.
In this work, we propose a general framework to combine
supervised and unsupervised modules for LDCT image re-
construction. The Serial SUPER and the Parallel SUPER can
be derived as special instances of this general formulation.
We explore two specific structures derived from the general
framework, and find that these two structures outperform
the standalone supervised module, unsupervised module, the
Serial SUPER method and the Parallel SUPER method.

2 General Formulation and Algorithms

2.1 General formulation

The main idea of the general SUPER framework is to com-
bine the unsupervised module and the supervised module
in some form for the purpose of outperforming individual
methods, and we iterate such combination blocks to attain
convergence. Denote the neural network operator (or some
general non-linear operator) as N(·), the unsupervised solver
as T (·), and a general aggregation operator as G(·). The
general SUPER model in the n-th layer can be formulated as:

xn+1 = Gn

(
Nn
(
zn,T (zn)

)
,T (xn),zn

)
, (1)
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where xn is the output of n-th layer and z is the collection of
all history of x, i.e., zn = {x0:n}. The notation Nn

(
zn,T (zn)

)
is abused here in the sense that not necessarily the entire
history needs to be considered, but instead only partial his-
tory can be taken into account. As an example, if we only
want to exploit the reconstruction results in the previous
three blocks and the output of unsupervised solvers in the
previous two blocks, we can set the first argument of Gn to
be Nn

(
xn,xn−1,xn−2,T (xn),T (xn−1)

)
. The same connotation

applies for the history input zn to Gn.
In the formulation (1), the neural networks Nn can take input
from previous intermediate output zn and output of unsuper-
vised solvers in previous blocks T (zn). Using the interme-
diate output of earlier blocks enables the residual structure.
The unsupervised solver only takes in the reconstruction out-
put from previous block without any historical information.
This design for T is for simplicity and for accommodating
the specific solvers we use in this study. The aggregation G(·)
can be nonlinear, piecewise, index-dependent, or identity
with respect to some arguments.

2.2 Examples of structures

Based on the general formulation (1), the Serial SUPER
method can be represented as xn+1 = Gn(Nn(xn),T (xn)),
where Gn(Nn(xn),T (xn)) = Nn(xn) when n is odd and
Gn(Nn(xn),T (xn)) = T (xn) when n is even. The Parallel
SUPER method can be represented in the formulation (1)
as xn+1 = λnNn(xn)+ (1−λn)T (xn), and Gn(Nn(xn),T (xn)) =
λnNn(xn)+ (1−λn)T (xn), where λn is the combination param-
eter in the n-th layer.
We can also obtain other SUPER models by choosing differ-
ent aggregation functions and different ways of exploiting
history information, for instance the Structure 1 shown in
Figure 1 and the Structure 2 shown in Figure 2.
For Structure 1, the final output of the n-th layer is from a
neural network aggregating the final output of (n−1)-th layer
and the output of unsupervised solver in n-th layer:

xn+1 = Nn(xn,T (xn)). (2)

For Structure 2, the difference from structure 1 is that we use
older information of the unsupervised solvers in the iteration
sequence:

x1 = N0(x0), xn+1 = Nn(xn,T (xn−1)). (3)

2.2.1 Supervised Module

We use FBPConvNet, which is a CNN-based image-domain
denoising network, as the supervisedly trained denoiser. FBP-
ConvNet was originally designed for sparse-view CT, while
we apply it here to the low-dose CT cases. The FBPCon-
vNet takes low-dose FBP-reconstructed images as network
input, and it is trained to map input images to high-quality
reference images. FBPConvNet has an architecture similar
to the U-Net, and FBPConvNet adopts multichannel filters to
increase the capacity of the network.

2.2.2 Unsupervised Module

For the unsupervised module of each layer, we solve the
following MBIR problem to reconstruct an image x ∈ �Np

from the corresponding noisy sinogram data y ∈�Nd :

min
x≥0

J(x,y) :=
1
2
∥y−Ax∥2W︸         ︷︷         ︸
:=L(Ax,y)

+βR(x), (4)

where W = diag{wi} ∈�
Nd×Nd is a diagonal weighting matrix

with the diagonal elements wi being the estimated inverse
variance of yi, A ∈�Nd×Np is the system matrix of the CT scan,
L(Ax,y) is the data-fidelity term, penalty R(x) is a (learning-
based) regularizer, and the parameter β > 0 controls the noise
and resolution trade-off.
In this work, we use the PWLS-ULTRA method to recon-
struct an image x from noisy sinogram data y (measurements)
with a union of pre-learned transforms {ΩΩΩk}

K
k=1. The image

reconstruction is done through the following nonconvex opti-
mization problem:

T (xn) = argmin
x

{1
2
∥y−Ax∥2W+

min
Ck,z j

K∑
k=1

∑
j∈Ck

(
∥ΩΩΩkP jx− z j∥

2
2+ γ

2∥z j∥0

)}
,

(5)

where T (xn) is the reconstructed image by the unsupervised
solver (with initialization xn) in the l-th layer, the operator
P j ∈�

l×Np extracts the j-th patch of l voxels of image x as
P jx, z j is the corresponding sparse encoding of the image
patch under a matched transform, and Ck denotes the indices
of patches grouped into the k-th cluster with transform ΩΩΩk.
Minimization over Ck indicates the computation of the clus-
ter assignment of each patch. The regularizer R includes
an encoding error term and an ℓ0 sparsity penalty counting
the number of non-zero entries with weight γ2. The sparse
encoding and clustering are computed simultaneously. We
leverage the alternating minimization method [4] (with inner
iterations for updating x) to solve the optimization problem
(5). We also use different (potentially better) initialization in
each parallel SUPER layer, which may benefit solving the
involved nonconvex optimization problem.

3 Experiments

3.1 Experiment setup

In our experiments, we use the Mayo Clinic dataset estab-
lished for the “2016 NIH-AAPM-Mayo Clinic Low Dose CT
Grand Challenge" [10]. We chose 520 images from 6 of 10
patients in the dataset, from which 500 slices were used for
training and 20 slices were used for validation. We randomly
selected 20 images from the remaining 4 patients for testing.
We projected the regular dose CT images x⋆ to sinograms y
by adding Poisson and additive Gaussian noise to them as
follows:

yi = − log
(
I−1
0 max

(
Poisson{I0e−[Ax⋆]i}+N{0, σ

2},ε
))
,
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Figure 1: The structure 1 of the general SUPER model.

Figure 2: The structure 2 of the general SUPER model.

where the original number of incident photons per ray is
I0 = 104, the Gaussian noise variance is σ2 = 25, and ε is a
small positive number to avoid negative measurement data
when taking the logarithm [11].
We used the Michigan Image Reconstruction Toolbox to con-
struct fan-beam CT geometry with 736 detectors × 1152
regularly spaced projection views, and a no-scatter mono-
energetic source. The width of each detector column is
1.2858 mm, the source to detector distance is 1085.6 mm,
and the source to rotation center distance is 595 mm. We
reconstructed images of size 512× 512 with the pixel size
being 0.69 mm × 0.69 mm.

3.2 Parameter settings

In both Structure 1 and Structure 2, we use FBPConvNet as
the supervised module and PWLS-ULTRA as the unsuper-
vised module. It takes about 10 hours for training a model
instance with 10 layers on a GTX Titan GPU graphics pro-
cessor. During the training of the supervised method, we
ran 4 epochs (the amount of epochs is kept small to reduce
overfitting risks) with the stochastic gradient descent (SGD)
optimizer for the FBPConvNet module in each parallel SU-
PER layer. The training hyperparameters of FBPConvNet
are set as follows: the learning rate decreases logarithmically
from 0.001 to 0.0001; the batchsize is set as 1 due to the abil-
ity of the GPU; and the momentum parameter is 0.99. The
filters were initialized in the various networks during training
with i.i.d. random Gaussian entries with zero mean and vari-
ance 0.005. For the unsupervised module, we trained a union
of 5 sparsifying transforms using 12 slices of regular-dose CT
images (which are included in the 500 training slices). Then,
we use the pre-learned union of 5 sparsifying transforms to
reconstruct images with 5 outer iterations and 5 inner itera-
tions of PWLS-ULTRA. In the training and reconstruction
with ULTRA, we set the parameters β = 5×103 and γ = 20.
PWLS-EP reconstruction is used as the initial x0 or the input
of the networks in the first layer.
We compare the two derived structures from the general
supervised-unsupervised integration framework with the un-
supervised method (PWLS-EP), standalone supervised mod-
ule (FBPConvNet), standalone unsupervised module (PWLS-
ULTRA), the serial SUPER model and the parallel SUPER
method. PWLS-EP is a penalized weighted-least squares
reconstruction method with edge-preserving hyperbola reg-

ularization. For the unsupervised method (PWLS-EP), we
set the parameters δ = 20 and β = 215 and ran 100 itera-
tions to obtain convergent results. In the training of the
standalone supervised module (FBPConvNet), we ran 100
epochs of training to sufficiently learn the image features
with low overfitting risks. In the standalone unsupervised
module (PWLS-ULTRA), we used the pre-learned union of
5 sparsifying transforms to reconstruct images. We set the
parameters β = 104 and γ = 25, and ran 1000 alternations
with 5 inner iterations to ensure good performance. In the
serial SUPER model, we ran 4 epochs of training when learn-
ing the supervised modules (FBPConvNet), and we used the
pre-learned union of 5 sparsifying transforms and set the
parameters β = 5× 103, γ = 20 and µ = 5× 105 to recon-
struct images with 20 alternations and 5 inner iterations for
the unsupervised module (PWLS-ULTRA). In the parallel
SUPER model, we also ran 4 epochs of training when learn-
ing the supervised modules (FBPConvNet), and we used the
pre-learned union of 5 sparsifying transforms and set the
parameters β = 5×103 and γ = 20 to reconstruct images with
20 alternations and 5 inner iterations for the unsupervised
module (PWLS-ULTRA). We used the optimal combination
parameter λ = 0.3.
We choose root mean square error (RMSE) and structural
similarity index measure (SSIM) to quantitatively evalu-
ate the performance of all reconstruction methods. The
RMSE in Hounsfield units (HU) is defined as RMSE =√∑Np

j=1(x̂ j −x∗j)2/Np, where x∗j is the j-th pixel of the ref-
erence regular-dose image x∗, x̂ j is the j-th pixel of the
reconstructed image x̂, and Np is the number of pixels.

3.3 Results

We conducted experiments on 20 test slices (slice 20, slice
50, slice 100, slice 150, and slice 200 of patients L067, L143,
L192, and L310) of the Mayo Clinic data. Table 1 shows
the averaged image quality of 20 test images with differ-
ent methods. From Table 1, we observe that the proposed
Structure 1 and Structure 2 significantly improve the image
quality compared to the standalone FBPConvNet (supervised
module) and the standalone PWLS-ULTRA (unsupervised
module). They achieve 2.4 HU and 2.3 HU better average
RMSE compared with Serial SUPER while their SSIM is
comparable with Serial SUPER. They achieved 0.6 HU and
0.5 HU better average RMSE compared with Parallel SUPER
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RMSE:45.1HU

PWLS-EP

RMSE:35.4HU

PWLS-ULTRA

RMSE:33.3HU

FBPConvNet

RMSE:29.9HU

Serial SUPER

RMSE:26.9HU

Parallel SUPER

RMSE:26.4HU

Structure 1

RMSE:26.5HU

Structure 2

RMSE:0HU

Reference

Figure 3: Reconstruction of slice 50 from patient L067 using various methods. The display window is [800, 1200] HU.
Table 1: Mean RMSE and SSIM of reconstructions of 20 test

slices with the PWLS-EP, PWLS-ULTRA, FBPConvNet, Serial
SUPER, Parallel SUPER, the proposed Structure 1 and the

proposed Structure 2, respectively.

Method RMSE (HU) SSIM

PWLS-EP 41.4 0.673
PWLS-ULTRA 32.4 0.716
FBPConvNet 29.2 0.688
Serial SUPER 25.0 0.748

Parallel SUPER 23.2 0.751
Structure 1 22.6 0.745
Structure 2 22.7 0.747

while their SSIM is comparable with Parallel SUPER. Fig. 3
shows the reconstructions of L067 (slice 50) using PWLS-
EP, PWLS-ULTRA, FBPConvNet, serial SUPER, parallel
SUPER, Structure 1, and Structure 2 along with the refer-
ences (ground truth). The proposed two structures achieved
the lowest RMSE and the zoom-in areas show that they can
reconstruct image details better.

4 Conclusion

This paper proposes a general formulation to combine super-
vised deep learning methods and unsupervised methods for
low-dose CT reconstruction. We experiment with two spe-
cific integration formats which involve the supervised deep
model FBPConvNet and the unsupervised model PWLS-
ULTRA. Our framework demonstrates better reconstruction
accuracy compared to the individual modules, and the recent
serial SUPER and Parallel SUPER methods.
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Abstract Image reconstruction from low-dose measurements has been
playing an important role in low-dose CT imaging. Deep learning mod-
els have been shown to be successful in low-dose CT reconstruction
over traditional methods. Recently, a reconstruction framework for
Radon inversion with deep learning (i.e., iRadonMAP) is developed
to transfer low-dose measurement into CT images directly and effi-
ciently. The iRadonMAP implements the theoretical inverse Radon
inversion alongside the image transformation between sinogram and
image domais in a network. However, the iRadonMAP is sensitive to
protocol-specific perturbations, i.e., geometric model, mAs settings
and kVp settings, and it fails to reconstruct the high-fidelity CT images
from low-dose measurements across different scanners simultaneously.
This might reduce the iRadonMAP generalization. In this work, to
address this issue, we constructed a federated learning (FL) frame-
work with iRadonMAP embedded to produce high-quality CT images
across different scanners. For simplicity, the proposed framework is
denoted as FL-iRadonMAP, i.e., federated learning with iRadonMAP.
Specifically, in the FL framework, all clients have normal-dose im-
ages/corresponding low-dose sinograms pairs from different scanners
to train the iRadonMAP in each local model. Different from tradi-
tional FL, the server has a large amount of labeled data, i.e., normal
dose/corresponding low-dose CT image pairs, and the labeled data are
used to train the global model that enforces the local client to learn
different protocol perturbations in each local model. In each client,
only the parameters in the image domain of the iRadonMAP are col-
lected and aggregated to the server to obtain global model. We evaluate
the presented FL-iRadonMAP on four different CT datasets, and the
experimental results confirm that the proposed FL-iRadonMAP has
significantly improved performance, preserving the detail texture and
suppressing noise-induced artifacts in the CT images across scanners.

1 Introduction

Concerns have been raised about the radiation exposure and
radiation-induced malignancy risk due to an increasingly
large number of CT examinations each year [1]. Methods
of reducing radiation dose have been extensively studied.
Lowering mAs levels in CT data acquisition protocols is a
simple way to reduce radiation dose. However, this might
result in an insufficient number of photons detected at de-
tector and hence increase noise-induced artifacts in the final
CT images. Various methods have been extensively investi-
gated [2–6]. Among them, the deep learning (DL)-based CT
reconstruction methods have been widely developed. Com-
pared with the traditional methods, the DL-based methods
not only improve CT image quality but have the advantages

*Corresponding author: D. Zeng, zd1989@smu.edu.cn
†Corresponding author: J. Ma, jhma@smu.edu.cn

of real-time imaging. The DL-based methods can be roughly
categorized as model-free methods and model-based meth-
ods. The model-free methods learn certain underly mappings
completely through end-to-end training in sinogram domain
or image domain. It should be noted that the model-free
methods have fewer layers than traditional optimization it-
erations but too many parameters with slow training. In
addition, most of these methods have poor generalization
with inaccurate solutions. The model-based methods usually
combined data consistency and geometry system priors with
image features learned from dataset, then unroll an iterative
optimization algorithm to a network. For example, He et al.
unrolled the model-based iterative reconstruction algorithm
in a DL-based framework that had the potential to address
both prior knowledge design and parameter selection in an
optimization framework [5]. Compared with the model-free
methods, the model-based methods relax more constraints
and incorporate more domain knowledge in the network to
promote the low-dose CT reconstruction performance.

Recently, He et al. developed a reconstruction framework
for Radon transformation with deep learning techniques, i.e.,
iRadonMAP [6]. The architecture of iRadonMAP is similar
with FBP algorithm that contains a fully connect filtering
layer along the rotation angle direction in the sinogram, a
sinusoidal back-projection layer that transforms the filtered
sinogram data into the image, and a post processing network
to further improve image quality. Meanwhile, it should be
noted that the iRadonMAP is geometry system specific, i.e.,
the iRadonMAP trained on the dataset from one scanner
might fails to generalize to new dataset from the other scan-
ner and the iRadonMAP can not be trained on the dataset
from different scanner simultaneously due to the different ge-
ometry system parameters. Therefore, it is a challenging task
for iRadonMAP to reconstruct low-dose CT images from
different scanners simultaneously.

Federated learning has become a topic of active research
in medical imaging field. The FL enables collaborative
training of machine learning models among different or-
ganizations and keeping the data private at each local in-
stitution, which tackles data heterogeneity from different
institutions. Inspired by the FL strategy, we presented a
federated learning (FL) framework with iRadonMAP embed-
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Figure 1: The framework of the FL-iRadonMAP.

ded (i.e., FL-iRadonMAP) to reconstruct CT images with
suppressed noise-induced artifacts across different scanners.
Specifically, in the FL framework, there are normal-dose
images/corresponding low-dose sinograms pairs from dif-
ferent scanners in each local client, which are used to train
the iRadonMAP in each local model. In the server, there
has a large amount of high-quality labeled data, i.e., normal
dose/corresponding low-dose CT image pairs, which is dif-
ferent from the traditional FL framework. And the labeled
data in the server are used to train the global model that
enforces the local client to learn different protocol perturba-
tions in each local model. Then, only the parameters in the
image domain of the iRadonMAP in each local client are
collected and aggregated to the server to obtain global model.
The experimental results demonstrate that the presented FL-
iRadonMAP is a promising direction to achieve improved
CT reconstruction with the iRadonMAP.

2 Materials and Methods

2.1 The iRadonMAP

In previous work [6], the iRadonMAP can be expressed as
follows:

µ(i, j) =
M

∑
m=1

ϕR ·P(n,m)|n=INT [icosθm+ j sinθm], (1)

where, µ is the reconstructed image, ϕR represents the train-
able parameters of the back-projection module in iRadon-
MAP, P is two-dimensional the Radon projection with θ

rotation angle, m is the index of rotation angles, INT denotes
the nearest neighbor interpolation, n determines the sinusoid
in the sinogram data at a certain location (i, j) in the image
domain.

2.2 The proposed FL-iRadonMAP

The presented FL-iRadonMAP introduces the iRadonMAP
into the FL framework to promote the generalization of
iRadonMAP, aiming to reconstruct high-quality CT images
across different scanners simultaneously. Specifically, differ-
ent from the traditional FL framework, the global server in
the presented FL-iRadonMAP contains high-quality normal-
dose/low-dose CT image pairs to enforce the local client to
learn different protocol perturbations in each local model.
And the training dataset in each local model are low-dose
sinogram data/normal-dose CT images that are from different
scanners, which exist great heterogeneity among all the local
clients.

2.2.1 Local model training

The loss function in each local client can be expressed as
follows:

L (µ,µ∗) = ∥µ −µ
∗∥2

2, (2)

where µ∗ is the reference image, ∥ · ∥2
2 is L2 norm.

In the tth round of training the parameters of the kth (k ∈ L)
local client can be updated as follows:

ϕϕϕ
t+1
k = ϕϕϕ

t
k −σk∆L t(µ,µ∗), (3)

where ϕϕϕ t
k(ϕp,ϕR,ϕi) represents the parameters at kth local

model in the tth round training, ϕp is the parameters of sino-
gram domain sub-network, ϕi is the parameters of image
domain sub-network, σk is the learning rate of client k.
It should be noted that the dataset in each client is acquired
with different protocols and scanners, which indicates great
variations among distribution of the different dataset. In the
presented FL-iRadonMAP, the local client trains the iRadon-
MAP with its own dataset, respectively. Moreover, to pre-
serve the feature specificity of each local model, we collect
only the model parameters ϕi in the image domain and ag-
gregate to the global model in server for update. Then, the
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Client #1 Client #2 Client #3

Number of projection angles 896 1152 640
Number of detector bins 1008 1104 1024
Length of a detector bin(mm) 0.5480 0.5000 0.6500
Length of a voxel (mm) 0.7421 0.6641 0.7500
Distance between source and detector (mm) 800.0 1085.6 750.1
Distance between source and rotation center (mm) 550.0 595.0 476.3
Voltage of tube(kVp) 80 140 120
Intensity of X-rays 5×105 1×105 1×105

Table 1: Imaging geometries of clients.

update of global model parameters ϕϕϕglobal can be expressed
as follows:

ϕϕϕ
t+1
global =

1
L

L

∑
k=1

ωkϕ
t
ki
, (4)

where ωk is the weight of kth local model in the aggregation.
It should be noted that the global model in the server only
takes into account the characteristics of the CT images in the
local client, but not the characteristics of the sinogram in the
local client. This can process the sinogram data across the
different scanners in each local client simultaneously within
the iRadonMAP, which can promote the generalization of the
iRadonMAP and tackle data heterogeneity efficiently.

2.2.2 Global model training

To further improve the iRadonMAP reconstruction perfor-
mance of the local model, we also collect high-quality
normal-dose/low-dose CT image pairs to construct a cen-
tral dataset in the global server, which is different from the
traditional FL framework. The traditional FL only utilizes
the global server to aggregate and distribute the correspond-
ing parameters from the network in the local client. In the
presented FL-iRadonMAP, the model in the global server can
be iteratively updated by the high-quality labeled dataset in
each training round, and then used for parameters update in
the client. Then Equation 4 can be updated as follows:

ϕϕϕ
t+1
global =

1
L+1

(
L

∑
k=1

ωkϕ
t
ki
+ωglobalϕϕϕ

t
global), (5)

where ωglobal is the weight of the global model in parameter
aggregation.

3 Experiments

3.1 Network Architectures

Figure 1 shows the presented FL-iRadonMAP framework.
The iRadonMAP in each local client is a modified one in
[6] wherein both the sub-network in the sinogram domain
and the sub-network in the image domain are composed
of convolution residual blocks, and we use one-dimensional

convolutional kernels with the size 1×3 in the sub-network in
the sinogram domain, and the kernels with the size of 3×3 in
the image domain. To consider the heterogeneity among the
dataset in each client from different protocols and scanners,
in this work, we utilize the multilayer perceptron (MLP)
to map the protocols and geometry parameters into high-
dimensional vector ρ as the network input, which represents
the source of the CT images, i.e., acquisition protocols and
scanners. These vectors can modulate the output feature
maps as follows:

ŷ = h1(ρ)y+h2(ρ), (6)

where y is the output feature map of the network layer. ŷ is
the modulated feature map. h1, h2 represent the MLP vectors.

3.2 Dataset

To validate and evaluate the reconstruction performance of
the presented FL-iRadonMAP, with the approval of the Local
Institute Research Medical Ethics Committee, four different
dataset are collected in the experiment. 100,000 CT im-
ages data including head, abdomen and phantom at different
kVp, mAs are collected in the global server. The other three
CT datasets from different scanners are used in three local
clients to represent the heterogeneity among different clients.
Specifically, Client #1 contains 1000 head images, Client #2
contains 500 phantom images, and Client #3 contains 1000
abdomen images. To obtain corresponding low-dose mea-
surements, we simulated low-dose CT images/sinogram data
from the normal-dose ones based on the previous study [7].
Table 1 lists the geometry parameters and dose levels in the
local dataset in the simulation study.

3.3 Compared methods and implementation details

In this work, FBP, FedAvg, and iRadonMAP are used as
competitive methods. In the presented FL-iRadonMAP
the weight of global model and three local client model
at parameter aggregation (i.e., ωglobal,ω1,ω2,ω3) is set to
7

10 ,
1

10 ,
1

10 ,
1

10 , respectively. And the weight of each local
client in FedAvg is set to 1

3 ,
1
3 ,

1
3 , respectively. The learning

rate of all models is set to 2× 10−5, and optimized with
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Figure 2: Results of FL-iRadonMAP and compared methods.

the RMSProp optimizer. Peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM) and root mean square error
(RMSE) measures are used to evaluate the reconstruction
performance of each competing method.

4 Results

Figure 2 shows the qualitative visualization of representative
results of the competing methods on three different cases.
The normal-dose FBP-reconstructed images are served as
the ground-truth. The ROI indicated by the red boxes are
zoomed-in for better comparison. From Figure 2, it can be
observed that the low-dose FBP-reconstructed images con-
tain severe noise-induced artifacts. The iRadonMAP can
effectively remove the noise-induced artifacts but it would re-
sult in the loss of structure details as shown in the zoomed-in
ROIs. The FedAvg does not work well in resolution preser-
vation since the global server in the FedAvg only aggregates
and distributes the parameters during the training process,
but fails to consider the variations among the dataset in each

client. This might lead to undesired reconstruction results due
to the data heterogeneity across scanners. The presented FL-
iRadonMAP yields reconstructed CT images with remarkable
visual similarity to the ground truth compared to the other
competing methods in three datasets with diverse characteris-
tics across scanners. The possible reason is that the dataset in
the global server would help tackle data heterogeneity across
scanners and promote the reconstruction performance in each
client. Moreover, FL-iRadonMAP obtains the best quantita-
tive measurements at all the cases, which is consistent with
the visual inspection.

5 Conclusion

In this work, we present a FL-iRadonMAP to tackle data
heterogeneity among the datasets due to the different pro-
tocols and scanners and promote the generalization of the
iRadonMAP in the reconstruction tasks. Through extensive
experiments on datasets with diverse characteristics, it is
demonstrated that the presented FL-iRadonMAP can obtain
promising reconstruction results across scanners.
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Abstract Deep learning (DL) have shown great potential in the low-
dose CT imaging field. Existing works show that DL-based CT denos-
ing/reconstruction methods can obtain high-quality CT images at low-
dose cases, and outperform traditional model-based methods. How-
ever, existing DL-based methods are generally designed based on the
dataset from one site, hindering their application to the new dataset
from other site with limited generalization performance. The main rea-
son is that there exists variation across scanners, acquisition protocols
and patient populations. This could lead to data heterogeneity among
different centers and low efficiency in downstream task. To address
this issue, in this work, we present a Dual Domain Harmonization Net-
work (DuDoHNet) with consideration of the filter kernel style in the
sinogram domain and image style in the image domain. Specifically,
multilayer perceptron (MLP) is introduced to characterize difference
between the source domain and target domain and PatchGAN is used
to model the semantic information between the source domain and
target domain. Finally, the presented DuDoHNet allows for recon-
structing high-fidelity CT images to reduce confounding data variation
and preserve semantic information from different scanners. Experi-
ments on the CT dataset with four different filter kernels from two
scanners demonstrate that the presented DuDoHNet outperforms the
image-based harmonization networks qualitatively and quantitatively.

1 Introduction

X-ray Computed tomography is widely used in the clinics for
disease diagnosis and treatment planning. However, it is well-
known that ionizing radiation in the CT is harmful to human,
which might cause cancerous diseases. Then the as low as
reasonable available (ALARA) principle should be followed
in the radiology field. However, lowering the X-ray flux by
decreasing tube current and exposure time directly would
lead to poor CT image quality. Extensive efforts have been
made to develop an efficient image denosing/reconstruction
method for the clinical used of low-dose CT. Among them,
deep learning (DL)-based methods have shown promising
results compared to the conventional model-based methods.
These DL-based methods leverage large CT image datasets to
learn better image representations and produce better image
reconstruction results.
Although the DL-based methods offer significant improve-
ment in image quality, it should be noted that most of them
are trained with historical dataset and then reconstruct the
new unseen dataset, which might lead to limited generaliza-
tion. The main reason is that there exists heterogeneity of

*Corresponding author: D. Zeng, zd1989@smu.edu.cn
†Corresponding author: J. Ma, jhma@smu.edu.cn

CT dataset among sites. The variation of CT dataset might
come from different scanners, different protocols, and dif-
ferent patient population. Pooling data across scanners and
sites leads to undesirable increase in non-biological variance
[1]. For example, the scanner-induced biases can cause in-
coherence among the characteristics in the CT images, and
the differences in protocol settings can lead to appearance
variation of image type. Therefore, it is critical to develop
effective harmonization method to reduce data variation and
reconstruct high-fidelity CT images from different scanners
and protocols.
Various methods have been developed to harmo-
nize/transform CT dataset with varied settings. For
example, Yao et al. used a generative model to simulta-
neously generate energy-resolving CT images at multiple
energy bins from existing energy-integrating CT images
[2]. D. Kawahara et al. constructed a deep convolutional
adversarial network for synthesizing a dual-energy CT
image from an equivalent kilovoltage CT image [3]. S.
Charyyev et al. presented a residual attention generative
adversarial network to synthesize dual-energy CT images
from single-energy CT image [4]. These methods take into
account the data heterogeneity between different scanning
protocols, enable CT images synthesis and harmonization.
However, the disadvantage of these methods is that they
do not consider the influence of filter kernels on image
reconstruction, and there is room for improvement. And
then, some DL-based CT kernel transformation methods
were proposed to solve this problem. For instance, S. M. Lee
et al. developed a convolutional neural network to transform
CT images reconstructed with one CT kernel to images
with different reconstruction CT filter kernels [5]. Kim et
al. reconstructed from different manufacturers through a
routable network [6]. These methods consider variability of
images with different filter kernels and could achieve image
style transformation and uniformity. But the drawback is
that they do not mention the influence of scanning protocols
on image quality, and all these methods process the data
in image domain which lack in the consideration of the
features of sinogram domain and result in the limitation of
the accuracy of harmonization/transformation.
In this paper, we propose a Dual Domain Harmonization
Network (DuDoHNet) by considering the filter kernel style
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in the sinogram domain and image style in the image domain.
Specifically, the presented DuDoHNet can obtain desired
sinogram data with well-generated filter kernel via the net-
work, and then reconstruct the final CT images with targeted
style. In addition, multilayer perceptron (MLP) is introduced
to characterize difference between the source domain and
target domain and PatchGAN is used to model the semantic
information between the source domain and target domain.
Therefore, the presented DuDoHNet can reconstruct high-
fidelity CT images to reduce confounding data variation and
preserve semantic information from different scanners. Ex-
periments show that DuDoHNet enable to reconstruct and
harmonize CT images with various filter kernels from differ-
ent scanners.

2 Materials and Methods

The CT image reconstruction procedure can be expressed as
follows:

I = F i{R−1[F p(P)]}, (1)

where P is the sinogram data, F p, F i are the filtering opera-
tion in the sinogram domain and image domain, respectively.
R−1 is inverse Radon transformation operator.
To harmonize CT images captured by different scanners,
in this work, we construct a deep learning network for CT
image harmonization. For example, the measurements (i.e.,
sinogram) PS from scanner A (i.e., source domain S) are
passed through the network to reconstruct the CT images IT

S
with the style from scanner B (i.e., target domain T). And
the expression can be defined as follows:

IT
S = Mi{R−1[Mp(PS|θ p)|θ i]}, (2)

where Mp and Mi represent the sub-networks in the sinogram
domain and image domain, respectively. θ p and θ i are the
corresponding network parameters. PS is sinogram processed
by the filter kernel from the source domain, which is F p

A (PA)
in Equation 1. Then, we define the dual-domain generator
MG as the combination of Mp and Mi wherein the MG can
reconstruct sinogram from source domain into the final CT
image with style from the target domain. Then Equation 1,
2 can be rewritten as follows:

IT
S = MG(PS|θG). (3)

Due to the unpaired data between the source domain and
target domain, in this study, WGAN [7] discriminator is
introduced, and the loss function can be expressed as follows:

LD = E
IT
S ∼PT̃

[MD(IT
S )]− E

IS∼PT
[MD(IS)], (4)

where PT is the distribution of the target domain style image,
PT̃ is the distribution of the desired reconstructed image. The
loss function of the generator G can be defined as follows:

LG =−MD(IT
S ). (5)

It should be noted that the generative adversarial loss of
Equation 5 is unsupervised. To make the network robust, we
also introduce a self-transformation loss function to produce
the CT images with the style from the source domain (i.e.,
source-to-source reconstruction), and it is defined as follows:

Lsel f =

{
∥IS

S − IS∥
2
2, while sel f trans f ormation

0 others
, (6)

where IS
S represents an image with the style from the source

domain.
Moreover, we also would like to produce the different filter
kernels efficient in the sinogram domain that can produce
the CT images with different styles, which can be defined as
follows:

Lkernel = ∥PS −PT
S ∥1, (7)

where PT
S is the sinogram data from the source domain that

would be filtered by the filter kernel from the target domain.
Therefore, the total loss function can be expressed as follows:

Ltotal = λGAN(LD +LG)+λsel f Lsel f +λkernelLkernel, (8)

where λGAN , λsel f and λkernel are parameters.

3 Experiments

3.1 Network Architectures

Figure 1 shows the framework of the presented DuDoHNet.
The proposed DuDoHNet consists of a dual-domain gener-
ator and a discriminator. The generator network contains
sino-network, back-projection module, image-network, and
multilayer perceptron (MLP). The sino-network is composed
of 8 convolutional residual blocks with channel attention,
and the size of convolutional kernel is set to 1× 3. The
back-projection module allows for efficiently processing the
gradients. The image-network is composed of 8 convolu-
tional residual blocks with spatial attention, and the size
of convolutional kernel is set to 3× 3. The discriminator
is similar with the patchGAN [8]. To consider the geome-
try parameters from the different scanners, MLP is used to
characterize the scanners as follows [9]:

ν = [ f1, · · · , fn], (9)

where ν is normalized vector, where f1, · · · , fn are normal-
ized CT imaging geometry parameters, the details are shown
in Table 1. Furthermore, we concatenate the vector νS and
the vector νT of target domain. The parameter ρ can be
defined as follows:
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Figure 1: Framework of the proppsed DuDoHNet. The blue arrows represent the source-to-source reconstruction procedure, and the red
arrows represent the source-to-target reconstruction.

ρ = [νS,νT]. (10)

As shown in Figure 1, this vector is regarded as a part of
the network input, and is mapped by three multilayer percep-
trons(MLPs) into a high-dimensional modulation vector that
modulates the feature map of the middle layer of the network
[10].

3.2 Dataset

To validate and evaluate the reconstruction performance of
the presented DuDoHNet, we collected abdominal CT images
from two different scanners, i.e., Scanner #1 and Scanner #2,
wherein 1200 images are from Scanner #1 and 1350 images
are from Scanner #2. Then we simulated low-dose sinogram
data from the two datasets with corresponding geometry
parameters. The geometry parameters are listed in Table
1. And then we reconstruct the low-dose siongram from
Scanner #1 into CT image with two different filter kernels
(i.e., Kernel #1 and Kernel #2), respectively. We reconstruct
the low-dose siongram from Scanner #2 into CT image with
another two different filter kernels (i.e., Kernel #3 and Kernel
#4), respectively. Figure 2 shows the four CT images from
two scanners reconstructed with different filter kernels. 90%
of the dataset are used for network training, and the remaining
are used for experimental validation.

3.3 Competing methods and implementation details

We compared the presented DuDoHNet with GAN and cy-
cleGAN that are post-processing methods. Gray-level run-
length matrix (GLRLM) is an important feature to measure
the higher-order texture features between the reconstructed
CT images and the images from target domain, and the con-
sistency correlation coefficient (CCC) of GLRLM is a quan-
titative harmonization measure. We constructed all models

Scanner #1 
Kernel #1

Scanner #1 
Kernel #2

Scanner #2 
Kernel #3

Scanner #2 
Kernel #4

Figure 2: Examples from the dataset with different filter kernels
from two scanners.

Scanner #1 Scanner #2

Number of projection angles 1152 896
Number of detector bins 1100 1008
Length of a detector bin(mm) 0.5000 0.5480
Voltage of tube(kVp) 120 120

Table 1: Geometry parameters from two scanners used in the
simulation study.

with Pytorch [11] with Adam optimizer, and the learning rate
is set to 2×10−5.

4 Results

Figure 3 shows the CT images with four filter kernels from
two scanners reconstructed by the presented DuDoHNet. It
can be seen that the DuDoHNet can produce the CT images
from source domain to source domain which are close to
those in Figure 2. And the DuDoHNet can produce CT
images from source domain to target domain with markedly
uniform in terms of structure contrast, over and regional in-
tensity, and noise patterns. For example, from source domain
(Scanner #1, Kernel #2) to target domain (Scanner #2, Kernel
#3), both the reconstructed CT image (c2) and reconstructed
CT image (C3) have similar style. Moreover, CCC measure-
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Figure 3: Reconstruction results of the presented DuDoHNet.
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Figure 4: Reconstruction results of the competing DuDoHNet.

ments also indicated that the harmonized CT images are more
similar to the reference domain.
Figure 4 shows the CT images with kernel #3 reconstructed
by the different methods (i.e., from Scanner #1 Kernel #2 to
Scanner #2 Kernel #3). It can be observed that the presented
DuDoHnet can produce CT images with the style close to
the target domain. And the presented DuDoHNet obtains the
best CCC performance among all, which is consistent with
the visual inspection.

5 Conclusion

In this work, we propose a dual domain harmonization net-
work for low-dose reconstruction across scanner changes.
Unlike traditional post-processing-based methods, we con-
sider the characteristics in the sinogram to promote the har-
monization performance. The experimental results show that
the presented DuDoHNet can concurrently model and correct
for the site effects across scanner changes while retaining
predictive information within scans. This can help facilitate
downstream application.
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Abstract Computed tomography (CT) is a useful diagnostic tool for
diseases and injuries detection in clinics. With an increase in the
utilization of CT examinations, there is a concern about the general
population’s radiation exposure. Deep learning (DL)-based methods
are efficient to lower radiation dose without sacrificing CT image qual-
ity, and have potential to achieve great reconstruction performance.
However, these DL-based methods are sensitive to CT protocol se-
lection, i.e., kVp settings and anatomy to be examined. In this work,
we propose a protocol variation network (PV-Net) for low-dose CT
image denoising to consider the heterogeneity within the different
kVp settings and anatomical structures. Specifically, the proposed
PV-Net models the characteristics of the CT data, i.e., noise distribu-
tion and anatomical structures in the network. Experimental results
on the CT datasets demonstrate that the proposed PV-Net leads to im-
proved reconstruction performance with kVp and anatomical structure
variations, compared with the other competing methods.

1 Introduction

X-ray CT is widely used for various clinical applications due
to its advantages of non-invasive, sectional imaging. The
potential harmful effects of radiation dose in CT imaging
have raised growing concerns, and then low-dose CT imag-
ing with clinically acceptable image quality is desirable. The
simple way to lower radiation dose is to reduce mAs or an-
gular sampling per rotation. Meanwhile, these two strategies
would lead to severe noise-induced artifacts or view-aliasing
artifacts in the filtered back-projection (FBP) reconstructed
images. To improve low-dose CT image quality, various
methods have been developed. Among them, the deep learn-
ing (DL)-based methods have shown excellent reconstruction
performance due to their powerful ability to learn deep fea-
tures and high computational efficiency.
Althouth the existing DL-based methods have potential to
suppress artifacts in the CT images, they are usually trained
based on the specific dataset acquired with one protocol and
could be sensitive to unseen perturbations, i.e., the dataset
from the different protocol. This leads to limited generaliza-
tion and robustness of these DL-based methods. They might
fail to process the dataset with large heterogeneity, which
degrades the reconstruction performance. Recently Xia et al.
[1] proposed a framework for modulating DL model with CT
imaging geometric parameters (i.e., PDF) due to the geome-
try variations, and obtain improved performance. Meanwhile,
it should be noted that the crucial parameters in the protocol

*Corresponding author: D. Zeng, zd1989@smu.edu.cn
†Corresponding author: J. Ma, jhma@smu.edu.cn

selection, i.e., kVp settings and anatomical structures, also
play a vital role in the final CT image, which can also affects
the reconstruction performance of the DL-based methods [2].
In this paper, to consider the protocol variations (i.e., differ-
ent kVp settings and anatomical structures) in the network,
we propose a protocol variation network (PV-Net) for low-
dose CT image denoising. The proposed PV-Net takes into
account the heterogeneity with the different kVp settings
and anatomical structures. Specifically, to model the protocol
variations, the proposed PV-Net introduces the characteristics
of the CT data, i.e., noise distribution and anatomical struc-
tures into the network with well-designed loss function. Us-
ing simulation studies based on the CT dataset acquired with
different protocols, we compare the proposed PV-Net with
conventional FBP, protocol specific network (i.e., PS-Net),
and PDF. Experimental results suggest that the proposed
PV-Net outperforms the other competing methods, with im-
proved reconstruction performance at the cases of kVp and
anatomical structure variations, making the proposed PV-Net
a potentially important strategy to reconstruct CT images
with protocol variations.

2 Materials and Methods

2.1 PV-Net

Figure 1 shows the architecture of the proposed PV-Net. The
network inputs are the CT images acquired with different
protocols, i.e., kVp settings and anatomical regions. Inspired
by Xia et al. [1], to modulate the feature maps with different
geometries and protocols efficiently in the network, geometry
parameters and scanning protocols are parameterized by a
normalized vector v as another input of the proposed PV-Net.
Then, the proposed PV-Net can be expressed as follows:

y = M(x,v|θ), (1)

where M represents the presented PV-Net model, and θ repre-
sents the learnable parameters of M. x,y are the input and the
output image of the model, respectively. v= [ρ1, · · · ,ρn], ρ is
parameterized geometry and protocol in specific CT imaging
task. The vector v is mapped by the multilayer perceptron
(MLP) to high-dimensional vectors, which modulates the
output feature map of the layer with different geometries
and protocols efficiently in the network linearly. It can be
expressed as follows:
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Figure 1: Network architecture of the proposed PV-Net.

f̂ = h1(v) f +h2(v), (2)

where h1 and h2 are two different MLP, f is the output feature
map of model’s layers and f̂ is the modulated feature map.
As shown in Figure 1, the firsrt and last part of the net-
work are constructed with a convolutional layer (Conv.), a
layer normalization layer (LN) and LeakyReLU (LReLU).
The middle of the network is a series of spatial-attention
residual blocks (SRB)[3]. The vector v is fed into the MLP
and mapped to high-dimensional vectors, then the high-
dimensional vectors are transferred into the modulation layers
(purple ones) as indicated by Equation 2.

Algorithm 1: Anatomy loss function
Input: Label image µ , output image of model µ∗,

number of segmentation regions M
Output: Anatomy loss Lanatomy

for m=1:M do
Maskm = T hreshold Segmentation(µ);
Calculate Sm and Km according to Equation 4, 5;

end
for m=1:M do

Calculate S∗
m and K∗

m in Maskm(µ
∗) according to

Equation 4, 5;
end
Calculate S̃, S̃∗, K̃ and K̃∗ according to Equation 6;
Calculate Lanatomy according to Equation 7;
return Lanatomy

2.2 kVp modulation

It should be noted that same type of CT images but a differ-
ent kVp setting would affect the DL-based reconstruction
performance. The main reason can be attributed to the noise
distribution shift between different kVp settings. For ex-
ample, the noise level on the CT images at lower kVp is

higher than that at higher kVp. Therefore, to consider the
kVp settings in the proposed PV-Net, the kVp settings can
be parameterized as follows:

v = [ρ1, · · · ,ρn,ρkV p], (3)

This modulation can guide the network to learn the deep
features of CT data at different kVp efficiently and adaptively,
and then reconstruct the final CT images with the vector v.

2.3 Anatomical region modulation

Since different anatomical regions have different anatom-
ical structures and pathological indications, the DL-based
methods might have different reconstruction performance.
Moreover, it is difficult to modulate different anatomical
regions with vector v in Equation 2. Then, to model the
characteristics variations among different anatomical regions,
in this work, we take advantage of statistical features of the
anatomical regions that describe the noise distribution shift
among different protocols [4]. In particular, we performed a
rough segmentation on the labeled images according to the
threshold values in Table 2. Then the statistical features of
different anatomical regions are calculated, i.e., skewness
and kurtosis, which can be used to model anatomical region
variations.
The skewness of different tissues can be obtained through
Fisher-Pearson skewness statistic as follows:

S =
n

(n−1)(n−2)
∑

n
i=1(xi − x)3

( 1
n−1 ∑

n
i=1(xi − x)2)

3
2
, (4)

where x is the mean value of the desired region, and n is the
number of pixels in the desired region. The skewness is used
to describe the range in which the values in the region are
mainly concentrated. Therefore it is used to characterize the
structural features in the region.
Similarly, the kurtosis of the different tissues can be difined
as follows:
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Figure 2: Results of PV-Net and comparison methods.

K =
n+1

(n−1)(n−2)(n−3)

1
n ∑

n
i=1(xi − x)4

( 1
n−1 ∑

n
i=1(xi − x)2)2

− 3(n−1)2

(n−2)(n−3)
.

(5)

This statistic is then used to describe the steepness of the
data distribution curve, that is, the degree of deviation of the
values within the region. Thus, it mainly characterizes the
noise distribution in the region.
With the two statistical features of the anatomical regions,
we construct an anatomy loss function for anatomical region
modulation. More specifically, as shown in the gray box in
Figure 1, we first segment the labeled noise-free image into
different regions based on the threshold values in Table 2.
Then we calculate the sum of the statistics S and K in these
regions:

S̃ =
M

∑
m=1

Sm,K̃ =
M

∑
m=1

Km, (6)

where M is the number of the segmented regions. Therefore,
the anatomy loss function can be expressed as follow:

Lanatomy =
1
M
(
∣∣∣S̃− S̃∗

∣∣∣+ ∣∣∣K̃− K̃∗
∣∣∣), (7)

where * denotes the network output. The anatomy loss func-
tion can be summarized in Algorithm 1. Then the total loss
function can be expressed as:

L = LMSE +λLanatomy. (8)

λ here is parameter.

3 Experiments

3.1 Dataset

To validate and evaluate the reconstruction performance of
the proposed PV-Net, we collected CT dataset with different
scanning protocols (i.e., different kVp settings and anatom-
ical regions). In the dataset 2001 head CT images were
scanned at 80 kVp, 1991 chest CT images were scanned at
120 kVp, and 2006 abdominal CT images were scanned at
140 kVp. We perform low-dose simulations based on our
previous work [5] to obtain pairing data under different dose
level. Ninety percent of the CT images are used for network
training, and ten percent are used for network testing.

3.2 Compared methods and implementation details

To evaluate the performance of the proposed PV-Net, three
competing methods are selected, i.e., FBP, the protocol spe-
cific network without modulation layer and anatomy loss
function (i.e., PS-Net), and protocol specific network with
modulation layer (i.e., PDF-PS-Net). The learning rate of
all models is set to 2× 10−4, and optimized with the RM-
SProp optimizer. Peak signal-to-noise ratio (PSNR), struc-
tural similarity index (SSIM) and root mean square error

52 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Protocol Methods PSNR SSIM RMSE

Brain(80kVp)

FBP 25.8683±1.5008 0.6004±0.0132 11.3085±1.4346
PS-Net 32.6950±0.7404 0.6539±0.0240 7.7413±0.6541

PDF-PS-Net 35.4417±1.3863 0.6841±0.0263 5.4918±0.8316
PV-Net 37.6840±1.1697 0.7636±0.0236 3.3592±0.4542

Chest(120kVp)

FBP 23.7044±2.02021 0.5304±0.0756 17.0905±3.9140
PS-Net 27.9415±2.108 0.7020±0.0387 9.6430±2.9243

PDF-PS-Net 29.3819±2.6047 0.7140±0.0420 7.6680±2.2914
PV-Net 30.7763±1.7969 0.7204±0.0293 5.5187±1.3953

Abdomen(140kVp)

FBP 26.0422±2.5032 0.6030±0.0676 11.5117±2.9102
PS-Net 30.8683 ±2.6608 0.7178±0.0492 6.9772±2.4951

PDF-PS-Net 32.8992 ±2.0179 0.7311±0.0353 6.2566±2.7775
PV-Net 33.4222 ±1.8133 0.7380±0.0402 4.8457±1.6955

Table 1: Quantitative index of PV-Net and comparison methods.

Tissue Hounsfield unit(HU)

Air (-1024,-900)
Lung (-900,-500)
Lung parenchyma (-500,-100)
Fat (-100,-20)
Blood (-20,25)
Cerebral white matter (25,38)
Muscle/cerebral gray matter (38,90)
Calcification (90,400)
Bone (400,1000)

Table 2: Threshold for segmentation.

(RMSE) measures are used to evaluate the reconstruction
performance.

4 Results

Figure 2 shows the performance of each model on each
dataset. To better show the image details, we select a region
of interest (shown in the red boxes) on each case and zoom in
on the bottom right. As we can see, PS-Net enables to recover
a certain image structure, but there are still some remaining
noise in the reconstruction results. PDF-PS-Net demonstrates
stronger denoising performance, but the reconstruction re-
sults at 120 kVp and 140 kVp are slightly over-smooth. Due
to the advantage of kVp modulation and unique anatomy loss
function, the presented PV-Net has better performance of
denoising, superior preservation of anatomical information,
and as shown, the reconstruction results of PV-Net higher
detail resolution, and lower noise levels. Table 1 shows the
quantitative index of each method under each protocol. The
results show that the presented PV-Net is able to learn the
deep features of data under different protocols, which results
in better quantitative metrics of reconstruction results.

5 Conclusion

In this work, we propose a protocol variation network to
consider the heterogeneity within the different kVp settings
and anatomical structures. Extensive experiments on datasets
with different protocols demonstrate that the proposal model
can improve the performance of deep learning models across
multi protocols.
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Patient’s head motion is a major source of image artifacts in the head CT. 

The motion artifacts can be compensated by accurate motion estimation 

and compensation during the image reconstruction. Partial angle 

reconstruction (PAR)-based method is well-known for motion estimation 

in CT. In this study, we propose the first PAR-based deep learning (DL) 

method to estimate and compensate the motion in the head CT. We 

designed a DL pipeline to estimate the motion from PARs built by the 

CT sinogram. In our simulation study with relatively heavy motion, the 

proposed method achieved good accuracy on the motion parameter 

estimation, with a mean absolute error (MAE) of 1mm in head translation 

and 1˚ in rotation. The MAE of the reconstructed CT images was also 

reduced from 130 to 54 HU. Simulation results demonstrate that the 

proposed method has promise to tackle motion problem in clinical head 

CT.  

 

1 Introduction 

Head motion in paediatric patients or paitents with head 

trauma or stroke is a majoy source of image artifacts in head 

computed tomgoraphy (CT), degrading the image quality 

and impacting diagnosis1. Improved hardware such as faster 

gantry rotation or dual source designs can reduce motion 

artifacts but it is challenging to apply these improvements 

on some systems such as mobile CT and C-arm CT. Another 

type of harware design is the motion tacking system that 

measures the motion but the calibration is complicated2. 

Software-based, especially deep learning (DL)-based 

motion correction has been developed to tackle this problem. 

Recently, Su et al.3 proposed a modified U-Net to remove 

the motion artifacts directly in the image domain. However, 

the image-domain-based DL method may over-smooth the 

image, especially when the head motion is large. 

 

Motion estimation is another solution to this problem and it 

ensures data fidelity. If the true head motion can be 

correctly estimated, one can use it to compensate the motion 

during backprojection to correct the motion artifacts. The 

partial angle reconstruction (PAR)-based method4 is well-

known for an accurate estimation of motion. Concretely, 

PAR means a series of images of the same object 

reconstructed from small angular segments of the sinogram, 

each of which represents the object status in a small time 

interval. Registration between two PARs reveals the motion 

between two time frames. To overcome the challenging 

registration due to the heavy limited-angle artifacts, Maier 

et al.5 designed a DL pipeline which takes PARs as the input, 
predicts the motion and utilizes the spatial transformer 

module to output the motion-compensated reconstruction in 

cardiac CT. However, the utility of the PAR-based method 

to correct the Head CT motion is under-investigated. In this 

study, we have three major aims: (1) Develop the first PAR-

based DL method to estimate and compensate motion in 

non-contrast head CT scans; (2) Design a DL approach to 

directly output motion parameters from PARs; (3) 

investigate different DL model designs and compare its 

performance with the DL model solely relying on image 

domain3.  

 

2 Materials and Methods 
2.1 Head Motion Model and Simulation 

We modeled the head motion by rigid transformation. To 

simplify, we only investigated 2D rigid motion in the axial 

plane in this work, which include three motion parameters: 

two intra-slice translations, 𝑡𝑥  and 𝑡𝑦 , along the image x- 

and y- axes and one intra-slice rotation, 𝜃𝑧, around the z-

axis. The motion is modeled according to Jang et al.6; the 

motion at the ith view (𝑡𝑥,𝑖, 𝑡𝑦,𝑖, 𝜃𝑧,𝑖) is described using a 

cubic B-spline interpolation with 5 control points (CP) 

equally distributed across time. For example, the translation 

𝑡𝑥 is described as: 

𝑡𝑥,𝑖  =  𝐵1𝐷(𝐶𝑃𝑡𝑥,0, … 𝐶𝑃𝑡𝑥,4, 𝑖) (1) 

where 𝐵1𝐷  denotes 1-dimensional B-spline interpolation, 

𝐶𝑃0  to 𝐶𝑃4  refers to 5 control points. Each motion is 

described using a different B-spline with its own 5 CPs. The 

first CP (𝐶𝑃0) corresponding to the start of the scan was 

always set to 0. An example of this motion model can be 

found in Figure 1. 

 

100 CT studies from 37 unique patients without any motion 

artifacts were retrospectively collected. The pixel size 

varies from 0.37 to 0.49mm  and the slice thickness was 

resampled to 1.5mm. All images have 512 × 512 × 60 

dimension to cover the whole head. We followed existing 

works for motion simulation: 5 CP values in any B-spline 

were randomly sampled from [-max, max] where max is the 

maximum magnitude equal to 10mm for translation or 10° 

for rotation2,6, representing the normal head motion. We 

produced 90 motion simulations for each CT study, 

resulting in 9000 images as our dataset. In each simulation, 

3 B-splines were generated for (𝑡𝑥 , 𝑡𝑦 , 𝜃𝑧) respectively and 

applied to the whole volume. The simulated full-scan (360°, 

in total 1400 views assumed) sinogram was generated by 

forward-projecting the moving image with the fan-beam x-

ray geometry. 

 

2.2 Partial Angle Reconstruction (PAR) 
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The PARs were reconstructed using the simulated 

sinogram. Concretely, the sinogram was divided equally 

into 2K + 1 nonoverlapping angular segments. Hence, each 

segment k (−𝐾 ≤ 𝑘 ≤ 𝐾) covers an angular interval [∅𝑘 −
∆∅

2
, ∅𝑘 +

∆∅

2
] where ∅𝑘  =  𝜋 +  ∆∅ × 𝑘  and ∆∅ =  

2𝜋

2𝐾 + 1
. 

Each segment was then filtered-backprojected with the 

Ram-Lak filter to obtain a PAR. A large value of K =12 was 

picked to maintain high temporal resolution and reduce the 

motion artifacts within each PAR. Therefore, each image in 

our dataset has 2K + 1 = 25 corresponding PARs.  

 

Most CT scanners cannot cover the entire head from top to 

bottom in one rotation, so we generated PARs using a image 

patch of the 15 (out of 60) consecutive slices. We 

investigated two typical patch types: type 1 patch is the 15-

slice patch starting from the teeth plane, which contains a 

variety of structures from the complex maxillofacial bones 

to the relatively simple cerebrum; type 2 patch is from the 

middle of the head, which contains mostly the brain tissue 

surrounded by skull. If not specified, the results we reported 

corresponds to type 1 patch.   

 

2.3 Deep Learning (DL) Pipeline Designs 

A 3D convolutional network is trained to predict the motion 

CPs. 25 PARs of one image patch were used as the DL 

model’s multi-channel input. These PARs were 

downsampled to have isotropically 2mm spatial resolution 

in x and y directions. Similar to Maier et al.5, an encoder-

like (Figure 2) network including 3D convolution layers 

and maxpooling layers extracts image features from the 

input PARs at different resolutions. Then fully-connected 

layers are used to decode the 12 motion paramters. 

Specially, it outputs three sets of 4 CPs (corresponding to 

𝐶𝑃1  to 𝐶𝑃4 ) for 𝑡𝑥 , 𝑡𝑦 , 𝜃𝑧  respectively, which are 

subsequently used to construct three B-spline interpolations 

as the predicted motion. A spatial transformer module 

applies the inverse of predicted motions to PARs, outputing 

the motion-compensated image. The whole pipeline can be 

found in Figure 1. 

 

To summarize, our DL pipeline takes 25 PARs as the input 

and outputs 4 predictions: three sets of 4 CPs  for 𝑡𝑥 (unit: 

pixel), 𝑡𝑦  (pixel), 𝜃𝑧  ( ° ) respectively and one motion-

compensated image. The whole pipeline was trained end-

to-end. The mean-absolute-error (MAE), L, was calculated 

by comparing predictions with the ground truth motion CPs 

and the ground truth image: 

𝐿 =  𝐿𝑡𝑥
+ 𝐿𝑡𝑦

+ 𝐿𝜃𝑧
+ 𝑤 ∙ 𝐿𝑖𝑚𝑎𝑔𝑒 (2) 

The image loss, 𝐿𝑖𝑚𝑎𝑔𝑒 , is highly correlated from the 

motion CP losses. Hypothetically, addition of the image 

loss may further increase the model performance by putting 

a constraint in the image domain; but the necessity of doing 

so is unkown. Therefore, we investigated two different 

options of loss weight combination: with the image loss 

(𝑤 = 1) and without the image loss (𝑤 = 0).  𝑤 = 1 was 

chosen because the normalized image loss and the 

normalized motion CP loss had the same order of magnitude. 

 

To clarify, since the PARs and the output motion-

compensated image were downsampled,  the DL image was 

 
Figure 1. DL Pipeline. It shows how we started from the sinogram and predicted four outputs: 3 motion B-splines and 1 motion-

compensated image. Note in B-spline motion plots, blue dots represent 5 control points, and the x-axis spans the gantry rotation 

time which is assumed to be 500ms. 
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Figure 2. Encoder architecture. The input are 25 PARs; each 

was padded/cropped to (128,128,15). 
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only used to constrain the model prediction while we did 

not use it as our final image. How we made the final image 

is elaborated in section 2.4. Our dataset was split on the 

patient level. 80% of the data was used for training and 

validation where 5-fold cross validation was performed. 

The rest 20% was used for independent testing. 

 

2.4 The Final Image Output 

After predicting the motion CPs using downsampled PARs, 

we interpolated the motion at each time frame using the B-

Spline (see Equation 1) and applied the inverse motion 

field frame-by-frame during filtered-backprojection. This 

motion-compensated image, denoted as  𝐼𝐷𝐿 , is the final 

image output of our proposed method. 

 

2.5 Quantitaive Evaluation 

The model was evaluated in the testing cohort (with 1800 

simulated cases). The predicted motion CPs were averaged 

across all models from the 5-fold cross-validation. MAE 

was used to evaluate predicted motion CPs against the 

ground truth. MAE, root-mean-squared-error (RMSE), and 

structural similarity index metric (SSIM) were used to 

evaluate the final motion-corrected image against the 

ground truth image. All these errors were measured on the 

the foreground pixels whose values are larger than -10 HU 

on the ground truth image. 

 

We also applied the image-domain-based DL approach 

proposed in Su et al.3 to the testing cohort and generated 

images denoted as 𝐼𝐷𝐿,𝑖𝑚𝑔 , which were evaluated using 

the same metrics.  

 

The paired t-test was used to determine whether there is a 

significant difference between the results of two methods. 

Statistical significance was set to p≤ 0.05. 

 

3 Results 

3.1 Motion Simulation 

Among the testing cohort, the motion corrupted images 𝐼𝑚 

had an MAE of 130±33 HU and an RMSE of 286±62 HU. 

This magnitude level of RMSE indicates that the majority 

of simulation has the moderate/large motion2. 

 

3.2 Investigating Different Loss Weights 

We investigated the influence of the presence of the image 

loss by setting 𝑤 in equation (2) to 0 and 1. Two models 

with and without image loss were trained on the same 

training group and tested on the testing dataset. Table 1 

shows that the motion CPs errors from two settings are not 

significantly different (p>0.05). Thus, for simplicity, we 

excluded the image loss in our final model. 

 

3.3 Motion Prediction 

Table 2 shows that the MAE between predicted and ground 

truth motion CPs are as follows: 𝑡𝑥 = 1.00±0.59mm, 𝑡𝑦  = 

0.70±0.39mm, 𝜃𝑧 = 1.05±0.70°. This ~1mm and ~1° is at 

the magnitude level of very slight motion according to Kim 

et al2. Furthermore, the model has comparable high 

performance on type 1 patches from the teeth plane and type 

2 patches from the middle of the brain (p>0.05 except for 

𝑡𝑥 ). It demonstrates the robustness of our method on 

different image features. 

 

3.4 Performnace on Images 

By applying the inverse of  predicted motions, we achieved 

good performance in the final motion-corrected images. 

From Table 3, we can see across all testing data, the MAE 

drops from 130 ± 33 in motion-corrupted images 𝐼𝑚  to 

54±18 HU in motion-corrected images 𝐼𝐷𝐿; RMSE drops 

from 286 ± 62 to 126 ± 40 HU; SSIM improves from 

0.71±0.13 to 0.94±0.05. The box plots in Figure 3 show 

the median and interquartile ranges of each metric. Figure 

4 provides some image results, which show that the motion 

artifacts are dramatically reduced, and the blurred head 

bone as well as brain tissues are clear again in the motion-

corrected images 𝐼𝐷𝐿. 

 

We also implemented the image-domain method proposed 

by Su et al.3, but found relatively poor performance in large 

motion due to the over-smoothing it introduced. As shown 

in Table 3 and Figure 3, because most of our simulated 

motions are moderate to large, the result from the proposed 

method 𝐼𝐷𝐿  has significant improvement compared to the 

image-domain result 𝐼𝐷𝐿,𝑖𝑚𝑔  (p<0.05, one-tailed t-test). 

Figure 4 also shows that the image-domain method 

Table 1. MAE of the motion CPs predicted by models trained 

with 𝑤 = 1 and 𝑤 = 0 and their statistical difference.   
𝒘 = 𝟎 𝒘 = 𝟏 p  

𝑡𝑥 (mm) 1.26±0.72 1.25±0.70 0.83 

𝑡𝑦 (mm) 0.87±0.45 0.90±0.49 0.38 

𝜃𝑧 (°) 1.13±0.49 1.13±0.47 0.99 

 

Table 2. MAE of the predicted CPs. The definitions of type 1 

and 2 patches can be found in section 2.2.  
Type 1 patch Type 2 patch p 

𝑡𝑥 (mm) 1.00±0.59 0.95±0.60 0.02 

𝑡𝑦 (mm) 0.70±0.39 0.72±0.50 0.14 

𝜃𝑧 (°) 1.05±0.70 1.08±0.94 0.89 

 

Table 3. Evaluations of images. 𝐼𝑚  is the motion corrupted 

image, 𝐼𝐷𝐿  is from the proposed method, 𝐼𝐷𝐿,𝑖𝑚𝑔 is from the 

image-domain approach3.  

 𝑰𝒎 𝑰𝑫𝑳 𝑰𝑫𝑳,𝒊𝒎𝒈 

MAE (HU) 130±33 54±18 86±14 

RMSE (HU) 286±62 126±40 195±25 

SSIM 0.71±0.13 0.94±0.05 0.83±0.09 

 

 

 

56 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

introduces over-smoothing in 𝐼𝐷𝐿,𝑖𝑚𝑔. The motion artifacts 

on bone structures are allievated while the grey matters 

were over-smoothed. 

4 Discussions and Conclusion 

In this study, we proposed a PAR-based DL method to 

estimate motion in non-contrast head CT. We evaluated our 

method in a large simulation study and presented that it 

accurately predicts the motions (with only ~1mm and ~1° 

error). This accurate estimation enables us to subsequently 

use the predicted motions to significantly corrected the 

motion artifacts in the image (MAE: from 130 ± 33 to 

54±18 HU, SSIM: from 0.71±0.13 to 0.94±0.05). We 

show the better performance of ours in the large head 

motion compared to the image-domain-based method3.  

 

This method needs to be further developed, especially with 

a better head motion model. For example, we shall use 3D 

motion model and  consider different scanning trajectories 

such as helical trajectory or multi-plane fanbeam. The 

proposed method should also be further validated with 

phantom study and real clinical data. 
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Figure 3. Box plots of image metrics. The left image is for 

MAE (red boxes) and RMSE (blue boxes); the right image is 

for SSIM. Three lines in each box from top to bottom mean 

upper quartile, median, lower quartile respectively; their values 

were provided besides each line. Purple asterisks indicate that 

𝐼𝐷𝐿  has significant improvement over 𝐼𝐷𝐿,𝑖𝑚𝑔  for all three 

metrics. 

 

 
Figure 4. Image result. From top to bottom row, we show 𝐼0, 

the static ground truth; 𝐼𝑚 , the simulated motion-corrupted 

image; 𝐼𝐷𝐿 , the motion-corrected image by the proposed 

method; 𝐼𝐷𝐿,𝑖𝑚𝑔 , the motion-corrected image the image-

domain method3. The dashed red boxes in the 𝐼𝐷𝐿 row show 

that there are still some residual motion artifacts uncorrected 

due to the error of DL-predicted motion parameters. WL stands 

for window level. WW stands for window width. 
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Abstract Deep learning based algorithms for X-ray computed tomo-
graphy reconstruction often rely on domain-transfer modules that use
tomographic operators to perform the forward- and backprojection.
The used operators restrict the trained network to one single recon-
struction geometry. In this manuscript we propose to train a network
on sinogram-image pairs without explicitly using a domain-transfer
module based on a forward-backward projector. We train the net-
work to implicitly learn the geometry only from image pairs using
the attention mechanism, similar to machine translation in natural
language processing. We show that the model can partially handle a
set of random corruptions in the sinogram to simulate imperfections
or miscalibrated angles in the geometry. We run a simple experiment
to show that an attention-based architecture is able to implicitly learn
geometrical information only from sinogram-image pairs and produce
the corresponding reconstruction.

1 Introduction

X-ray Computed Tomography (CT) is a non-invasive tech-
nique employed for gathering insights into the internal ar-
rangement of a sample or a body part, all without the need for
physical dissection. The reconstruction problem of CT is an
ill-posed problem for which several categories of algorithms
have been developed over the years. Among the original
algorithms, which are still used today, we have analytical al-
gorithms like the Filtered Backprojection for 2d CT or FDK
for 3d CT [1]. Iterative reconstruction pipelines have been
used to overcome the data-limiting issues analytical methods
have in sparse-data applications like sparse-view or limited
angle CT [2].
More recently, data-driven algorithms have shown promising
quality improvement of the reconstruction over analytical
and iterative methods [3]. However, most convolution-based
deep learning algorithms are unable to encode the geometry
information in the learned kernels. Data-driven methods that
directly perform the X-ray transform inversion still need to
be explored due to the lack of appropriate architectures and
the complexity of the operation [2].
The emergence of transformer-based architectures [4] has
provided an opportunity to tackle the tomographic recon-
struction problem without requiring any forward operators.
The nature of the attention mechanism used throughout the
transformer architectures overcomes the domain limitations
imposed by the convolutional operations or the computa-
tional complexity of fully connected layers. Moreover, since
the tomographic reconstruction problem represent a domain
transfer problem, similarities to machine translation in NLP

Figure 1: Architecture of the proposed reconstruction network. A
transformer encoder embeds a set of sinogram measurements (each angle
is one token) and a simplified decoder made up of one 1d convolutional
layer and one fully connected layer extracts the set of square patches that
make up the corresponding reconstruction.

can be drawn and used to our advantage. A sinogram is no
more than a set of measurements, like a sentence is a set of
words arranged in some configuration [5]. The reconstruc-
tion is also a set of patches arranged correctly, similar to the
corresponding sentence in another language. The sinogram
and the reconstruction are correlated to one another, similar
to two translated sentences in two different languages.
In this manuscript we propose a deep learning algorithm
used to perform tomographic reconstruction without requir-
ing any geometrical information about the system. We can
summarize our contributions as follows:

• A transformer encoder and one simplified decoder are
used to reconstruct fixed-sized sinograms

• We provide insights about the trained model to under-
stand how it implictly learns geometry information.

• We train the model on a set of simulated “acqusition
errors” added to the sinogram.

• We show that our proposed model generates results that
are comparable in quality to sparse-view FBP.
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2 Methods

The (discrete) CT reconstruction problem is defined as invert-
ing the X-ray transform of the imaged sample. The X-ray
transform is defined as an integral over the space of straight
two-dimensional lines L given by X f (L) =

∫
L f (x)dx.

For a given slice x ∈ RN×N the discrete X-ray transform
generates a set of measurements y ∈RN×k in a parallel-beam
geometry setting. In this configuration we generate k-view
sinograms (k = 224) over a 360 degree arc with 224 pixel
detectors from 128-by-128 pixel original volume slices. In
this experiment we concentrate on 2d FBP reconstructions
for sparse-view chest CT.
We model the inversion operation without providing any
geometrical information to the system. We propose a simple
deep neural network based on a transformer architecture [4]
(seen in Fig. 1) with a simplified decoder head.
The model is trained on pairs of a k-view sinogram and
the original slice used to generate the sinogram. Our goal
is to learn the reconstruction operation without providing
the geometrical information. A nice advantage of using the
original slices as labels instead of matching the labels to the
sinograms (via FBP reconstruction) is the implicit sparse-
artifact reduction effect learned by the model.
The transformer architecture enables in each layer the shar-
ing of information between all tokens via the attention
mechanism. Compared to conventional convolutional net-
works, which work on the intrinsic assumption of local-
ity and local invariance imposed by the convolution opera-
tion, transformer-based architectures rely on attention layers
which allow for both short- and long-range dependencies to
be learned by the model.
Vaswani et al. [4] define the attention operation as a function
with three input arguments. A dot product is first computed
between a “query” Q ∈Rn and a “key” K ∈Rn. The result is
normalized by the square root of the key’s dimension

√
dk.

The resulting weighting factor is then multiplied with the
“value” V ∈ R.

Attention(Q,K,V ) = softmax
(QKT
√

dk

)
V (1)

In a multihead self-attention scenario the “query”, “key”, and
“value” are embedded from a single input (not three different
ones) and the attention operation is replicated on multiple
parallel “heads” with different embedding kernels.
A model relying on the attention mechanism splits its input
into a set of “units” 1 which are then embedded into tokens.
The attention operation enables each token to attend to every
other token thus enabling both short- and long-range depen-
dencies in the latent space. Since each token represents one
single measurement in the input sinogram, measurements
taken from complementary angles will be matched together
during the training process.

1these units can represent anything from image patches to words in a

(a) Short-range (b) Long-range

Figure 2: 224-by-224 attention maps (softmax(QKT /
√

dk)) from differ-
ent attention layer in the trained model. Each row and column correspond
to one measurement in the sinogram (e.g. first row and column are the
first measurement, last row and column are the k’th measurement). (a)
Short-range. Second head of the third self-attention layer. Notice the
short-range dependencies (around the main diagonal) between relatively
close measurements. (b) Long-range. Fourth head of the third attention
layer. Notice how each measurement (row) attends to a lot more other
measurements in the sinogram (columns) based on its position in the
geometry.

Unlike the vision transformers approach [6], we don’t al-
low the model to learn any positional encoding of the input
measurement tokens. We employ non-trainable additive sinu-
soidal positional encodings as used in NLP [4].
Since the input geometry is fixed, the network is also limited
to one geometry and able to learn said geometry very well.

2.1 “Machine Translation”

We can draw similarities between the tomographic recon-
struction problem and a machine translation problem from
NLP [4]. A set of measurements y is the “sentence” be-
ing translated while the set of image tokens xi, j ∀i, j is the
translation.
A machine translation scenario in NLP consists of two main
steps. In the first stage, the sentence to be translated is embed-
ded in an appropriate latent space. Similarly, we do generate
latent features for each of the sinogram’s measurements y
via a transformer encoder block (see Fig. 3-(Base patches)).
Then, in the second stage, the translation output is generated
one token at a time until the transformer decoder predicts an
End-Of-Sentence (EOS) token [4]. In our case, the length of
the “translation” output is a fixed set of image patches, and
we replace the transformer decoder with a sequential appli-
cation of one convolutional layer and one fully connected
layer.
The role of the convolutional layer is to generate the cor-
rect number of latent tokens out of the extracted sinogram
features. These tokens are then transformed by the fully
connected layer into the final reconstruction patches. We
show that the transformer encoder learns to generate a patch
dictionary from the sinogram, while the convolutional layer
performs basically a weighted sum of the dictionary entries

sentence or measurements in a sinogram
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(a) Base patches (b) Learned Impulse Responses

(c) Fully Connected layer weight

Figure 3: (a) Base patches. The transformer encoder has embedded the
224 measurements (tokens) from an input sinogram into a dictionary of
224 (base) vectors used to generate the reconstruction patches. (b) Patch
dictionary. 224 16-by-16 pixel maps representing the individual learned
kernels of the final convolutional layer for every of the 256 8-by-8 pixel
patches that make up the final reconstruction. Each impulse response
corresponds to one embedded measurement from (a) and provides infor-
mation about the area in the final reconstruction that is dependent on the
corresponding latent patch. (c) Fully Connected layer weight. The final
fully connected layer takes the embedded tokens and extracts the final
8-by-8 pixel patches.

similar to a inverse cosine transform seen in JPEG compres-
sion.

3 Experiments

Our training set consists of ∼ 15k clinical chest CT slices
based on a full-dose protocol in the lung window. Each slice
was obtained at a resolution of 512-by-512px and binned
down to 128-by-128px. Our test set is composed of ∼ 3k
clinical chest CT slices.
The feature extractor section is a non-pretrained vision trans-
former model (ViT) with 12 layers implemented in timm [7].
To match the size of the sinogram to the size of the recon-
struction we use a convolutional layer to increase the number
of tokens from 224 (number of angles in the sinogram) to
256 (number of tokens that make up the final image) and a
fully connected layer to reduce the latent representation of
the sinogram tokens to the final representation of the image
tokens (8-by-8 pixel patches). The final step of the network
is to merge all the patches into the final 128-by-128 pixel
reconstruction.
Initial experiments without data augmentation have shown
that the model has a strong inclination to overfit on the train-
ing set. We, therefore, settled on two extensive random data
augmentation strategies:

• Reconstruction-level augmentation: Rotation (up to
90◦), Cropping, Perspective Shift, Brightness and Con-
trast Change, Vertical Flip, Random Grid Shuffle (7-by-
7 grid).

• Sinogram-level augmentation: Assuming that one
part of the geometry might have been miscalibrated or
its corresponding measurements corrupted, we chose to
randomly shift up to 32 random measurements by up to
4 pixels in either up or down direction (angular random
shift) simulating pixel-level miscalibration, and to dis-
able up to 8 measurements (random 0’ing) to simulate a
failure of measurement or storage.

We train the proposed architecture for 6000 epochs with batch
size 16 and learning rate 10−4 and we use SmoothL1Loss
to the ground truth. The labels are the originally binned
slices. The total time for training on 224-view sinograms
at a resolution of 128px is around 25 days on one NVIDIA
RTX6000 with 24GB of VRAM.

We simulate the sinogram via the radon transform imple-
mented in the Python library skimage. This is also the bottle-
neck of the training step.

4 Discussion

It is clear that the model does not overfit the training dataset
as the testing results are comparable to the FBP reconstruc-
tions. Fig. 3 shows the learned convolution kernels and fully
connected layer weight. The learned kernels in the convo-
lutional layer contain impulse responses encoding location
information for each individual patch of the final reconstruc-
tion. Due to the randomness of the weight initialization at
the beginning of the training procedure, the set of impulse
responses is randomized. The fully connected layer used to
extract the final image patches from the latent feature vec-
tors resembles a convolutional operation similar to the FBP
kernel.

The ViT-based feature extractor encodes the geometrical in-
formation inside its attention layers (Fig. 2), while the em-
ployed sinusoidal positional encoding vectors provide the
model information about the relative locations of the mea-
surements in the sinogram.

Fig. 4 shows results generated with the trained network for
slices from two different upper-body locations. The partial
smoothness of the network outputs has been a consistent
feature of in the output of deep neural networks trained to
perform denoising for sparse-view CT mainly due to the loss
of information through the encoding and decoding operation
that such networks perform. Macroscopic organ structures
like some bones or the heart are reconstructed at an accept-
able visual quality while some microscopic structures like
lung nodules are also visible in the network output. One
advantage of not using a forward-backward operator inside
the model is the size of the region-of-interest circle in the
network output compared to the circle-limited FBP recon-
structions.
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Figure 4: Reconstruction comparison between the proposed method (Ours) and Ram-Lak filtered FBP for two different CT slices. Each image
contains the SSIM value computed against the binned ground truth (GT) (see Sec. 3). (F-v. FBP) FBP reconstruction using a 2048-view (full-view)
sinogram. (S-v. FBP) 224-view sinogram (sparse-view) and corresponding FBP reconstruction. (S-v. corrupted FBP) 224-view sinogram corrupted
with measurement shift and loss (as described in Sec. 3) and corresponding FBP reconstruction. (Ours) 224-view sinogram corrupted with measurement
shift and loss (as described in Sec. 3) with corresponding reconstruction generated by the proposed network.

5 Conclusion

In this manuscript we have shown that given enough data,
a complex operation like sparse-view tomographic recon-
struction can be learned using a transformer model, and can
partially positively improve the quality of the reconstruction
over conventional FBP, given the presence of several types
of limitations: sparse measurements, miscalibrated measure-
ments, missing angles.
The practicality of such a data-driven solution is limited to
the fixed geometry used to generate the input measurements.
However, the potential of applying machine translation algo-
rithms towards tomographic reconstruction is demonstrated
by our simple experiment and paves the way towards train-
ing a full transformer architecture accepting variable-view
sinograms to perform tomographic reconstruction.
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Abstract This abstract introduces a new alternative to the commonly
used ML-EM method for positron emission tomography. The concep-
tion proposed here is based on a continuous-to-continuous data model,
where a forward model used in the reconstruction problem is formu-
lated as a shift-invariant system. The main aim of this report is to show
proof that this new conception is based on probabilistic fundamentals.
That is important because this reconstruction problem is formulated
taking into consideration the statistical properties of signals obtained
in the PET technique.

1 Introduction

The reconstruction method presented here relates to positron
emission tomography (PET). Because the relatively small
number of annihilations in a single measurement is observed,
the statistical nature of observations has a strong influence on
the reconstructed image, and it is necessary to take this fact
into account. The commonly used reconstruction method
is the maximum likelihood-expectation maximization (ML-
EM) algorithm [1, 2]. It must be emphasized that the image
processing methodology used in this algorithm is consis-
tent with a discrete-to-discrete (D-D) data model, where the
reconstructed image is a priori divided into homogeneous
blocks representing pixels. In this conception, individual
elements of the system matrix are determined separately for
every pixel, and for every annihilation event detected along
the given LOR. In this case reconstruction problem is for-
mulated using huge matrices. It makes the reconstruction
procedure much more complex than in the case of the ana-
lytical methods. We propose a formulation of a statistical
iterative reconstruction algorithm based on a continuous-to-
continuous data model (C-C). An algorithm of this form was
proposed firstly in [3]. The forward model for this problem is
presented as a shift-invariant system [4], and the equivalents
for the direct measurements are values of the image obtained
after the back-projection operation. As a result, most of the
drawbacks connected with using the method based on the
D-D data model can be avoided, namely: the use of a shift-
invariant system allows for the implementation of an FFT
algorithm during the most demanding calculations, which
as a consequence significantly accelerates performed calcu-
lations which are necessary to complete the reconstruction
procedure. Unfortunately, there are two serious difficulties:
elements of the image obtained after the back-projection op-
eration are strongly correlated, and there are doubts about
whether they follow the Poisson probability distribution. In
this paper, we show that our approach has statistical funda-
mentals, and the obtained solutions are consistent with the

Figure 1: Scheme of the measurement system

results of the referential algorithm.

2 Forward Model Formulation

The crucial premise behind the idea presented here is that
conceptually, both a measurement system and a reconstructed
image are defined in continuous spaces. Let function f (x,y)
denote the unknown image representing the distribution of
a chosen molecule in space inside the human body in its
given cross-section, e.g. distribution of the molecule with a
radioactive for cancer diagnostic. Image f (x,y), defined as a
function f : R2 → R, will be reconstructed using projections
g(s,α) obtained by using the hypothetical measurement sys-
tem that is presented in the Fig. 1, during scanning process
along an axis s.
The function g(s,α) means a measurement carried out at
a distance s from the origin when a projection is made at
a specific angle α . It is called the Radon transform and is
written mathematically as

g(s,α) =

+∞∫
−∞

+∞∫
−∞

f (x,y) ·δ (xcosα + ysinα − s)dxdy. (1)

In our approach, the problem of image reconstruction from
projections is closely related to the proposed reconstruction
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method. Firstly, we perform the first step of the reconstruc-
tion procedure: the back-projection operation. This operation
is described using the following equation:

f̃ (x,y) =
π∫

−π

+∞∫
−∞

g(s̄,α) int (s− s̄)ds̄dα. (2)

It should be underlined presence of the function int (∆s) in
the convolution in the Eq. 2. This continuous function is
related to an interpolation whose usage is necessary during
the back-projection operation performed in implementations
of this reconstruction method. At this stage of consideration,
it is enough to assume that we can use a filtration function
int (∆s) over measurements g(s̄,α).
All the projections are carried out physically according to eq.
(1). Therefore, we can further transform relation (2) into the
following form:

f̃ (x,y) =
π∫

−π

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

f ( ¯̄x, ¯̄y) ·δ ( ¯̄xcosα + ¯̄ysinα − s̄)d ¯̄xd ¯̄y ·

·int (s− s̄)ds̄dα. (3)

A fundamental conclusion for our further deliberations is that
every point of the original image f (x̄, ȳ) makes a contribu-
tion to the image f̃ (x,y) obtained after the back-projection
operation, depending on the distance x̄cosα + ȳsinα − s. It
means that values of the function f (x̄, ȳ) are projected onto
the interpolation function int. Bearing this in mind, we can
modify relation (??) to obtain a more convenient form:

f̃ (x,y) =
+∞∫

−∞

+∞∫
−∞

f (x̄, ȳ)
π∫

−π

int (x̄cosα + ȳsinα − s)dαdx̄dȳ.

(4)
The above transformation is fundamental for our method
because it leads to a shift-invariant system formulation. It is
worth emphasizing that the interpolation function int is an
essential medium that allows us to create the relation between
the original and the image obtained after the back-projection
operation. One can say that the interpolation function serves
as a medium to project a pixel’s influence on other pixels.
It is convenient to present relation (4) in more compact way:

f̃ (x,y)= f (x,y)∗h(x,y)=
+∞∫

−∞

+∞∫
−∞

f (x̄, ȳ)h(x̄− x, ȳ− y)dx̄dȳ,

(5)
where:

h(∆x,∆y) =
π∫

−π

int ((x̄− x)cosα +(ȳ− y)sinα)dα. (6)

The back-projection operation represents an accumulation of
all the projections which have passed through a given point

of the reconstructed image f (x,y), taking into account the
blur effect of the LORs by the interpolation operation. The
new image obtained in this way f̃ (x,y) includes information
about the reconstructed image f (x,y), but this information is
strongly blurred.

3 Statistical considerations

It has been stated before that a distribution of the registered
annihilation events corresponds to the concentration of atoms
of a radioactive isotope in a given cross-section of the exam-
ined body. It is justified that the number of decays of these
nucleons in the reconstructed cross-section, and subsequent
annihilation events follow the inhomogeneous Poisson point
process Π. In the case of the proposed reconstruction ap-
proach, we will consider the state space Ω in which this point
process Π sit as Euclidean space R2, i.e. Ω is a measurable
space, and the Poisson process Π on Ω = R2 is a random
countable subset Π on Ω. Therefore, the probability that in a
homogeneous reconstructed plane, λ annihilation events are
observed is:

P{Λ = λ}= eλ ∗ (λ ∗)λ

λ !
(7)

for λ ∈ N0, where expectation value of the random variable
Λ is λ ∗. Let us assume that we use the LM method and we
maximize the following expression:
Let us assume that we use the ML method and we maximize
the following expression:

l1 (λ ) = ln(P(Λ = λ ))≊ λ ln
λ ∗

λ
−λ

∗+λ = l2 ( f ) , (8)

whereby Λ is a random variable with Poisson distribution
which represents a number of the observed annihilation
events in a given cross-section in a certain time interval.
The same optimal solution as l3 also gives

l3 (λ ) = H
(

λ ln
λ ∗

λ
−λ

∗+λ

)
, (9)

wherein constant H =
∫

x
∫

y h(x,y)dxdy. Continuing, it is
possible to rearrange all three terms in l3 from the Eq. (9),
taking into account relations (5) and (6), to the following
form:

l4 ( f ) =
∫

x

∫
y

f̃ (x,y) ln
f̃ ∗ (x,y)
f̃ (x,y)

− f̃ ∗ (x,y)+ f̃ (x,y)dxdy,

(10)
wherein:

f̃ ∗ (x,y) =
∫

x̄

∫
ȳ
h(x− x̄,y− ȳ) f ∗ (x̄, ȳ)dx̄dȳ, (11)

and

63 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

f̃ (x,y) =
λ

∑
k=1

int ((x− xk)cosαk +(y− yk)sinαk) (12)

are points in an image obtained after a back-projection oper-
ation. This image can be understood as an equivalent of a set
of the direct measurements used in the traditional ML-EM
method.
Finally, taking into account results presented by formulas
(10)-(12), we can express the reconstruction problem in the
following way:

f0 (x,y) = arg min
f ∗(x,y)

(l4) , (13)

It is natural now to use a gradient descent method to find the
optimum for l4, i.e. ∂ l4

∂ f ∗(x,y) = 0. We obtain in this way the
main relation, as follows:

f t+1 (x,y)= f t (x,y)
1
H

∫
x̄

∫
ȳ

f̃ (x̄, ȳ)∫̄
x̄

∫̄
ȳ

f t ( ¯̄x, ¯̄y)h∆x,∆yd ¯̄xd ¯̄y
h∆x,∆ydx̄dȳ

(14)
where f̃ (x,y) is an image obtained after the back-projection
operation.
That is entirely consistent with the continuous-to-continuous
data model. Now, to perform calculations, it is possible to
discretize the above formula to the following form:

f t+1 (xi,y j)= f t (xi,y j)
1

Hi j

I

∑
ī

I

∑
¯j=1

f̃
(
xī,y j̄

)
∑¯̄i ∑ ¯̄j f t

(
x¯̄i,y ¯̄y

)
h∆i,∆ j

h∆i,∆ j

(15)
wherein Hi j is a sum of all coefficients h∆i,∆ j taken
into account at the calculation of a given expression

f̃(xī,y j̄)
∑¯̄i ∑ ¯̄j f t(x¯̄i,y ¯̄y)h∆i,∆ j

h∆i,∆ j, and h∆i,∆ j are determined according

to the formula

h∆i,∆ j = ∆α

Ψ−1

∑
ψ=0

int (∆icosψ∆α +∆ j sinψ∆α) . (16)

4 Experimental results

In our experiments, we have adapted the well-known Shepp-
Logan mathematical phantom of the head (all values divided
by 10−3). We used parallel projections (L= 512 virtual detec-
tors on the virtual screen). The number of the parallel views
was chosen as Ψ = 728 per half-rotation, and the dimension
of the processed image was fixed at I× I = 512×512 pixels.
After making these assumptions, it is possible to conduct the
virtual measurements (with a relatively high degree of noise)
and complete all the required parallel projections related to
the LORs. Then, through suitable rebinning operations, the
back-projection operation can be carried out to obtain an

image f̃i j, which is used as a referential image for the recon-
struction procedure. In Figures 2 and 3 (at the bottom), the
reconstructed image after 1 000 iterations are depicted. All
elements h∆i,∆ j were pre-calculated before was started the
iterative reconstruction process. The image obtained after the
back-projection operation was subjected to an iterative recon-
struction process, wherein the convolutions operations were
performed in the frequency domain. For comparison, a view
of the reconstructed images using a referential reconstruction
algorithm based on the D-D data model is presented: Figure
2 for a low level of noise, and Figure 3 for a high level of
noise.

5 Conclusion

In this paper, it has been shown that a statistical reconstruc-
tion method for PET can be formulated which is based on
the C-C data model. We have presented a feasible statistical
reconstruction ML-EM algorithm. Performed experiments
proved that our reconstruction method is relatively fast (in
consequence of the FFT use) and gives satisfactory results
with suppressed noise. The computational complexity for
2D reconstruction geometries (e.g. parallel rays) is propor-
tional to I4 for each iteration of the D-D reconstruction pro-
cedure, but our original approach only needs approximately
8I2 log2 (2I) operations.
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Figure 2: Views of the images (window center C = 1.05 ·10−3,
window width W = 0.1 · 10−3): reconstructed image using the
referential statistical approach described by (1) after 50 iterations
(MSE = 5.13 · 10−7) (at the top); reconstructed image using the
statistical approach presented in this paper obtained after 1 000
iterations (MSE = 5.21 ·10−7) (at the bottom).

Figure 3: Views of the images (window center C = 1.05 ·10−3,
window width W = 0.1 · 10−3): reconstructed image using the
referential statistical approach described by (1) after 50 iterations
(MSE = 7.89 · 10−7) (at the top); reconstructed image using the
statistical approach presented in this paper obtained after 1 000
iterations (MSE = 7.03 ·10−7) (at the bottom).
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Abstract Organs-on-Chips (OOCs) are a novel technology that aim
to mimic the functions and physiology of human organs in a labora-
tory setting. Positron Emission Tomography (PET) is a widely-used
imaging modality that enables non-invasive monitoring of biological
processes in vivo. However, the spatial resolution of current small-
scale PET systems is not sufficient for OOC imaging. One of the main
factors limiting the spatial resolution of a PET scanner is the positron
range, which is the distance that a positron travels before it collides
with an electron. In this study, we present a novel Deep Learning
(DL)-based approach for correcting the positron-range effect in our
previously introduced On-Chip PET scanner. We created a dataset
of pairs of non-corrected and corrected images using a Monte-Carlo
simulation of a realistic OOC phantom and a fully three-dimensional
Maximum-Likelihood Expectation-Maximization (MLEM) iterative
reconstruction algorithm. Our results demonstrate the effectiveness
of the DL-based positron-range correction algorithm in improving the
overall quality of the reconstructed images. This approach has the
potential to be a valuable tool for advancing the study of 3D models in
radiopharmaceutical research.

1 Background

OOCs are a novel technology that aim to mimic the func-
tions and physiology of human organs in a laboratory setting.
These devices have gained significant attention in the field
of radiopharmaceutical research due to their ability to ac-
curately replicate the physiology of native organs. OOCs
contain living human cells that are cultured and perfused to
simulate the physiology of native organs. The goal of OOCs
is to provide an efficient alternative to traditional in vitro and
animal models for drug development, disease modeling, and
toxicity testing [1, 2]. PET is a widely-used imaging modality
that enables non-invasive monitoring of biological processes
in vivo. With the emergence of OOCs as a powerful tool
for studying human physiology and drug response, there is
a growing need for dedicated PET scanners that can accu-
rately and efficiently image these microfabricated devices.
However, the spatial resolution of current small-scale PET
systems is not sufficient for OOC imaging. One of the main
factors limiting the spatial resolution of a PET scanner is the
positron range, which is the distance that a positron travels
before it collides with an electron. Positron range is depen-
dent on the energy of the emitted positron and the density of
the tissue or material it is traveling through. In PET imaging,
the positron range is an important factor to consider when

reconstructing the image, as it affects the spatial resolution
of the image and the ability to accurately localize the source
of the emitted radiation [3].
In our previous work, we introduced a dedicated On-Chip
PET scanner that is capable of imaging OOCs [4]. We
optimized the design of the system using a Monte-Carlo
simulation and predicted the gamma-ray interaction posi-
tions with a Convolutional Neural Network (CNN). In this
study, we present improved performance results of the scan-
ner achieved by employing a fully three-dimensional MLEM
reconstruction algorithm and implementing a deep learning-
based positron-range correction algorithm.
The novelties presented in this work are threefold. Firstly, we
created a realistic OOC phantom for our Monte-Carlo simula-
tion of the system, providing a more accurate representation
of the OOCs in our imaging studies. Secondly, we adapted a
fully three-dimensional MLEM iterative reconstruction algo-
rithm to the geometry of our dedicated On-Chip PET scanner.
And thirdly, we developed and trained an image-to-image
DL model that takes the non-positron-range corrected re-
constructed image as input and outputs the positron-range
corrected image. Overall, this study demonstrates the poten-
tial of using deep learning-based positron-range correction
algorithm to improve the performance of a dedicated PET
scanner for imaging OOCs.

2 Methods

2.1 Monte-Carlo Simulation

In order to train the DL-based positron-range correction algo-
rithm, we created a dataset using a Monte-Carlo simulation of
the On-Chip PET scanner, which was implemented with the
GEANT4 Application for Tomographic Emission (GATE)
software [5]. The simulation models the scanner’s response
to either back-to-back gamma or positron sources placed in-
side the compartments of a realistic OOC phantom, which is
modeled after a commercially available device. The phantom
consists of multiple compartments with varying diameters
connected by microfluidic channels. In each compartment,
a cylindrical source with the same diameter as the compart-
ment is placed to simulate the background radiation and a
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Figure 1: Simulation setup viewed from the front and the side. The yellow volumes represent the crystals, the green ones the epoxy
layer around the crystal, and the blue one the volume from which the source position is sampled to create the training dataset.

point source is used for the foreground with a ratio of 8:1.
The scanner geometry, as shown in Figure 1, consists of four
detectors arranged in a box-like design around the phantom.
Each detector is made up of two monolithic Lutetium–yttrium
oxyorthosilicate (LYSO) crystals. The back surface of each
detector is covered with Silicon photomultipliers (SiPMs)
that capture the optical photons emerging from the scintilla-
tion process. For more detailed information on the individual
steps of the simulation, we refer the reader to our previous
work [4].

2.2 Dataset Creation

The DL-based positron-range correction algorithm should be
trained with pairs of reconstructed images, the non-positron-
range corrected image as input and the corrected one as
output. To do this, we randomly generated 100 place-
ments for the point sources in the compartments of the OOC
phantom and ran 200 individual simulations, 100 with F18-
positron point sources and 100 with corresponding back-
to-back gamma point sources. The simulations with the
F18-positrons were used to reconstruct the non-positron-
range corrected images, and the simulations with the back-
to-back gammas were used to reconstruct the ground truth
images. For each simulation, around 800,000 coincidences
were recorded.

2.3 Reconstruction

To create the pairs of non-corrected and corrected images,
we implemented a fully three-dimensional listmode-based
MLEM iterative reconstruction algorithm using the Quantita-
tive Emission Tomography Iterative Reconstruction (QETIR)
software [6]. We adapted QETIR’s reconstruction pipeline

to the geometry of the On-Chip PET scanner and converted
the GATE coincidences to the listmode-based file format
that QETIR requires. The MLEM reconstruction parameters
that we used were the following: 200 x 400 x 800 as the
image dimensions, 0.1 mm x 0.1 mm x 0.1 mm as the voxel
dimensions, five iterations, and four subsets.

2.4 Deep Learning-based Positron Range Correction

With the pairs of non-corrected and corrected reconstructed
images, we trained an image-to-image model based on the
U-Net architecture [7] that predicts the corrected images
from the non-corrected one. The dataset of 100 image pairs
was randomly split into 80 training and 20 test pairs. We
selected a three-dimensional U-Net with leaky ReLU acti-
vations, instance normalization, and PixelShuffle [8] upsam-
pling. The rest of the hyperparameters were the following:
AdamW [9] as the optimizer, a learning rate of 3e-4 with
a cosine-annealing schedule, a weight decay of 1e-6, and
pixel-based binary cross-entropy as the loss function. The
models were trained with patches of size 64 x 128 x 256 with
a batch size of 10 for 1,000 epochs. The training pipeline
was implemented with MONAI [10] and PyTorch Lightning
[11]. We determined the spatial resolution as the mean Full
Width at Half Maximum (FWHM) values of the line profiles
drawn through the point sources of the phantom in x-, y-,
and z-direction in the reconstructed image. Furthermore, we
compared the quality of the predicted images and the ground-
truth images using the Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM) metrics.
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Figure 2: Non-positron-range corrected, ground-truth corrected, and predicted reconstructed image for different intensity-percentile
ranges. The non-corrected image was created using F18-positron sources, the ground-truth corrected images with back-to-back gamma
sources, and the Deep Learning (DL) corrected by the trained model. Each image has dimensions of 200 x 400 x 800 and the middle three
slices along the x-dimension are shown. The intensities of the images were scaled to either 5% - 95% , 0.5% - 99.5%, or 0.05% - 99.95%
percentile ranges depending on the amount of details that should be visible.

Figure 3: Line profiles from a F18-positron source (orange) and
back-to-back gama source (blue) drawn through the point source
in the large compartment in the transaxial direction. The x-axis
depicts the transaxial direction range from 13.9 mm to 17.9 mm.
The y-axis represents the scaled intensity.

3 Results

In the left column of Figure 2, an example of a non-positron-
range corrected reconstructed image from the test dataset
is shown, which was created by placing F18-positron point
sources inside the compartments of the OOC phantom. In the
middle column, the corresponding positron-range corrected

image is shown, which was created by using back-to-back
gamma point sources instead of the positron ones. The three
rows in Figure 2 depict the three different percentile ranges
that were used to scale the intensity of the images. When
using the range from 5% to 95%, the microfluidic channels
between the compartments become visible. For the other two
percentile ranges, the focus shifts to details inside the com-
partment. In the right column of Figure 2, the DL corrected
images are shown, which are the direct outputs of the U-Net-
like model described in Section 2.4. In Figure 3, two line
profiles drawn through the point source in the large compart-
ment in the transaxial direction are shown. The orange one
coming from the F18-positron source and the blue one from
the gamma point source. Table 1 depicts the mean FWHM
values of the non-positron-range corrected, ground truth, and
DL-corrected reconstructed images of the test set. They are
computed using the line profiles in x-, y-, and z-direction
drawn through the point sources in each compartment. In
Table 2, the PSNR and SSIM metrics for the three different
intensity-scaling percentile ranges of the images in the test
set are shown.

4 Discussion

The results of this study demonstrate the effectiveness of the
DL-based positron-range correction algorithm in improving
the overall quality of the reconstructed images. The positron-
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Non-Corrected Ground-Truth DL-corrected

0.260 mm 0.169 mm 0.177 mm

Table 1: Mean FWHM values of the non-positron-range corrected,
ground truth, and DL-corrected reconstructed images of the test
set. To compute the FWHM values, line profiles in the three
spatial directions are drawn through the point sources in each
compartment.

Percentile Range [%] Test PSNR [dB] Test SSIM

5 - 95 31.2 0.852
0.5 - 99.5 48.9 0.994
0.05 - 99.95 58.7 0.997

Table 2: Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-
larity Index Measure (SSIM) of images in the test set shown for
different intensity-scaling percentile range.

range effect is clearly visible when comparing the images
from the left and middle column of Figure 2 and the line
profiles in Figure 3. Especially in the large compartment,
but also in some of the smaller ones, a degradation near the
borders of the foreground activity can be observed. The
DL-based approach improved the spatial resolution of the
reconstructed images in the test set from FWHM values of
0.260 mm in the non-corrected images to 0.177 mm in the
corrected ones. Our approach improves the spatial resolution
by almost 32%, which is more than 91% of the maximal
achievable improvement of a FWHM value of 0.169 mm
coming from the back-to-back gamma source images. From
the right column of Figure 2 showing the DL-corrected im-
ages, we can observe that the model is not only able to correct
for the positron range effect by removing the resulting ar-
tifacts in the large and smaller compartments, but it is also
able to reduce the noise level in the images from the small
percentile range.
One of the main advantages of our approach is that it is purely
data-driven, which means that it is agnostic to the type of
radionuclide used. This makes it versatile and applicable
to a wide range of imaging scenarios. Additionally, the
use of a realistic OOC phantom in the simulation of the
dataset and the implementation of a fully three-dimensional
MLEM reconstruction algorithm ensure that the dataset is
representative of real-world imaging scenarios.
Some limitations of this preliminary work include the small
size of the dataset the model was trained on, with only 100
pairs of non-corrected and corrected images in total. To
address this issue in future work, we plan to simulate more
cases, and also extend the work to include other radionuclides
with larger positron ranges. This will add more diversity
to the dataset and therefore make it harder for the model to
perform the correction. Additionally, it will also be important
to test the model on real experimental data in order to validate
its performance in a real-world setting.

5 Conclusion

In this work, we presented a novel approach for correcting
the positron-range effect in an On-Chip PET scanner us-
ing a DL-based algorithm. We created a dataset of pairs
of non-corrected and corrected images using a Monte-Carlo
simulation of a realistic OOC phantom and a fully three-
dimensional MLEM iterative reconstruction algorithm. We
trained an image-to-image model based on the U-Net archi-
tecture to predict the corrected images from the non-corrected
ones. Our results demonstrate the effectiveness of the DL-
based positron-range correction algorithm in improving the
overall quality of the reconstructed images. This approach
has the potential to advance the study of 3D models in ra-
diopharmaceutical research and provide a valuable tool for
radio pharmacists in the development of radiotheranostics.
The overall goal of this work is to provide an imaging de-
vice that can enable more detailed and accurate imaging of
OOCs, facilitating the advancement of this technology and
its applications in drug development and disease modeling.
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Abstract Digital breast tomosynthesis suffers from limited angle
artifacts, which means that the representation of the distribution of
fibro-glandular tissue is severely limited in the direction of the missing
data. To recover the location of the tissue in the image, we present a
regularization method based on the accretion of fibro-glandular tissue
that is inspired by the particle accretion phenomenon with attractive
interactions. The method is combined with a polychromatic recon-
struction algorithm with material decomposition.
The key ingredient of our approach is the correspondence between
the fraction of fibro-glandular tissue at each voxel with a number of
particles with attractive interactions. In this manner, the particles
within one voxel would be attracted to those of a neighbor, generating
a redistribution among voxels and the tissue patterns present in breast
phantoms.
Reconstruction performance was analyzed quantitative over 65 two-
dimensional phantom slices. It was found that the relative error of the
reconstructed glandularity was 11.4% on average, ranging between
−48.8% and +32.4%, for glandularity values ranging between 0.07
and 0.62. The Dice similarity coefficient of the fibro-glandular struc-
tures in the phantoms after reconstruction was 0.57 on average, ranging
between 0.20 and 0.90.
Results indicate that the presented accretion method has shown to
improve the results of the iterative reconstruction method by localizing
some of the large structures of fibro-glandular tissue in the phantoms
studied.

1 Introduction

Digital breast tomosynthesis (DBT) overcomes some of the
limitations of mammography by acquiring several low-dose
planar x-ray projections over a limited angular range. This
allows for the reconstruction of a pseudo-3D representation
of the breast. However, the sparsity of the sampling and the
limited number of projections give rise to artifacts, such as
the stretching of features along the direction of the acqui-
sitions in the set of projections. This artifact results in an
incomplete separation between overlapping features and in
the challenging recovery of their real shape and extent [1, 2].
Iterative algorithms have been developed to alleviate the ar-
tifacts by applying constraints over the images, e.g., on the
image total variation [3–6] or on the 0-norm of image gradi-
ent [7]. Deep learning approaches [8, 9] appear to be able
to recover information lost in the limited angle acquisition
based on learned prior knowledge on the expected tissue dis-
tributions, although they require large amounts of training
data and their generalization is not completely clear.
Therefore, accurate image reconstruction from data acquired
over limited-angular ranges remains an appealing area of
research, and in this work we present a regularization method

that is able to recover the distribution of larger fibro-glandular
structures by applying a clustering algorithm inspired by plan-
etary accretion mechanics, see e.g. Ref. [10].

2 Method

2.1 Description

The knowledge that the breast is almost entirely composed
of only two tissue types, namely adipose and fibro-glandular
tissues, could provide a strong constraint when solving the
limited angle reconstruction problem. Directly applying a
discrete tomographic reconstruction allowing only these
two components is however too limiting due to the presence
of skin, calcifications, and possibly masses in a small
fraction of the reconstructed volume, in addition to the
expected biological variability of the density of adipose and
fibro-glandular tissues.
Since such direct assignment of a unique tissue type to each
voxel effectively creates clusters of a specific tissue, we
were inspired by the phenomenon of planetary accretion
to achieve a similar effect in the fibro-glandular tissue
as a method to counter the limited angle effect to spread
attenuation outside of its actual location. This clustering is
then achieved by including attractive forces that exist among
individual elements in a system and results in their collision
and combination to form larger structures.
To allow straightforward application of such regularization
on only the fibro-glandular tissue of the breast, we use a
polychromatic iterative method published by Bustamante
et al. [11], which optimizes a maximum likelihood cost
function with material decomposition that allows for
the separation of tissues into a set of base materials,
specifically adipose and fibro-glandular tissues for the
current application. The forward model is shown in Eq. (1),
where ŷi is the expected value of projection line i, li j the
intersection between projection line i and voxel j and Ii,e

0
the energy fluence source spectrum for the projection. The
attenuation of voxel j at energy e, µe

j , is parameterized by
the attenuation of the base materials, µe

a , and the fraction of
these materials constituting the voxel wa, j: µe

j = ∑a µe
awa, j.

Although mathematically there are no specific constraints
on the weights w, for the reconstruction of breast tissue we
expect most values to represent adipose–fibro-glandular
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Figure 1: Representation of the primary and secondary voxels.
The red arrows indicate the direction of the accretion.

mixtures and thus yield values in the interval [0,1].

ŷi(w⃗) = ∑
e

Ii,e
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The main principle in our approach is the representation of
the fraction of fibro-glandular tissue at each voxel with a
number of particles with attractive interactions. In this man-
ner, the particles of one voxel would be attracted to those of a
neighbor, generating redistribution among voxels and, more
specifically, accumulation of fibro-glandular and adipose tis-
sues.
The method is applied by alternating updates from the poly-
chromatic iteration and the accretion process as follows. At
each iteration, and after the polychromatic reconstruction
update, a set of pairs of voxels are chosen to interact, which
we dubbed primary voxels. First, let us consider one pair of
these voxels, named 1 and 2, with fibro-glandular (fg) compo-
nents wa= f g, j=1,2, and the closest neighboring voxels along
the line that joins them, 3 and 4, which we dubbed secondary
voxels, as illustrated in Fig. 1. To simplify notation, here on
we omit the material index a, as it only correspond to f g.
Then the accretion operation is driven by the updates

w1 → w1 −∆1,

w2 → w2 −∆2,

w3 → w3 +∆1,

w4 → w4 +∆2,

with

∆1 = w1w2(1−w3), ∆2 = w1w2(1−w4), (2)

The red arrows in the figure represent the particle’s flow,
given by ∆ j, as their definition constraints the values of w j

to the interval [0,1]. Next, for each pair of primary voxels,
one is randomly chosen while the other is considered from
the parameters of the accretion operation:

Stage niter npairs δint (voxels) σθ (◦)
1 104 100 20 25
2 500 104 10 5

Table 1: Accretion parameters used in the evaluation.

• Interacting angle θ : the angle subtended by the line
joining the primary voxels is obtained from a Gaussian
distribution with average θ̄ = 0◦ and standard deviation
σθ . θ = 0◦ is the main angle of projections.

• Range of interaction δint: the maximum distance be-
tween interacting voxels can slightly define the size of
the resulting structures.

• Number of interacting pairs npairs: the number of
pairs of primary voxels evaluated at each iteration is
modified according to the balance between the data-
driven and accretion processes.

Each of these accretion parameters can be chosen freely.
For the evaluation described in the following section, we
employed the values listed in Table 1, where niter is the
number of iterations. A relatively small rate of accretion,
npairs/niter ≪ 1, improves the clustering in the correct places
as it allows the data-driven adjustments to have an important
effect.

2.2 Simulation and Evaluation

We evaluated our method using 65 two-dimensional slices ex-
tracted from 22 digital phantoms based on segmented breast
CT patient scans that where then mechanically compressed
using a finite element model [12]. The phantoms have an
isotropic pixel size of 0.273 mm. The tissues are classified
as either adipose, fibro-glandular, or skin.
Simulated acquisitions were performed for a wide angle
breast tomosynthesis geometry with 25 projections over a 50
degrees angular range (−25 to 25 degrees), source-detector
distance of 647 mm, source-center of rotation distance of 600
mm and detector spacing of 0.1 mm. The acquisition spectra
alternated between one with a tube voltage of 30 kV and
filtered by 50 µm of rhodium, and one with tube voltage of
49 kV and filtered by 1 mm of titanium over the 25 projection
angles.
We applied our method in a multigrid approach with the appli-
cation of an average pooling operation in the projection data.
The first stage is a low resolution reconstruction (rebinning
of 5x5 pixels) and is responsible for the relatively large-sized
clusterings of fibro-glandular tissue, while the second stage
is in full resolution and develops smaller features. A mono-
tonically decreasing range of interaction is selected along
the stages in order to adjust the formation of the specified
accretion, δint = 20 → 10 as in Table 1. Furthermore, we
focus the interactions in the mean angle of projections with
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the aim of correcting the stretching artifact at angle θ = 0◦.
In addition to visual evaluation of the reconstructions, both
the amount of fibro-glandular tissue recovered and its lo-
cation were evaluated. The former by comparison of the
reconstructed glandularity to that of the original phantom,
and the latter by calculating the Dice similarity coefficient
(DSC, Eq. (3)) between the fibro-glandular components of
the reconstruction (RE) and the original phantom (GT).

DSC =
2(RE ∩GT )

RE +GT
(3)

3 Results

Two examples of the evaluated phantoms are shown in Fig. 2,
including the ground truth, the reconstruction without accre-
tion for comparison purposes, and the two stages of recon-
struction explained in Sec. 2. As can be seen, the accretion
in the first stage accounts for the large clustering along the
mean projection angles, see Fig. 2c, while the following stage
leads to more subtle changes in finding the relatively large
areas of fibro-glandular tissue, see Fig. 2d. The difference
between the ground truth and the reconstruction is shown
in Fig. 2e, where it is possible to observe that the relatively
smaller features are missed.
An example where the method performs comparably poorly
is shown on the right column of Fig. 2, where not all large
structures are encountered and the appearance of some incor-
rectly placed fibro-glandular structures can be seen.
Quantitative evaluation over 65 two-dimensional slices from
22 phantoms found that the relative error of the recon-
structed glandularity was 11.4% on average, ranging between
−48.8% and +32.4%, for glandularity values ranging be-
tween 0.07 and 0.62. The Dice similarity coefficient of the
fibro-glandular structures in the phantoms after reconstruc-
tion was 0.57 on average, ranging between 0.20 and 0.90.

4 Discussion & Conclusion

The presented accretion method has shown to visually im-
prove the results of the iterative reconstruction method by
localizing some of the large structures of fibro-glandular
tissue in the phantoms studied and the total amount of recon-
structed fibro-glandular tissue closely matched the ground
truth.
However, the output was found to have differences across the
features present, with it being not completely successful in
reconstructing smaller fibro-glandular features of the phan-
toms.
In principle, our method is suitable for a direct extension to
3D reconstruction, without much increase in computational
cost since the distribution of the set of attracting voxel pairs
remains preferentially aligned to the direction of the lines
tracing from source to each detector pixel.

We do not expect this method to be able to recover the
fine fibro-glandular structures present, however, as we have
shown previously [8], being able to localize the bulk of the
fibro-glandular tissue in a limited angle reconstruction can be
useful for accurate measurements of patient specific breast
density and Monte-Carlo dose estimation.
Even though the method has lower accuracy than our learned
reconstruction, the fact that no training data is needed, since
this is not a learned method, makes this new approach an
important tool.
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(a) Ground truth

(b) No accretion

(c) First stage

(d) Second stage

(e) Difference between GT and RE

Figure 2: Examples of two reconstructions of phantoms with the accretion method. The fraction of fibro-glandular tissue is represented
by the white color in Fig. 2a and gray-scale in Figs. 2b, 2c and 2d, in a range from 0 (black) to +1 (white). In Fig. 2e, the range is set
from -1 (black) to +1 (white). The DSC values obtained were 0.64 and 0.56 for the left and right columns respectively.
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Abstract Proton therapy is to maximize radiation dose on a tumor site 

while minimizing radiation effects to surrounding vital organs in a 

patient. When protons travel through tissues, a pronounced Bragg peak 

occurs in the energy loss curve of ionizing radiation. The position of the 

Bragg peak is usually estimated by the stopping power ratio (SPR). The 

proton therapy is to realize optimal conformity of the high dose deposit 

with the tumor. The quality of the proton therapy relies on accuracy of 

the Bragg peak estimation and reliable dose planning. In current clinical 

practice, the standard stoichiometric calibration method is susceptible to 

tissue composition variations, and often carries ~3.5% range 

uncertainty. In this study, we propose a deep learning method to 

directly map a clinical CT image to corresponding SPR map via an 

improved ResNet (imResNet) model. Specifically, based on the 

elemental composition of human tissues, material decomposition is 

performed from dual-energy CT (DECT) to generate a training dataset 

to optimize the parameters of imResNet model in the supervised 

fashion. In this pilot study, we evaluate the proposed method on 

simulated and clinical CT images, showing that the method achieves 

accurate SPR calculation. 

1 Introduction 

Proton-matter interaction produces a special dose 

distribution, releasing most of energy at the Bragg peak, 

the distal end of the beam range. The proton therapy is to 

realize optimal conformity of the high dose deposit with 

the tumor [1]. The quality of proton therapy depends on 

the accuracy of the Bragg peak prediction, which is 

estimated by calculating the stopping power ratio (SPR). 

Inaccurate SPR values cause a range shift of the proton 

beam, and result in proton dose distribution error and 

insufficiently treatment. Schneider et al. proposed a 

stoichiometric calibration method to convert single energy 

CT (SECT) images to SPR via a calibration curve [2]. 

However, this calibration method yields an uncertainty of 

3–3.5% in the proton range [3]. Virtual monochromatic 

(VM) images are derived from dual-energy CT (DECT) to 

reduce beam-hardening artifacts and improve CT number 

accuracy relative to SECT images [4-6]. To minimize the 

impact of range uncertainty on treatment plans, dual-

energy CT (DECT) was introduced to photon therapy to 

provide material-specific information by decomposing 

energy-dependent photoelectric absorption and Compton 

scattering [7]. Thus, SPR can be calculated on the basis of 

the Bethe-Bloch formula using the relative electron density 

and mean excitation energy of tissues [8]. Hudobivnik et 

al. demonstrated a higher accuracy in SPR derived from 

DECT than from SECT [9]. 

It is worth mentioning that SPR estimation via DECT 

technique is to establish an empirical model to estimate the 

mean excitation energy in terms of the effective atomic 

number [7]. The relationship between the mean excitation 

energy and the effective atomic number is rather 

complicated and cannot be accurately described by an 

analytical formula due to different physical characteristics 

of the two physical quantities [3]. The empirical analytic 

model often generates considerable errors in the estimated 

mean excitation energy, compromising the accuracy of 

SPR estimation.  

Emerging deep learning is a powerful technique to 

perform various types of uncertainty estimation and data 

modeling through learning and inference in a data-driven 

fashion [10]. A representative learning-based approach 

[11] for proton therapy first synthesizes DECT images 

from SECT images [5], and then computes SPR images 

from the synthetic DECT image. In this paper, we develop 

a deep learning approach to directly convert a SECT image 

to corresponding SPR map. Chemical compositions of 

human tissues are of importance in calculating the 

dosimetric distribution in the patient irradiated with 

radiation [12]. Based on the elemental composition of 

human tissue, accurate material decompositions are 

performed using VM images to calculate physical 

parameters of human tissues, including the electron 

density, effective atomic number, mean excitation energy, 

and mass attenuation coefficient of tissues. These physical 

parameters provide an accurate calculation of SPR and 

attenuation coefficient of tissues, which can be used to 

establish training datasets to optimize the parameters of 

imResNet model in the supervised fashion. Through the 

imResNet model, clinical SECT images can be converted 

to corresponding SPR map directly. This method differs 

significantly from both conventional DECT-based SPR 

estimation and learning-based synthetic DECT methods 

[11]. In the next section, we describe our methodology for 

the SPR estimation. In the third section, we present our 

representative results. Finally, we discuss relevant issues 

and conclude the paper in the last section.  

2 Materials and Methods 

2.1. Convolution Network Architecture: The 

convolution neural network (CNN) is a popular 

architecture for image processing [13]. However, training 

a deep CNN network often suffers from 

vanishing/diverging gradients [14]. The residual neural 

network (ResNet) is an effective architecture, which 

greatly facilitates extraction of complex and subtle features 
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from data. With use of the shortcut, ResNet allows the 

network training process to converge more stable and 

faster than without the shortcut.  

For modeling a complicated nonlinear relationship 

between clinical SECT images and SPR images, here we 

use an improved ResNet (imResNet) architecture [5]. The 

imResNet performs convolution for 3D images 

 ,2 31, I, I I  formed from an input 2D CT image I  with a 

filter of 4×1×1 in the first layer to introduce nonlinear 

terms of input data. The next layers in the imResNet 

network are 2 residual blocks of 3 convolution layers with 

64 filters of 7×7 kernels, followed by 2 residual blocks of 

3 convolution layers with 64 filters of 5×5 kernels, and 2 

residual blocks of 3 convolution layers with 64 filters of 

3×3 kernels. Each residual block performs feed forward 

processing with shortcut connections skipping 3 layers to 

implement an identity map. Then, a convolution layer with 

64 filters of 3×3 kernels is performed, followed by a 

convolution layer with 32 filters of 3×3 kernels, and a last 

layer generates a feature map with a single 3×3 filter as the 

output. Every layer is done by a ReLU activation function. 

The network architecture is shown in Figure 1. 

2.2. Building training dataset: Virtual monochromatic 

(VM) CT images are derived from DECT images to 

provide quantitative information on tissue composition 

[15]. At the molecular level, tissues are composed of the 

basis molecular substances [12, 16]. The elemental 

composition of body tissue is determined by the relative 

weight fractions of the basis molecular substances: water 

(H2O, density of 1.0g/cm
3
), lipid (C51H98O6, density of 

0.9g/cm
3
), protein (C100H159N26O32S0.7, density of 

1.34g/cm
3
), carbohydrate (C6H10O5, density of 1.52 

g/cm
3
), and mineral (Ca3(PO4)2, density of 3.14g/cm

3
) [12, 

16]. The molecular formula of a basis molecular substance 

contains information about its mass density, atomic 

number, and atomic weight. Thus, the relative electron 

density and mean excitation energy of tissues can be 

accurately estimated from following formulae, thereby 

calculating the SPR exactly. 

The X-ray mass attenuation coefficient of a tissue can be  

expressed as a composition of basis molecular substances 

[17]: 

     

   

water water water lipid lipid lipid

protein protein protein minerals mineral mineral

E w E w E

w E w E

     

   

 

 
.  (1)                                     

The weight fraction of respective components satisfies the 

normalized condition: 

water lipid protein mineral 1w w w w    .                   (2) 

VM CT images can be applied to Eq. (1) to form a system 

of linear equations with respect to weight fractions. The 

system of linear equations can be solved using an 

optimization method to determine relative weight fractions 

of the basis molecular substances [5].  

Furthermore, the electron density 𝜌𝑒 of mixture materials 

relative to water can be computed from the atomic number 

and atomic weight of each elemental component [8]:  

i i i i
e i w

i mixture i wateri i

w Z w Z

A A
  

 

   ,                 (3)   

where 𝜌𝑖 , 𝑤𝑖 , 𝑍𝑖  and 𝐴𝑖  are the mass density, elemental 

weight fraction, atomic number, and atomic weight of 

element component in a substance, respectively. Thus, the 

mean excitation energy of tissues is calculated based on 

the Bragg additivity rule [8]:  

   ln lni i i i
i

i mixture i mixturei i

w Z w Z
I I

A A 

                 (4)                                                     

Therefore, the stopping power ratio (SPR) of intervening 

tissues can be computed from relative electron density and 

mean excitation energy using the Bethe-Bloch equation 

[7]: 

      

      

2 2 2 2

2 2 2 2

ln 2 ln 1 ln

ln 2 ln 1 ln

e

e

e w

m c I
SPR

m c I

  


  

   


   

,     (5)                                        

where  𝑚𝑒𝑐2 is the rest mass energy of the electron, 𝛽 is 

the speed of the proton relative to light speed, 𝐼𝑤  is the 

mean excitation energy of water, 𝐼 is the mean excitation 

energy of the tissue, and 𝜌𝑒 is the relative electron density 

of the tissue with respect to water.  

On the other hand, the linear attenuation coefficient of 

tissues can be calculated from these physical parameters 

using the following formula [18, 19]: 

 
   

 

3.62 1.86
p p i h h ii i

ii mixture c c

k E Z k E Zw Z
E

A k E

 
 



 
 
  

 ,    (6)  

where  σP(E) , 𝜎ℎ(𝐸)  and 𝜎𝑐(𝐸)  are energy-dependent 

coefficients describing photoelectric interaction, coherent 

scattering and Compton scattering, respectively [20, 21].  

 

Fig. 1. Architecture of the imResNet model with non-linearized 

input terms. 
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Based on the elemental composition of human tissue, both 

linear attenuation coefficients and SPR values can be 

accurately calculated, generating datasets for the 

supervised learning to modeling the relationship between 

two physical quantities. 

3 Results 

The dual-energy CT (DECT) datasets of 10 patients were 

obtained from Massachusetts General Hospital (MGH, 

Boston, MA). The DECT scanner was operated at the 

dual-source scanning mode to acquire two raw datasets at 

80kVp and 140kVp respectively. Then, DECT images 

were reconstructed and further converted into virtual 

monochromatic (VM) CT images at multiple energy levels 

from 60keV to 120keV in an increment of 10keV. We 

generated training dataset using the method described in 

the preceding section. Training a network was a process of 

optimizing specific kernels and weights in convolution 

layers to minimize a loss function, which was defined as l1 

norm to evaluate errors between output predictions and 

ground truth labels on a training dataset. For 

computational efficiency, the imResNet model was trained 

using image patches with 64×64. The standard training 

cycle was followed through the training, validation and 

testing stages.  

 

Fig. 2. Convergence of the imResNet model training measured 

with the Manhattan norm loss versus the number of epochs 

during the training process. 

The training procedure of the imResNet model was 

programmed in Python and the Tensorflow on a PC 

computer with a NVIDIA Titan XP GPU of 12 GB 

memory. The network parameters in the convolution 

kernels were initialized from the Gaussian distribution 

with zero mean and variance of 0.01. The loss function 

was minimized using the adaptive moment estimation 

(ADAM) optimizer with a learning rate of 10
-4

 and decay 

rates of β1=0.9 and β2=0.999. Data were randomly sampled 

from the training dataset to maximize the probability of 

finding the global minimum. The network was trained 

with 800 epochs, which took about 12 hours. The loss 

function decreased consistently, showing an excellent 

convergence and stability. Fig. 2 shows the averaged 

Manhattan norm loss versus the number of epochs. Fig. 3 

presents representative SPR images produced using our 

trained imResNet model against the ground truth SPR 

images calculated from the elemental composition data. It 

can be observed that the trained imResNet delivered high-

quality SPR images, with an average relative error of less 

than 1% in the testing phase. The peak signal-to-noise 

ratio (PSNR) and structural similarity index measure 

(SSIM) were used to evaluate the quality of reconstructed 

SPR images. With the theoretical SPR image as the 

reference, we calculated PSNR for the reconstructed SPR 

images, achieving an average PSNR of 55.88±0.125 

(p<0.05). Also, SSIM was calculated to quantify the 

similarity between the reconstructed SPR image and the 

reference image, achieving an average SSIM of 

0.9991±0.0018 (p<0.05). The results show that the 

structural information especially texture features are well 

preserved in the reconstructed SPR images and this 

method effectively copes tissue composition variations. 

4 Discussions 

DECT images in clinical practice provide material specific 

information to reflect composition variations of various 

tissues in the human body. DECT calculates virtual 

monochromatic (VM) CT images, and extracts electron 

density and effective atomic number of tissues on CT 

images pixel-wisely [15]. According to the molecular 

model of human tissues, the composition of body tissues 

can be expressed as a linear combination of basis 

substances. The weight fraction of each basis substance 

can be determined from VM CT images to calculate 

elemental composition data of human tissues. Chemical 

compositions of basis molecular substances can be used to 

accurately calculate relative electron density and mean 

excitation energy of tissues for the SPR calculation. 

Therefore, linear attenuation coefficients and SPR values 

can be perfectly paired on DECT images pixel-wisely, and 

generate datasets to train the imResNet model in the 

supervised learning fashion.   

Deep learning-based methods have been introduced for the 

SPR calculation. A typical learning calculation method of 

the SPR [11] is to synthesize DECT images, i.e. synthetic 

low energy CT image and synthetic high energy CT 

image, from SECT images. The relative electron density 

and the effective atomic number can be reconstructed from 

synthetic low energy and high energy CT images. Then, 

the DECT-based method establishes an empirical model 

for the estimation of the mean excitation energy in term of 

the effective atomic number. Furthermore, SPR can be 

calculated on the basis of the Bethe formula utilizing the 

relative electron density and mean excitation energy of 

tissues. However, the relationship between the mean 

excitation energy and effective atomic number is very 

complicated and cannot be accurately described by an 

analytical formula. The empirical analytic model often 

generates considerable errors in the estimated mean 
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excitation energy, leading to a substantial proton range 

uncertainty. Significantly different from the learning 

DECT-based SPR estimation method [11], our deep 

learning-based approach generates a training dataset from 

chemical composition data of human tissues, and the deep 

learning approach directly calculate the stopping power 

ratio (SPR) map from clinical SECT images via the trained 

imResNet model. In our data-driven modeling approach, 

the trained network model is accurate and robust against 

various types of data perturbations. This deep learning-

based approach estimates SPR from regular clinical SECT 

images directly, solves the problems in the dual-energy 

stoichiometric method efficiently, and significantly 

minimizes the range uncertainty of SPR estimation. 

 

Fig. 3. SPR image reconstruction. (a) An input clinical CT 

image at 120kVp, (b) the SPR image calculated using our 

trained ImResNet model, (c) the ground truth SPR image 

calculated in terms of elemental composition of tissues, and (d)-

(e) the vertical and horizontal profiles of the SPR image against 

that of the ground truth. 

5 Conclusion 

We have developed a practical approach to generate a 

training dataset from chemical composition data of human 

tissues derived from DECT and VM images, and proposed 

a deep learning approach to directly calculate the stopping 

power ratio (SPR) map from clinical SECT images via the 

trained imResNet model with a novel non-linearized input 

block and efficient shortcuts. The training of the imResNet 

model has excellent convergence and stability. We have 

conducted the quantitative evaluation based on numerical 

and clinical CT images. From CT images acquired by a 

SECT scanner, the proposed deep-learning-based approach 

generates high-quality SPR images with an uncertainty of 

1%, thereby significantly minimizing the uncertainty range 

of SPR estimation for proton therapy. The proposed 

imResNet model and SPR calculation method have 

translational potential for the proton therapy.  
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Abstract In X-ray cone-beam computed tomography (CT), spec-
tral modulator with flying focal spot (SMFFS) technology could be a
promising low-cost approach to accurately solving the X-ray scattering
problem and physically enabling multi-energy imaging in a unified
framework, with no significant misalignment in data sampling of spec-
tral projections. In this work, we advance this technology for spectral
cone-beam CT (CBCT) and analyze the design of Scatter-Decoupled
Material Decomposition (SDMD) for the blended multi-energy projec-
tion and twisted scatter-spectral challenge based on a scatter similarity
hypothesis of SMFFS. Physics experiments on a tabletop CBCT sys-
tem using a GAMMEX multi-energy CT phantom, are carried out to
demonstrate the feasibility of our proposed SDMD method for CBCT
spectral imaging with SMFFS. In the physics experiments, the mean
relative errors in selected ROI for virtual monochromatic image (VMI)
are 0.9% for SMFFS, and 5.3% and 16.9% for 80/120 kV dual-energy
cone-beam scan with and without scatter correction, respectively.

1 Introduction

For cone-beam CT, spectral imaging is highly desired and
is under active investigation with great progress these days.
Numerous spectral CBCT concepts and prototype systems
have been developed by using the fast kV-switching and the
dual-layer detector technology[1–4]. These investigations
have shown the potential of spectral CBCT in diagnostic
and interventional radiology and radiotherapy. However, as
one of the most important factors affecting spectral CBCT
performance, so far in most of the studies in the literature,
scatter was either simply estimated and corrected or com-
pletely avoided by using a relatively narrowed collimator.

In this work, we advance the SMFFS technology[5] to the
multi-energy blended CBCT spectral imaging, and design
a novel scatter-decoupled material decomposition method,
where scatter correction and spectral imaging are modeled in
a unified framework.

2 Method

2.1 Physical Model of SMFFS

Figure 1 shows an illustration of the SMFFS system, which
mainly consists of the X-ray source, the spectral modulator,
the scanning object, and the detector. In such a system, the
X-ray source should be able to equivalently deflect the focal
spot during a CT scan using the flying focal spot technology
(or alternatively, with a distributed X-ray source); the spectral
modulator consists of partially attenuating blockers and is
placed between the X-ray source and the scanning object. In
this paper, the spectral modulator was made by overlapping

z
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Spectral modulator

Point on object center plane

Source

Flying focal spot

X-ray passing through blocker L
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X-ray passing through blocker H
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Figure 1: An illustrative diagram of the spectral modulator with
flying focal spot (SMFFS).

two 1D modulators together. For the SMFFS system with
the focal spot at the k-th position, in consideration of the
scatter intensity I(k)s received on the detector, the total X-ray
intensity measurement with an object in the beam is,

I(k)t =
∫ Emax

0
S(k)(E)e−µ1(E)L

(k)
1 −µ2(E)L

(k)
2 dE + I(k)s (1)

Here, the superscript (k) corresponds to the different fo-
cal spot positions that can minimize the misalignment of
spectral projections as shown in Fig. 1; S(k)(E) is the effec-
tive spectra passing through the modulator and received by
the detector (without object); µ1(E) and µ2(E) denote the
energy-dependent attenuation coefficients of two basis mate-
rials, and L(k)

1 and L(k)
2 represent the corresponding effective

path-lengths of two basis materials, respectively. Because
the SMFFS system can maintain a good alignment of multi-
energy X-rays and very similar scatter distributions among
selected focal spot positions [5, 6], we can assume L(k)

1 ≈ L1,
L(k)

2 ≈ L2, I(k)s ≈ Is. For the simplified problem with three un-
knowns L1,L2, Is, if multiple measurements I(k)t at different
focal spot positions are available, (1) can be mathematically
solved in a unified framework.

2.2 Analysis

First, we can regard the problem as a three-variable non-
linear problem. As long as we have three measurements at
different focal spot positions, mathematically this problem
can be solved as a ternary system of linear equations.
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However, non-ideal factors occur in the actual situation.
One of the most important factors is the penumbra effect.
The penumbra effect is caused by the focal spot of the X-ray
source with a certain size, and the spectra S(k)(E) correspond-
ing to the X-rays passing through the edge of blockers of
the modulator can be very similar and without enough en-
ergy separation. In other words, the equation of k = 1 and
k = 2 may be similar in (1). Therefore, the problem is highly
ill-posed in the penumbra area. What’s more, for the 2D
modulator shown in Fig. 1, the ratio of penumbra area to non-
penumbra area is approximately the square of the ratio for
the 1D modulator. The valid data for the scatter-decoupled
material decomposition can even be 10% in reality. Other
factors like the noise and the scatter deviation at different
focal spot positions also make the problem difficult to be di-
rectly solved. To solve this problem, an iterative method for
all data with strong constraints like total variation may be a
good choice for the sparse spectral data. But in consideration
of the high sparsity and the high complexity, we first conduct
a prior analysis of the ill-posedness of the data.

To select the valid data, we use an elimination method to
simplify the problem like this,

I(i)t − I(k)t =
∫ Emax

0

(
S(i)(E)−S(k)(E)

)
e−∑i µi(E)LidE (2)

Compared with the ternary nonlinear equations, the sim-
plified equation (2) has the advantages as follows. First, the
spectral diversity of the residual spectra like S(i)(E)−S(k)(E)
in (2), and the noise level of the residual data like I(i)t − I(k)t
that follows a Skellam distribution, can better characterize
the ill-posedness of the data, which can help us quickly fil-
ter out useful data rather than analyze the ill-posedness of
the ternary nonlinear equations; Second, the residual spectra
can maintain a normal shape as the spectra are generated by
different filtration of the 2D modulator. Thus, some typical
material decomposition method for dual-energy CT can also
be used for this residual data.

As Fig. 1 shows, we can divide the spectral data into
different energy levels corresponding to different filtrations.
Taking the detector pixels with I(1)t = ItO , I

(2)
t = ItL , I

(3)
t = ItH

as an example, we can obtain a pair of residual projections
without scatter and with enough energy separation as,

POL =− ln

(
I(1)t − I(2)t

I(1)m − I(2)m

)
=− ln

(
ItO − ItL

ImO − ImL

)

PLH =− ln

(
I(2)t − I(3)t

I(2)m − I(3)m

)
=− ln

(
ItL − ItH

ImL − ImH

) (3)

where, Im is the X-ray intensity measured without the scan-
ning object in the beam; the subscript of Im and It repre-
sents the energy level (O: original spectrum without passing
through the modulator, L: low filtration by the modulator,
M: middle filtration, H: high filtration), corresponding to
different blockers of the modulator.

2.3 Implementation

The material decomposition is ill-posed due to the interpo-
lation distortion for the residual data in the penumbra area.
Therefore, we propose a two-pass guided material decom-
position approach to solving this problem while preserving
spatial resolution.

2.3.1 Scatter-Decoupled Material Decomposition for
Residual Data

The scatter-decoupled material decomposition is similar to
the material decomposition in traditional dual-energy CT, but
with higher noise and more sparse data. To solve these prob-
lems and take advantage of the non-penumbra data with dif-
ferent energy levels, we conduct the guided material decom-
position by referring to an iterative similarity-based method
mentioned in [7]. The reference image in the material decom-
position can be generated by a special combination among
the different combinations of residual projections. The spe-
cial combination POH =− ln

(
ItO−ItH

ImO−ImH

)
has the lowest noise

but is not the best choice for energy separation. Therefore,
reconstruction from POH can be used as a guided image for
material decomposition using POL,PLH .

2.3.2 Scatter Estimation

Taking the decomposition of iodine and water as an ex-
ample, we use the first-pass, over-smooth iodine image from
2.3.1 to generate the equivalent iodine length Lio. Then, we
generate the iodine-induced spectra S(k)io (E) = S(k)(E)e−µioLio ,
hence the total X-ray intensity can be modeled as I(k)t =∫ Emax

0 S(k)io (E)e−µwaLwadE + Is. And the object can be regarded
as purely water-equivalent. Therefore, the scatter can be es-
timated by the residual spectral linearization approach for
SMFFS [8]. It should be noted that only data with enough
energy separation are used for the scatter estimation. The
full-scale scatter distribution is estimated by a regular in-
terpolation. During this processing, the median filter and
constraint can also be added to the estimated scatter given
its low-frequency property and limited range of scatter-to-
primary ratio (SPR) in practice (i.e., 0 < SPR < 10).

2.3.3 Material Decomposition for Complete Data

After scatter estimation, we utilize the total scatter-
corrected data, especially the data in the penumbra area by
a blended material decomposition method. In this paper,
we use both an analytical method and a one-step model-
based material decomposition method (iterative) referring to
IFBP[9] as preliminary attempts.

1) The analytical method. First, we do preliminary mate-
rial decomposition using the non-penumbra projection data
with enough energy separation to obtain the basis mate-
rial equivalent projections Pm1,Pm2 by a polynomial fitting
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method, which is a fast and robust material decomposition
method.

Then, we generate virtual monochromatic projections
(VMP) based on Pm1,Pm2 and the attenuation coefficients
of basis materials at specific energies EL,EH as,

VMPL,np = µ1(EL) ·Pm1 +µ2(EL) ·Pm2

VMPH,np = µ1(EH) ·Pm1 +µ2(EH) ·Pm2
(4)

where, VMP in the penumbra area can be obtained by a
regular interpolation, and EL,EH is chosen empirically.

On the other hand, by using the calibrated spectra in the
penumbra area and the preliminary iodine result, Pm2, the
VMP in the penumbra area can also be modeled as,

VMPL,p =
N

∑
i=0

N−i

∑
j=0

cp,i j ·Pi
p ·P j

m2, c00 = 0.

VMPH,p =
N

∑
i=0

N−i

∑
j=0

dp,i j ·Pi
p ·P j

m2, d00 = 0.

(5)

where, cp,i j,dp,i j can be generated by the polynomial fitting
using a series of sample points of basis material densities
in advance; and Pp is the scatter-corrected projection in the
penumbra area.

For simplicity, we use a hard threshold to blend the VMPs
as (6) shows. And the threshold t0 is empirically chosen as
0.2 in this paper. The VMIs can be directly reconstructed and
so do the basis material images after a simple image-domain
material decomposition.

VMPp, f inal =


VMPp,

|VMPp −VMPnp|
VMPnp

<= t0

VMPnp,
|VMPp −VMPnp|

VMPnp
> t0

(6)

2) The iterative method. For the iterative method the
blended process in each iteration is similar to the polyno-
mial method. First, we do material decomposition based on
the one-step iterative formula[9]. Similarly, this step only
uses the data with enough energy separation and generates
the equivalent basis material projections Pm1,Pm2; then, we
implement the steps from equation (4) to (6) as usual, and
generate the basis material images by VMPs of two specific
energy; and finally, we update the iteration by the basis mate-
rial images.

Compared to the polynomial method, the iterative method
can deal with the slight misalignment of spectral data in
SMFFS by using different system matrices in the forward
projection step, and has the potential of optimizing the re-
sults by adding regularization constraints. However, accurate
geometry is difficult to be modeled in reality. The slight
misalignment of multi-energy X-rays may be even enhanced
by the wrong geometry. Therefore, the analytical method can
be a robust and quick method to solve the problem, and the
artifacts caused by the slight misalignment are not obvious in
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Figure 2: The experimental CBCT platform with SMFFS.

a routine noise. It should be noted that in both methods ring
fix methods are used for the residual ring artifacts caused by
the penumbra effect and the spectra calibration error.

2.4 Physics Experiments

Physics experiments were conducted on our tabletop
CBCT system as shown in Fig. 2. The X-ray source used a
Varex G-242 tube with a focal spot of 0.4 mm; the detector
was Varex 4030 DX flat-panel detector; the modulator was
manufactured by stacking two 1D strip modulators of Moly.
with a spacing of 0.6 mm and a period of 1.5 mm. In physics
experiments, the source was placed at (0,0,0), (1.32,0,0),
and (0,0,1.32) mm sequentially to mimic the flying focal
spot deflection, and the source was operated at 120 kVp,
386 mAs in all SMFFS scans; the detector worked in bin-
ning 2 mode with 1024×768 pixels, 0.388×0.388 mm2 per
pixel; a GAMMEX multi-energy CT phantom was scanned
with collimation wide enough to cover the detector. Besides
SMFFS scans, limited by the hardware with the maximum
tube voltage of 125 kVp, sequential 80/120 kVp dual-energy
scans without a modulator were also collected for compari-
son, in which the material decomposition was conducted by
a conventional polynomial function method.

3 Result

Figure 3 shows the spectral imaging results of SMFFS,
compared with sequential dual-energy scans of 80 / 120 kVp
with a narrowed collimator (fan beam), a wide collimator
(cone beam) without and with scatter correction by a kernel-
based method fASKS[10] available in the CBCT Software
Tools (CST) (Varex Imaging Corporation). Fig. 4 shows the
quantitative density results in ROIs of iodine and water im-
ages, where their references (dotted-line) are obtained by the
user manual of the Multi-Energy CT Phantom. These prelim-
inary spectral imaging results and quantitative analysis above
demonstrate that our proposed method can significantly im-
prove the image quality and the quantitative performance of
CBCT, even better than that of the sequential dual-energy
cone-beam results in our study.
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Figure 3: Iodine, water, and VMI (70 keV) CT images of SMFFS
and the sequential dual-energy scans. Top row: 80 / 120 kVp FB.
Second row: 80 / 120 kVp CB without scatter correction. Third
row: 80 / 120 kVp CB with scatter correction by fASKS in CST.
Fourth row: SMFFS scan with scatter using polynomial fitting for
second-pass material decomposition. Bottom row: SMFFS scan
with scatter using the iterative method.

4 Conclusions

CBCT has been highly desired to achieve better quantita-
tive performance in recent years, but spectral CBCT is still
limited by the accurate scatter correction for dual- or multi-
energy data. In this paper, we designed a scatter-decoupled
material decomposition (SDMD) method for spectral CBCT
imaging with SMFFS and analyze the characteristic of this
scatter-decoupled material decomposition. As a preliminary
study, physics experiments showed that the scatter-spectral
twisted problem in spectral CBCT can be simultaneously
solved by our method.
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results in ROIs of iodine and water images, where their
references (dotted-line) are obtained by the user manual of575

the Multi-Energy CT Phantom. Table IV shows the mean value
and CNR of ROI 1− 4 in VMI. The MRE of ROIs in iodine
images in Fig. 12 are 4.0%, 30.6%, 28.2%, 7.5%, 9.7% for DE-
FB, DE-CB w/o SC, DE-CB w/ SC, SMFFS-polyfit, SMFFS-
iterative, respectively, while the MRE of ROIs in VMI (70580

keV) are 0.5%, 16.9%, 5.3%, 0.9%, 1.3%, respectively. These
preliminary spectral imaging results and quantitative analysis
above further demonstrate that our proposed method can
significantly improve the image quality and the quantitative
performance of CBCT, even better than that of the sequential585

dual-energy cone-beam results in our study.

V. DISCUSSIONS AND CONCLUSIONS

CBCT has been highly desired to achieve better quantitative
performance in recent years, but spectral CBCT is still limited
by the accurate scatter correction for dual- or multi-energy590

data. In this paper, we proposed a scatter-decoupled material
decomposition (SDMD) method for spectral CBCT imaging
with SMFFS. As a preliminary study, numerical simula-
tions and physics experiments showed that the scatter-spectral
twisted problem in spectral CBCT can be simultaneously595

solved by our method.
The following section aims at discussing the penumbra

effect, the design of the spectral modulator, and the noise.
a) Penumbra effect: this is one of the main factors that

limit the spectral CBCT imaging performance in SMFFS,600

which leads to sparse spectral data and inaccurate calibration
of spectra. In this paper, the strong constraint in first-pass
material decomposition was used to overcome the problem
of the sparsity of spectral data with enough energy separation,
and a ring fix was used to remove ring artifact caused by605

the residual error of spectral calibration in the penumbra
area. Theoretically, a precise model for the focal spot and
the spectral modulator can be useful to better solve the
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Fig. 12. Iodine, water, and VMI (70 keV) CT images of SMFFS and the
sequential dual-energy scans. Top row: 80 / 120 kVp FB. Second row:
80 / 120 kVp CB without scatter correction. Third row: 80 / 120 kVp CB
with scatter correction by fASKS in CST. Fourth row: SMFFS scan with
scatter using polynomial fitting for second-pass material decomposition.
Bottom row: SMFFS scan with scatter using the iterative method.
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Fig. 11. The workflow and intermediate results of our scatter-decoupled
material decomposition method.

TABLE IV
Mean value and CNR for ROIs of VMI (70keV) in Fig. 12.

Mean CNR

ROI 1 2 3 4 1 2 3 4
Reference 1397.1 1263.3 1132.7 1052.4 / / / /
DE-FB 1399.6 1271.6 1137.0 1060.1 6.5 5.2 2.9 1.5

DE-CB w/o SC 1110.5 1041.2 954.1 909.5 3.7 3.3 1.9 0.9
DE-CB w/ SC 1298.9 1195.5 1076.6 1011.4 6.3 5.0 2.6 1.3
SMFFS-polyfit 1380.5 1250.7 1123.0 1047.8 4.1 3.1 2.2 1.1

SMFFS-iterative 1376.9 1245.1 1130.5 1074.8 4.9 3.5 1.9 0.8

by the user guide of Multi-Energy CT Phantom. Table IV
shows relative errors of ROI 1−4 in iodine images. The MRE
of ROIs in iodine images in Fig. 13 are 4.0%, 30.6%, 28.2%,
7.5%, 9.7% for DE FB,DE CB,DE CB-SC, SMFFS-polyfit,
SMFFS-iterative, respectively, while the MRE of ROIs in VMI
(70 keV) are 0.5%, 16.9%, 5.3%, 0.9%, 1.3%, respectively.
The spectral imaging results and quantitative analysis show
that our proposed method significantly improves the image
quality compared with other sequential dual-energy cone-beam
results, and shows comparable image quality to fan-beam
results.

V. DISCUSSIONS AND CONCLUSIONS

CBCT has been highly desired for better quantitative per-
formance in recent years, and spectral CBCT is still limited by
the accurate scatter correction for dual- or multi-energy data.

In this paper, we propose a scatter-decoupled material
decomposition (SDMD) method for spectral CBCT imaging
with SMFFS. As a preliminary study, numerical simulations
and physics experiments show that the scatter-spectral twisted
problem in spectral CBCT can be simultaneously solved by
our SDMD method.

The following section aims at discussing the penumbra
effects, design of the spectral modulator and noise.

a) Penumbra effect: penumbra effect is one of the main
factors that limit the spectral CBCT imaging performance in
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Fig. 12. Iodine, water, VMI (70 keV) of SMFFS, and the sequential
dual-energy w/ or w/o scatter and w/ or w/o scatter correction. Top row:
80 / 120 kVp FB. Second row: 80 / 120 kVp CB. Third row: 80 / 120
kVp CB with scatter correction by fASKS in CST. Forth row: SMFFS
CB using polynomial fitting for second-pass material decomposition.
Bottom row: SMFFS CB using iterative method for second-pass material
decomposition.
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Fig. 13. Quantitative analysis of ROI in experiments of CB SMFFS
scans, FB scans, CB scans, CB scans with scatter correction and
reference. Left: Mean densities of ROIs in iodine images; right: mean
densities of ROIs in water images.

SMFFS, which leads to sparse spectral data and inaccurate
calibration of spectra. In this paper, the strong constraint in
first-pass material decomposition is used to overcome the
problem of the sparsity of spectral data with enough energy
separation, and ring fix is used for ring artifacts caused by the
error of spectral calibration in penumbra area. Theoretically,
a precise model for the focal spot and the spectral modulator
can be useful to solve the problem. However, extended focal
spot, detector glare, manufacturing defect of the modulator
and other non-ideal factors may occur in reality, making it
difficult to accurately model. The smaller focal spot can also
be a solution to suppress the penumbra effect, but with higher
cost. A better spectra calibration method for the penumbra
area can be a promising solution.

b) Spectral modulator design: the design of the mixed 2D
modulator is a key factor affecting the spectral CBCT imaging
performance in SMFFS. In this paper, we analyze the materials

Fig. 13. Iodine and water averaged densities of ROIs in Fig. 12 and
the reference values. Left: averaged densities of ROIs in iodine images;
right: averaged densities of ROIs in water images.

problem as well. However, extended focal spot, detector glare,
manufacturing defect of the modulator, and other non-ideal 610

factors may occur in reality, making it not easy to accurately
model the system. A smaller size of focal spot can also be a
solution to suppress the penumbra effect, but with higher cost
and lower tube power. A precise spectra calibration method
for the penumbra area will be always helpful. 615

b) Spectral modulator design: the design of the mixed
2D modulator is a key factor affecting the spectral CBCT
imaging performance in SMFFS. In this paper, we analyzed
the materials and thicknesses based on the energy separation
between the filtered spectra and the residual spectra. While 620

the strip widths and intervals of the modulator should also
be chosen carefully. Due to the penumbra effect, the energy
separation showed a significant decrease, and high-energy data
are more sparse than low-energy ones because the former are
easier to be affected by the penumbra effect. In our physics 625

experiments, the focal spot has a small diameter of 0.4 mm.
So we eventually chose a mixed 2D “Mo+Mo” modulator with
a strip interval of 0.6 mm, and a larger strip width of 0.9 mm.
These parameters for the modulator can be further optimized

(a)
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Fig. 11. The workflow and intermediate results of our scatter-decoupled
material decomposition method.

results in ROIs of iodine and water images, where their
references (dotted-line) are obtained by the user manual of575

the Multi-Energy CT Phantom. Table IV shows the mean value
and CNR of ROI 1− 4 in VMI. The MRE of ROIs in iodine
images in Fig. 12 are 4.0%, 30.6%, 28.2%, 7.5%, 9.7% for DE-
FB, DE-CB w/o SC, DE-CB w/ SC, SMFFS-polyfit, SMFFS-
iterative, respectively, while the MRE of ROIs in VMI (70580

keV) are 0.5%, 16.9%, 5.3%, 0.9%, 1.3%, respectively. These
preliminary spectral imaging results and quantitative analysis
above further demonstrate that our proposed method can
significantly improve the image quality and the quantitative
performance of CBCT, even better than that of the sequential585

dual-energy cone-beam results in our study.

V. DISCUSSIONS AND CONCLUSIONS

CBCT has been highly desired to achieve better quantitative
performance in recent years, but spectral CBCT is still limited
by the accurate scatter correction for dual- or multi-energy590

data. In this paper, we proposed a scatter-decoupled material
decomposition (SDMD) method for spectral CBCT imaging
with SMFFS. As a preliminary study, numerical simula-
tions and physics experiments showed that the scatter-spectral
twisted problem in spectral CBCT can be simultaneously595

solved by our method.
The following section aims at discussing the penumbra

effect, the design of the spectral modulator, and the noise.
a) Penumbra effect: this is one of the main factors that

limit the spectral CBCT imaging performance in SMFFS,600

which leads to sparse spectral data and inaccurate calibration
of spectra. In this paper, the strong constraint in first-pass
material decomposition was used to overcome the problem
of the sparsity of spectral data with enough energy separation,
and a ring fix was used to remove ring artifact caused by605

the residual error of spectral calibration in the penumbra
area. Theoretically, a precise model for the focal spot and
the spectral modulator can be useful to better solve the
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Fig. 12. Iodine, water, and VMI (70 keV) CT images of SMFFS and the
sequential dual-energy scans. Top row: 80 / 120 kVp FB. Second row:
80 / 120 kVp CB without scatter correction. Third row: 80 / 120 kVp CB
with scatter correction by fASKS in CST. Fourth row: SMFFS scan with
scatter using polynomial fitting for second-pass material decomposition.
Bottom row: SMFFS scan with scatter using the iterative method.
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Fig. 11. The workflow and intermediate results of our scatter-decoupled
material decomposition method.

TABLE IV
Mean value and CNR for ROIs of VMI (70keV) in Fig. 12.

Mean CNR

ROI 1 2 3 4 1 2 3 4
Reference 1397.1 1263.3 1132.7 1052.4 / / / /
DE-FB 1399.6 1271.6 1137.0 1060.1 6.5 5.2 2.9 1.5

DE-CB w/o SC 1110.5 1041.2 954.1 909.5 3.7 3.3 1.9 0.9
DE-CB w/ SC 1298.9 1195.5 1076.6 1011.4 6.3 5.0 2.6 1.3
SMFFS-polyfit 1380.5 1250.7 1123.0 1047.8 4.1 3.1 2.2 1.1

SMFFS-iterative 1376.9 1245.1 1130.5 1074.8 4.9 3.5 1.9 0.8

by the user guide of Multi-Energy CT Phantom. Table IV
shows relative errors of ROI 1−4 in iodine images. The MRE
of ROIs in iodine images in Fig. 13 are 4.0%, 30.6%, 28.2%,
7.5%, 9.7% for DE FB,DE CB,DE CB-SC, SMFFS-polyfit,
SMFFS-iterative, respectively, while the MRE of ROIs in VMI
(70 keV) are 0.5%, 16.9%, 5.3%, 0.9%, 1.3%, respectively.
The spectral imaging results and quantitative analysis show
that our proposed method significantly improves the image
quality compared with other sequential dual-energy cone-beam
results, and shows comparable image quality to fan-beam
results.

V. DISCUSSIONS AND CONCLUSIONS

CBCT has been highly desired for better quantitative per-
formance in recent years, and spectral CBCT is still limited by
the accurate scatter correction for dual- or multi-energy data.

In this paper, we propose a scatter-decoupled material
decomposition (SDMD) method for spectral CBCT imaging
with SMFFS. As a preliminary study, numerical simulations
and physics experiments show that the scatter-spectral twisted
problem in spectral CBCT can be simultaneously solved by
our SDMD method.

The following section aims at discussing the penumbra
effects, design of the spectral modulator and noise.

a) Penumbra effect: penumbra effect is one of the main
factors that limit the spectral CBCT imaging performance in

IodineWaterVMI (70keV)

D
E

 F
B

D
E

 C
B

S
M

F
F

S
 -

p
ol

yf
it

W: [700,1300] mg/ml

W: [700,1300] mg/mlW: [500,1500] HU

W: [500,1500] HU

𝐃
𝐄

 𝐂
B

-S
C

W: [700,1300] mg/mlW: [500,1500] HU

W: [0,20] mg/mlW: [500,1500] HU

1
2

3

4

5

W: [700,1300] mg/ml

S
M

F
F

S-
it

er
at

iv
e

W: [500,1500] HU W: [700,1300] mg/ml

Fig. 12. Iodine, water, VMI (70 keV) of SMFFS, and the sequential
dual-energy w/ or w/o scatter and w/ or w/o scatter correction. Top row:
80 / 120 kVp FB. Second row: 80 / 120 kVp CB. Third row: 80 / 120
kVp CB with scatter correction by fASKS in CST. Forth row: SMFFS
CB using polynomial fitting for second-pass material decomposition.
Bottom row: SMFFS CB using iterative method for second-pass material
decomposition.
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Fig. 13. Quantitative analysis of ROI in experiments of CB SMFFS
scans, FB scans, CB scans, CB scans with scatter correction and
reference. Left: Mean densities of ROIs in iodine images; right: mean
densities of ROIs in water images.

SMFFS, which leads to sparse spectral data and inaccurate
calibration of spectra. In this paper, the strong constraint in
first-pass material decomposition is used to overcome the
problem of the sparsity of spectral data with enough energy
separation, and ring fix is used for ring artifacts caused by the
error of spectral calibration in penumbra area. Theoretically,
a precise model for the focal spot and the spectral modulator
can be useful to solve the problem. However, extended focal
spot, detector glare, manufacturing defect of the modulator
and other non-ideal factors may occur in reality, making it
difficult to accurately model. The smaller focal spot can also
be a solution to suppress the penumbra effect, but with higher
cost. A better spectra calibration method for the penumbra
area can be a promising solution.

b) Spectral modulator design: the design of the mixed 2D
modulator is a key factor affecting the spectral CBCT imaging
performance in SMFFS. In this paper, we analyze the materials

Fig. 13. Iodine and water averaged densities of ROIs in Fig. 12 and
the reference values. Left: averaged densities of ROIs in iodine images;
right: averaged densities of ROIs in water images.

problem as well. However, extended focal spot, detector glare,
manufacturing defect of the modulator, and other non-ideal 610

factors may occur in reality, making it not easy to accurately
model the system. A smaller size of focal spot can also be a
solution to suppress the penumbra effect, but with higher cost
and lower tube power. A precise spectra calibration method
for the penumbra area will be always helpful. 615

b) Spectral modulator design: the design of the mixed
2D modulator is a key factor affecting the spectral CBCT
imaging performance in SMFFS. In this paper, we analyzed
the materials and thicknesses based on the energy separation
between the filtered spectra and the residual spectra. While 620

the strip widths and intervals of the modulator should also
be chosen carefully. Due to the penumbra effect, the energy
separation showed a significant decrease, and high-energy data
are more sparse than low-energy ones because the former are
easier to be affected by the penumbra effect. In our physics 625

experiments, the focal spot has a small diameter of 0.4 mm.
So we eventually chose a mixed 2D “Mo+Mo” modulator with
a strip interval of 0.6 mm, and a larger strip width of 0.9 mm.
These parameters for the modulator can be further optimized

(b)

Figure 4: Iodine and water averaged densities of ROIs in Fig. 3
and the reference values. (a): averaged densities of ROIs in iodine
images; (b): averaged densities of ROIs in water images.
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Abstract  
Background: One-cycle 4D-CT reconstruction can largely reduce 
scanning time and radiation dose, but the reconstruction can be ill-posed 
with sparse-view and limited-angle problems. 
Method: We proposed a novel implicit neural representation (INR) for 
one-cycle 4D-CT featured by a basic deformation model combining a 
two-level motion field INR to a template attenuation field INR, and a 
shortcut for capturing non-deformable motion. The two-level design in 
the motion field INR includes global-local division for motion, and 
pattern-strength modeling for local motion. Besides, a Fourier-Domain-
Error rendering loss is proposed to train INR-based CT reconstruction.  
Evaluation: The method is evaluated in simulated one-cycle cardiac and 
lung 4D-CT datasets. It outperforms PICCS with huge advantages and is 
able to reconstruct high-quality dynamic volumes with rich details. 
Novelty and impact: The proposed hierarchical INR structure and FDE 
loss help reconstruct complex dynamic volumes and solve the sparse-
view and limited-angle problems in one-cycle 4D-CT reconstruction, 
bringing the potential for significant dose reduction by one-cycle 4D-CT. 

1 Introduction 
Traditional 4D-CT reconstruction methods often select 
several projections inside a time window and reconstruct 
the phase volume using these projections and prior 
information[1]. For 4D-CT reconstruction with fewer 
projections or shorter time window, some methods explore 
the spatial or temporal correlation between volumes at 
different phases or prior images[2]. Another type of 
methods joints the projections at different phases by a 
shared static volume and the deformation vector field (DVF) 
or motion field, which is used to deform the static volume 
into temporal phases[3]. Recently, implicit neural 
representation (INR), originated from NeRF[4], provided a 
new methodology in scene representation and 
reconstruction, and has been applied to medical imaging[5]. 
Instead of traditional isolated representation based on 
voxels, INR can construct the scene as a continuous implicit 
model, composed of a feature embedding for arbitrary 
location and view query, and neural networks to convert the 
embedding into the scene prediction. INR is applied to solve 
the sparse-view[5] and limited-angle problem[6] in CT. 
Several INR-based methods are proposed to jointly estimate 
INR for static volume and DVF for dynamic CT[7], [8], but 
either modeling the DVF explicitly with polynomial-fitting, 
or relying on preliminary scans for prior DVFs. 
One-cycle 4D-CT reduces the dose greatly by scanning for 
only one motion cycle. However, its reconstruction is ill-
posed as the angular coverage in a short time window is 
often limited. Besides, sparse-view problem may also exist. 

In this work, we propose a novel INR for one-cycle 4D-CT 
reconstruction. It is a combination of a two-level motion 
field INR and a template attenuation field INR. 
Experimental study demonstrates that the method can solve 
the limited-angle and the sparse-view problem in one-cycle 
4D-CT effectively and reconstruct rich details with few 
artefacts. It brings the potential to largely reduce the 
scanning time and radiation dose needed for 4D-CT. 

 
Figure 1 Overview of the proposed INR for one-cycle 4D-CT 

2 Methods 

2.1 Method Overview 
In 4D CT scanning of the time-variant object, the obtained 
sinogram � can be written as:  

�(�, �) = � �(�⃗, �)��⃗
 

�(�,�)

 (1) 

where �(�, �) stands for the ray casting path for the ��� 
detector at moment �, and �(�⃗, �) is the object’s attenuation 
coefficient at spatial location �⃗ and moment �. In this work, 
we propose an implicit neural representation (INR) for a 
dynamic object, called DctINR. It is featured by a basic 
deformation model combining a two-level motion field INR 
� to a template attenuation field INR �, and an additional 
mechanism to capture non-deformable motion. The 
overview of DctINR is  shown in in Figure 1. 
In the basic deformation model, for a dynamic object at any 
moment � and location �⃗, its attenuation coefficient �(�⃗, �) 
is assumed to match the value of �  at some deformed 
location �⃗� . The offset from �⃗  to �⃗�  is our motion field 
denoted by �(�⃗, �) that is computed from a motion feature 
embedding ��(�⃗, �) sent to an MLP ��. In math, 

�(�⃗, �) = �����(�⃗, �)� (2) 

�⃗� = �⃗ + �(�⃗, �) (3) 
and �(�⃗, �) is computed by querying � with �⃗�: 

�(�⃗, �) = �(�⃗�) (4) 
Further, we borrow the concept of residual learning with a 
shortcut from the motion feature embedding ��(�⃗, �) to � 
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to capture another level’s motion modeling non-deformable 
dynamic components, hence the full method changes from 
the basic deformation model in Eq. 4 to: 

�(�⃗, �) = ���⃗�, ��(�⃗, �)� (5) 

Next, we introduce the detailed method implementation.  

2.2 Two-level motion field INR 
The motion field INR �(�⃗, �)  is built as a motion 
embedding ��(�⃗, �)  fed into an MLP ��  as in Eq. 2. 
Especially, we use a two-level structure for the motion field. 
The first level is a global-local division. We design the 
motion embedding as the concatenation of global and local 
motion components: 

��(�⃗, �) = ���(�), ��(�⃗, �)� (6) 

The local motion ��(�⃗, �)is seen as both spatial and time- 
dependent. The global motion ��(�) is only time-dependent. 

For the local motion embedding, the second level is 
introduced as a pattern-strength model: 

��(�⃗, �) = �(�⃗) ⊗ �(�) (7) 
where the possible motion patterns �(�⃗) are extracted from 
spatial information and the strengths �(�) server as a time-
dependent scale to linearly combine the patterns, ⊗ 
denotes element-wise multiplication. 
As shown in Figure 1-a, we use the learnable multi-
resolution hash encoding[9] for the patterns �(�⃗). Time � is 
firstly frequency-encoded[4], 

  �(�) = [sin(2��) , sin(2��) , … , sin(2����),  

                              cos(2��) , cos(2��) , … , cos(2����)]    (8) 

and then fed into an MLP ��, to get �(�) and ��(�) together: 

��(�), ��(�)� = ����(�)� (9) 

2.3 Template attenuation field INR 
The template attenuation field INR � is implemented as in 
Figure 1-b. We also use the hash encoding to get a spatial 
embedding ℎ(�⃗�)  for the deformed position �⃗� . Then, 
ℎ(�⃗�)  and the previously computed motion embedding 
��(�⃗, �) are fed into an MLP �� together to get �(�⃗, �): 

�(�⃗, �) = ���⃗�, ��(�⃗, �)� = ��([ℎ(�⃗�), ��(�⃗, �)]) (10) 

2.4 Model training 

2.4.1 Overall training procedure 
The training of DctINR follows the tradition in INRs for CT. 
At each iteration, the sinogram at a random moment � is 
drawn from the dataset, and �� rays are randomly sampled 
from the sinogram for ray casting. For each ray, it is casted 
towards the light source, and points are sampled uniformly 
along the intersection of the ray path and the reconstruction 
region. In total, there are ��  points sampled. For each 

sampled point, its (�⃗, �) is sent to DctINR to estimate the 
attenuation coefficient �̂(�⃗, �). All the estimated values are 
projected back to render the predicted detector signals �̂: 

�̂(��, �) = � �̂(�⃗, �)��⃗
 

�(��,�)

     � = 0,2, … , � − 1 (11) 

2.4.2 Fourier-domain-error rendering loss 
Like other INRs for CT, DctINR is trained in self-
supervision by a rendering loss. A rendering loss is defined 

as the distance between the predicted and the ground-truth 
detector signals. A common choice for the distance is MSE 
or MAE. However, both MSE and MAE loss treat each 
detector independently, even though the sinogram/ 
projection itself is semantically meaningful. In this work, 
we propose a Fourier Domain Error (FDE) loss for CT 
reconstruction, to effectively capture the long-range 
dependency across the whole detector panel. For the �� 
sampled detectors, Discrete Fourier Transform (DFT) is 
performed to the detectors’ ground-truth signals �  and 
estimated signals �̂ . FDE loss is defined as the MAE 
between DFT(�) and DFT(�̂): 

�������(�̂, �) =
1

��

‖DFT(�̂) − DFT(�)‖� (12) 

FDE loss measures the rendering error globally among the 
selected detectors and frequency-wisely. As the lower-
frequency error is faster to mitigate during training, FDE 
loss helps train the network in a coarse-to-fine way. 

2.4.3 Regularization loss for the motion field 
To avoid too magnificent motion vector outputs by the 
motion field INR and stabilize the training in the early stage, 
an L2 regularization loss is applied to �(�⃗, �): 

������� =
1

��

‖�(�⃗,  �)‖�
� (13) 

Hence, the total loss for training DctINR is: 
��������� = ������� + �������� (14) 

3 Experimental study results 

3.1 Dataset 
In this work, we evaluate DctINR with a cardiac  4D-CT 
dataset and a lung 4D-CT dataset, both simulated under 
cone-beam CT geometry using ground-truth volumes. 
For the cardiac dataset, a 20-phase 4D volume covering a 
whole heartbeat cycle reconstructed from a prospective 
patient scan is used for 4D-CT projection simulation. For 
the lung dataset, a 10-phase 4D ground-truth volume 
provided from SPARE[10]’s Monte Carlo dataset P3\ 
MC_V_P3_LD_01 is used for 4D-CT projection simulation. 
In total �� timestamps across the motion cycle are sampled, 
each simulated with one projection. For timestamps not 
centered at provided phases, temporal linear interpolation 
from two neighboring phases is used to simulate current 
volume and corresponded CT projection. Therefore, each 
simulated projection is related to a unique timestamp. The 
gantry rotation angle at the �th timestamp is set as: 

2�� ∗ (�� + 1) ∗ �

��
� , � = 0,1, … , �� − 1 (15) 

where 2��  is the total angular coverage. This setting 
ensures the samples are non-overlapped in angle. The 
default setting of �� and � is (360, 4) for the cardiac dataset 
and (180, 2) for the lung dataset. Under this setting, the 
rotation speed for the cardiac dataset assuming a 60-bpm 
heart rate is about 0.25s/rot, the rotation speed for the lung 
dataset assuming a 12-bpm respiratory rate is about 2.5s/rot, 
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and the angular coverage per phase is both 
��

�
 in both 

datasets. Poisson noise with photons of 2e6 is simulated in 
projection. 

3.2 Implementations 

3.2.1 Method training details 
DctINR is trained using Adam optimizer, with initial 
learning rate set as 1e-3 for the cardiac dataset and 3e-3 for 
the lung dataset. Cosine learning rate scheduler with 0.1 
decay ratio is used. A training epoch is defined as the 
shuffled iteration over the total views, and the epoch 
number is set as 180000/��, so that DctINR is updated in 
roughly same times in all experiments. The number of 
sampled rays �� for each view is 1024. Loss weight � is 0.1. 

3.2.2 Comparison methods 
The comparison methods include time-averaged FDK using 
projections from all phases, and PICCS[1] using projections 
from a short time window with the FDK result as the prior. 
The time window length is set to three phases, which is the 
best among all the choices from experiments. 

3.2.3 Evaluation metrics 
RMSE, PSNR and SSIM (using gaussian window with � =
1.5) are used for evaluation. All the metrics are computed 
on attenuation coefficients with unit in mm��.  
The metrics are computed both on the whole volume and 
within semantic ROIs. For the cardiac dataset, 8 per-phase 
ROI masks are used. For the lung dataset, 4 phase-averaged 
ROI masks provided within SPARE dataset are used. 

3.3 Experimental results 

3.3.1 One-beat 4D cardiac 

 

 
Figure 2. The boxplot and the mean value(solid line) of the per-ROI metrics 
counted on all phases, for all the methods. For RMSE, the lower the better. For 
PSNR and SSIM, the higher the better. For cardiac dataset(a), the ROI masks are 
the pulmonary artery (PA), ascending aorta (AO), right ventricle (RV), right 
atrium (RA), left ventricle (LV), left atrium (LA), myocardium of LV (Myo), and 
the coronary artery (CA). For lung dataset (b), PTV is the planning target volume. 

Figure 3 shows the example reconstructed coronal and axial 
views at the 50% phase of the cardiac dataset. DctINR gives 
the best visual quality with the fewest artefacts, the fewest 

structural errors and the clearest boundaries. Shown at the 
zoomed-in ROIs, DctINR can reconstruct high-resolution 
details, for example, the tiny coronary artery (with 1mm 
radius) pointed by an arrow in the coronal view’s ROI. FDK 
result is time-averaged, thus contains strong motion 
artefacts and blurred structures. It also contains streaking 
artefacts. PICCS can reconstruct dynamic volumes with 
only a few motion artefacts, but it contains streaking 
artefacts similar to FDK. Compared to DctINR, PICCS 
contains more smoothed boundaries, more structural errors  
and much less details. PICCS fails to reconstruct tiny 
structures like the coronary arteries shown in the two ROIs. 

 
Figure 3. The example reconstructed coronal (upper 2 rows) and axial view (lower 
2 rows) at the 50% phase of the cardiac dataset. The display window is [0, 0.03] 
mm�� for the reconstructions (1st and 3rd rows) and [-0.005,0.005] mm�� for the 
residuals (2nd and 4th rows). The PSNR and SSIM are only for the view. 

3.3.2 One-breath 4D lung 
Figure 2-b shows the quantitative evaluation of all methods 
on the 4D lung dataset with 180 total views. The lung 
dataset contains stronger movement and only half number 
of views compared to the cardiac dataset. Here, the 
advantage of DctINR over the others is more obvious. It is 
interesting to notice that DctINR has better performance in 
the lung dataset than in the cardiac dataset, while the 
comparison methods perform worse. The time-averaged 
FDK result indicates strong movement in the lung dataset. 
These results demonstrate the robust performance of 
DctINR to strong movement and fewer views. 
Figure 4 shows the example reconstructed sagittal and axial 
views at the 50% phase of the lung dataset. DctINR result 
is very close to the ground-truth and contains almost no 
motion artefacts or streaking artefacts. The PTV and the 
lung nodes can be well reconstructed as shown in the two 
zoomed-in ROIs. The organ boundaries are also clear. FDK 
contains strong motion artefacts and streaking artefacts. 
PICCS is able to compensate some big motions, but the 
structures are blurred as shown in the zoomed-in ROIs. 
Besides, the organ boundaries are hard to distinguished in 
PICCS. 
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Figure 4. The example reconstructed sagittal (upper 2 rows) and axial view (lower 
2 rows) at the 50% phase of the lung dataset. The display window is [0, 0.02] 
mm�� for the reconstructions (1st and 3rd rows) and [-0.005,0.005] mm�� for the 
residuals (2nd and 4th rows). The PSNR and SSIM are only for the view. 

4 Conclusion and Discussion 
In this work, we proposed a novel INR that addresses the 
limited-angle and sparse-view problems in one-cycle 4D-
CT reconstruction. DctINR combines a two-level motion 
field INR to a template attenuation field INR to model 
complex dynamic objects. Besides, a novel Fourier-
Domain-Error rendering loss is proposed for INR-based CT 
reconstruction. The experimental results in simulated one-
cycle cardiac and lung 4D-CT datasets demonstrate 
DctINR’s ability in high-quality 4D-CT reconstruction with 
rich details. DctINR is beneficial for dose reduction in 4D-
CT reconstruction. 
In DctINR, the sparse-view problem in one-cycle 4D-CT is 
solved by model both the motion field and the template 
attenuation field using INR, which provides a smooth and 
nearly continuous estimation given sparsely sampled views. 
Besides, DctINR uses hierarchical designs for modeling 
complex and realistic dynamic objects. The deformable 
motion is modeled by deformed location at the template 
attenuation field, and the non-deformable motion is 
modeled by an additional shortcut. For the two-level motion 
field, global and local motion is used in the first level, while 
the second level views the local motion as a pattern-strength 
model. In this way, the limited-angle problem in 4D-CT 
reconstruction can be solved since we do not need to 
reconstruct an explicit whole 4D volume or motion field, 
but a hierarchical model instead with basic components 
only depending on either spatial or temporal information. 
There are a few limitations in this work. Firstly, denoising 
mechanism in method design is absent, which is critical for 
further dose reduction. Secondly, a comparison to existing 
DVF-based iterative methods and INR-based methods for 
4D-CT reconstruction methods is not performed. Thirdly, 
the analysis on the sensitivity to different sparse-view and 
limited-angle settings is absent, which is useful for 
designing low-dose protocols for DctINR. Fourthly, the 

proposed method is not evaluated on practical 4D-CT scans, 
where issues like noises and scatters may limit the 
performance. We will address these limitations in the future. 
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Abstract  

Traditional X-ray tubes and their usage patterns suffer from the problem 

of overheating which results in limitations of heavy, bulk and expensive.  

In this paper, we proposed coded array beam X-ray imaging (CABI) 

method using very low power X-ray array source that consists of a 

number of spot sources arranged in a line or a plane. Each spot source 

in the array just covers a small part of the object. A number of coded 

array beams are radiated for imaging while in each radiation multiple 

sources simultaneously light. In this manner, the array source works in 

a very low power state. High density and virtually parallel-beam 

projections with a number of different rotation angles are reconstructed 

from the coded projections by the CABI algorithm, which can be used 

for CT and tomosynthesis imaging. Theoretical analysis proves that the 

projections from sparse array sources are capable for high density 

reconstruction since that sparsely spatial information can be restored by 

densely angular views in tomographic imaging. Hence just a small 

number of coded lighting modes are needed for imaging and the source 

power is further decreased. Experiments validate the feasibility of the 

CABI method. Particularly, with CABI, a flat-panel X-ray array source 

can work stably for a long time in room temperature without cooling.  

This study shows a promising modality for the next generation of the X-

ray imaging technology.  

Keywords: X-ray, coded array beam, CABI, CT, stationary CT 

1 Introduction 

As the discovery of X-ray, X-ray generators, over 100 years of 

development, enables to design multiple imaging modalities 

used as radiography, computed tomography, etc. In most 

practices, X-ray photons are produced by X-ray tube using high-

energy electrons to bombard a high-Z material, e.g., tungsten or 

molybdenum, where only 1% of energy can be converted into X-

rays; the rest appears in the form of heat. At present, X-ray 

imaging technologies use the tube of a spot source to emit a fan-

beam or cone-beam to cover the field of view (FOV) of the 

object for radiation imaging, which results in a balance problem 

between the source power and the image quality since the 

imaging quality is depended on the energy of X-ray photons 

passing through the object to the detector. Hence, the X-ray 

tubes are inevitably overheated. The overheating problem limits 

the use of X-ray apparatus.  

Traditionally, a cooling system is applied to ensure the working 

efficiency of the X-ray tubes, which makes the source heavy, 

bulky and expensive. When it is used for CT device, the tube is 

rotated to acquire enough information for reconstruction, which 

results in complex mechanical architecture and motion artifacts 

in the image. Cold cathode X-ray source such as carbon 

nanotube (CNT) has drawn much attention for its compact size 

and fast switching ability[1]. With these advantages, stationary 

CT systems are available by using a number of CNTs arranged 

on a line or ring to complete the rotational scans [2, 3]. To 

acquire comparable measurements with traditional X-ray source, 

the CT system based on CNTs needs enough number of  CNTs, 

leading high cost in manufacturing. Moreover, the physical size 

of the CNT can not be ignored. Thus, CNT-based imaging 

systems face sparse view problems.  

To overcome the limitations of the X-ray source of high heat 

capacity, a possible way is to introduce the X-ray array source 

that is consisted of a large number of tightly arranged spot 

sources wherein each spot source just covers a small part of the 

object to be imaged.  In this way, a single spot source just works 

in a very low power state. In [2], the authors showed that such 

high-density array sources are feasible in implementing X-ray 

imaging function and CT reconstruction. In this study, we 

suggest further decreasing the power of the array X-ray source 

by proposing the coded array beam X-ray imaging (CABI) 

modality that works based on a serial of lighting modes of the 

array source. In each lighting model, many spot sources, 

generally half of the array are simultaneously lighted. The 

detector cell receives mixed projections from different spot 

sources so that the power of each spot source can be decreased 

dramatically. Recently developed field-emission cold cathode X-

ray source provides possibility of working in this way[1, 4]. 

However, the received signal cannot be directly used because the 

signal of each cell combines different line integrals of the object 

along the rays from different spot sources. To restore each line 

integral from the mixed signals, we introduce coded apertures to 

design the lighting models for the restoration. More importantly, 

in this paper, we explain that projections of spatio-sparsely 

arranged spot sources indeed contain enough information to 

restore high density projections of the object. Based on this 

property the number of lighting models will be few in restoration 

of high density image and the radiation dose is also saved. 

Additionally, combined with compressed sensing, the number of 

lighting models can be decreased further. Hence, the proposed 

CABI modality would be feasible in practice. We use a flat-

panel X-ray array source[5] to simulate the CABI modality and 

validate its feasibility. It’s worth noting that the flat-panel X-ray 

array source works stably for a long time in room temperature 

without any cooling apparatus. By our study, the innovation of 

the CABI method would introduce the following benefits. 1) 

With the merits of the flat-panel X-ray array source working in 

room temperature environment, as well as there is a small stand-

off distance between the source and the detector since each spot 

source in the array just needs to cover a small part of the object, 

traditional bulky X-ray tube might truly become a chip tube, 

which would greatly decrease the cost and volume of X-ray 

imaging equipment and CT devices.  2) With the restored high 

density projections, virtually rotating parallel-beam projections 

are simultaneously acquired by the stationary array X-ray tube 

and detector. This fact suggests a new methodology of realizing 

stationary tomosynthesis and CT devices.  

Materials and Methods 

2.1 CABI algorithm 

The brief process of the CABI method is described in Fig. 1. For 

simplicity, we take a radial profile to demonstrate the CABI 

method. The method consists of four steps described as follows: 

1) coded array source radiation (left in Fig.1), noting that the fan 
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beam of each spot source does not need to cover entire object. 2) 

Restoration of fan beam projections of each spot source when 

data completeness is satisfied (middle in Fig.1). 3) Rebinning for 

a series of parallel-beam projections at densely rotating angles 

(right in Fig. 1). 4). A high density projection and tomosynthesis 

results can be reconstructed from the deconvolved projections. 

In the imaging modality of line integral, the discrete CABI 

process of the flat-panel system can be formularized as: 

 
 Fig. 1. The diagram of the CABI 
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where 
K MS  representing the lighting models, and M  is 

the total number of the flat-panel source. 1 means that the source 

is lightened up and 0 means off. A  means the system matrix. 
M NP  denotes the projection data matrix. ijP  means the 

projection data between i-th source and j-th detector. f  

represents the imaging object. 

If the rank of (1) is M, we can directly compute each ijP  as: 

                      = T + T
P (S S) S b . (2) 

However, the direct computation is tedious and ill-posed. Based 

on the Bayesian rule and medical X-ray imaging physics, this 

problem can be solved by a statistical iterative reconstruction 

scheme of maximizing the likelihood function under 

monochromatic source assumption in real X-ray scan scenarios. 

Denote 
k

ijI  as the received photons in j-th detector from i-th 

source in k-th lighting model, which can be formularized as: 
[ ]

0 ,ijAfk k

ij iI s I e
−

=   (3) 

where 
k

is  is the sampling function. 1k

is =  indicates the i-th 

source is on in k-th lighting model, while 0k

is =  means that the 

i-th source is off.  For simplicity, we assume each ray has the 

same incident photons 0I . [ ]
ij

Af  represents the line integral from 

i-th source to j-th detector. 

Remind that the photons from different sources are i.i.d., and can 

be represented by the Poisson distribution. From the Poisson 

distribution property, the distribution of total photons in j-th 

detector also follows Poisson distribution. Thus, we have: 

1 1

( ),
M M

k k k k

i ij i ij

i i

s I Poisson s I
= =

                             (4) 

where k

ijI , k

ijI  denote the actual and theoretical values of the 

attenuated X-ray photons, separately. Let 
1

M
k k k

j i ij

i

I s I
=

=

represents the actual number of the received X-ray photons. 

1

M
k k k

j i ij

i

I s I
=

=  is the theoretical value of the total detected 

photons. 

Briefly, the likelihood function ( | )I f  can be described as: 

1 1

( | ) ( log( ) )
K N

k k k

j j j

k j

I I I
= =

= −I f ,               (5) 

and the optimization function can be optimized by: 
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where 
,( ; )

zz k k f

j je I I= −f f ,

,

0 3 0

1

exp( ) exp( )
z

M
k f k k

j i ij ij i ij

i

I s I A Q A s I A
=

= − = − f f， . 

2.2 Data completeness for sparse projections 

In section 2.1, we have proposed the CABI algorithm, which can 

restore each spot source projection from mixed measurements 

using a number of lighting models. In this section, we will 

explain that the projections from spatio-sparsely arranged spot 

sources contain the enough information to restore the high 

density projections.  

Recall the Radon transform, let ( , )L t θ  denote a line in the 

Euclidean plane, 1 2( , ) (cos ,sin )   = =θ  is the angle the 

normal vector to L  makes with the 2x  axis, and t  is a signed 

distance of L  from the origin: 

In [6], the relationship between angle and detector (the signed 

distance) in the projection can be denoted as:                     

( , ) ( ( ))( , ), 1,...,space dimensionk

k

Rf t R x f t k
t

 
= − =

 
θ θ           (7) 

In 2D parallel-beam geometry, (7) can be rewritten for any 

direction  [7]: 

 

1 2

1 2

( , ) ( , ) ( , )

( ( ) ))( , )

Rf t Rf t Rf t

R x f t
t

 
  

    

⊥

   
= +

    


= 


θ θ

, (8) 

where (sin , cos ) ⊥ = −θ  is the unit normal vector to θ , 

0⊥  =θ θ . 

From (8), we can observe that there is an implicit relationship 

between angle and detector differentials, which is object 

depended and hence hard to solve. To obtain direct relationship 

between differentials of the Radon variables, we introduce two 

pseudo-rotation centers to counteract the influence of weight and 

transform the implicit relationship between the angle and 

detector to an explicit relationship, which is shown in Fig. 2 to 

demonstrate a profile of the 3D Radon transform. 

Here, we define three planes parallel to each other: source plane 

 , virtual plane O  , and flat-panel detector plane   . The 

distance of  −  is H . id  represents the distance from O  to 
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 . Let denote ( , , )Rf O d  is the Radon transform along line 

( ) − . From Fig. 2, we can observe that 1 1( , , )Rf O d  and 

2 2( , , )Rf O d  denote the same line integral.  

Let us denote 2T  as the pseudo detector plane parallel to 1T . The 

distance between 1T  and 2T  is  .  

Based on 1 1( , , )Rf O d  and 2 2( , , )Rf O d , we can calculate the 

first differential of angle by tilting the line with a slight angle 

  in 1 1( , )O d  and 2 2( , )O d , as the dashed line shown in Fig. 2. 

1 1 1 1 2 2( , , ) ( , , ) ( , , )Rf O d Rf O d Rf O d
t

t

  
 

 

  
 =  − 

  
. (9) 

And, it is easy to find that: 

tant   =  .                          (10) 

When   is small enough, (10) becomes: 

                t   =  .                             (11) 

Substituting (11) into (9), we get: 

 1 1 1 1 2 2( , , ) ( , , ) ( , , )1Rf O d Rf O d Rf O d

t

  

  

   
= − 

   
，     (12) 

Eq.(12) shows that the differential of t can be precisely 

recovered by calculating angle differentials of two rotation 

centers. This formula is independent to the object so that we can 

easily restore detector information from that of angular views. 

Covert coordinates in (13) to ( ), ,o  , we have, 

2

1 1 1 1 2 2

1 2

( , , ) ( , , ) ( , , )cosRf O d Rf O d Rf O d

o d d

  

 

   
= − 

 −   
.  (13) 

 
Fig. 2. The pseudo two rotation center geometries 

Besides, when we set 2d H= , with a simple derivation, we find: 

2

31 1
( , , )( , , ) cos R O HRf O d

H

 

 


=

 
,   (14) 

and (13) becomes: 
2

2

( , , ) cos ( , , ) ( , , )

cos

Rf O d Rf O d H Rf O d

o d H

   

 

   
= − 

 −   

.        (15) 

Continuing to deduce second-order partial differential equations 

based on (15), we have: 

                
( ) ( )

( ) ( )

2 2 2 1 4 2 1

2 2 2

2 2

2 2 2

2cos cos

2 sin cos

R R R

d H oo d H

H R H R

d H d H

 

 

 

 

  
− + =

−   −

 
+

 − −

    (16) 

The relationship among , ,o   is described in partial differential 

equation as (16) if the boundary condition is met. In CABI, 

when array source is sparse, the rebinned parallel projections 

have low spatial resolution and dense rotation angles given that 

the detector is of high resolution. Eqs. (15) and (16) suggest that 

information in densely angular views can be converted to spatial 

information for high density restoration, which advocates the 

similar point with [8]. However, the proposed formulae in the 

study are more general in describing the relationship. In practice, 

directly solving the equations is unnecessary since the measured 

data contain noise and the formulae are sense to noise. 

Alternatively, we solve the PDE into iterative scheme by 

introducing compressed sensing [9] and name it as CABI_CS in 

this paper. 

           { } arg min( ( ) )
TV

F = +
f

f f f , (17) 

where ( )F f  is the fidelity term denoted by (5) and solved by 

(6), and 
TV

f the image regularization, respectively. Thus, the 

proposed CABI_CS algorithm can be described in Table. 1.  
Table. 1 WORKFLOW FOR THE CABI_CS SCHEME 

Geometry, reconstruction parameters initialization 

for each iteration 1,...,z Z=  

—for each lighting mode(pattern): 1:k K=  

          Compute current received photons: 

,

0

1

exp( )
z

M
k f k

j i ij

i

I s I A
=

= − f ; 

          Compute ( ; )ze f f ; 

          Update f : 

    

1
( ( ( ; ) ( )))3

,1 1 1
1

1 2( ( ( ; ) ( ) ( ) ))3 3
,1 1 1 1

K N M
ze Q

zk fk j i
I jz z

K N M M
ze A Q Qijzk fk j i i

I j



 
   
 = = =
 +
 = −
 

− +    
 = = = =
  +

f f

f f

f f

 

—end 

    Total variation operation: 
TV

f  

end 

2.3 Materials in simulation and physical experiments 

In simulation, we used a 15mm non-through digital resolution 

phantom. Eight line-pair structures with square shape and equal 

width ranging from 0.4 mm to 2.5 mm were listed on a 65mm 

diameter cylinder. In order to evaluate the Z-axis resolution, we 

put two balls with 0.5mm diameter in different slices, as shown 

in third row of Fig.4. The scheme of CABI radiation is same as 

below real experiment with K=80. Two noise level were tested 

in the simulation: 5E4 and 1E4 photons. 
In the real imaging system, we chose a chicken foot as the 

imaging object. The thickness of the chicken foot is about 15mm. 

And the width and length of the chicken foot is about 

7.5cmx15cm with package, as shown in Fig. 3(d). The physical 

experiments were performed in our developed verification 

platform, as shown in Fig. 3(c). The distance between source and 

detector is 190mm. The detector size is 11.4 14.6cm cm with 

2304 2940  bins. The scanning protocol is 36kV in both air 

scan and object scan. We designed a collimator with slot. The 

number of array cells is 15x15 with adjacent distance of 3mm. 

Compared to the resolution of the detector, it is extremely sparse. 

With simple out and in plugging of coded masks, the coded 

array beam is realized. In this paper, we chose the simplest 

orthogonal form. There are a half of lighten cells in each 

acquisition time. We designed a set of coded apertures depicted 

in Fig. 3(e). The finest aperture contains two rows of array 

sources which mean 6mm aperture size at least. With the 

rotation of apertures, the final coded patterns are 40 in sum. 

3 Results and Analysis 
Fig.4 depicts the reconstruction result of the simulated phantom 

in two different noise levels. The volume size is set as 

0.3mmx0.3mmx0.3mm. From the results, we find that the 
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proposed CABI_CS algorithm can reconstruct sharp images 

from the overlapping projections in different noise levels. From 

the line profile, we found that the proposed method can preserve 

small edges indicated by green line. For Z-plane analysis, we 

plotted ASF (Artifact spread function) curves of the proposed 

method, which also shows the efficiency of the CABI_CS 

method. Fig. 5 shows the physical reconstruction result of the 

chicken foot with CABI_CS. The volume is set as 

0.2mmx0.2mmx0.2mm. During data acquisition, the device 

temperature is keeping at 60oC due to low power operation. In 

the experiment, we only performed the constraints along 2x  axis. 

Three different angles are selected to illustrate the process of the 

pseudo parallel-beam projection, as [ 10.8 ,0 ,10.8 ] = −    . From 

the results, we find that the pseudo parallel-beam projections at 

all angles are clearly reconstructed and the details and structures 

of the chicken foot are preserved well, even though the coded 

apertures are larger than 6mm. The results fully prove the 

effectiveness of the proposed CABI_CS method. 

 
Fig. 3. The physical experiments setting details. (a) shows a flat-panel X-ray 

array source[4]. (b) is the source covered by a copper collimator. (c) is the 

geometry setting figuration of the flat-panel source tomosynthesis, where no 
cooling is applied. (d) shows the chicken foot used in physical experiment. (e) 

depicts the masks of coded apertures. 

 
Fig. 4. The reconstruction result (K=80) of the simulation phantom display in [0 

0.05], with TV parameter as 0.35. 

4 Discussion and conclusion 

Regardless of the promising results of the CABI_CS algorithm, 

there are some aspects related to our method which should be 

discussed. In this paper, we only adopt a simple orthogonal basis 

of coded apertures. Indeed, how to design coded apertures is on 

studying, which is one of the crucial topics in developing CABI 

methods. In the future, we will propose more efficient and 

compact coded apertures based on specific scenarios. Most 

importantly, in this study, only TV regularization was applied to 

CABI calculation although it has achieved remarkable results, 

clearly, another crucial topic is to further explore reconstruction 

algorithms with the proposed PDEs to solve the spatio-sparsely 

projections. In this study, we deduce two dimensional PDEs to 

describe the relationship between the projections of detector and 

rotation angles. However, three dimensional PDE, such as 

John’s equation could be used if some coordinate conditions are 

met[8, 10].  

In conclusion, we proposed the CABI method to obtain the high 

density tomographic image from coded sparse array sources, as 

well as virtual parallel-beam projections that can be used for 

stationary CT reconstructions and tomosynthesis imaging. 

Meanwhile, we theoretically analyze the data completeness in 

spatio-sparsely array beam. The proposed CABI and coded array 

X-ray source complement each other toward a new X-ray 

imaging modality. The simulation and physical results show its 

possibility of becoming a next generation of the X-ray imaging 

technologies.   

 
(a)original overlapped projection    (b) CABI based reconstrution 

 
(c) pseudo parallel rotation projection samples of angles -10.80 (left), 00 (middle), 

10.80 (right)  

Fig. 5. The CABI reconstruction result based on the real tomosynthesis system.  
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Abstract Dual-energy (DE) mammography and DE digital breast 

tomosynthesis provide spectral information, which could be utilized to 

conduct material decomposition for lesion characterization. 

Distinguishing solid masses and cysts has the potential to improve 

diagnostic accuracy and reduce the call back rate for cysts. We proposed 

a direct-indirect dual-layer flat-panel detector (DLFPD) to acquire low-

energy and high-energy images simultaneously, with the benefit of no 

patient motion between LE and HE exposures. This DLFPD incorporates 

existing state-of-the-art direct (a-Se) and indirect (CsI) FPDs for breast 

x-ray imaging, which promises rapid clinical translation. The feasibility 

of distinguishing solid masses and cysts with direct-indirect DLFPD was 

validated using projection-based material decomposition method, which 

decompose masses and cysts into aluminum (Al) and polymethyl 

methacrylate (PMMA).  

1 Introduction 

 

Using spectral X-ray imaging and material decomposition 

to distinguish solid masses and cysts has the potential to 

improve diagnostic accuracy and reduce the call back rate 

for cysts.1-5 

Previous studies have obtained breast spectral information 

by utilizing systems that incorporate photon counting 

detectors.1,2,4 However, these systems are known to be high 

cost and have limited availability. Alternatively, dual-

energy (DE) mammography and DE digital breast 

tomosynthesis based material decomposition techniques 

usually acquire low-energy (LE) and high-energy (HE) 

images separately, by switching the x-ray filter and tube 

voltage between exposures. This approach, however, can 

result in patient motion between LE and HE images, which 

can lead to artifacts in the final image. In contrast, dual-

layer detectors enable the simultaneous acquisition of both 

LE and HE images with a single exposure, eliminating the 

possibility of motion artifacts and resulting in higher quality 

images. 

We proposed a direct-indirect dual-layer flat-panel detector 

(DLFPD) and K-edge filter combination, incorporating 

existing state-of-the-art direct (a-Se) and indirect (CsI) 

FPDs for breast x-ray imaging, which promises rapid 

clinical translation.6 This work distinguishes solid masses 

and cysts using projection-based material decomposition 

with direct-indirect DLFPD DE images. 

2 Materials and Methods 

 

2.1 Direct-indirect dual-layer flat-panel detector 

(DLFPD) for dual energy breast imaging 

 

Our previous spectral simulation study optimized the 

material and thickness of DLFPD and the x-ray filter as Fig 

1 shows. 7 The K-edge filter, Ag (150 μm thickness), shapes 

x-ray spectrum into two peaks as Fig 2(a) shows. Front-

layer (FL) a-Se direct detector with thickness of 200 μm can 

sufficiently absorb LE photons. Back-layer (BL) CsI 

indirect detector with thickness of 400 μm enhances the 

absorption of HE photons, thereby improving energy 

separation between LE and HE images without added 
filtration between detectors. Orange and purple curves in 

Fig 2(b) show analytically calculated photon energy spectra 

absorbed by the FL a-Se detector (200 μm thickness) and 

BL CsI detector (400 μm thickness) respectively. The 

detector pixel pitch for both layers was 85 μm. The 700 μm 

thick glass between two layers of detectors corresponds to 

the TFT substrate of the FL detector. 

 
Fig 1. System design and image geometry for dual-layer 

detector LE and HE images. 

 
Fig 2. (a) Energy spectrum of incident photons in after the 

k-edge filter Ag. (b): Energy spectrum of photons absorbed 

in each layer of the direct-indirect dual-layer detector. 

Orange curve: front-layer a-Se detector. Purple curve: 

back-layer CsI detector. 

 

2.1 Differentiate between solid masses and cysts using 

material decomposition method 
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Breast tissue attenuation can be approximated by the linear 

combination of two reference materials with equivalent 

thicknesses.1-3 We used Al and PMMA as the reference 

materials to differentiate solid mass from cyst. To establish 

the calibrated lookup table for attenuation of different Al-

PMMA thickness calibration combinations, a digital 

phantom was generated, composed of various Al-PMMA 

combination blocks, mass, and cyst blocks in different 

thicknesses (Fig 3).  

 
Fig 3. Cross section of digital calibration phantom for solid 

mass and cyst classification 

Monte Carlo simulations were conducted to acquire LE and 

HE images using VICTRE.8 The attenuations of masses 

used in the simulation match those for IDC measured by 

Johns and Yaffe.9 The attenuations of cysts were generated 

using Penelope dataset with chemical components provided 

by Fredenberg et al.1 Scatter radiation was not involved in 

this study. The attenuation information of material from 

virtual FL LE images and BL HE images were calculated as 

Eq 1 and 2: 

𝒂𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒊𝒐𝒏𝒇𝒓𝒐𝒏𝒕 =  −𝐥𝐨𝐠 (
𝑰𝒇𝒓𝒐𝒏𝒕

𝑰𝟎,𝒇𝒓𝒐𝒏𝒕
) (1) 

𝒂𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒊𝒐𝒏𝒃𝒂𝒄𝒌 =  −𝐥𝐨𝐠 (
𝑰𝒃𝒂𝒄𝒌

𝑰𝟎,𝒃𝒂𝒄𝒌
) (2) 

𝑰 was image intensity after material attenuation. 𝑰𝟎 was the 

un-attenuated signal. 

The attenuation of solid masses and cysts were mapped 

back to corresponding PMMA/Al combination using linear 

interpolation method. In the equivalent thickness map, the 

magnitude 𝒓 and angle 𝜽 of each point were calculated as 

Eq 3 and 4: 

𝒓 =  √𝒕𝑨𝒍
𝟐 + 𝒕𝑷𝑴𝑴𝑨

𝟐 (3) 

𝜽 = 𝐭𝐚𝐧−𝟏 (
𝒕𝑨𝒍

𝒕𝑷𝑴𝑴𝑨
) (4) 

Larger value of magnitude represents thicker object. Angle 

relates to the material effective atomic number. 

 

2.2 An analytical model to improve spectral separation 

with dual-layer detector 

As Fig 2(b) shows, the FL absorbs a non-negligible portion 

of HE photons. This HE photon contamination in FL LE 

image compromises the energy separation and can cause 

inaccuracies in material decomposition. We developed a 

workflow to generate virtual FL LE images that efficiently 

remove the HE photon contamination (Fig 4). Firstly, FL 

image could be considered as the sum of a FL LE image and 

a FL HE image. Because the x-rays that interact with the BL 

have a similar beam quality to the HE portion of the x-rays 

that interact with the FL (Fig 2(b)), the attenuation 

information of a virtual FL HE image was obtained by 

multiplying a factor 𝑅𝑜𝑏𝑗𝑒𝑐𝑡 to attenuation information of 

the BL as illustrated in Fig 4(b). For the breast phantom, we 

assumed the adipose and glandular tissue compose the most 

breast volume and determined the ratio 𝑅𝑜𝑏𝑗𝑒𝑐𝑡 from 

attenuation coefficients of adipose and glandular tissue at 

the mean energy of FL HE part and BL spectrum (Eq 5, 6, 

7) 

 𝑅𝑜𝑏𝑗𝑒𝑐𝑡,𝑎𝑑 =  
𝐼𝑓𝑟𝑜𝑛𝑡,𝐻,𝑏𝑙𝑎𝑛𝑘𝑐𝑜𝑟𝑟

𝐼𝑏𝑎𝑐𝑘,𝑏𝑙𝑎𝑛𝑘𝑐𝑜𝑟𝑟
 

~ exp ((𝜇𝑎𝑑(𝐸𝑏𝑎𝑐𝑘
̅̅ ̅̅ ̅̅ ̅) − 𝜇𝑎𝑑(𝐸𝑓𝑟𝑜𝑛𝑡,𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )) 𝑡𝑎𝑑) (5)

 

 𝑅𝑜𝑏𝑗𝑒𝑐𝑡,𝑔𝑙 =  
𝐼𝑓𝑟𝑜𝑛𝑡,𝐻,𝑏𝑙𝑎𝑛𝑘𝑐𝑜𝑟𝑟

𝐼𝑏𝑎𝑐𝑘,𝑏𝑙𝑎𝑛𝑘𝑐𝑜𝑟𝑟
 

~ exp ((𝜇𝑔𝑙(𝐸𝑏𝑎𝑐𝑘
̅̅ ̅̅ ̅̅ ̅) − 𝜇𝑔𝑙(𝐸𝑓𝑟𝑜𝑛𝑡,𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )) 𝑡𝑔𝑙) (6)

 

 𝑅𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑅𝑜𝑏𝑗𝑒𝑐𝑡,𝑎𝑑, 𝑅𝑜𝑏𝑗𝑒𝑐𝑡,𝑔𝑙) (7) 

Tab 1. 𝑅𝑜𝑏𝑗𝑒𝑐𝑡 of adipose and glandular tissue for 1 cm 

thickness 

 
Secondly, a virtual FL HE blank scan was estimated from 

the FL blank scan using the prior knowledge of the x-ray 

spectrum and detector characteristics (Fig 4(c)). The ratio 

between blank scan of FL LE and HE was approximated as 

the ratio of energy fluence of photons incident on the 

detector (𝑁 ∙ �̅�), absorption coefficient of a-Se detector 

(𝐹𝑎𝑏𝑠, 𝑆𝑒), and the gain of a-Se detector between FL LE and 

HE spectrum (Eq 8). The ratio 𝑅𝑏𝑙𝑎𝑛𝑘 was calculated to 

estimate the virtual FL HE blank scan (Eq 9). 

 
𝐼𝑓𝑟𝑜𝑛𝑡,𝐿,𝑏𝑙𝑎𝑛𝑘

𝐼𝑓𝑟𝑜𝑛𝑡,𝐻,𝑏𝑙𝑎𝑛𝑘
=  

𝑁𝑡𝑜𝑝,𝐿

𝑁𝑡𝑜𝑝,𝐻
∙

𝐸𝑡𝑜𝑝,𝐿
̅̅ ̅̅ ̅̅ ̅

𝐸𝑡𝑜𝑝,𝐻
̅̅ ̅̅ ̅̅ ̅̅

∙
𝐹𝑎𝑏𝑠, 𝑆𝑒,𝐿

𝐹𝑎𝑏𝑠, 𝑆𝑒,𝐻
∙

𝑊𝑆𝑒

𝑊𝑆𝑒
 (8) 

 𝑅𝑏𝑙𝑎𝑛𝑘 =  
𝐼𝑓𝑟𝑜𝑛𝑡,𝐻,𝑏𝑙𝑎𝑛𝑘

(𝐼𝑓𝑟𝑜𝑛𝑡,𝐿, 𝑏𝑙𝑎𝑛𝑘 + 𝐼𝑓𝑟𝑜𝑛𝑡,𝐻, 𝑏𝑙𝑎𝑛𝑘)
 (9) 
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Fig 4. (a) Photons absorbed by the front-layer detector 

contain two energy peaks (HE and LE part). (b) The HE 

part of the front-layer image has similar attenuation 

information as the back-layer image. We will use a ratio 

R(object) (calculated from the materials attenuation 

coefficients) to scale back-layer 𝐼0 corrected image to the 

virtual front HE 𝐼0 corrected image. (c) Virtual front HE 𝐼0 

image will be obtained by scaling the front 𝐼0 image with a 

ratio R(blank). (d) Virtual front LE image can be calculated 

by subtracting virtual front HE image from the front-layer 

image. We will also apply a previously developed deep 

learning denoising neural network to reduce the image 

noise of the virtual front LE image. 

Finally, as Fig 4(c) shows, the virtual FL HE image was 

generated by multiplying the virtual FL HE image 

attenuation and the virtual FL HE blank scan. The virtual 

FL LE image was generated by subtracting the virtual FL 

HE part image from the FL image. A deep learning based 

denoising technique was utilized to reduce the image noise 

of the virtual FL LE image. 10 

 

3 Results 

 

Black dots in Fig 5(a) and (b) are calibration points of 

different PMMA/Al thickness combinations using original 

FL images and virtual FL LE image respectively. When the 

virtual FL images is used for calibration, the lookup table is 

linear, which can greatly reduce the error involved in the 

following interpolation step. 

 

 
Fig 5. (a) The calibration look up table of attenuation of 

front-layer and back-layer images. (b) The calibration look 

up table of attenuation of virtual front-layer LE and back-

layer images. 

Fig 6 shows the interpolated equivalent PMMA/Al 

thickness for solid masses (with 1 ~ 5 cm thickness) and 

cysts (with 1 ~ 5 cm thickness), using calibration table in 

Fig 5(b). The solid masses and cysts were distinguished 

with different decomposition angles. For solid masses, all 

five points fall on a linear fitted curve with slope of 36.7. 

For cysts, points fall on a linear fitted curve with slope of 

26.0. 

 
Fig 6. The equivalent PMMA/Al thickness of solid masses 

and cysts 

 

4 Discussion 
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Results of calibration phantom demonstrated the possibility 

of using two-material (PMMA/Al) decomposition to 

differentiate between solid mass and cyst. This technique 

could be developed for lesion characterization in breasts 

with structured background and thickness roll-off. For this 

task, breast thickness and volumetric breast density (VBD) 

estimation are needed as prior knowledge, which could be 

acquired by our in-house algorithm utilizing dual-energy 

method decomposition method.11 VBD values under lesion 

regions could be approximated as the average of 

surrounding background region VBD values. Lesion 

thickness could first be estimated from its measured size 

parallel to the detector plane, and then be adjusted 

depending on a DBT volume. The virtual FL and BL 

attenuation of the targeting lesion could be estimated and 

used to generate corresponding PMMA/Al equivalent 

thicknesses. The probability of the lesion being a solid mass 

or cyst could be determined by a vector calculated as the 

linear combination of this target lesion’s distance to the 

solid mass and cyst linear fitted curves distances on the Al-

PMMA equivalent thickness map. 

 

Our workflow of generating virtual LE reduces the HE 

photon contamination in the FL image, has the benefit of 

not only easier material decomposition, but also higher 

contrast of lesions in contrast-enhanced breast imaging. 

 

In future works, we will incorporate scatter correction for 

DLFPD images into the workflow.12,13 By doing so, this 

workflow would be applicable for conditions without any 

scatter rejection, such as in DE-DBT. 

5 Conclusion 

 

We validated the feasibility of distinguishing solid masses 

and cysts with direct-indirect DLFPD using material 

decomposition method. We developed a workflow to 

minimize the contamination of HE photon in FL images, 

which improved accuracy of material decomposition. This 

technique could be potentially used in clinical practise to 

reduce the call back rate for cysts. 
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Abstract - Triple coincidences in Positron Emission Tomography (PET) 

occur when three gamma-rays are detected within the same time 

coincidence and energy window in a PET scanner. They can be produced 

by many different causes, and if they are not analyzed separately, they are 

just reconstructed as two separate double coincidences. As at least one of 

them will introduce background to the image, and even though this effect 

may be corrected by a randoms correction, the overall effect is a 

degradation of the image quality. In this work, we evaluated the 

performance of different methods to process these triple coincidences, 

using acquisitions with 18F, 68Ga, and 124I from the Biograph Vision 

Quadra PET/CT scanner. The contrast and noise of the reconstructed 

images from triple coincidences were compared with those acquired 

through the standard method. Our results confirm that images obtained 

from triples coincidences with a specific treatment have a significant 

better signal-to-noise ratio  up to a 20% noise reduction) and similar 

contrast (1% improvement) compared to the current approach. This work 

shows the importance of proper processing and reconstructing triple 

coincidences in PET, as they can be as high as randoms in high-sensitivity 

PET scanners. 

1 Introduction  

Positron Emission Tomography (PET) is based on the 

detection and image reconstruction of the pairs of 

annihilation gamma rays from the positrons emitted by a 

radiotracer. Therefore, triple coincidences in PET (i.e., three 

gamma-rays detected simultaneously) have been 

traditionally neglected, despite representing a significant 

amount of the data acquired in many studies [1]. There are 

multiple sources of triple coincidences in PET:  

A) Triples may occur when working with positron-gamma 

emitters such as124I,76Br,44Sc,86Y,52Mn,68Ga [2] (Fig. 1) 

as the two annihilation photons may be detected 

together with a prompt-gamma ray. This type of 

coincidences may be used to enable dual-isotope PET 

imaging [3-5] and positronium lifetime analysis [6].  

 

B) Even when working with standard pure positron 

emitters such as18F,13N, or11C, a significant amount of 

the measured coincidences may be triples: 

 

● They can be due to the inter-detector scatter of one 

of the gamma rays [7-9], which produces two events (with 

a total energy of 511 keV) from the same annihilation. 

These events are rarely recorded in clinical PET    

scanners due to their narrow 511 keV-centered energy 

window, but they can account for up to 30% of the 

coincidences in preclinical studies with worse energy 

resolution and larger energy windows [7].  

 
● The most common source of triple coincidences in 

clinical PET scanners is random triples. They are produced 

when two different positron emissions occur within the 

same time window, and three or even four out of the four 

annihilation gamma-rays produced are detected (Fig. 1A). 

Random triples are becoming more common as the 

sensitivity and axial FOV of state-of-the-art PET scanners 

are increasing.  

● Another source of triples in PET scanners with 

Lutetium (Lu)-based scintillators, such as LSO and LYSO, 

is the emission of an electron and several simultaneous 

gamma rays from 176Lu, a long-lived and naturally occurring 

(2.6% abundance) radioactive element [10].  

 

● Other sources of triples, such as the annihilation of the 

ortho-positronium into three gamma-rays, have also been 

studied [11], but in clinical scanners (with a standard energy 

window) they are far less common compared to the previous 

cases.  

 
 

Fig. 1. A) Random event with three detected gamma-rays (i.e. Triple Random). B) 

The three detection points generate up to three lines of response (LOR) connecting 

them. Typically, one of them falls out of the FOV (yellow line) and does not need 

to be considered in the reconstruction. The other two (red lines) can be connected 

with a V-shape LOR (VLOR), which corresponds to two LORs with a common 

vertex. 
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Some new PET scanners are being developed to exploit 

triple coincidences, such as the J-PET [11] and MI-PET [12] 

scanners. They provide the possibility to differentiate the 

nature of each detected gamma (annihilation, prompt-

gamma, etc.) based on their energy. However, most 

commercial PET systems are just optimized for 511 keV 

gamma-rays detection, and they do not allow the energy 

differentiation of events detected within the defined energy 

window. Furthermore, in the case of triple random 

coincidences (Fig.1A), all gamma rays have the same 511 

keV energy, and it is not possible to use the energy 

information to classify the possible LORs.  

From the list-mode data of commercial PET scanners, we 

can identify triple coincidences as contiguous pairs of 

double coincidences with a common detector element (Fig. 

1B) [5]. Therefore, they can be retrieved from the acquired 

data and reconstructed separately using a new list-mode file 

which defines each triple with two LORs. At least one of 

them will introduce noise to the background, while the other 

may be the true annihilation pair and contribute to the signal.  

If they are not properly handled, they will just be 

reconstructed as two unrelated doubles. 

In this work, we studied  the amount of triple coincidences 

in full-body PET acquisitions from Biograph Vision Quadra 

with commonly used radionuclides and evaluate methods to 

process them.  

2 Materials and Methods  

A. Study of Triple Coincidences in real PET Data  

The relative amount of triple coincidences with respect to 

doubles depends on the specific radionuclide used (whether 

they are pure positron or positron-gamma emitters), the 

count rate (as it determines the relative amount of random 

coincidences and 176Lu background), and the sensitivity and 

geometry of the scanner.  

In this work, we analyzed the triple coincidences present in 

three different acquisitions from the Biograph Vision 

Quadra PET/CT scanner at Bern Hospital: a patient from 

Bern Hospital injected with 18F-FDG (total activity 328 

MBq), a phantom acquisition corresponding to an IQ 

phantom plus two cylinders placed along the axial FOV, all 

filled with 68Ga, and a small vial containing 124I, 

respectively. They were considered as acquisitions with 

high, medium and low activity respectively. The patient data 

was acquired as part of a study which was approved by the 

regional ethics committee (KEK 2020/01413) and 

performed in accordance with the declaration of Helsinki 

and all relevant national legislation 

We also studied the evolution of the triple random 

coincidences over time, using the patient data (18F-FDG). 

We verified the hypothesis that the majority of the detected 

triple coincidences correspond to the simultaneous detection 

of a double coincidence and a single event, i.e. the expected 

evolution over time of the triple coincidence rate should be   

proportional to:  

 𝑇(𝑡) = 𝑘 ⋅ 𝐷𝑝(𝑡) ⋅ √𝐷𝑟(𝑡)   (1) 

where  corresponds to the count rate (CR) of triples,  

and  are the CR of double prompt and double randoms 

respectively, and k is a proportionality constant. 

 
B. Triples Processing Methods  

In this work, we have considered different methods to 

perform the tomographic image reconstruction of triples:  

a) Standard Method: Triples are reconstructed as two unrelated 

double coincidences. As previously indicated, this may not 

be optimal, despite currently being the standard procedure.  

Proposed Methods: Each of the two LORs of the triple 

receives a weight (𝜔1 , 𝜔2 , , 𝜔1 + 𝜔2 = 1). The respective 

weights can be obtained with multiple methods: 

A) Using the measured doubles as a reference [7]. This 

method uses the relative number of doubles measured in 

each of the LORs to assign a weight to each LOR of the 

VLORs. It is fast and easy to implement because no prior 

reconstruction needed [9]. 

B) Using a projection as a reference. In this case, the weights 

are obtained from the projections of a previously 

reconstructed image from the doubles (instead of using the 

doubles directly as in the previous case). This reduces the 

noise in the weights’ estimation. This approach was 

successfully used to reduce the artifacts in multiplexed 

multi-pinhole SPECT [14]. 

C) Iterative: This approach performs the reconstruction of 

the triples iteratively using VLORs [5]. The weights of each 

LOR of the triples are obtained from the relative number of 

counts of the last projection of the iterative  procedure. It is 

worth noting that VLORs (formed by the union of the 2 

LORs of the triple) can be considered as generalized LORs 

that are bent and about two times larger than standard ones. 

As Time-of-flight (TOF) PET has shown that reducing the 

length of the LORs accelerates the convergence of the 

iterative reconstruction, VLORs reconstruction have a 

slower convergence. 

C. Evaluation with Patient and IQ Phantom Data 

The triples obtained from the list-mode data were processed 

using the methods previously described and reconstructed 

with 50 iterations of the ISRA iterative algorithm [16] 

working in the Histo-Image Space using the TOF 
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information.   

The noise, defined as the ratio of the standard deviation and 

the mean in an expected uniform region was calculated using 

the liver as the region of interest, and a tumor in the 

abdominal region was used as the hot region for the 

quantitative analysis.   

 

3 Results  

 

Table 1 shows the count rate (in Mcounts/second) of 

prompts and random doubles and triples of two different 

acquisitions. The relative amount of triple coincidences with 

respect to doubles depends on each case. It is worth noting 

that due to the high-sensitivity of the Biograph Vision 

Quadra scanner, the amount of triples may be even higher 

than the amount of random doubles. This is expected, as in 

this case, whenever two decays occur “simultaneously”, the 

probability of detecting three out of the four emitted gamma 

rays (i.e a triple) is even higher than the detection of only 

two of them (i.e random double) 

 

Acquisition 

Doubles [Mcps]  Triples [Mcps] 

Prompt-
s  

Rando-
ms  

Prompt-
s  

Rando-
ms 

18F-FDG 
Patient 

3.18 1.21 1.43 0.85 

IQ+Cylinders 
68Ga 

Phantom 
0.90 0.33 0.50 0.29 

Table 1. Rate of Doubles (Prompts and Randoms) and Triples (Prompts and    

Randoms) in Millions of counts per second in the 18F-FDG patient and the 

IQ+cylinders 68Ga phantom acquisition.   

The distribution of doubles and triples in the list-mode of 

the 18F-FDG acquisition (double prompt: 47.7% ; double 

random: 18.1%; triple prompt: 21.4%; triple random: 

12.7%) indicates that in a regular clinical acquisition more 

than 30% of the stored LORs may belong to a triple 

coincidence.  This demonstrate that triple events become 

very relevant in high-sensitivity scanners such as the 

Biograph Vision Quadra. 

It is important to note that triple coincidences may not be 

stored in the list-mode file as two directly consecutive 

coincidences. If the count rate is high, it is possible that 

some other unrelated LORs may have been written in 

between (even up to 4 events between them as shown in  

Fig.2). This has to be taken into account in any method 

based on the retrieval of triples from the list-mode data. 

 
Fig. 2. Number of events in  the list-mode file between the two LORs that define 

a triple coincidences for high, medium and low activity acquisitions.  

Figure 3 shows the relative count rate of the 18F-FDG 

acquisition with respect to the start of the acquisition. The 

evolution over time of the total number of the triples 

prompt coincidences follows the expected behavior of 

equation (1).  

 
Fig. 3. Count rate (relative to the start of the acquisition) over a 10-min 18F-

FDG patient acquisition. The count rate of the triples prompt matches the 

expected dependence. 

 
 

Fig. 4. Reconstructed images from triple coincidences of patient data  using the 

four considered methods. The proposed methods show better results in terms of 

quality.   

Figure 4 shows a coronal and transverse view the 

reconstructed images from the triples measured in the 

patient acquisition with 18F-FDG.  It can be observed in 

the liver region how the standard method yields more 

noisy images. The quantitative analysis of the noise (using 
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the liver and a tumor as regions of interest) and contrast is 

shown in Table 2. 

 

Method 

  18F-FDG 
Patient 

   IQ+Cylinders 68Ga 
Phantom 

Noise (%) Contrast (%) Noise (%) Contrast (%) 

Standard  5.40 6.94 11.3 3.12 

Doubles as ref. 5.37 7.00 10.0 3.15 

 Projection as 
ref. 

5.13 7.01 9.2 3.16 

 Iterative (VLOR) 5.08 6.84 9.1 3.08 

 

Table 2. Percentage of noise and contrast in the uniform and  hot region at patient 

and extended IQ phantom data acquired.  

4 Discussion   

Although this work is focused on triple coincidences, the 

analysis could be extended to higher-order coincidences 

(quadruples, quintuples…). However, the probability of 

detection of multiple coincidences becomes smaller as we 

consider additional gammas, and the contribution of 

quadruples and higher-order coincidences is quite low 

compared to standard doubles.  

Our estimation indicates that up to 30% of the LORs in 

acquisitions involving standard radionuclides and high-

sensitivity scanners like Biograph Vision Quadra belongs to 

a triple events. These triples can be identified in the list-

mode file as consecutive or quasi-consecutive double 

coincidences that shares a common detector element. In the 

case of standard radionuclides the detected triples 

correspond to random events mostly from two decays. 

5 Conclusion  

The amount of triple coincidences present in any PET 

acquisitions may be very significant, even when working 

with standard radionuclides such as 18F. This is especially 

important in high-sensitivity PET scanners. We have shown 

how triple coincidences may be retrieved from the list-mode 

data and properly processed to improve the quality of the 

reconstructed images with respect of the standard approach 

of treating triples as two unrelated double coincidences.  

A systematic analysis with a larger number of acquisitions, 

as well as the analysis of the overall impact on the 

reconstructed images obtained with both doubles and triples 

coincidences is still needed.  
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Abstract In tomographic reconstruction, many different imaging
modalities can be expressed using similar mathematical concepts. Our
framework elsa, which we already presented previously [1], builds on
this fact, and provides both a unified mathematical framework and a set
of common reconstruction algorithms. These can be applied to various
imaging modalities, such as X-ray attenuation computed tomography
(CT), Phase-Contrast CT, and (anisotropic) Dark-Field CT. Developed
by our team, elsa is written in modern C++17, it utilizes the CMake
build system for reliability and ease of use. It also provides a Python in-
terface for rapid prototyping. Here, we will present an overview of new
features, which include among others new optimization algorithms, the
3D FORBILD phantom, and support for grating-based Phase-Contrast
CT to elsa. Further, a short demonstration of elsa’s capabilities to
reconstruct a real-world 3D X-ray attenuation CT dataset is given.

1 Introduction

There are many different imaging modalities, for which the
following generic optimization problem formulation can be
used for solving the inverse problem:

min
x

E(x), where E(x) = D(Ax,m)+
K

∑
k=1

λkRk(x) (1)

where x is the unknown quantity to be reconstructed (e.g. the
attenuation coefficients for attenuation X-ray CT), D(Ax,m)
represents a data fidelity term and Rk are regularization terms
with the corresponding regularization parameter λk. The
linear operator A represents the physical forward model (such
as the Radon Transform for X-ray CT). The data fidelity term
expresses the relation of the forward projected quantity Ax,
and the measured data m, via the functional D (e.g. the least
squares functional 1

2 ||Ax−m||22).
There are multiple different frameworks available that solve
specific versions of the optimization problem given in Equa-
tion 1, in particular for attenuation X-ray CT. To list some
of them, there are the ASTRA Toolbox [2], TIGRE [3, 4],
the Core Imaging Library (CIL) [5, 6] and the Operator Dis-
cretization Library (ODL) [7].
However, as our research is not solely focused on attenuation
X-ray CT with standard geometries, we are looking into more
generalized versions of the optimization problem. Specifi-
cally, this imposes the requirement for a flexible and exten-
sible operator based framework, which follows the generic
form of the optimization problem as given above.
This abstract is structured as follows: The next section gives a
brief introduction to elsa’s goals, design and the noteworthy

additions since its first release. After that, a short walk-
through of a reconstruction of a real-world attenuation X-ray
CT dataset is shown using elsa’s Python bindings. Finally, a
short conclusion and future outlook is given.

2 elsa

elsa is a reconstruction framework developed at the Compu-
tational Imaging and Inverse Problem (CIIP) research group
at the Technical University of Munich. It started as a part of a
research project, at that time, called campRecon. It was later
modernized and renamed to elsa, and finally open-sourced
and released in 2019 [1]. The framework can be found at
https://ciip.in.tum.de/elsadocs/. It is available un-
der the Apache 2 open source license.

2.1 Goals

The main goals of elsa remain unchanged since its first re-
lease. However, in the current field of research we have
shifted our priorities somewhat.
The primary goal is to deliver a compelling and flexible set
of tools for the reconstruction of multiple imaging modalities.
This includes a variety of modern iterative reconstruction al-
gorithms, and support to solve a large variety of optimization
problems.
Another, important aspect is reproducibility. We strive to
support a large variety of reconstruction algorithms, different
forward models and regularization techniques, in order to
compare and reproduce others research. Further, it is impor-
tant to us to foster reproducibility of our own research. For
this reason, elsa is open-source and uses common standards
and tools. Of course, we are also hoping for the chance that
you find it interesting. If you are considering using elsa for
anything, consider contacting us, we are happy to help and
assist in any way we can.
Finally, we have and will put more effort into interoperabil-
ity. As mentioned above, there are many great frameworks
already out there. And instead of reinventing the wheel again,
we want to build on other’s work and focus on our strengths.

2.2 Design

The design of elsa is operator- and optimization-based. This
is largely influenced by our need to described multiple prob-
lems with a common set of abstractions. It further provides
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us with a great deal of flexibility. The core abstractions used
throughout our framework are represented as C++ classes.
The general design is similar to the one given in [1]. How-
ever, some important details changed, and hence a short
overview of the important concepts is given in the following.

• DataContainer This is our core representation of nD
data. In the mathematical description, this is a column
vector. However, for certain operators (e.g. the gradi-
ent), this needs to contain more information about di-
mension, shape, strides and so on. Further, the class can
represent both measurement data and the reconstruction
volume. The DataDescriptor is used to differentiate
that, and contains all necessary information about e.g.
the geometry, trajectory and detector.

• LinearOperator The LinearOperator is a base class
providing two functions, apply and applyAdjoint,
which compute Ax and AT y respectively. This is used
throughout the framework to implement a representa-
tion of a diagonal matrix (Scaling), finite differences
(FiniteDifferences) and the different forward mod-
els. Further, vertically and horizontally stacked opera-
tors are supported with the BlockLinearOperator.

• Functional The base class represents a functional
f : x 7→ f (x) ∈ K, mapping a vector x ∈ Fn (where
F ∈ {R,C}), to a value of the field K ∈ {R,C}. In
most cases, both the vector and the scalar will be real.
There are a number of common norms, that are already
implemented, such as ℓ1, ℓ2, ℓ∞-norm and the Huber
loss function. Other functionals implement the trans-
mission and emission log likelihood. If applicable, each
functional implements methods to calculate both the
gradient and Hessian of the functional.

• Problem The Problem class acts both as a general op-
timization problem and a base class for other, more
specific problem formulations. It provides a convenient
way to compute the gradient and determine the Hes-
sian of the current problem. Derived classes act as a
way to express concrete problem formulations such as
a (weighted) least squares, (generalized) Tikhonov or
LASSO problem.

• Solver This is the base class for iterative reconstruction
algorithms. If applicable, they accept some (potentially
derived) Problem, convert it to a form with which the
specific algorithm can work, and compute an approxi-
mate solution based for the given problem formulation.

2.3 Updates

Since, we introduced elsa we have been working on many
different aspects. For one, a series of new iterative recon-
struction algorithms have been introduced. They include
(accelerated) proximal gradient descent (also known as ISTA

and FISTA [8]), Nesterov’s fast gradient methods, order
subsets [9], and alternating direction method of multipli-
ers (ADMM) [10]. With the addition of algorithms such as
(accelerated) proximal gradient descent and ADMM, we now
also support proximal operators.
Another noteworthy addition, is an easy-to-use 3D FORBILD
head phantom (see [11] for a discussion on the 2D FORBILD
head phantom). To the best of our knowledge, we are one
of the only open-source frameworks to provide it. The FOR-
BILD head phantom is more complex than the often used
Shepp-Logan phantom. And thus is closer to real-world data,
while still preserving the benefits of synthetic data.
For attenuation X-ray CT, many different approximations
of the Radon Transform exists. Common examples are Sid-
don’s [12, 13], and Joseph’s method [14]. Since the first
release of elsa, optimized versions of the CPU versions were
implemented (see [15, 16]). Further CUDA accelerated im-
plementations of both exist.
The forward model usually does not contain information
about the type of detector. elsa now also supports curved
detectors, not only flat ones. These types of detectors are
most often found in medical attenuation X-ray CT scanners.
In the last year, two specific versions of GMRes have been
discussed in [17]. Compared to many other solvers, these
do not assume that the adjoint of the forward model is math-
ematical exact. This situation is quite common for efficient
implementations of the forward model and its adjoint, which
is the case in one of the implementations in elsa. Both of
these versions of GMRes are implemented in our framework.
As our research is not solely focused on attenuation X-ray
CT, other forward models are needed. We have now also
full support for X-ray phase-contrast CT, based on grating
interferometry. The difficulty in the forward model for phase-
contrast CT lies in the need for differentiable basis functions.
The typically used pixel-basis function is not differentiable,
and hence other basis functions are used. We support both the
commonly cited blob [18] and B-Spline basis function [19].
Again, we provide efficient CPU and CUDA implementa-
tions.

3 Showcase Reconstruction

In this section, we want to present a walkthrough of a recon-
struction of the phantoms used in the Helsinki Tomography
Challenge (HTC) 2022 [20]. We present how a real-world
dataset can be reconstructed using elsa’s Python interface. A
slightly adapted version of the below code can be found in our
GitLab repository (https://gitlab.lrz.de/IP/elsa).
The phantoms from the challenge are acrylic discs with a
varying number and shaped holes. They are scanned using a
cone-beam set up, with a circular trajectory over the complete
circle. A projection is taken at every 0.5◦. The data is already
preprocessed with black-field and flat-field correction, the
center of rotation is aligned, and the negative log transforma-
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tion has been performed. Hence, no extra preprocessing is
necessary for a simple reconstruction. For the purpose of this
demonstration, an additional beam hardening correction was
performed.
For a reconstruction in elsa, we first need to load the data,
set up the geometry and trajectory, and then we can recon-
struct the data. The dataset is provided as MATLAB .mat
files. Hence, we can use SciPy’s loadmat function. We
additionally wrap it, such that it returns a Python dictionary.
We omit the code for this specific part, and assume we have
a function loadmat that returns a dictionary containing the
meta information and sinogram data.
The next step is to retrieve the necessary information to set up
the trajectory. This includes information about the distance
from X-ray source to center, and X-ray source to detector,
number of angles, and effective detector pixel size. These are
provided by the metadata. In the following Python snippet,
this information is used to set up a circular trajectory:

# filename is the path to the HTC .mat files
mat = loadmat(filename)

# Parameters of the full scan
params = mat["CtDataFull"]["parameters"]

# Distance parameters
ds2c = params["distanceSourceOrigin"]
ds2d = params["distanceSourceDetector"]
dc2d = ds2d - ds2c # Distance from center to detector

# Detector parameters
detector_pixel_size = params["pixelSizePost"]
num_detector_pixels = params["numDetectorsPost"]

# Rough approximation of a volume size
vol_npixels = int(num_detector_pixels / np.sqrt(2))

# Descriptor of the desired volume
vol_desc = elsa.VolumeDescriptor(

[vol_npixels] * 2, [detector_pixel_size] * 2
)

# Setup circular trajectory given above parameters
sino_desc =

elsa.CircleTrajectoryGenerator.trajectoryFromAngles(↪→

params["angles"],
vol_desc,
ds2c,
dc2d,
[0], [0, 0], # no offset of principal point and CoR
[num_detector_pixels] * 2,
[detector_pixel_size] * 2,

)

Next, we need to create a DataContainer with the descrip-
tor and data of the sinogram. The memory layout of the
measurements is altered to adhere to our requirements.

# Measurement data, converted to single precision
m = mat["CtDataFull"]["sinogram"].astype("float32")

# Adapt memory layout
sino_data = np.flip(m.transpose(1, 0), axis=1)
sinogram = elsa.DataContainer(sino_data, sino_desc)

The last step, before the reconstruction, is the choice of
approximation of the forward model. In this case, we use
elsa’s SiddonsMethod. However, if you’d like to use GPU
acceleration, you can simply use SiddonsMethodCUDA or
JosephsMethodCUDA.

# A specific approximation of the forward model
projector = elsa.JosephsMethod(vol_desc, sino_desc)

# Or its CUDA alternative
projector = elsa.JosephsMethodCUDA(vol_desc, sino_desc)

You can check whether your present installation
supports the CUDA projectors using the function
cudaProjectorsEnabled. Finally, we set up an iter-
ative reconstruction algorithm:

# Setup LASSO problem and FISTA
lasso = elsa.LASSOProblem(projector, sinogram, 7.0)
solver = elsa.FISTA(lasso)

# Run the reconstruction algorithms for 70 iterations
reconstruction = solver.solve(70)

Here, we use the least squares problem with ℓ1-regularization,
which is often referred to as LASSO. The regularization pa-
rameter (7.0) was chosen by trial and error to give visually
the best results. The solver we choose for this specific recon-
struction is an implementation of the accelerated proximal
gradient method, or also knows as Fast Iterative Shrinkage-
Thresholding (FISTA). Examples of the reconstruction with
a selection of the phantoms provided in the challenge can be
seen in Figure 1.

4 Conclusion and Outlook

elsa is still a work in progress. We are porting more and more
code of our internal code base to the public and open source
repository. This includes support for (anisotropic) X-ray
Dark-Field CT [21]. We also work on more advanced solvers,
such as Split-Bregman and Primal-Dual Hybrid Gradient.
Both of those, will become available in the upcoming months.
Currently, a lot of work is put into a better and more general
seamless data transfer from Python to C++ and back, and
multi-GPU support for the implementations of the forward
models.
In summary, elsa provides a flexible reconstruction frame-
work, that provides an operator- and optimization based work-
flow. It is easy to extend, and provides tools ranging from
fundamental to advanced.
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(a) Phantom 01c (b) Phantom 04c (c) Phantom 07a (d) Sinogram for phantom 07a

Figure 1: (a)-(c): Reconstruction of some of the test phantoms of the Helsinki Tomography challenge 2022 using all available projections.
The problem formulation is the least squares data term with ℓ1 regularization, with a heuristically chosen regularization parameter of 7.
70 iterations of FISTA are used to reconstruct the images. (d): sinogram for the phantom shown in (c).
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Abstract Recently, the Zoom-In Partial Scans (ZIPS) scheme was 
introduced to boost the spatial resolution of clinical CT scanners. 
Contrary to the conventional wisdom that a region of interest should be 
centered in the field of view for the best resolution, in ZIPS the ROI is 
intentionally placed some distance away from the iso-center to gain 
higher geometrical magnification, which in turn brings higher resolution. 
Despite promising simulation results, it remains an open question 
whether ZIPS is effective on real CT systems, where complicated 
practical constrains may impact theoretical assumptions. In this paper, 
we implement the proposed ZIPS scheme on a GE Revolution CT and 
evaluate image resolution using phantoms and cadaveric bone samples. 
Clear improvement of the visibility of fine features and trabecular details 
is observed when comparing ZIPS to the conventional scans at the center. 
To our knowledge, this is the first demonstration on clinical CT that the 
resolution of off-center scans can outperform that of a conventional 
centered scan. 
 
Keywords: high-resolution CT, ROI imaging, magnification, focal spot 
blur, azimuthal blur, image reconstruction 

1 Introduction 

The Zoom-In Partial Scans (ZIPS) is a novel CT scanning 
scheme that improves the intrinsic spatial resolution of 
existing clinical multi-slice CT for region-of-interest (ROI) 
imaging [1]. Unlike a conventional CT scan where the ROI 
is centered in the field of view, in ZIPS the ROI is 
intentionally placed some distance away from the iso-center 
to gain higher geometrical magnification, which in turn 
improves the imaging resolution for the ROI. Previous 
simulation studies showed that for an ROI offset of 20 - 30 
cm relative to iso-center, the modulation transfer function 
(MTF) can improve by 30% to 80% when comparing ZIPS 
to a conventional centered scan. For more details about 
ZIPS, please refer to [1,2]. 

Despite the promising simulation results, it remains an open 
question whether the off-center scanning scheme in ZIPS 
can be effective on real CT systems, where multiple tradeoff 
factors can impact resolution in a location-dependent and 
anisotropic manner, especially in off-center regions. For 
example, several previous studies observed that image 
resolution substantially degrades as radial distance 
increases from the iso-center [3-6].  This is partly due to the 
continuous rotation of the CT gantry during data 
acquisition, causing motion blur in the azimuthal direction 
which increases linearly with the radial distance. The 
resolution in off-center regions is also impacted by the 
elongation of the focal spot: because of the angulation of the 
focal spot on the surface of the x-ray anode, the apparent 

size of the focal spot increases when viewed along larger 
fan angles relative to the central ray [5,6].   

In this paper, we implement the proposed ZIPS scheme on 
a GE Revolution CT scanner and evaluate the image 
resolution using phantoms and cadaveric bone samples. To 
our knowledge, this is the first demonstration on real gantry-
based CT that off-center regions can be utilized to improve 
resolution over with a conventional centered scan, without 
a costly upgrade of the scanner hardware. We also acquire 
two complimentary ZIPS scan of the ROI then register two 
partial scans to achieve more isotropic improvement of 
resolution relative to a single off-center scan.  

This paper also introduces a simple analytical model to 
clarify the role of a few major factors in influencing the 
location- and direction-dependent resolution in CT. The 
model includes the effect of geometric magnification, 
detector aperture, focal spot elongation, and azimuthal blur. 
It may be used to elucidate the rationale of ZIPS, guide the 
selection of scan parameters, and guide the design of high-
resolution image reconstruction algorithms.  

2. Theory and methods  

Notations 

We begin by a theoretical analysis of the location- and 
direction-dependent resoluiotn in CT. We restrict the 
analysis to 2-D for simplicity, although the real data results 
shown in subsequent sections are 3-D.  

Let 𝒙 = (𝑥, 𝑦)  denote the spatial coordinates in the image 
domain. As shown in Fig. 1, fan-beam projections are 
measured by moving the x-ray source along a circular 
trajectory 𝒔(𝛽) = (𝑅 cos 𝛽 , 𝑅 sin𝛽), where 𝛽 denotes the 
angular position of the source and 𝑅 denotes the source-to-
center distance. Here we define angle zero as the positive Y 
direction. Let ℒ(𝛽, 𝜃): 𝒙 = 𝒔(𝛽) + 𝑡𝜽, 𝑡 ∈ [0,+∞) denote 
a projection ray originating from the source in the direction 
of a unit vector 𝜽 = (cos 𝜃 , sin 𝜃) . The projection data are 
measured by a curved detector centered at the x-ray source 
𝒔, with the source-to-detector distance 𝐿. 
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Fig 1. The CT geometry and definition of symbols. 

 

To analyze location- and direction-dependent resolution in 
off-center regions, we consider a point 𝑃 represented by the 
vector 𝒅 = (𝑑cos𝜑, 𝑑sin𝜑) , where 𝑑  is the radial 
distance relative to the iso-center. We first calculate the 
geometric magnification factor at point 𝑃, which will be 
used in subsequent derivation of the blurring kernels of the 
detector and source. The magnification factor for 𝑃 along 
the projection angle 𝜃 is 

𝑀(𝜃, 𝒅) =
𝐿

|𝑆𝑃|
≥ 1. (1) 

Because 𝑃 lies in the ray ℒ(𝛽, 𝜃), |𝑆𝑃| satisfies 

𝑅cos𝛽
𝑅sin𝛽

=
𝑑cos𝜑
𝑑sin𝜑

+ |SP|
cos𝜃
sin𝜃

. 

Eliminating 𝛽 to solve for |𝑆𝑃|, and substituting |SP| to 
(1), we obtain 𝑀 as a function of 𝜃 and 𝒅 

𝑀(𝜃, 𝒅) =
𝐿

𝑅 − 𝑑sin(𝜃 − 𝜑) − 𝑑cos(𝜃 − 𝜑)

. 
(2) 

The fan angle 𝛾  of the ray going through 𝑃  satisfies 
sin 𝛾 /𝑑 = sin(𝜃 − 𝜑) /𝑅 , thus we can express 𝛾  as a 
function of 𝜃 and 𝒅 

𝛾(𝜃, 𝒅) = sin sin(𝜃 − 𝜑)
𝑑

𝑅
. 

Overall resolution model 

We focus on analyzing the intrinsic resolution of the 
projection data in single projection views, excluding the 
effect the ramp filter kernel used in image reconstruction. 
We model the location- and view-dependent blurring effect 
in CT data as the convolution of three factors: detector blur, 
focal spot (source) blur, and azimuthal blur: 

𝐵(𝑢; 𝜃, 𝒅) = det(𝑢; 𝜃, 𝒅) ∗ src(𝑢; 𝜃, 𝒅) ∗ azm(𝑢; 𝜃, 𝒅), (3) 

where 𝐵(𝑢; 𝜃, 𝒅) denotes the 1-D blurring kernel at point 𝑃 
along the lateral direction 𝑢, which is perpendicular to the 
projection ray angle 𝜃; ∗ denotes 1-D convolution. 

 

Detector blur 

For simplicity, we model the detector response as a 
rectangular window function, although it is straightforward 
to substitute other analytical models if needed 

det(𝑢; 𝜃, 𝒅) = rect
𝑀(𝜃, 𝒅)

Δ𝑤
𝑢  (4) 

where rect(𝑥) = 1  for |𝑥| ≤ 0.5  and rect(𝑥) = 0 
otherwise. Δ𝑤  is the detector cell pitch, and the factor 
𝑀(𝜃, 𝒅) shrinks the blurring kernel to compensate for the 
geometric magnification at point 𝑃.  

Source blur 

We model the focal spot on the anode surface as a gaussian 
distribution with the covariance matrix  

Σ =

𝜎

𝜎 𝜎 𝜎

𝜎 𝜎 𝜎

, 

where the Y and Z components of the distribution are fully 
correlated, and 𝜎 = tan𝛼 𝜎 , 𝛼  being the anode angle. 
When viewed along fan angle 𝛾 , the 1-D marginal 
distribution of the focal spot in the lateral direction (𝑢) is 
still Gaussian, and variance of this 1-D distribution is  

𝜎 (𝜃, 𝒅) = cos 𝛾 𝜎 + sin 𝛾 𝜎  

= cos 𝛾 𝜎 + sin 𝛾
𝜎

tan 𝛼
. 

Because 𝜎  is usually much larger than 𝜎 , the effective 
size of the focal spot increases as 𝛾 increases (elongation). 
After further considering the geometric magnification 

factor for the focal spot, which is 
1

1−1/𝑀
, we model the 

overall blurring effect of the focal spot at point 𝑃 as 

src(𝑢; 𝜃, 𝒅) = exp −
1

2

𝑢

1 − 1/𝑀(𝜃, 𝒅) σ (𝜃, 𝒅)
 (5) 

Azimuthal blur 

We model the azimuthal blur as a rectangular window 
function 

azm(𝑢; 𝜃, 𝒅) = rect
1

|cos(𝜃 − 𝜑)|
∙
𝑁 𝑢

2𝜋𝑑
. (6) 

where 𝑁  is the number of project views per rotation, 

and  is the distance traveled point 𝑃 relative to the CT 

gantry in a single projection view. The factor |cos(𝜃 − 𝜑)| 
accounts for the angle between the rotation motion and the 
lateral direction 𝑢. 

Resolution model for a specific scanner 

Substituting Eqs. 4,5,6 into 3, we obtain an overall model 
of the angle-dependent resolution at different spatial 
locations. We evaluated the proposed resolution model  
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using the geometry of a GE Revolution CT scanner. Fig. 2 
shows resolution as a function of ray angle 𝜃 for various 
radial offsets (𝑑), focal spot sizes (𝜎 ), and number of views 
per rotation (𝑁 ).  

When 𝑑 = 0 (at iso-center), the resolution is constant in all 
directions due to symmetry and the resolution is relatively 
insensitive to focal spot sizes because the resolution is 
limited by the detector. When the focal spot size and 
azimuthal blur are sufficiently small (Fig. 2a), resolution 
substantially improves as the radial distance from the center 
increases, over a range of projection angles from about -90 
to 90 degrees. This is because the bottleneck of detector 
resolution is overcome by the higher magnification in the 
off-center regions. When the focal spot size becomes larger 
(Fig. 2b), the benefit in resolution in off-center regions 
becomes less, especially at larger radial distances and when 
𝜃  is near 45 degrees, where the focal spot elongation 
becomes the limiting factor of resolution. When the 
azimuthal blur increases (Fig. 2c), the resolution in off-
center regions further degrade especially when 𝜃 ≈ 0 , 
where the azimuthal blur dominates resolution.  

The analysis above shows that the best resolution may be 
achieved in off-center regions, instead of at the iso-center as 
in conventional CT scans. Very high resolution may be 
achieved at large radial offsets (20 – 30 cm), provided that 
the azimuthal blur and the focal spot size are sufficiently 
small (Fig. 2a). On the other hand, a relatively small radial 
offset (10 cm) may still provide noticeable improvement of 
resolution and the improvement is relatively insensitive to 
azimuthal blur and focal spot size (10 cm lines, all sub plots 
in Fig. 2). Depending on the focal spot size and the number 
of projection views per rotation of a clinical CT system, a 
proper radial distance may be chosen to achieve the best 
resolution. 

The above analysis also provides some guidance for high-
resolution image reconstruction for off-center regions. 
Because the higher resolution is achieved over a limited 
angular range of about -90 to 90 degrees, a half-scan 

reconstruction algorithm should be used to prevent 
contamination from the lower-resolution conjugate rays. 

Zoom-In Partial Scans (ZIPS) 

As shown in Fig. 2. the improved resolution in off-center 
regions is anisotropic, especially for higher radial offset. 
The greatest improvement to resolution is obtained over a 
limited angular range from about -45 to 45 degrees. To 
achieve more uniform resolution improvement, ZIPS uses a 
dual partial scan scheme. Two limited-angle partial scans 
are performed to collect high-resolution projections of the 
ROI in complimentary angular ranges, then the partial data 
are registered and merged into a more isotropic high-
resolution image. As shown in Fig. 3, a patient is scanned at 
two off-center table positions and remains still during each 
scan. After the first partial scan is completed, the ROI is 
translated to the second position, where the second partial 
scan is performed. In Fig. 3, the angle of the radial offset is 
𝜑 = 45°  and 𝜑 = 135°  for the bed positions, 
respectively (angle zero is defined at 12 o’clock position). 
The exact translation of the ROI between the two partial 
scans is unknown to the image reconstruction algorithm and 
will estimated and registered during image reconstruction. 
For more details, please refer to [1,2]. 

 
Bed position 1 Bed position 2 

Fig. 2. Illustration of the ZIPS scheme. Two limited-angle partial 
scans are performed to collect high-resolution projections of an ROI 
in complimentary angular ranges. 

3. Results 

We scanned a resolution phantom and a cadaveric vertebra 
sample on a GE Revolution CT. The phantom and the 

 
(a) (b) (c) 

Fig. 2. Full width at half maximum (FWHM) of the blurring kernel computed by the proposed analytical model. Solid lines - all blurring effects 
modeled. Dashed lines – only detector blur is modeled, excluding focal spot and azimuthal blur. The subplots show the effect of different focal spot 
sizes and the number of projection views per rotation. The labeled focal spot sizes (FS) correspond to the full width at 15% maximum of the intensity 
of focal spot and assume 𝜎 = 𝜎 . Without loss of generality, these plots assume 𝜑 = 0. 
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sample were placed at the center of the field of view for 
standard CT, and nominally at 20 cm off center for ZIPS. 
Each ZIPS acquisition consisted of two scans at two bed 
positions to cover high resolution data in complimentary 
angular ranges. All scans used 120 kVp, 500 mAs, 8000 
view per rotation, and an extra-small focal spot. No 
hardware modification was made to the scanner. The CT 
images were reconstructed on a 512×512 pixel grid over a 
5×5 cm square ROI. FBP reconstruction with Edge filter 
was used for all scans. Parker-weighting was used in off-
center reconstructions. 

Fig. 3 shows reconstructed images of the resolution 
phantom. The visual sharpness of features is improved in 
the off-center scan image compared with the standard CT. 
The line pair features of 16 lp/cm that are barely 
distinguishable in the centered scan become clearly visible 
when scanned at 20 cm off center. 
 

 
center 

 
20 cm off center (half-scan reconstruction) 

Fig. 3. Comparison of images of a resolution phantom scanned at 
the center and 20 cm off center. The sizes of the resolution 
features are 11, 13, 16, and 20.5 lp/cm. 

Fig. 4 shows reconstructed images of the bone sample. The 
visual sharpness of trabecular details is improved in the 
ZIPS image when compared with the standard CT. The 
improvement is also seen in the coronal and sagittal 
reformats. The images from standard CT suffer strong 
aliasing artifacts especially in coronal and sagittal reformats, 
which are not present in the ZIPS images. 

4. Conclusion 

Unlike the conventional assumption that the best resolution 
is achieved at the center of the field of view, our analytical 
and experimental results showed that off-center regions can 
achieve higher spatial resolution than a centered scan, 
provided that the radial distance, focal spot size, and the 
angular sampling rates are properly chosen. Clear 
improvement of visual detectability of fine features was 
observed with a resolution phantom and a bone sample by 
using the proposed ZIPS scheme in off-center regions. ZIPS 
does not require an upgrade of the CT detector array and 
thus has the potential to be applied to existing clinical CT 
systems. ZIPS CT is also orthogonal to pure algorithmic 
resolution-boosting methods and a combination may give 
further improvement.  
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axial (zoom-in), axial (whole image), coronal, sagittal. 
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Abstract In cone-beam computed tomography (CBCT), asymmetrically 
mounted detectors can enlarge the imaging field of view compared to 
centered detectors. This geometry can also reduce radiation dose and 
photon scatter but acquires truncated projections. The truncated 
projections can be compensated by weighting functions applied in 
conventional analytic reconstruction methods. We have recently 
demonstrated the feasibility of asymmetric or laterally-shifted detector 
geometry in a prone breast CBCT system. To enable the transition of a 
dedicated breast CT system from prone to upright patient positioning, we 
propose to use the shifted detector geometry to acquire partial scan (270 
degrees) data. A self-supervised attenuation field network (AFN) is 
proposed to reconstruct such incomplete data. The network learns a 
continuous mapping from the physical coordinates of imaging volume to 
its respective attenuation coefficients during training and can render 
attenuation images or projection data by querying volumetric coordinates 
during inference. The synthesized projections can be further used in any 
reconstruction methods. We evaluated the proposed technique using fifty 
clinical breast CBCT datasets. AFN, when combined with analytical 
reconstruction methods, obtains visually similar reconstructions, and 
yields comparable noise variance, contrast, and spatial resolution 
compared to the reference reconstruction using full-scan data. AFN can 
potentially enable a partial scan shifted-detector geometry for dedicated 
breast CBCT imaging. 

1 Introduction 
In cone-beam computed tomography (CBCT) systems, the 
field of view (FOV) is limited by the x-ray detector size. A 
laterally-shifted detector or offset-detector is known to 
extend the FOV without reducing the system magnification. 
Meanwhile, this “extended FOV” geometry can also reduce 
photon scatter and radiation dose.1,2 A recent work from our 
group demonstrated the feasibility of a shifted detector 

geometry in dedicated breast CBCT (a 30×30 cm detector 
positioned with a 5 cm offset compared to a 40×30 cm 
centered detector).3,4 In this work, we propose to acquire 
partial-scan (also known as short scan) data in conjunction 
with the shifted-detector geometry (referred to as PSSD) to 
envision a clinical transition from a prone scanner to an 
upright scanner for dedicated breast CT imaging.  
 
The truncated projection data acquired using a shifted 
detector can be compensated using weighting functions 
along the fan-angle direction.3–8 However, these truncation 
weightings are based on the data redundancy of fan-beam 
data and, thus, require full-scan data. We show that direct 
use of these weighting functions failed to reconstruct the 
PSSD data and develop an attenuation field network (AFN) 
instead to approach the goal. AFN adopts the emerging 
neural field paradigm9,10 in computer vision where a scene 
is represented as a continuous function of coordinates. In 
the context of CT, neural fields were learned either in the 
projection domain11 or in the image domain12–15. 
Specifically, Sun et al.11 proposed a projection field network 
that is suited for sparse-view CT problems since the 
network cannot extrapolate projection data. Tancik et al.12 
and Zang et al.13 propose to train neural attenuation field 
networks yet require the system forward operator for 
computing training losses in the projection domain. The 
high memory requirement of the system operator limits the 

 
Figure 1. The proposed pipeline for cone beam breast CT data in partial scan using shifted-detector geometry (PSSD). (a) Circular cone beam CT 
data in partial scan where green arc denote acquired views and red arc denote non-acquired views. (b) An attenuation field network (AFN) is 
trained using the partial-scan shifted-detector data as indicated by the green box. (c) After self-supervised training, i.e., no labeled data, the 
network is able to predict both acquired (surrounded by green) and unacquired (surrounded by red) projection data. (d) These synthetic 
projections along with the original PSSD projections can be used for post reconstructions using methods of user’s choice.   
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network’s application in three-dimensional or dynamic CT 
imaging. Our proposed learning of a neural attenuation field 
is inspired by Zha et al.14 and Rückert et al.15, where the 
training reduces to each ray originating from the X-ray 
source to a detector pixel. This decomposed learning 
procedure is memory efficient and suited for high-
dimensional imaging applications. The rendered attenuation 
field during inference is regarded as the image 
reconstruction of the network in these works.14,15 
Differently, we reuse the acquire projections and splice 
them with the network synthesized projections to form full 
data for post reconstructions. Here, we demonstrate the 
feasibility of the unsupervised deep learning method, AFN, 
for cone-beam breast CT with a shifted detector in a partial 
scan. 

2 Methods 
Figure 1 shows the pipeline of the proposed method. 
Suppose in a circular cone-beam CT scan, a laterally-shifted 
detector acquires truncated projection data in a partial scan. 
The incomplete data is fed to an attenuation field network 
(AFN) for self-supervised training. The trained AFN can 
synthesize both acquired and non-acquired projection data 
as indicated by the green and red bounding boxes. The 
synthesized projections along with the acquired projections 
are used for post-reconstructions using analytical methods, 
iterative methods, or deep learning methods. 
 
Figure 2 illustrates the training procedure of AFN, a fully-
connected network whose input is a single continuous three-
dimensional (3D) coordinate 𝒓 = (𝑥, 𝑦, 𝑧)  and whose 
output is the respective attenuation coefficient 𝜇(𝒓) . A 
minimum training sample of AFN is a ray propagating from 
the X-ray source 𝒔 = (𝑠! , 𝑠" , 𝑠#)  to a detector pixel 𝒅 =
(𝑑! , 𝑑" , 𝑑#). Along the ray 𝒔𝒅////⃗ , multiple 3D coordinates 
denoted as 𝒕$ = 𝒔 + 𝛼$(𝒅 − 𝒔), 0 < 𝛼$ < 1, are randomly 
sampled. The attenuation coefficients of these sampled 
coordinates are queried and then integrated, according to the 
Beer-Lambert’s law, to render the projection intensity at the 
ray end. Since the ray propagation is fully differentiable, we 
can optimize this model by minimizing the error between 
the acquired projection and the rendered projection. This 
error serves as the training loss and is written as 
‖∑ ℎ(𝑡$)|𝒕$%& − 𝒕$|$ − 𝑝(𝛽, 𝑢, 𝑣)‖, where h(⋅) denotes the 
fully-connected network, 𝑝 denotes the acquired projection 
data (after taking the log), 𝛽 is the view angle, and (𝑢, 𝑣) 
specify a detector pixel. After the network iterates through 
all the “acquired rays”, it can query the entire attenuation 
field by simply inputting the volumetric coordinates of the 
image; it may also re-project the attenuation field to obtain 
projections that are unacquired.  
 
Our network consists of three full-connected layers with a 
feature dimension of 64. Prior to the input layer, we 
employed a hash grid encoding10 to accelerate training as 

well as enhance the learning of high-frequency features. At 
the output layer, we used the exponential function with its 
gradient clipped as the activation to enforce the non-
negativeness of attenuations. ReLU activations were used 
for other layers. For each breast PSSD data, we trained AFN 
using ADAM optimizer16 with a learning rate of 1E-3 for 
250 epochs. The learning rate decays by one-third every 50 
epochs. In each iteration, we randomly selected 2048 rays 
from an acquired view angle and sampled 512 points per ray 
to roughly match the reconstruction voxel pitch. The 
effective batch size is 2048×512=1024 Ki, which amounts 
to approximately 20 GB GPU memory usage. The training 
took about two hours, and the rendering of 300-view full-
scan data took about 20 minutes on an NVIDIA RTX 
A6000 graphic card. 
 
We used fifty breast CT datasets (HIPPA-compliant, de-
identified, IRB approved) of BIRAD 4/5 women acquired 
on a prone, clinical-prototype scanner. Among the fifty 
datasets, 26 contain calcifications. The chest wall diameters 
of the breasts range from 8.5 cm to 18.5 cm, with an average 
of 13.0 cm. The scanner used a centered detector with 40 
cm ×  30 cm FOV in 2× 2 binning mode, yielding a 
resolution 0.388 mm × 0.388 mm with its matrix size 1024 
× 768. To retrospectively obtain PSSD data, we selected 
225 views out of 300 views corresponding to 270 degrees 
ranging from -135 degree to 135 degree where each 
projection view was truncated 256 out of 1024 on the left. 
This in total results in an undersampling rate of  '

(
× '
(
= )

&*
. 

The full-scan data were reconstructed using the Feldkamp-
Davis-Kress (FDK) algorithm17 (0.273 mm voxel) as 
reference. Three reconstruction methods were evaluated: 1) 
AFN was trained using the PSSD data and used to predict 
missing data such that a full-scan full-size detector (FSFD) 
data can be formed along with the acquired PSSD data. The 
spliced FSFD data was reconstructed using FDK with a 
shifted-detector weight.8 This additional weighting is 

 
Figure 2. AFN training procedure. Our attenuation field network 
serves as a continuous function that maps a vector of three-
dimensional coordinates (a), through a fully connected network (b), 
to the respective attenuation coefficient (c). The training procedure 
of AFN coincides with the conventional ray-tracing algorithm, 
where we sample points along a ray from the X-ray source to a 
detector pixel. According to the Beer-Lambert’s law, the 
attenuations of these points are integrated to estimate the projection 
intensity at the detector. This volume rendering is fully 
differentiable (d) to allow us to optimize our attenuation 
representations by minimizing the error between the estimated and 
the acquired projection. 
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applied mainly to suppress the truncation artifacts due to 
slight inconsistency between AFN synthesized projection 
and the acquired projection. 2) The PSSD data were 
reconstructed using FDK with a modified Parker weight18 
to only account for the partial scan. The unacquired ¼ data 
in the fan-angle dimension was zero-filled. 3) The PSSD 
data were reconstructed using FDK with a shifted-detector 
weight8 to only account for truncated projections. The 
reconstructed image volume was scaled by the ratio of the 
number of views in the full scan to the number of views in 
the partial scan. Quantitative metrics including noise 
variance estimated in the adipose region, signal difference 
to noise ratio (SDNR) between adipose and fibroglandualr 
tissues, and the full-width at half maximum (FWHM) of 
calcifications along the mediolateral direction and the 
superior-inferior direction were used.4 

3 Results 
Figure 3 shows the breast sinogram upper towards the chest 
wall. Using the partial scan shifted-detector (PSSD) data, 

AFN can generate a high-fidelity sinogram compared to the 
full-scan reference. As specifically shown in Figure 3(b), 
other than the large errors outside the sinogram, AFN only 
makes small errors within the sinogram and marginal errors 
where the data is acquired (top right and bottom right 
regions). Figure 4 shows the image reconstructions of a 
medium-sized breast (chest wall diameter of 14.5 cm). The 
image reconstructed using FDK with Parker weight exhibits 
truncation artifacts due to shifted detector, whereas the 
image obtained using FDK with shifted detector weight 
manifests the missing wedge artifacts in the coronal plane 
due to partial scan and inhomogenous attenuations across 
all three planes. In contrast, our post-FDK reconstruction 
using AFN compensated projection data is free of artifacts 
and yields similar visual quality as the FDK reference. 
Figure 5 shows the reconstruction comparison on a large-
size breast (18.3 cm chest wall diameter). Similar 
observations can be made except that the breast skin 
structures near the chest wall (due to the larger diameter) 
are not fully reconstructed in our method as can be seen in 
the coronal and axial images. Note that these regions 
correspond to the area where the projection data are most 
scarce. Table 1 compares the proposed AFN and references 
FDK methods. Noise variance and SDNR metrics suggest 
AFN yields comparable noise variance and image contrast 
as the reference, respectively. Two FWHM metrics indicate 
AFN maintains a similar spatial resolution of calcifications 
as the reference. 
 
Table 1. Quantitative comparison between the proposed AFN using 
PSSD data and the FDK reference using full scan data. Fifty breast cases 
were evaluated, among which 26 cases contained calcifications. The 

 
Figure 4. Reconstructions of a medium-size breast (14.5 cm chest wall) 
in coronal, sagittal, and axial views. Partial scan shifted-detector 
(PSSD) data were used in the three competing methods, including 
FDK with Parker weight, FDK with shifted detector weight, and our 
proposed AFN method. Full scan full-detector (FSFD) data were 
reconstructed using FDK to obtain the reference on the right. FDK with 
weighting functions can either account for partial scan or shifted-
detector geometry, leading to truncation artifacts (first column) or 
missing wedge artifacts (second column) as expected. In contrast, AFN 
predicts the missing projections in the fan-angle dimension and the 
view angle dimension to yield FSFD data for post reconstructions 
(third column). Our proposed method delivers artifact-free and 
visually similar images as the reference.  The display window is [0.15, 
0.35] cm-1. 

 
Figure 3. Sinogram prediction using AFN. (a) While AFN is trained 
on the partial scan shifted-detector (PSSD) sinogram, it can generate 
a high-fidelity full sinogram. (b) The 10× absolute error between the 
AFN sinogram and reference sinogram is displayed using the same 
dynamic range as (a). AFN yields minor errors in the top right and 
bottom right regions where the data is acquired and yields larger 
errors elsewhere.  

Figure 5. Reconstructions of a large-size breast (18.3 cm chest wall) in 
coronal, sagittal, and axial views. Partial scan shifted-detector (PSSD) 
data were used in the three competing methods, including FDK with 
Parker weight, FDK with shifted detector weight, and our proposed 
AFN method. Full scan full-detector (FSFD) data were reconstructed 
using FDK to obtain the reference on the right. FDK with weighting 
functions can either account for partial scan or shifted-detector 
geometry, leading to truncation artifacts (first column) or missing 
wedge artifacts (second column) as expected. In contrast, AFN 
predicts the missing projections in the fan-angle dimension and the 
view angle dimension to yield FSFD data for post reconstructions 
(third column). Our proposed method generates visually similar 
images as the reference except that some breast skin structures were 
not fully reconstructed, which is best seen near the chest wall of the 
axial view. The display window is [0.15, 0.35] cm-1. 
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noise variance is estimated in the adipose region. Signal difference to 
noise ratio (SDNR) is calculated between the adipose and fibroglandular 
tissues. The full width at the half maximum (FWHM) of calcifications 
was computed along two orthogonal directions (ML: mediolateral; SI: 
superior-inferior). AFN yields comparable quantities as the reference. 

 AFN  FDK reference  
Noise Variance (×10-5 cm-2)  7.55 ± 0.30  7.69 ± 0.35  
SDNR  6.36 ± 1.65  6.35 ± 1.83  
FWHM-ML (mm)  1.68 ± 0.72  1.61 ± 0.75  
FWHM-SI (mm)  1.55 ± 0.64  1.69 ± 0.63  

4 Discussion and Conclusion 
In this work, we presented a novel neural field-based 
method for cone-beam breast CT reconstruction with a 
simultaneous partial scan and shifted detector geometry. 
The proposed AFN reduces the learning to each propagating 
ray such that implicit representations of the attenuations can 
be learned with high efficacy and memory efficiency. We 
have shown that the learned AFN can generate high-fidelity 
projections in areas where data are acquired or unacquired. 
Nevertheless, we also observed that the post-FDK 
reconstructions using AFN synthesized projections require 
further refinement for large-size breasts. We believe this 
can be achieved in a future study by either using additional 
constraints/regularizations during network training or using 
advanced post reconstruction methods such as iterative 
algorithms or deep learning techniques.  
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Abstract The ability of computed tomography (CT) to clearly distinguish 

between structures along the z-axis, referred to as the longitudinal 

resolution, can be limited in some scenarios. Super Resolution (SR) is a 

crucial challenge in the field of computer vision and image processing, 

where the objective is to generate a high-quality, high-resolution (HR) 

image from a low-resolution (LR) input. This task is challenging due to 

the loss of information and degradation that occurs during the process of 

downscaling the image, including blurring and noise. In this study, we 

introduce an innovative solution using a Translational Stable Diffusion 

Probabilistic Model (TranSDPM) to address the SR challenge in CT 

images.  The diffusion denoise model is built on the concept of non-linear 

diffusion, which enables the propagation of information from the LR 

image to the HR image by modeling the degradation process through a 

Markov chain. This approach has the advantage of preserving the 

structural information in the LR image, leading to enhanced super-

resolution performance and suppressing the noise at the same time. The 

effectiveness of the proposed method is rigorously evaluated on publicly 

available datasets at the full dose and a quarter dose demonstrating its 

superiority and robustness.  

1 Introduction 

Computed Tomography (CT) is a commonly used medical 

imaging technique that provides high-quality cross-

sectional images of the body. However, the ability to clearly 

distinguish between structures along the z-axis, referred to 

as the longitudinal resolution, can be limited in some 

scenarios, such as high thickness reconstruction or high 

pitch imaging [1,2]. To address this challenge, researchers 

have employed various techniques to improve the 

longitudinal resolution of CT scans. 

In the broader context, the process of enhancing image 

resolution is commonly referred to as super-resolution (SR). 

SR is a critical challenge in the field of computer vision and 

image processing, where the objective is to generate a high-

quality, high-resolution (HR) image from a low-resolution 

(LR) input. This task is challenging due to the loss of 

information and degradation that occurs during the 

downscaling process, including blurring and noise. In recent 

years, deep learning methods have shown particularly 

promising results for SR, with various proposed methods in 

the literature [3,4]. 

Among deep learning methods, Stable Diffusion 

Probabilistic Models (SDPMs) have become increasingly 

popular in recent years due to their ability to handle large 

and complex data sets and provide robust and accurate 

predictions in a variety of applications [5-8]. SDPMs are a 

class of models used in statistical analysis and machine 

learning for capturing the evolution of systems over time or 

iterations. SDPMs are based on the idea of stable diffusions, 

which are continuous-time Markov processes characterized 

by their long-term behavior. They have demonstrated great 

success in many tasks, such as image generation, object 

recognition, and image segmentation.  

In this study, we introduce an innovative solution using a 

Translational Stable Diffusion Probabilistic Model 

(TranSDPM) to address the super-resolution challenge in 

CT images. The proposed TranSDPM is built on the concept 

of non-linear diffusion, which enables the propagation of 

information from the LR image to the HR image by 

modeling the degradation process. Unlike traditional image 

SR techniques that rely on simplistic interpolation methods, 

TranSDPM generates images through a probabilistic 

framework that can learn the underlying distribution of 

high-resolution images. This approach enables the model to 

produce more accurate and detailed images, reducing the 

occurrence of artifacts and other issues commonly 

associated with traditional image SR methods. TranSDPM 

preserves the structural information in the LR image, 

leading to enhanced SR performance. The effectiveness of 

the proposed method is rigorously evaluated on publicly 

available datasets at full and quarter doses, demonstrating 

its superiority and robustness. 

2 Materials and Methods 

2.1 Dataset  

This study utilized the publicly available clinical dataset, 

“Clinics for the 2016 NIH-AAPM-Mayo Clinic Low Dose 

CT Grand Challenge,” which features a comprehensive 

collection of CT images with a range of dose levels and 

longitudinal resolutions. Specifically, the dataset includes 

four image sets, consisting of two dose levels and two 

longitudinal resolutions (i.e., full dose and quarter dose at 

1mm and 3mm resolutions). In addition, two sets of 4mm 

resolution data were simulated from the 1mm resolution 

data via a rebin operation for the downsampling. 

To enhance the longitudinal resolution of the images, the 

2D images were extracted from the coronal and sagittal 

views, resulting in a total of 6240 images obtained from 10 

patients. The image size was 512 x 512, with 8 patients’ 

images used for training and the remaining 2 patients’ 

images utilized for testing. Notably, there was no overlap 

between the training and testing data sets, ensuring the 

integrity of the results obtained.  

2.2 Method Description 

Fig. 1 shows the procedure of our TranSDPM method. 

Training is performed in two stages. In the first stage shown 
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in panel A, an auto-encoder-decoder (highlighted by red 

outline) is trained to convert images to the latent domain. In 

the second stage shown in panel B, a noise estimator 

(highlighted by red outline) is trained to estimate noises in 

the shape of a latent domain image conditioned by a latent 

domain low resolution image. This is the core part of the 

proposed TranSDPM model. As with infinitesimal steps, 

the diffusion process is reversable so that noise can be 

removed with the noise estimator. The inference process or 

image translation from low resolution domain to high 

resolution domain is illustrated in panel C. The SR latent is 

initiated as pure Gaussian noise, which is used as input to 

the noise estimator together with the LR latent. The 

estimated noise is used to reduce noise from the SR latent 

by a fixed reverse diffusion routine for one time step. This 

will not remove all the noise. Instead, this moves the high-

dimensional latent vector slightly away from the noise 

manifold and towards the data manifold. The fidelity 

preservation task is also performed by the noise estimator 

during the LR latent conditioned noise estimation process. 

This one step denoising is repeated for certain times and the 

final SR latent is translated back to image domain by the 

decoder. The auto-encoder is CNN based and has a 

8×64×64 bottle neck (latent shape). The noise estimator is 

a CNN based UNet. 

3 Results 

3.1 Results with the Simulated LR Data    

The initial phase of the study was focused on assessing the 

efficacy of the proposed model in enhancing the resolution 

of low-resolution images, utilizing a simulated dataset. Both 

the HR and simulated LR data sets underwent voxel-level 

registration to ensure precise alignment so that we can have 

a more direct comparison through their difference images.  

In this study, a four-fold resolution enhancement was used 

as the task. In the future, we are interested in investigating 

the potential of TranSDPM to enhance LR images of 

varying degrees. The evaluation of the simulated data set 

enabled the identification of potential discrepancies 

between the enhanced and original images, with the results 

presented in Figures 2, 3, and 4. It is noted that all the 

models were trained solely on the full dose data, and the 

evaluation of the quarter dose was performed without 

retraining. 

Fig. 2 presents an illustrative example of the enhanced 

resolution in the abdominal area, where the images are 

displayed in the soft tissue window, and the difference 

images are displayed in the window with a level of zero for 

better visualization. From left to right, the images comprise 

the HR image (1mm), the bicubic-generated image, the 

TranSDPM generated image, the absolute difference image 

between the bicubic image and the HR image, and the 

absolute difference image between the TranSDPM image 

and the HR image. 

The bicubic-generated images exhibit notable smear like 

appearance, with certain details such as the liver structure 

not clearly visible, as indicated by the red arrow. In contrast, 

the TranSDPM images effectively improve this appearance 

and provide enhanced details of the liver structure. This 

improvement is also evident in the difference images. The 

values in the bicubic difference image primarily arise from 

the structure, whereas those in the TranSDPM difference 

image are primarily due to noise. 

Interestingly, it should be noted that the HR images 

themselves contain considerable noise, which can obscure 

structures, especially in low dose scenarios, as illustrated by 

 
Fig. 1 The Architecture of the proposed TransDPM for longitudinal resolution enhancement. “LR” stands for the low resolution. “HR” stands for 

the high-resolution images used in the training stage. “SR” stands for the super resolution obtained from the TransDPM model.  
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the left image in the bottom row. By suppressing noise 

while recovering structure details, the proposed TransDPM 

approach enables the visualization of more detailed 

anatomical features in the TranSDPM images compared to 

HR images, as shown by the areas indicated by the red 

arrow in the bottom row. Overall, these results demonstrate 

the effectiveness of the proposed model in enhancing the 

resolution and clarity of LR medical images. 

Fig. 3 and Fig. 4 demonstrate the effectiveness of the 

proposed model in enhancing the resolution of bone and 

lung images, respectively, with the display windows 

adjusted accordingly. Similar observations to those in Fig. 

2 were also noted in Fig. 3 and Fig. 4. Fig. 3 reveals that the 

contour surrounding the bone region appears less distinct 

with some blocky segments in certain areas in the bicubic 

image. However, the boundaries appear more clear and 

natural in the TranSDPM images. Meanwhile, Fig. 4 shows 

that the details of the pulmonary airways are unclear in the 

bicubic images but can be clearly visualized in the 

TranSDPM images, highlighting the proposed model’s 

capacity to enhance the details and structures in low-

resolution medical images. Through exploring the 

performance of the TranSDPM model in various 

applications, its effectiveness and robustness have been 

demonstrated. 

3.2 Results with Real Clinical LR Data 

The effectiveness of TranSDPM was further evaluated 

using real clinical LR data, and the results are presented in 

Fig. 5. In this evaluation, the model trained on the simulated 

data will be directly used for the inference. In this instance, 

the HR and LR images lack pixel-level alignment, so only 

the original images will be used for evaluation. The results 

demonstrate that the proposed method can significantly 

enhance the resolution of 3mm LR images, producing 

images with resolution comparable to those of the 1mm 

images. Furthermore, TranSDPM not only enhances the 

resolution, but also effectively suppresses noise and 

improves structural details, as shown by the comparison 

with HR images. These findings indicate the robustness and 

versatility of TranSDPM, which was trained on a four-fold 

resolution enhancement and tested on a three-fold 

resolution enhancement, demonstrating its potential for 

application in various contexts.   

 
Fig. 2. The results with simulated low-resolution data. It is noted that TranSDPM is only trained with the full dose data and tested on the low dose 

data directly. The original images are displayed in the soft-tissue window [-125, 225] HU. The difference images are displayed in the window [0 

175] for better visualization.  
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4 Discussion 

When designing TranSDPM, we also considered using the 

LR latent as one step in the reverse diffusion process instead 

of the condition for the fidelity preservation. However, the 

desing using the LR as one step failed to generate 

reasonable image. One possible reason for this is that the 

noise distribution of the LR data differs from the Gaussian 

distribution. For the fidelity preservation, based on our 

current tests, we have not observed any unusual or 

unexpected structures arising from using the LR data as a 

condition in the reverse diffusion process. 

The proposed model was trained on high-resolution images 

with a resolution of 1mm. However, as demonstrated in the 

results section, these HR images still contain noise. This 

raises the question of how to construct a “noise-free” HR  

image to serve as a reference standard. Addressing this 

challenge will be an area of future research interest, as it has 

the potential to further enhance the accuracy and 

effectiveness of the proposed model in enhancing the 

resolution of low-dose medical images. 

As described in the Method section, the proposed model 

was trained exclusively on full dose CT data, yet it was 

directly tested in the low-dose scenario. Furthermore, 

during training, the model was trained on a four-fold 

resolution enhancement and tested on a three-fold 

resolution enhancement. Both results were highly 

promising, indicating the model’s robustness and potential 

to handle varying levels of noise. To expand upon these 

findings, future research may involve training the model on 

low dose CT data and evaluating it across various folds 

resolution enhancement scenarios.  

5 Conclusion 

This study proposed a TranSDPM to address the super-

resolution challenge in CT images. The feasibility and 

effectiveness of the proposed approach is demonstrated 

through rigorous evaluations on publicly available datasets 

at both full and quarter doses, utilizing both the simulated 

and real clinial data showcasing its superiority and 

robustness. Further evaluations will be conducted to 

continue testing the performance of TranSDPM.  

 

 
Fig 3. The results with simulated LR data. The original images are displayed in the bone window [-250, 750] HU. The difference images are 

displayed in the window [0 500] for better visualization. 

 
Fig 4. The results with simulated LR data. The original images are displayed in the lung window [-1150, 350] HU. The difference images are 

displayed in the window [0 300] for better visualization.  

113 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

References 
 

[1] Fuchs, Theobald, et al. "Spiral interpolation algorithms for multislice 

spiral CT. II. Measurement and evaluation of slice sensitivity profiles and 

noise at a clinical multislice system." IEEE transactions on medical 

imaging 19.9 (2000): 835-847. 

[2] Brink, James A. "Technical aspects of helical (spiral) CT." Radiologic 

Clinics of North America 33.5 (1995): 825-841. 

[3] Park, Junyoung, et al. "Computed tomography super-resolution using 

deep convolutional neural network." Physics in Medicine & Biology 

63.14 (2018): 145011. 

[4] Umehara, Kensuke, Junko Ota, and Takayuki Ishida. "Application of 

super-resolution convolutional neural network for enhancing image 

resolution in chest CT." Journal of digital imaging 31 (2018): 441-450. 

[5] Müller-Franzes, Gustav, et al. "Diffusion Probabilistic Models beat 

GANs on Medical Images." arXiv preprint arXiv:2212.07501 (2022). 

[6] Amit, Tomer, et al. "Segdiff: Image segmentation with diffusion 

probabilistic models." arXiv preprint arXiv:2112.00390 (2021). 

[7] Sasaki, Hiroshi, Chris G. Willcocks, and Toby P. Breckon. "Unit-

ddpm: Unpaired image translation with denoising diffusion probabilistic 

models." arXiv preprint arXiv:2104.05358 (2021). 

[8] Wyatt, Julian, et al. "Anoddpm: Anomaly detection with denoising 

diffusion probabilistic models using simplex noise." Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 

2022. 

 

 
Fig 5. The results with real clinical LR data. All images are displayed in the soft tissue window [-125, 225] HU. 

 

114 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Motion Estimation in Parallel-Beam Linogram Geometry Using Data
Consistency Conditions

Sasha Gasquet1,2, Laurent Desbat1, and Pierre-Yves Solane2

1Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
2TIAMA, 215 chemin du Grand Revoyet, F-69230 Saint-Genis-Laval, France

Abstract Data consistency conditions (DCCs) express the redun-
dancy in the projections. In X-ray computed tomography, the most
common conditions are expressed pairwise on the projections or as
equality between projection-based moments and polynomials. The
latter is better known in the parallel-beam geometry as the Helgason-
Ludwig consistency conditions (HLCCs). The DCCs are often used
to self-calibrate radiography systems. In this paper, we adjust data
consistency conditions to a time-dependent model of the data in the
parallel linogram geometry. We show that it is not possible to estimate
the parameters of a uniform motion of a translating object using the
DCCs. However, we show that we can estimate the average speed with
prior information on the object’s center of mass. Then, we model and
estimate the parameters of a periodical variation of the motion. Finally,
we run simulations to assess the performances of our method.

1 Introduction

In X-ray computed tomography, the data consistency condi-
tions (DCCs) give information on the behavior of the radio-
graphy system based on the redundancy of the projections.
If some changes occur in the system, the conditions are no
longer satisfied. The changes can be detected or even esti-
mated with proper modeling.
In the literature, some conditions are derived from the
Helgason-Ludwig consistency conditions (HLCCs) [1][2].
These conditions have been used to estimate the motion of
a moving object in the fan-beam geometry with a circular
trajectory of the source and in the parallel geometry [3]. A
more suitable representation of the data in the geometry with
the source on a line is the linogram. The HLCCs have been
expressed in the linogram geometry [4]. Results on the esti-
mation of the source position and motion have been published
for the fan-beam linogram geometry [5][6][7].
In this work, we consider a radiography system composed
of a X-ray source, a horizontal linear detector and an object
translating on a conveyor belt. The source and detector are
supposed stationary. The object position is defined by its
center of mass c(t). The system is represented in the Fig. 1.
Equivalently, this system can be considered as a system with
a stationary object and a translating source and detector. The
translation is the same as in the original radiography sys-
tem but in the opposite direction. The equivalent system is
represented in Fig. 2. At a fixed viewing angle φ , all the
X-rays are parallel. The source position and the projection
on the detector are supposed point-like. The X-rays are de-
fined in the coordinate system (x1,x2) as segment from the
source S(t) = (x(t),0) to the detector point with the direction

c(t1) c(t2) c(t3) c(t4)

X-ray source

conveyor beltmoving object

detector

Figure 1: The radiography system is constituted of a X-ray source,
a horizontal linear detector and a conveyor belt. Everything is
stationary, except for the object translating on the conveyor belt.

u

x2

x1

φ

c

S(t1)S(t2)S(t3)S(t4)

Figure 2: The equivalent radiography system. The source and the
detector are moving at the same speed in the opposite direction
to the translation of the conveyor belt in the Fig. 1. The object is
stationary.

γφ = (sinφ ,cosφ) ∈ S1, where S1 is the unit sphere.
We suppose that the measured object µ : R2 → R has a
compact support. The projections are modeled by the Beer-
Lambert absorption law which makes the link between the
object µ , the initial intensity I0 of the X-rays and the intensity
I acquired by the detector:

I = I0 exp
(
−
∫
R

µ

(
S(t)+ rγφ

)
dr
)

(1)

A logarithm transform leads to the classical projection form:

p(φ ,x(t)) =
∫
R

µ

(
(x(t),0)+ rγφ

)
dr (2)

In the following, we first define the parallel linogram geom-
etry and recall the parallel linogram consistency conditions
derived from the HLCCs to our geometry. We show that we
cannot estimate the parameters of a uniform motion. Then,
we model and estimate the parameters of a non uniform mo-
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tion with the DCCs. Finally, we run simulations to evaluate
the accuracy of the method.

2 Theory

2.1 Parallel linogram geometry

In an equivalent radiography system, the object is considered
stationary. The source and the detector are moving at the
same speed on two parallel lines separated by a distance
D > 0. The parallel beam X-rays in the linogram geometry
are parallel segments from a source at S(t) = (x(t),0) on the
x2 = 0 axis to a detector at (x(t)+u,D) on the parallel axis
x2 = D where u ∈ R and the distance D is fixed. The object
position is defined by its center of mass c = (c1,c2). We
assume x′(t)< 0, ∀t ∈R. The offset u on the x1 axis between
the source at (x(t),0) and the detector point at (x(t)+u,D) is
bijectively linked to the projection angle φ with u=D tan(φ),
φ ∈ ]−π/2,π/2[, u ∈ R, or equivalently φu = arctan(u/D).
This system is represented in Fig. 3.
The parallel-beam linogram l is defined by:

l(u,x) =
∫
R

µ((x,0)+ r(u,D))dr (3)

In our geometry, the X-rays are indexed by the time t at which
they are measured. Thus, we define the parallel linogram

=
l

and the parallel linogram operator
=

L as:

=
L µ (u, t) =

=
l (u, t) (4)

= l(u,x(t)) (5)

=
∫
R

µ((x(t),0)+ r(u,D))dr (6)

The linogram
=
l is a weighted linogram. Using the change of

variable r′ = r
√

u2 +D2, we have:

=
l (u, t) =

1√
u2 +D2

∫
R

µ((x(t),0)+ r′γφu
)dr′ (7)

=
1√

u2 +D2
p(φu,x(t)) (8)

where γφu
= (sin(φu),cos(φu)) =

1√
u2+D2 (u,D).

2.2 Helgason-Ludwig Consistency Conditions

In the parallel-beam linogram geometry, the order n ∈ N
moment of the projections is defined by:

Jn(u) =
∫
R

l(u,x)xndx (9)

For the Radon transform, the Helgason-Ludwig theorem
states that the order n moment is an homogeneous polynomial
of order n in cosφ and sinφ [8]. Such DCCs can be derived
for the parallel linogram geometry [4]. We adjust these

φ

u

D

x2

x1

γφu

(x(t)+u,D)

c

(x(t),0)

Figure 3: The parallel linogram. The object is supposed station-
ary and its center of mass is denoted by c. For a viewing angle
φ , the offset u = D tanφ between the source and the projection
point on the detector is constant. The position of the source and
the projection point associated to φ are respectively (x(t),0) and
(x(t)+u,D).

conditions to our geometry. Using a change of variable,
we define the order n moment of the projections as:

=
Jn (u) =

∫
R

=
l (u, t)xn(t)|x′(t)|dt (10)

Proposition 1 (from [4]) The data
=
l are consistent, i.e.

=
l is

in the range of
=

L , if and only if

=
Jn (u) =

n

∑
k=0

cn,kuk (11)

From the data
=
l , we can only compute the time related mo-

ment J̃n(u) defined as follow:

J̃n(u) =
∫
R

=
l (u, t)tndt (12)

In the following sub-sections, we use the proposition 1 to
estimate parameters related to the motion x(t).

2.3 Uniform motion

We first model the source position using 2 real parameters x0
and v0.

x(t) = x0 + v0t (13)

The parameter x0 cannot be estimated using DCCs [9]. We
arbitrarily set x0 = 0. Thus,

=
Jn (u) can be rewritten as:

=
Jn (u) = |v0|vn

0

∫
R

=
l (u, t)tndt (14)

= sgn(v0)vn+1
0 J̃n(u) (15)

We want to estimate v0 using the Eq. (15). Since
=
Jn (u) is

defined relatively to v0, we use the proposition 1. Therefore,
in addition to v0, we need to estimate the parameters cn,k
for k = 0, . . . ,n. Let’s now consider u1, . . . ,una where na is
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the number of projections. We get a non-linear system of
equations from the Eq. (15).

sgn(v0)
n

∑
k=0

cn,kuk
1 − vn+1

0 J̃n(u1) = 0

...

sgn(v0)
n

∑
k=0

cn,kuk
na
− vn+1

0 J̃n(una) = 0

∀n ∈ N (16)

The system of Eqs. (16) has an infinity of solutions:
if {(cn,k,v0), ∀n ∈ N, k = 0, . . . ,n} is a solution then{
(λ n+1cn,k,λv0), ∀n ∈ N, k = 0, . . . ,n

}
is a solution for any

λ ∈ R. Thus, we cannot determine v0 from the DCCs.

2.4 Estimating v0 from a center of mass property

The parameters of the uniform motion cannot be estimated
using the DCCs only. However, we can use DCCs with a
calibration object to estimate v0. The DCCs of order 0 and 1
are related to the center of mass of an object (This property
can be used for misalignment correction of the projections)
[9]. We show in this sub-section that we can use the center
of mass coordinates to estimate the average velocity v0 of
the source from two different projections. Using the defini-
tion of

=
Jn (u) and x(t) in the Eqs. (10) and (13), we get the

following:

=
J1 (u)
=
J0 (u)

=

∫
R

=
l (u, t)(x0 + v0t)v0dt∫

R

=
l (u, t)v0dt

(17)

= x0 + v0tc(u) (18)

where tc(u) = J̃1(u)/J̃0(u) is the temporal center of mass of
the projection u. Now, using the Eqs. (4) and (10), we get:

=
J1 (u)
=
J0 (u)

=

∫
R

∫
R

µ(x(t)+ ru,rD)x(t)x′(t)drdt∫
R

∫
R

µ(x(t)+ ru,rD)x′(t)drdt
(19)

We make the following change of variables:{
x1 = x(t)+ ru

x2 = rD
(20)

Additionally, we have dx1dx2 = |−Dx′(t)|drdt. We recall
that x′(t)< 0, ∀t ∈R. Then, we have dx1dx2 =−Dx′(t)drdt.
Hence, applying the change of variables, we get:

=
J1 (u)
=
J0 (u)

=

∫
R

∫
R

µ(x1,x2)
(

x1 −
x2

D
u
)

dx1dx2∫
R

∫
R

µ(x1,x2)dx1dx2

(21)

= c1 −
u
D

c2 (22)

where c = (c1,c2) is the center of mass of the calibration
object µ . From the Eqs. (18) and (22), we have:

c1 −
u
D

c2 = x0 + v0tc(u) (23)

For two different projections u1 and u2, we can write the
following formula using a linear combination of the Eq. (23).

v0 =− u1 −u2

D(tc(u1)− tc(u2))
c2 (24)

We do not need to know c1 nor x0 here but only c2.

2.5 Non uniform motion estimation

We now assume the conveyor belt has a non uniform motion
due to mechanical instabilities. We model the variations with
the time dependent function δ (t). The position of the source
is then defined by:

x(t) = x0 + v0t +δ (t) (25)

The motion δ is assumed to be periodic.

δ (t) = Asin(ωt +ψ) (26)

We assume x′(t) < 0, ∀t ∈ R. The DCCs can be rewritten
using Eqs. (25) and (26) as:

=
Jn (u) =−

∫
R

=
l (u, t)(x0 + v0t +Asin(ωt +ψ))n×

(v0 +Aω cos(ωt +ψ))dt
(27)

Eq. (27) is non-linear in A, ω , ψ for all n ∈ N. We apply the
proposition 1 as in the subsection 2.3. We use the 0-order
condition to estimate the parameters A, ω , ψ , c0,0 by solving
a non-linear system of equations using the Gauss-Newton
algorithm based on:

−v0J̃0(u) = c0,0 +Aω

∫
R

=
l (u, t)cos(ωt +ψ)dt (28)

3 Simulations

The mean velocity v0 is assumed to be known and δ (t) is
estimated by solving the Eq. (28). The simulation are done
using the library RTK [10]. Our phantom is composed of two
cylinders respectively with a radius of 45mm and 50mm, and
of density −0.2 and 0.2. It is placed midway between the
source and the detector. The source to detector distance is
D = 480mm. The linear detector is composed of 500 pixels
with a pitch of 0.4mm. The leftmost pixel is the pixel 0. Thus,
we set its origin at u=−200mm. The moving source position
is defined by x(t) = x0 + v0t +Asin(ωt +ψ) where we fix
x0 = 0mm, v0 =−1000mm/s, A = 2, ω = 40, ψ = π/4. We
acquire the projection at a rate of 2000Hz within the interval
[−T/2,T/2] where we set T = 0.6s. Gaussian noise is added
to the projections. The standard deviation of the noise is
defined for each pixel as a percentage of its value.
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Noise 0% 1% 3%
A 1.988 1.976±0.030 1.959±0.104
ω 39.966 39.886±0.181 39.731±0.688
ψ 0.785 0.783±0.007 0.775±0.028

Table 1: Results of 50 simulations with Gaussian noise added to
the projections. The parameter values are A = 2, ω = 40, ψ =
π/4 ≈ 0.785.

Figure 4: Estimation of the motion variation δ (t) =Asin(ωt +ψ)
with 0%, 1% and 3% Gaussian noise. Top: the function δ (t) and
its estimates. Bottom: difference between the theoretical value of
δ (t) and its estimates.

The initialization of the Gauss-Newton algorithm is set close
to the real solution. Often, the convergence of the Gauss-
Newton algorithm is local. The parameters are therefore
initially set to A = 3, ω = 42, ψ = π/8, c0,0 = 0. The results
are given in the table 1. Noticing that π/4 ≈ 0.785, we see
that the estimates are quite good. In the Fig. 4, we show the
estimation of the function δ (t) and the difference between the
theoretical value of δ (t) and its estimates. The differences are
respectively up to 25µm and 80µm for the simulations with
0% and 1% noise. Except for c0,0, all the parameters can be
roughly estimated a priori using external tools. With different
set of initial solution, we could see that the most sensitive
parameter is ω . It’s worthwhile noticing that the solution is
not unique. Indeed, it depends on the definition interval of
ψ . We have Asin(ωt +ψ + kπ) = (−1)kAsin(ωt +ψ) with
k ∈ Z.

4 Conclusion

We have adjusted the Helgason-Ludwig consistency condi-
tions expressed in the parallel linogram geometry to a time-
dependent self-calibration problem. We have proven that
we cannot estimate the mean velocity v0 using the DCCs.
However, we have shown that we can estimate v0 using a
priori information on center of mass of a calibration object.
We have modeled a non uniform motion with a periodical
function and proposed a method to estimate the motion based
on 0-order DCC. As in [5], we experimented that higher or-
der moments (n ≥ 1, cf Eq. (27)) do not provide significant
improvements. Moreover, the results can easily be extended
to the 3D using multiple 2D plane as done by Nguyen et al.
[7]. The redundancy in the data will most likely help to get
more robust estimates. Nonetheless, the results obtained in
the simulations are already good enough for our needs.
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Abstract In this work, we investigate a deep learning PET-MR joint
reconstruction method based on the ADMM algorithm. The a priori
information to regularize the inverse problem is obtained with a VAE
trained with high-quality images. Adaptive choice of the Lagrangian
parameter ensures good convergence properties of the method. The
proposed approach is tested on simple cases. It outperforms the classi-
cal MLEM for high noise levels.

1 Introduction

Dual imaging positron emission tomography (PET)-magnetic
resonance imaging (MRI) scanners have been investigated
recently as an imaging modality offering both functional and
anatomical information. With this hybrid imaging technique,
the PET and MRI data are simultaneously acquired. Several
works have investigated the synergistic reconstruction of PET
and MRI data in order to improve the reconstruction results
obtained with conventional independent reconstruction ap-
proaches. The idea is to exploit the common features and
similarities between PET and MR images.
Variational methods have been investigated by Ehrhardt,
Thielemans, Pizarro, et al. [1]. Structural similarity, joint
sparsity and alignment of the gradients of the two images
is promoted through a Total Variation (TV) prior. Improve-
ments have been proposed to overcome cross-talk artifacts
[2]. Recently, Mehranian, Belzunce, Prieto, et al. [3] have
proposed a non-convex joint sparsity prior generalizing the
joint TV to promote common boundaries while preserving
modality-unique features. Their reconstruction framework
is based on the augmented Lagrangian method with a scal-
ing to take into account the dependence of the prior on the
magnitude of the PET and MR images gradients. The perfor-
mance of the algorithm is highly dependent on the PET-MR
initialization and on the selection rules of hyper-parameters.
Deep learning methods have opened a new area of research
for medical image reconstruction and they have allowed
substantial improvements over state-of-the-art conventional
methods in terms both accuracy and execution time. More
specifically, for synergistic PET-MR reconstruction, deep
learning approaches have been studied to overcome the limi-
tations of these variational methods [4]. These methods are
based on unrolling techniques that leverage the classical itera-
tive algorithms used for image reconstruction. The proposed
synergistic PET-MR reconstruction algorithm interconnects
two networks to guide one modality with the other. Genera-
tive modeling has also been used for PET image denoising
with MR images [5].

In this work we propose the deep latent reconstruction
method (DLR) for synergistic PET-MR images which lever-
ages the ADMM iterative method of Mehranian, Belzunce,
Prieto, et al. The Total Variation regularization is replaced by
a learned constraint obtained with a Variational Auto-Encoder
(VAE) [6] trained with high-quality PET-MR images. The
latent variable is used to represent the common information
shared by the two imaging modalities. The proposed algo-
rithm could be used for synergistic reconstruction although
we focus on MR guided PET reconstruction in this paper.
The work is structured as follows. In the first section, we
summarize the ADMM algorithm and we present the VAE
we used as well as our dataset. We then present and discuss
preliminary results showing that the proposed method outper-
forms the classical MLEM algorithm, showing promising for
guided reconstruction as well as mutlimodal reconstruction.

2 Materials and Methods

2.1 Forward imaging models and ADMM approach
for synergistic reconstruction

We denote M the number of PET lines of response and N the
number of image voxels. The unknown vector xpet ∈ RN is
the radioactive tracer distribution and P∈RM×N the detection
probability matrix. The forward model considers the data
ypet ∈ RM as random independent Poisson random variables
with expected counts ỹpet = Pxpet + r+ s where r and s the
expected number of randoms and scatters. The PET data
fidelity is given by the negative Poisson log-likelihood which
reads:

Dpet(ypet,xpet)=
M

∑
i=1

(
[ỹpet]i − [ypet]i log([ỹpet]i)+ log([ypet]i!)

)
.

(1)
The Magnetic Resonance (MR) imaging model is ỹmr = Exmr
where xmr ∈ RN is the MR image, ỹmr and ymr ∈ RMv are the
expected k-space data and the measurements respectively,
E ∈ RMv×N is the Fourier encoding matrix consisting of the
product of the discrete Fourier transform F and subsampling
k-space operator, Mv and N are respectively the number of
k-space samples and MR image voxels. In the following, we
will use fully sampled spectra. We also assume the measure-
ments are corrupted by Gaussian noise, and we define the

119 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

MR data fidelity term :

Dmr(ymr,xmr) =
1
2
∥Exmr − ymr∥2

2 . (2)

Our new method of synergistic reconstruction is inspired
from the method of Mehranian, Belzunce, Prieto, et al. [3]
and from the approach investigated by Xie, Li, Zhang, et
al. [5] for guided mono-modal reconstruction. It is well-
known that variational autoencoders (VAEs) allow to reliably
represent complex data in a lower dimensional space. Our
hypothesis in this work is that by training a VAE to represent
both modalities with a single latent variable, it should learn
more about the mutual information between them. Thus, we
assume that the images are the output of the decoder part of
a VAE with a single input z,

(xpet,xmr) = Decoder(z) (3)

where Decoder is the decoder part of the VAE and the latent
variable z is used for the low-dimensional representation of
the PET and MR images. Our aim is to find the PET-MR
solution (x̂pet, x̂rm) ∈RN ×RN of the following minimization
problem:

(x̂pet, x̂mr, ẑ) = argmin
xpet,xmr,z

Dpet(ypet,xpet)+Dmr(ymr,xmr)

s.t. (xpet,xmr) = Decoder(z) (4)

We apply the augmented Lagrangian method to the con-
strained optimization problem. We used the ADMM [7] algo-
rithm to solve (4). Denoting µ the Lagrange multiplier and
ρ = (ρmr,ρpet) the Lagrangian hyperparameter, the ADMM
iterations can be rewritten:

xn+1
pet = argmin

xpet

Dpet(ypet,xpet) (5)

+
ρpet

2
∥xpet −Decoder(zn)pet +µ

n
pet∥2

xn+1
mr = argmin

xmr

Dmr(ymr,xmr) (6)

+
ρmr

2
∥xmr −Decoder(zn)mr +µ

n
mr∥2

zn+1 = argmin
z

∥Decoder(z)− (xn+1 +µ
n)∥2 (7)

µ
n+1 = µ

n + xn+1 −Decoder(zn+1) (8)

where we denoted xn = (xn
pet,x

n
mr), µn = (µn

pet,µ
n
mr) and

Decoder(zn) = (Decoder(zn)pet,Decoder(zn)mr) . The min-
imization problem of Eq. (5) is solved with optimization
transfer and convex surrogate function similar to the one of
the classical MLEM algorithm [5]. We used the following
update formula for xn+1

pet at each pixel j:

[
xn+1

pet
]

j
=

1
2

(
[Decoder(zn)pet] j − [µn

pet] j −
p j

ρpet

+

√(
Decoder(zn)pet j − [µn

pet] j −
p j

ρpet

)2

+
4p j[xn+1

pet,em] j

ρpet

)
(9)

where p j = ∑i Pi, j and xn+1
pet,em is obtained by doing one

MLEM step:

[xn+1
pet,em] j =

[xn
pet] j

p j
∑

i
Pi j

[ypet]i
[Pxn

pet]i +[r]i +[s]i
(10)

The update of the latent variable in Eq. (7) is obtained with a
simple gradient descent with a gradient step S which is easily
performed using Tensorflow’s Gradient API [8]. This step
size S has to be tuned depending on the input data.
The scaling of the Decoder output is also an important issue.
It is common practice to train the decoder on normalized
data but the image that we are trying to reconstruct is not
necessarily normalized. We thus chose to rescale the output
of the decoder by using a scaling factor equal to the mean of
the current reconstructed image.
The additional ADMM penalty parameter ρ has a strong
influence on the convergence rate and is often chosen em-
pirically based on some validation data. In this work, we
implemented the adaptive update scheme proposed recently
in [9]. Its principle is to balance the relative primal and dual
residuals while taking into account the scaling properties of
the ADMM problem. We have also implemented the stopping
criterion proposed in the same paper with ε = 0.02.

2.2 Dataset

The data used for training the VAE and testing our method
consists in 840 co-registered 2D brain [18F]FDG PET im-
ages (20 minutes acquisition) and T1-weighted MR images
extracted from 44 acquisitions on a clinical hybrid PET/MR
scanner (Signa PET/MR, GE Healthcare) of patients with
dementia or epilepsy. These images are of shape 256×256
and are considered our references. The data used for the
reconstructions are generated from the images xpet according
to the following:

ypet = Poisson
(

α

∥xpet∥1
(Pxpet + r+ s)

)
(11)

where α is a factor used to control the noise level . The
signal to noise ratio is lower for lower values of α . We add
r (random) and s (scatter) events so that they correspond to
1% of the total number of observed events . The resulting
sinograms are of shape 256 (number of bins) × 60 (num-
ber of angles) and are then used as the input data for our
reconstruction method.

2.3 VAE structure and training

In this work, we use VAEs to generate PET and MR images.
A VAE is a latent space generative model based on the varia-
tional Bayesian inference originally proposed by Kingma and
Welling [6]. The structure of our VAE is displayed in figure
1. Each convolution and transposed convolution is described
with the format (number of channels, filter size, stride) and
the dense layers are described by their number of neurons.
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Figure 1: Architecture of the VAE.

The Sampling layer is used to perform the reparametrization
trick [6] and takes a mean vector and a standard deviation
vector to sample a latent variable z. We use a multichannel
input CNN, which treats PET/MR images as two separate
input channels. The VAE we considered in our work is a
β -VAE [10] which allows us to balance the training of the
model between latent space regularization and data fidelity.
On top of that, we use a L2 loss for the data fidelity term with
a weighting parameter to balance the two modalities’ contri-
butions to the loss. The training was implemented using the
open-source library Keras 2.2.5 with Tensorflow backbone
and performed on an NVIDIA RTX A2000 mobile. The net-
work is trained for 500 epochs using the Adam optimizer with
a learning rate of 10−3 and a batch size of 32. The images
from our dataset were used as the high-quality references and
the VAE was trained on them. The dataset was split into 3
parts: one for training, one for validation (20% of the data)
and one for testing (10% of the data).

2.4 Experiments

For preliminary tests, we have fixed the MR image to the
reference image and only reconstructed the PET image. We
then compare the reconstruction results to the ones obtained
with the classical MLEM algorithm [11].
We initialize the algorithm with the 10th iteration of MLEM
and initialize the latent variable by using the encoder part
of the VAE on the initial PET image and the reference MR
image. The forward and backward projections are handled
by the ASTRA toolbox [12] with a parallel geometry. The
test reconstructions were performed on 10 slices from the
test set.

3 Results

Figure 2 shows a slice from the test set reconstructed with
our approach together with the ground truth image and the
reconstruction given by the MLEM algorithm . Qualitatively,
the DLR approach outperforms MLEM on these very deteri-
orated data.
Figure 3 shows the evolution of the mean squared error
(MSE) and of the constraint ∥Decoder(zn)pet−xn

pet∥ as a func-
tion of the ADMM iterations for the slice shown in figure
1 for the proposed method during one reconstruction. We
also show the best NRMSE obtained by MLEM run for 30
iterations for comparison: with the adaptive update of the

Figure 2: Ground truth image and reconstructed images obtained
with MLEM and the deep latent reconstruction approach for α =
105.

Figure 3: Evolution of the NRMSE, SSIM, data fidelity terms
and constraint as a function of iterations for α = 105. The MLEM
NRMSE is displayed for comparison.

Lagrangian parameter ρ , the behavior of the error metrics
is highly nonlinear. The regularizing effect of the constraint
is obtained after a few iterations when ρ increases signifi-
cantly. The large decrease of the constraint corresponding to
the VAE is concomitant with the MSE decrease. It should
be noted that simultaneously the data fidelity term increases
which means that once a good latent vairable has been found,
the improvement is due to the constraint. The projection on
the image manifold learned with the autoencoder is thus effi-
cient to reduce the noise and the artifacts on the reconstructed
image.
The quality of the reconstructions was evaluated quantita-
tively using the the normalised root mean squared error
(NRMSE) and SSIM for several noise levels. The results
obtained for several Poisson noise levels are displayed in
table 1 together with the value of the gradient step S chosen
empirically. The deep latent reconstruction method clearly
outperforms the MLEM approach for lower signal to noise
ratio.

4 Discussion

In this work, we have presented preliminary results obtained
with a new deep latent reconstruction approach. The
VAE constrained reconstruction framework achieves better
performance compared with MLEM for the various noise
levels investigated. The main advantage of the method
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α S
MLEM DLR

NRMSE SSIM NRMSE SSIM
105 10−2 1.47 0.79 0.88 0.83

2×105 5×10−3 1.1 0.82 0.7 0.86
5×105 10−3 0.68 0.86 0.65 0.87

Table 1: Comparison of the mean for NRMSE and SSIM for the
MLEM method and the proposed DLR method.

is that the regularizing effect is learned and not based on
penality terms like TV or joint TV regularization. By using
a VAE, we get a latent variable that sums up the mutual
information between the two modalities. With enough data
it should be possible to get a latent space from which we
can generate any PET image. Moreover, the approach is
based on a limited number of hyper-parameters thanks to the
automatic update method adopted for the ADMM algorithm.
It should be noted that the known convergence properties of
the classical ADMM algorithm are not guaranteed since the
optimization method uses both a convex surrogate and a non
linear constraint.
For the presented MR-aided reconstruction, several aspects
will be further investigated. First, we would like to get
more data and use more realistic simulations to evaluate the
method in a clinically accurate context.
One current limitation of the method is that the latent
variable z update from Eq.7 is based on a simple gradient
descent with a rough estimate of the gradient step. This
sometimes leads to updates outside of the known latent
space and may cause the algorithm’s divergence. Additional
constraints could be studied to improve the search of the
optimal latent variable. The simple VAE used could also be
improved to generate less blurred images. The VAE that
was used here is known to produce blurry images, which
is good enough to handle PET images but not enough for
MR images. With some improvement, we could also handle
MR reconstruction and improve on the PET one. Variants
like VAE GAN, InfoVAE [13] or even diffusion models
[14] exist in the literature and could lead to improving the
quality of the generated images as well as a better use of the
mutual information. In the end, the proposed framework is
highly flexible and each of its components can be improved
individually.

5 Conclusion

Our aim in this paper is to improve the fusion of the comple-
mentary information in PET/MR images. We have investi-
gated a network-constrainted image reconstruction method
where a pre-trained multi-channel input VAE trained with
high-quality images is used to represent feasible PET and
MR images. We show that, using an MR image for guid-
ance, we can find a suitable latent variable to represent our

denoised PET data. In future work, we will consider the
joint reconstruction of PET and MR images and compare
our results with other deep learning based reconstructions
approaches such as unrolling.
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Abstract Quantitative contrast-enhanced breast computed tomogra-
phy (CT) has the potential to enhance the diagnosis and management
of breast cancer. The traditional methods involve dual-exposure im-
ages with different incident spectra to obtain two spectrally separated
measurements, which can be used for material discrimination, comes
at the expense of increased patient dose and susceptibility to motion
artifacts. An alternative approach, using Photon Counting Detectors
(PCD), allows for acquisition of multiple energy levels in a single expo-
sure, reducing these issues. GaAs is a particularly promising material
for breast PCD-CT due to its high quantum efficiencies and reduction
of fluorescence X-rays escaping the pixel within the breast imaging
energy range.
This simulation study evaluated the spectral performance of a GaAs
photon-counting detector (PCD) for quantitative iodine contrast-
enhanced breast CT. Utilizing both projection-based and image-based
material decomposition methods, the study produced material-specific
images of the breast and used the iodine component images to estimate
iodine intake. The accuracy and precision of the method for estimating
iodine concentration in breast CT images were assessed for different
material decomposition methods, incident spectra, and mean glandular
dose (MGD).
The results showed that the GaAs PCD had comparable performance to
an ideal PCD in terms of Root Mean Squared Error (RMSE), precision,
and accuracy of estimating the iodine intake in the breast. Furthermore,
the results demonstrated the effectiveness of both material decompo-
sition methods (projection-and image-based) in making accurate and
precise iodine concentration predictions using a GaAs-based photon
counting breast CT system, with better performance when applying the
projection-based material decomposition approach. The study high-
lights the potential of GaAs-based photon counting breast CT systems
as a viable alternative to traditional imaging methods in terms of mate-
rial decomposition and iodine concentration estimation.

1 Introduction

Quantitative contrast-enhanced breast computed tomography
(CT) is a diagnostic technique that uses a contrast agent, such
as iodine, to examine the breast tissue for signs of cancer. The
contrast agent is injected into the patient’s bloodstream and al-
lows for the visualization of blood vessels in the breast tissue.
The traditional methods involve dual-exposure images with
different incident spectra to obtain two spectrally separated
measurements, which can be used for material discrimina-
tion. This approach comes at the expense of increased patient
dose and susceptibility to motion artifacts. An alternative
approach, using Photon Counting Detectors (PCD), allows
for acquisition of multiple energy levels in a single exposure,
reducing these issues. Photon counting CT detectors (PCD-
CT) are a rapidly developing technology in medical imaging.
Many major CT companies have recently been developing
prototype PCD-CT systems, and the FDA has cleared the
first CT system incorporating a PCD. These systems have

several advantages over traditional CT systems, including
reduced electronic noise, improved resolution, and reduced
radiation dose and scanning time. The current development of
PCD spectral imaging systems is driven by recent technologi-
cal advancements, making flat-panel CT PCDs dedicated to
breast imaging now possible. Several semiconductor-based X-
ray PCD technologies have been developed, including those
using silicon (Si), cadmium telluride (CdTe), and gallium
arsenide (GaAs). GaAs is a particularly promising material
for PCD-CT, as it can achieve high quantum efficiencies with
a thickness of 0.5mm, and it is especially useful within the
breast imaging energy range (12 to 55 KeV) as its character-
istic K-edges lie below the relevant energies (9, 10, and 12
keV), thus reducing the probability of fluorescence X-rays
escaping the pixel. This study evaluates the spectral perfor-
mance of a GaAs photon-counting detector for quantitative
breast CT using a simulation approach.

2 Methods

In this study, the objective was to evaluate the effects of vari-
ous factors on the accuracy and precision of the quantitative
methods for iodinated contrast-enhanced dedicated breast
photon counting CT when using GaAs detector. A numerical
breast phantom composed of a 50/50 ratio of glandular and
adipose tissue in a cylindrical shape (10 cm diameter) was
used in this study. The phantom included iodine targets at
concentrations of 0.5, 1.0, and 2.0 mg/cm3, chosen to cover
the clinical range of iodine concentrations. Three targets were
placed at different locations for each concentration to assess
the impact of beam hardening on iodine quantification, result-
ing in a total of nine targets (see figure 1). The phantom also
included a target of 100% glandular tissue equivalent material
to test iodine separation from the background over a wide
range of densities. The phantom was assumed to be mounted
on a rotation stage situated in front of the collimator, with a
source-object distance of 80 cm and an object-detector dis-
tance of 20 cm. Simulations were performed at different expo-
sure levels to test the effect of dose on accuracy and precision.
TIGRE CT open-source software and the publicly available
Photon Counting Toolkit (PcTK) [1] were used to generate
material-based sinograms and noisy energy-dependent projec-
tion data. The detector simulation used 100 µm-pixel size and
500 µm-thickness of GaAs with a density of 5.32 g/cm3. The
charge cloud size and electronic noise simulation parameters
were set at r= 11 µm and σ = 2.1 keV, respectively. These
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values were chosen from a separate validation study and were
found to give the best agreement between the simulation soft-
ware and a prototype GaAs PCD [1]. A PCD with two energy
thresholds was simulated, and the low-energy and high-energy
thresholds were set at 15 and 32 keV, respectively. Varying
levels of mean glandular doses, which correspond to different
noise realizations, were generated by simulating a Poisson
process for the number of photons recorded in each detector
energy bin.

2.1 Iodine concentration estimation and image recon-
struction

In this work, we tested two frameworks for material decom-
position, which were presented in detail elsewhere [2, 3]. The
process is briefly described here:

2.1.1 Image-Based Decomposition
First, the low and high energy-dependent phantom measure-
ments (yl , yh) at each pixel are converted or scaled to the
original linear attenuation coefficient measurement:

µi =− log
(

yi

y0
i

)
, (1)

where i refers to low or high energy levels and y0
i corresponds

to the open beam measurements.
Second, the reconstructed images undergo a typical water
precorrection to reduce the cupping artifacts effect resulting
from beam hardening. This is done by reconstructing images
of a uniform water phantom and normalizing it to have a
maximum value of 1. Then, the projection reconstructed
images µr

i of the test phantom at each pixel are rescaled using
the following equation:

µi =
µr

i

Iw
i
, (2)

where Iw
i corresponds to the normalized reconstructed water

image.
Finally, the rescaled images are decomposed into three mate-
rials: adipose, glandular, and iodine, to determine the local
concentration or volumetric portion ti of each material:

[
µl
µh

]
=

[
µad

l µ
gd
l µ id

l
µad

h µ
gd
h µ id

h

]
×

tad
tgd
tid

 (3)

where l and h indicate the low and high energy bins, and the
subscripts ad, gd, and id represent the three-material basis
of adipose, glandular, and iodine, respectively. To solve the
system of two equations with three unknowns, we applied
a simple conservation of volume, the sum-to-one constraint
(tad + tgd = 1). Therefore, we can rewrite Equation 3 as fol-
lows: [

µl −µad
l

µh −µad
h

]
=

[
µ

gd
l −µad

l µ id
l

µ
gd
h −µad

h µ id
h

]
×
[

tgd
tid

]
(4)

The basis material matrix elements can be empirically deter-
mined through a calibration procedure using known concen-
trations of the basis materials of interest, adipose, iodine, and
glandular. The scan of the calibration phantom should be
performed under the same acquisition parameters as those in
the test scan, including kV, threshold configuration, and recon-
struction kernel. The empirically determined material matrix
is then used to estimate each basis material concentration
within a mixture of materials.

2.1.2 Projection-Based Decomposition
In this framework, we performed material decomposition for
every pixel of the detector using only two basis materials
(water and iodine) since we simulated a detector with two
energy bins. Under this assumption, the PCD measurements
yield the projection values:

Mi =−log

(∫
∞

0 I0(E)e−(µw(E)tw+µid(E)tid)Bi(E)dE∫
∞

0 I0(E)Bi(E)dE

)
(5)

Where Bi(E) is the energy bin sensitivity, tw and tid represent
the propagation path lengths through water and iodine, respec-
tively, and µw and µid are their corresponding linear attenu-
ation coefficients. An empirical method to solve these equa-
tions was proposed by Cardinal and Fenster [3] and adopted
in this study. This method consists of modeling the solution
(tw and tid) by a polynomial function (of order p = 3) of low
and high energy measurements (M1 and M2) using a least
square fitting method from a calibration set. With this model,
tw and tidcan be estimated as:

tw(M1,M2) =
P

∑
m=0

aw
mnMm

1 Mn
2

tid(M1,M2) =
P

∑
m=0

aid
mnMm

1 Mn
2

(6)

The calibration measurements were acquired using a set of
water and iodine solutions. The water thicknesses ranged
between 0 and 100 mm with a 10 mm step, while iodine con-
centrations ranged between 0 to 5 mg/cm3 with 1 mg/cm3

step. This led to two material-based sinograms, which were
followed by standard filtered back projection algorithm with
unapodized ramp filter, allowing for water- and iodine-based
images of the phantom (gw and gid). Since the test phantom
is made of three materials (adipose, glandular, and water), a
post-processing step was needed to quantify these three mate-
rials for the two basis images. For that, the same calibration
phantom and method described in Equation 4 was used, but
with gw and gid instead of µl and µh.

2.2 Figure of Merits
The following metrics were used to evaluate the performance
of the quantitative methods under study:

• Root-mean-square (RMS) error between the estimated
iodine concentration Ci obtained from the dual energy
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decomposition and the known values Ctrue
i of the inserted

iodine discs:

RMSE =

√
∑

9
i=1(Ci −Ctrue

i )2

9
(7)

where Ci was calculated at each disk using circular re-
gions of interest (ROIs).

• The correlation Cr between the measured and known val-
ues is measured using the normalized correlation factor,
calculated between Ci and Ctrue

i using the MATLAB
built-in function ’normxcorr2’.

• Precision of the iodine estimation, as measured by the
population standard deviation (σci) across different re-
alizations and the standard deviation between locations
(Σci). The latter is useful for assessing the effects of
beam hardening and cupping artifacts on the estimated
values of iodine concentration:

σ =

√
∑

Nr
i=1(Ci −Cmr

i )2

Nr

Σ =

√
∑

9
i=1(Ci −Cml

i )2

9

(8)

Where Cmr
i represents the mean values of the estimated

iodine concentration across different realizations and
Cml

i represents the mean values across the three different
locations of the disks with the same known concentra-
tion.

3 Results and Discussions

Figure 1 shows the material-based reconstructed images at 10
mGy for both material decomposition methods and simulated
detectors under 55 kVp tungsten anode incident spectrum
with 1 mm of added aluminum. The resulting RGB images
are also displayed in Figure 2.
The results of our study are summarized in Figure 3 and indi-
cate that the GaAs system with both material decomposition
methods performs well in terms of accuracy and precision
compared to an ideal PCD system. As expected, better per-
formance was achieved with higher exposure doses and when
using the projection-based material decomposition algorithm.
On average, the root mean square error (RMSE) values for
the ideal and GaAs simulated PCDs differed by less than
0.18 mg/ml, demonstrating that the GaAs PCD-CT system is
capable of making accurate predictions.
Both material decomposition methods also performed well
in terms of accuracy. At higher doses with the GaAs PCD,
the minimum accuracy value Σ (variation across target loca-
tions) of the projection-based material decomposition was
0.25 mg/ml, only 0.1 lower than the minimum accuracy value
of the image-based method (0.34 mg/ml). This suggests that
the image-based material decomposition method performs
well in minimizing beam hardening or cupping artifacts on
the quantification methods.

A correlation factor of 0.98 or higher was observed in all
methods. This suggests that more sophisticated methods can
be applied and used to better estimate the iodine concentration
in a breast. To further illustrate this point, Figure 4 presents
the linear relationship between the measured iodine concen-
tration and the true values at various locations within the
phantom. A more sophisticated calibration process that takes
into account the location of the targets could also lead to bet-
ter performance. This finding highlights that the image-based
material decomposition method may be favored due to its
simplicity compared to the projection-based method, which
requires extensive calibration measurements.
It is also noteworthy that the 55 kVp spectrum showed the
highest performance at a fixed absorbed dose in terms of
RMSE, precision, accuracy, and the correction between the
measured and true values. However, it should be noted that
these results may not be applicable to all cases, as different
breast sizes and variations in tissue composition may lead to
optimal results with different spectrums.
In summary, the GaAs PCD demonstrated comparable re-
sults to an ideal PCD in terms of Root Mean Squared Error
(RMSE), precision, and accuracy. These figures of merit
show the effectiveness of both material decomposition meth-
ods using a GaAs-based photon counting breast CT system in
accurately and precisely estimating iodine concentration.

4 Conclusions

In this study, the spectral performance of a GaAs photon-
counting detector was evaluated for quantitative breast CT
using a simulation approach. Two different methods for pro-
ducing material-specific images of the breast were tested,
and the iodine component image was used to estimate io-
dine intake in the breast. The results of the simulation study
revealed comparable performance between the GaAs detec-
tor and an ideal PCD in terms of Root Mean Squared Error
(RMSE), precision, and accuracy of estimating iodine intake
in the breast. The figures of merit indicate the effectiveness
of both projection-based and image-based material decom-
position methods in making accurate and precise predictions
of iodine concentration using a GaAs-based photon counting
breast CT system, with better performance when applying the
projection-based material decomposition approach.
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Figure 1: Component-based reconstructed images from projections taken at 55 kVp tungsten anode incident spectrum and a mean
glandular dose of 10 mGy. (a) and (b) depict the results from the image-based material decomposition method using an ideal PCD and a
GaAs PCD, respectively. (c) and (d) depict the results from the projection-based material decomposition method using an ideal PCD and a
GaAs PCD, respectively.

(a) (b) (c) (d)

Figure 2: RGB color images derived from figures in 1 mapping adipose fraction to red, glandular to green and iodine to blue.
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Figure 3: Performance metrics for the evaluation of the imaging methods. The table shows the Root-mean-square error (RMSE),
correlation factor, and precision values for the image-based and projection-based material decomposition methods using an ideal PCD and
a GaAs PCD.(a) and (b) depict the results from the image-based material decomposition method using an ideal PCD and a GaAs PCD,
respectively. (c) and (d) depict the results from the projection-based material decomposition method using an ideal PCD and a GaAs PCD,
respectively.
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Figure 4: Measured iodine concentration and the true values at various locations within the phantom. The standard variations within the
circular ROIs are also presented. (a) and (b) depict the results from the image-based material decomposition method using an ideal PCD
and a GaAs PCD, respectively. (c) and (d) depict the results from the projection-based material decomposition method using an ideal PCD
and a GaAs PCD, respectively.
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Abstract Acute Respiratory Distress Syndrome (ARDS) is a major cause 

of respiratory failure, often leading to significant morbidity and 

mortality. Mechanical ventilation, the primary supportive strategy, can 

cause ventilator-induced lung injury (VILI) due to uneven strain 

distribution and heterogeneous gas exchange. In this study, we employed 

quantitative computed tomographic (qCT) imaging, a novel and 

impactful advancement in medical imaging, to explore the 

pathophysiology of ARDS in a porcine model, and to examine its 

response to two ventilatory strategies: conventional mechanical 

ventilation (CMV) and multi-frequency ventilation (MFV). We 

evaluated baseline conditions and subsequent responses to oleic acid-

induced lung injury over a 9-hour ventilation period, using biomarkers 

and static CT imaging to quantify regional and global lung textures and 

aeration. The MFV group demonstrated a significantly lower respiratory 

rate and superior oxygenation (PaO2: FiO2 ratio) compared to the CMV 

group. CT texture analysis and lung aeration assessment indicated that 

the MFV group had a larger proportion of normal lung tissue and normal-

aerated lung volumes, and less consolidated tissue. These findings 

suggest that MFV could be a more effective ventilation strategy in 

ARDS, potentially mitigating the risk of VILI and improving 

oxygenation. The utilization of qCT in this study underscores the 

transformative impact of this advanced medical imaging technique, and 

its vital role in deepening our understanding of complex conditions like 

ARDS. 

1 Introduction 

 

ARDS is a life-threatening condition characterized by 

severe respiratory failure, noncardiogenic pulmonary 

edema, and arterial hypoxemia. This complex syndrome 

can be triggered by a range of factors including pneumonia, 

sepsis, severe trauma, aspiration of gastric contents, blood 

product transfusion, inhalation injury, or burns. Accounting 

for ~10% of ICU admissions and with a mortality rate of 

30-40%,1 ARDS remains a significant challenge for 

clinicians worldwide, indicating an urgent need for 

innovative therapeutic approaches and refined ventilation 

strategies.  

Mechanical ventilation, a cornerstone of ARDS treatments, 

supports gas exchange and helps manage ARDS symptoms. 

However, the structural heterogeneity of the lungs can make 

achieving uniform gas exchange challenging, especially 

during supportive mechanical ventilation.2 Furthermore, 

prolonged or inappropriate use of mechanical ventilation 

can inadvertently cause VILI,3 exacerbating the already 

compromised pulmonary function in ARDS patients. The 

recently developed MFV technique by Kaczka and co-

workers shows potential in addressing these issues.4,5 MFV 

employs multiple simultaneous oscillatory frequencies, 

generating much lower regional strains and potentially 

reducing lung injury compared with traditional ventilation 

approaches. For MFV to be used in clinical trials in adult 

patients, technical modifications and rigorous preclinical 

testing are necessary. 

In this context, qCT imaging, which offers detailed insights 

into regional lung textures and aeration, is a valuable tool 

for assessing lung function and pathology in ARDS. Our 

study utilizes this technology in a porcine model, widely 

adopted in ARDS research due to its similarity to human 

lung physiology, to investigate the pathophysiological 

changes in ARDS. Our aim is to evaluate the effectiveness 

of two different ventilation strategies, CMV and MFV, in 

mitigating lung injury and optimizing gas exchange during 

ARDS. We assess baseline lung conditions and subsequent 

responses to oleic acid-induced lung injury over a 9-hour 

ventilation period, using qCT imaging and a range of 

biomarkers including heart rates, blood pressures, 

respiratory rates, pH, blood gas levels, and the ratio of 

partial pressure arterial oxygen and fraction of inspired 

oxygen (PaO2: FiO2). The outcome of our research could 

significantly refine ARDS ventilation practices and enhance 

patient outcomes. By elucidating the effects of different 

ventilation modalities on lung function, we aim to facilitate 

the development of personalized, evidence-based treatment 

plans for ARDS patients and pave the way for novel 

therapeutic interventions. 

2 Materials and Methods 

 

Large pigs (n=12, weight of 36.7-70.0 kg) were pre-

anesthetized and randomly assigned to either the CMV 

Group (n=6; weight of 51.1 ± 13.8 kg) or the MFV Group 

(n=6; weight of 49.1 ± 9.2 kg). An unpaired two-tailed t-test 

was performed to confirm there was no significant 

difference for the body weight between the two groups (p-

value=0.76, with p-value<0.05 considered statistically 

significant). To establish baseline data, we collected lung 

injury-associated biomarkers (heart rates, blood pressures, 

respiratory rates, pH, blood gases, PaO2: FiO2, and serum 
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cytokines) and performed CT scans on both groups prior to 

the induction of lung injury. Subsequently, oleic acid was 

administered to elicit a lung injury resembling ARDS. 

Different ventilation strategies, specifically CMV and 

MFV, were then employed in the respective groups. 

Following a 9-hour ventilation period, we collected another 

set of lung injury-associated biomarkers and conducted CT 

scans for both groups. Figure 1 illustrates the experimental 

setup, and Figure 2 displays the different gas flow rates used 

in the CMV and MFV groups. Numerous parameters, 

including oxygen saturation (SpO2), temperature (T, °C), 

heart rate (HR), systemic arterial pressure (SAP), 

pulmonary arterial pressure (PAP), central venous pressure 

(CVP), respiratory rate (RR) and expiratory CO2 levels, 

were monitored during the experiment. 

 
Figure 1. Schematic diagram of the experimental setup. 

Figure 2. Flow rates in the CMV (Panel A) and MFV 

(Panel B) ventilation strategies. 

 

We obtained 3D-CT image scans of the pigs in the CMV 

and MFV groups at a constant airway pressure of 30cmH2O 

using a Siemens SOMATOM Force scanner (Siemens 

Healthineers, Forchheim, Germany). These CT image scans 

were processed by a convolutional neural network for 

automatic lung parenchyma segmentation.6 As shown in 

Figure 3, the mask data files obtained from the 

segmentation, along with the original CT image scans, were 

employed by the Pulmonary Analysis Software Suite 

(PASS)7 to acquire qCT data and to visualize changes in 

volume and texture type. Volume changes were based on 

the total number of voxel volumes for each segmented lung. 

Texture analysis employed the adaptive multiple feature 

method, which relies on a standardized training set and 

labeling of normal and diseased lung regions. Depending on 

the intensity of the voxels that comprise the images, 

volumes were partitioned into hyper-aerated (less than -900 

HU), normal-aerated (between -900 HU and -500 HU), 

poor-aerated (between -500 HU and -100 HU), and non-

aerated (higher than -100 HU) compartments. The texture 

types evaluated included normal, ground glass, emphysema, 

ground glass reticular, bronchovascular, honeycomb, and 

consolidated. An unpaired two-tailed t-test was performed 

for the qCT data comparison between the CMV and MFV 

groups. 

Figure 3. Workflow for CT image analysis. 

3 Results 

 

As outlined in Table 1, there were no significant differences 

between the CMV and MFV groups at baseline in terms of 

HR, SAP, PAP, RR, pH, PaCO2, and PaO2: FiO2 ratio. 

However, after a 9-hour ventilation period following the 

induction of lung injury with oleic acid, the MFV group 

demonstrated notable physiological changes. Specifically, 

there was a significant decrease in RR and a marked 

increase in the PaO2: FiO2 ratio compared to the CMV 

group. These results suggest that MFV could potentially be 

a more effective ventilation strategy for optimal gas 

exchange in the context of lung injury. 

Table 1. Comparison of baseline and 9-hour post-injury 

physiological parameters between the CMV and MFV 

groups. 

 

Figure 4 presents a visual comparison of the CT images, 

lung textures, and aeration distributions between the CMV 

and MFV groups at both baseline and after 9 hours of 

ventilation following injury. No significant differences 
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Figure 4. Visual comparison of CT images, lung textures, and aeration distributions between the CMV and MFV groups at 

baseline and after 9 hours of ventilation following injury. 

 

were observed between the CMV and MFV groups in these 

visualizations at baseline. After 9 hours of ventilation post-

lung injury, the MFV group exhibited less consolidation 

and a more even distribution of aeration in the images, 

suggesting a better recovery process under the MFV 

ventilation strategy. 

We performed a quantitative analysis of the lung textures in 

both the CMV and MFV groups at baseline and after 9 hours 

of ventilation following injury. The texture types of 

emphysema and honeycomb were excluded from the plots 

in Figure 5 due to their negligible representation (<1%). At 

baseline, the CMV and MFV groups showed similar 

volume percentages for normal, ground glass, ground glass 

reticular, bronchovascular, and consolidated lung textures. 

Following 9 hours of ventilation after injury, the MFV 

group demonstrated a significantly higher volume 

percentage of normal lung textures (~20% higher in total 

lung volume) and considerably less consolidation (~14% 

lower in total lung volume) compared with the CMV group. 

Figure 5. Lung texture analysis for the CMV and MFV 

groups at baseline (Panel A) and after 9-hour ventilation 

following injury (Panel B). 

 

Lung aeration volumes from both the CMV and MFV 

groups were further classified into hyper-aeration, normal-

aeration, poor-aeration, and non-aeration based on the 

intensity of the CT images. At baseline, the CMV and MFV 

groups exhibited a high degree of similarity. Following 9 

hours of ventilation post-injury, the MFV group displayed 

a significantly higher volume percentage of normal-aerated 

compartments (~20% higher in total lung volume) and 

significantly less non-aerated tissue (~15% lower in total 

lung volume) compared to the CMV group. These results 

align with the lung texture analysis, indicating that the MFV 

strategy potentially aids in the recovery process by reducing 

consolidation and restoring normal lung function. 

Figure 6. Lung aeration analysis for the CMV and MFV 

groups at baseline (Panel A) and after 9-hour ventilation 

following injury (Panel B). 

 

To analyze the changes in lung density distribution from 

baseline to post-injury after 9 hours of ventilation, we 

plotted the average number of voxels with a CT intensity 

ranging from -1000 HU to 150 HU for both groups (Figure 
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7). Following 9 hours of ventilation post-lung injury, the 

CMV group still demonstrated a significantly larger non-

aerated compartment (defined as higher than -100 HU) 

compared to both its baseline and the MFV group. 

Figure 7. Lung density distribution for the CMV group 

(Panel A) and MFV group (Panel B) at baseline and after 9 

hours of ventilation following injury. The error bars are 

represented as shadows of the lines. 

4 Discussion 

 

In this study, we undertook a comprehensive investigation 

into the pathophysiology of ARDS using a porcine model, 

specifically contrasting the effects of CMV and MFV 

strategies. Our study utilized qCT imaging to precisely 

visualize and evaluate the impacts of these ventilation 

techniques. Notably, the MFV group demonstrated a slower 

RR, suggesting reduced respiratory stress, and a higher 

PaO2: FiO2 ratio, indicative of superior gas exchange 

efficiency, compared to the CMV group. This implies that 

MFV could potentially enhance oxygenation in ARDS 

patients, thereby contributing to improved clinical 

outcomes. 

Furthermore, we conducted a thorough comparative study 

of the lung texture and aeration status for the CMV and 

MFV groups, both at baseline and 9 hours post-ventilation 

following injury. The MFV group presented a larger 

percentage of normal lung tissue and a smaller amount of 

consolidated tissue after 9 hours of ventilation, compared to 

the CMV group. This observation suggests more effective 

lung tissue preservation with MFV, which might help 

minimize ARDS progression and promote a more favorable 

prognosis. In addition, our aeration analysis indicated that 

the MFV strategy was associated with a higher percentage 

of normal-aerated lung volume. This could potentially 

improve gas exchange and mitigate the detrimental effects 

of hypoxia, a frequent complication in ARDS patients. 

Overall, our findings highlight the potential benefits of the 

MFV ventilation strategy in managing ARDS, including 

preservation of lung tissue, enhanced oxygenation, and 

reduced respiratory stress. 

5 Conclusion 

 

Through detailed analysis of CT imaging, lung texture, and 

aeration, our study emphasizes the potential advantages of 

MFV over CMV in managing ARDS. The data suggest that 

MFV might facilitate improved oxygenation, a reduced RR, 

and minimized lung injury. These findings provide valuable 

insights into our understanding of ARDS and suggest 

potential improvements in ventilation strategies. Further 

research is needed to evaluate the effectiveness of MFV in 

human ARDS patients and to translate these promising 

results into clinical practice. This study represents a crucial 

step towards improving patient outcomes in ARDS, a 

challenging condition for clinicians worldwide. Moreover, 

this study reinforces the importance of CT imaging 

reconstruction in the study of lung diseases. 
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Abstract Three-dimensional cone-beam CT imaging of the head is
valuable in neuro-interventional radiology, particularly to detect brain
hemorrhages and visualize regions of ischemia. To improve image
quality, a new data acquisition geometry, called here the sine-spin
trajectory, was recently shown to be clinically feasible and meritorious
over the classical circular short-scan. In this work, we assess the perfor-
mance of the sine-spin trajectory in terms of cone-beam artifacts only,
using voxelized patient models to retain the complexity of the human
head anatomy and the task of interest (low contrast brain imaging).
Our results show strong superiority of the sine-spin trajectory over
the circular short-scan. They also show strong robustness to relative
positioning between sine-spin and head, and to variations in skull
thickness, making altogether the sine-spin trajectory highly attractive
for head imaging in neuro-interventional radiology.

1 Introduction

Three-dimensional cone-beam CT imaging of the head is
valuable in neuro-interventional radiology, particularly to
detect brain hemorrhages and visualize regions of ischemia.
For this reason, the last two decades have seen a continuous
stream of efforts dedicated to improving the image quality
achieved with this technology, with the ultimate goal of pro-
ducing images of quality comparable to diagnostic CT.
Initially, a circular short-scan was used for data acquisition,
and image reconstruction relied on using the FDK algorithm
with Parker weights. One important milestone regarding
image reconstruction was to change the algorithm in favor
of using rigorous principles of cone-beam tomography [1–
3]. The benefits of using these principles for circular short-
scan reconstruction were, for example, shown in [4]. Such
changes, facilitated by the increase in computer power, can
produce images of higher quality given that the cone-beam
artifacts induced by the Parker weights are avoided. However,
cone-beam artifacts are still present as the data acquisition
trajectory is strongly incomplete in terms of Tuy’s condi-
tion [5].
One obvious but not straightforward approach to avoid cone-
beam artifacts is to use a trajectory that is complete. For
example, we recently showed that multi-axis robotic sys-
tems can be reprogrammed to perform data acquisition with
the Line-Ellipse-Line trajectory [6]. Unfortunately, the bi-
plane C-arm systems that are most commonly used in neuro-
interventional radiology do not offer such flexibility in mo-
tion. Nevertheless, recent developments showed that a nearly

complete trajectory, called here the sine-spin trajectory, is
clinically feasible [7–9].
Besides cone-beam artifacts, image quality in cone-beam
CT is affected by many physical effects including beam-
hardening, scatter, and patient motion. In the aforementioned
clinical studies [7–9], image quality was assessed using real
patient scans, hence cone-beam artifacts were entangled with
all other sources of errors. In this work, we aim to assess
the performance of the sine-spin trajectory in terms of cone-
beam artifacts only, using voxelized patient models to retain
the complexity of the human head anatomy and the task of
interest (low contrast brain imaging).

2 Materials and Methods

2.1 Sine-spin trajectory

The sine-spin trajectory differs from the conventional circular
short-scan trajectory in that a sinusoidal motion is applied in
the cranio-caudal direction during the rotation, as illustrated
in Figure 1 (top row). The resulting trajectory lies on a
sphere where the sinusoidal motion can be visualized as a
smooth variation in the elevation angle. The amplitude of
the motion is 10-degree. In Figure 1 (bottom row), it can
be seen that the projection of the sine-spin trajectory on the
(x,y)-plane is identical to the circular short-scan trajectory,
while the projection on the (x,z)-plane shows that the sine-
spin trajectory covers view angles above and below the plane
of the short-scan, which leads to improvements in terms of
Tuy’s condition. However, the sine-spin trajectory is not
complete. Hence, cone-beam artifacts can be expected, with
magnitude and location dependent on relative positioning
between head and trajectory.

2.2 Voxelized phantoms

To assess performance of the sine-spin trajectory in terms
of cone-beam artifacts only, we used voxelized models of
the human head from the BrainWeb database. Specifically,
we used subjects 04 and 06 from this database, which re-
spectively correspond to a thin skull and a thick skull. The
models associate each voxel with one of twelve tissue indices.
We used data available on the NIST website to convert the
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Figure 1: Sine-spin trajectory. Top: elevation (cranio-caudal)
angle as a function of the rotation angle used for the circular
short-scan. Bottom: orthogonal projection of the trajectory on the
(x,y)-plane and the (x,z)-plane; the small circle shows the start
position of the trajectory.

tissue indices in values of the linear attenuation coefficient at
photon energy of 56.5 keV. The selected energy is the mean
energy of the spectral x-ray beam typically used in the clinic.

2.3 Data simulation and image reconstruction

Cone-beam data were simulated using forward projection
through the voxelized models, with 2×2 sub-lines for each
detector pixel. The source-to-rotation axis distance was
750 mm, the source-to-detector distance was 1200 mm, the
number of views was 551, and the detector pixel size was
0.64× 0.64 mm2, as in [7, 8]. For experiments with noise,
we used Poisson statistics such that the noise level in the
reconstruction is similar to clinical practice. Image recon-
struction (for both sine-spin and circular short-scan) follows
the principles of [2, 3], with cubic voxels of side-length equal
to 0.5 mm.
To study how relative positioning between sine-spin and head
impacts cone-beam artifacts, we repeated the data simulation
using variations in positioning of the sine-spin trajectory. We
considered four variations in axial positioning, correspond-
ing to centering the trajectory on z ∈ {−10,−5,5,10}mm
instead of z = 0 mm; and we considered two variations for
the start angle: 140◦ and 180◦ instead of 160◦.
To study the effect of scan range and head anatomy, we used
subjects 04 and 06, and considered scan ranges of 210◦ and
240◦ instead of the 220◦ used for all other experiments.

3 Results

3.1 Comparison with the circular short-scan

Figure 2 shows results obtained for subject 04 using the circu-
lar short-scan versus the sine-spin trajectory. While the circu-

lar short-scan quickly yields undesirable cone-beam artifacts
away from the plane of the source trajectory, the sine-spin
trajectory produces high accuracy almost everywhere. For
a more quantitative assessment, we also computed the root
mean squared deviation (RMSD) from the ground truth in the
regions of interest marked in Figure 2. The results, displayed
in Table 1 and 2, closely supports the visual assessment.
Figure 3 shows reconstructions with noise added to the data,
with slice thickness of 2.5 mm. As can be seen, the effect
of data noise is similar between circular short-scan and sine-
spin, conveying that the improvement in cone-beam artifacts
is not associated with a higher sensitivity to data noise.

3.2 Effect of relative positioning

Figure 4 shows the RMSD between the ground truth and the
reconstruction as a function of the slice index for the vari-
ous variations in positioning of the sine-spin trajectory. The
RMSD computation is restricted to voxels containing brain
tissue. On one hand, variations in the start angle have negli-
gible impact on the slice-by-slice magnitude of cone-beam
artifacts. On the other hand, variations in the z position-
ing has some impact for the bottom and top regions of the
brain: as z varies from z = 10 mm towards z =−10 mm, the
magnitude of cone-beam artifacts in the pons and cerebel-
lum regions progressively decreases while increasing for the
upper portion of the brain.

3.3 Effect of scan length and skull thickness

Figure 5 shows results for subjects 04 versus subject 06 as
obtained when varying the scan length. The results are again
shown in terms of RSMD through brain pixels, on a slice-by-
slice basis. Negligible improvements result from increasing
the scan length while reducing it increases the magnitude
of cone-beam artifacts in the bottom and top regions of the
brain. We also see strong similarity between the two subjects.

4 Discussion and Conclusion

Since the sine-spin trajectory is not complete, cone-beam
artifacts can be expected. We investigated the magnitude of
these artifacts using voxelized patient models. The results
showed strong superiority over the circular short-scan. The
results also showed strong robustness to relative position-
ing between sine-spin and head, and to variations in skull
thickness, making altogether the sine-spin trajectory highly
attractive for head imaging in neuro-interventional radiology.

#1 #2 #3 #4 #5
circular 14.37 2.27 3.72 34.80 50.15
sine-spin 3.62 2.25 3.58 3.37 10.97

Table 1: RMSDs for the 5 regions of interest marked in the coronal
slice of Figure 2, expressed in HU.

132 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Figure 2: Image reconstruction comparison between the sine-spin and the circular short-scan using subject 04. From left to right: ground
truth, circular short-scan, and sine-spin. Window: [0,80] HU.
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#1 #2 #3 #4 #5
circular 11.10 1.78 21.59 25.54 50.22
sine-spin 3.24 1.66 3.43 2.83 10.78

Table 2: RMSDs for the 4 regions of interest marked in the sagittal
slice of Figure 2, expressed in HU

Figure 3: Image reconstruction of subject 04 from noisy data.
Left: circular short-scan. Right: sine-spin. Window: [0,80] HU.
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Abstract X-ray imaging is a widely adopted diagnostic tool that uses
the attenuation as contrast generating mechanism. Grating-based X-
ray dark-field imaging is an interferometric approach that unlocks an
additional contrast mechanism. Unlike conventional X-ray techniques,
dark-field imaging is also capable of measuring the so-called linear dif-
fusion coefficient. This measure of a sample’s small-angle scattering
strength yields additional information about a sample’s microstructure,
which otherwise could not be resolved directly. While initial clinical
studies are already being carried out for human chest dark-field ra-
diography, dark-field computed tomography (CT), which is capable
of yielding unobstructed 3D views, has only recently been brought to
the human scale: With a first prototype system, we demonstrated the
feasibility to implement a Talbot-Lau interferometer on a clinical CT
system to perform dark-field imaging with clinical acquisition time
and field of view. Until now, this prototype was limited to axial scans.
In this work, we present our advancements in extending the setups
capabilities to also support other modes of acquisition, namely surview
and helical scans. The new capabilities of the updated dark-field CT
scanner are demonstrated using an anthropomorphic thorax phantom.

1 Introduction

X-ray computed tomography is a common medical imaging
technique that produces unobstructed 3D-views of a patient’s
anatomy and allows for fast acquisition and quantitative mea-
surements. However, traditional CT imaging relies solely on
attenuation-based contrast and does not utilize the wave-like
properties of X-rays. Access to this additional information
and novel contrast modalities can be achieved, for example,
through techniques such as Talbot-Lau interferometry [1–3],
speckle [4], or edge-illumination-based imaging [5].
In Talbot-Lau interferometry, three gratings are introduced
into the X-ray beam, which modulate the wavefront and cre-
ate an interference pattern on the detector [1, 3]. When a
sample is inserted into the X-ray beam, it distorts the ob-
served pattern in three ways: it decreases the overall intensity
due to attenuation, it causes small-angle scattering that blurs
the interference pattern decreasing the fringe amplitude, and
it shifts the pattern due to the induced phase shift. These
three physical effects give rise to the three contrast modal-
ities obtained via grating-based imaging: the attenuation,
dark-field, and phase contrast, respectively. Proper analysis
of the interference pattern’s distortion allows for the separa-
tion of the three contrasts channels. This process is known
as phase retrieval.

The so-called dark-field signal generated by the effect of
small-angle scattering is a promising new tool in the diag-
nosis of pulmonary diseases as it reveals microstructural
changes in the lung parenchyma that are too small to be re-
solved directly [6]. As a first step in translating dark-field
imaging from the bench to clinical usage, a prototype human
scale dark-field thorax radiography system is already in use
in the university hospital München rechts der Isar. First clini-
cal studies demonstrated the potential of dark-field imaging
for the diagnosis of chronic obstructive pulmonary disease
(COPD) and COVID-19 [7]. However, this system is limited
to acquiring chest radiographs and lacks 3D information.
As a next step, we recently presented a dark-field CT proto-
type based on a clinical system that overcomes two of the
main challenges in bringing dark-field CT imaging into clin-
ical use: the dynamic environment of a clinical CT gantry
that introduces perturbations of the grating interferometer,
and the continuous data acquisition that prohibits conven-
tional stepping-based phase retrieval methods. The prototype
scanner is a clinical Philips Brilliance iCT scanner that was
upgraded with a Talbot-Lau interferometer [8, 9].
Until now, this prototype was limited to axial scans and did
not support other standard acquisition protocols. In this work,
we present our advancements in extending the setups capabil-
ities to also support other acquisitions, namely surview and
helical scans.

2 Materials and Methods

2.1 Talbot-Lau X-ray Dark-Field Imaging

Grating-based Talbot-Lau X-ray dark-field imaging with in-
coherent sources employs three gratings that are introduced
in the beam path to generate an interference pattern on the
detector. Fig. 1 shows a schematic of the used Talbot-Lau
interferometer used in the dark-field CT prototype. In good
approximation the fringe pattern recorded at the detector can
be modeled as a truncated Fourier series [2]

y = T I +T IDV cos(Φ+ϕ) , (1)

where the state of the interferometer is described by the
parameters I, V , and ϕ which denote the mean intensity,
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the fringe amplitude (visibility), and the phase of the fringe
pattern, respectively. A sample in the beam attenuates, small-
angle scatters, and phase-shifts the incident wave, which al-
ters the measured fringe pattern. These changes are modeled
by three sample parameters, which represent the method’s
different contrast modalities: the sample transmission T , the
dark-field D, and the (differential) phase Φ. These three
sample parameters are related to the sample by

T = exp
[
−
∫ L2

L1

µ (⃗S+ l⃗n)dl
]
, (2)

D = exp
[
−
∫ L2

L1

sD(l)ε (⃗S+ l⃗n)dl
]
, (3)

Φ = ∂y

∫ L2

L1

sΦ(l)δ (⃗S+ l⃗n)dl, (4)

where the linear attenuation coefficient µ , the refractive in-
dex decrement δ , and the linear diffusion coefficient ε are
material specific parameters of the sample. Line integrals are
computed from the actual source position S⃗ in the direction
n⃗ towards the detector pixel, where the object is known to
be located between the gratings G1 and G2, which have dis-
tances L1 and L2 from the source, respectively. Finally, sD

and sΦ are setup geometry specific sensitivities, which are
0 at L2 and grow linearly towards L1, see e.g. [10] for more
details. The partial derivative ∂y is taken perpendicular to the
grating lamellae in the projection domain. The grand goal of
grating-based phase-contrast and dark-field CT imaging is
to determine the sample projection parameters T , D, and Φ,
and reconstruct the spatial distribution of µ , ε , and δ .

2.2 Sliding-Window-Based Phase Retrieval

An essential step in processing the data of the dark-field CT
scanner is the so-called phase retrieval step. Here, the sample
parameters T , D, and Φ are extracted from the measured

Figure 1: Sketch of the Talbot-Lau interferometer in the dark-
field CT prototype’s gantry. It consists of three cylindrically bent
gratings G0, G1, and G2.

signal, which implies fitting the forward model Eq. (1) to
the acquired data sinogram. Therefore, the interferometer
parameters I, V , and ϕ have to be determined via a prior
processing step. For this, an approach that models vibrations
and distortions of the interferometer occurring in the highly
dynamic environment of the CT gantry is used [11].
For the phase retrieval step, the interferometer phase ϕ is of
particular importance as it determines the sampling quality
of the sinusoidal signal and thus the accuracy of the fit re-
sult. Contrary to conventional lab setups, the necessary phase
sampling is in our prototype not generated by a controlled
stepping of the gratings [12]: We generate a spatio-temporal
modulation of the fringe pattern by exploiting system inher-
ent vibrations that move the gratings, and additionally tune
a fine Moiré fringe pattern on the detector that results in a
spatial gradient in the interferometer phase.
For our prototype scanner, we use an advanced sliding-
window-based phase retrieval algorithm, that is capable of
exploiting both the temporal and the spatial modulation of
the designed fringe pattern. Due to the continuous data ac-
quisition, we do not have access to multiple shots acquired
under the same gantry angle with different grating positions.
Our sliding-window algorithm thus groups together adjacent
pixels and shots in the data sinogram and performs phase
retrieval in each patch. The movement of the sample’s projec-
tion within the patch is modeled by polynomials and updated
by multiple processing passes [13].

2.3 Dark-Field Surview Imaging

For surview imaging the beam is collimated to only the cen-
tral four detector rows. Furthermore, the detector position is
fixed during the scan and only the patient couch is moved dur-
ing the measurement. Detector readings are acquired roughly
every 60 µm, providing a fine temporal sampling for phase
retrieval. In our prototype scanner, the gantry is supported
on an air cushion, which decouples it from its surroundings.
Therefore, the couch movement does not introduce additional
perturbations to the interferometer. Conversely, the lack of
the gantry rotation removes the centrifugal force acting on
the gratings that has to be considered for axial scans. Thus
low frequency vibrations are excluded from the surview vi-
bration model. For surview scans, we therefore only include
the vibrations generated by components on the gantry into
our vibration model, which simplifies the employed pertur-
bation model. The main source of vibrations in our setup is
the anode drive that induces a grating vibration of approxi-
mately 177 Hz [12].
In practice, surview imaging is performed by first acquiring
an air surview scan that uses the same scan parameters as the
sample scan and next performing the sample surview scan.
Based on both scans, the simplified perturbation model is
fitted to the data and the interferometer state is determined.
Next, the sliding-window-based phase retrieval is performed
to extract the transmission T and the dark-field D. To access
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the line integrals, − log(·) is applied. Finally, post-processing
is applied to the data. It involves binning the data in scanning
direction and averaging the four detector rows. Furthermore,
a beam hardening correction is applied to the dark-field chan-
nel [12]. In the attenuation channel, a Laplace-filtered version
is mixed in with the original image to enhance edges.

2.4 Helical Dark-Field Computed Tomography

For helical acquisitions, the gantry is rotating while the pa-
tient couch is moved and the measurement is performed.
Therefore, until the reconstruction step, each individual ro-
tation of the gantry can be treated during processing like
an axial scan. For the reference scan, it is thus sufficient
to use an axial air scan with the same flux, exposure, and
rotation time. Using this reference scan, we then determine
the interferometer state of the sample scan for each rotation
separately. The main difference to the axial case is the couch
movement, which introduces an additional movement of the
sample projections in z-direction. This movement is con-
sidered in the phase retrieval step by employing the dual
pass method described in [13], and approximating movement
within the demodulation window in the transmission signal
by a first order polynomial.
Once the sample information has been retrieved in the projec-
tion domain, it is reconstructed using a dedicated helical FBP
algorithm for the dark-field channel, that accounts for the
sensitivity gradient along the rays (see Eq. 3 and 4). This has
been described in [10] for axial CT and a different grating
geometry where the object is located between G0 and G1 and
the idea is adapted here to the new scenario.
The basic idea is that the linear sensitivity gradient along
the ray can be eliminated in 2D fan-beam geometry if a
direct and a complementary ray are averaged, see Fig. 2.
Then, the only change in a 2D FBP is a pre-weighting to
compensate a fan-angle dependency of the mean sensitivity
after averaging. In helical cone-beam CT, however, there is
usually no real complementary ray since the cone-angles of
the rays from S⃗1 and S⃗2 differ. Thus, the averaging of direct
and complementary rays is postponed to the back-projection
step, where direct and complementary rays are identified as
rays passing in opposing directions (i.e. only differing by
their cone-angle) through a certain voxel.
The reconstruction algorithm can be summarized as follows:

• pre-weighting the data in native geometry with fan-
angle α dependent weight c(α) = L2−L1

L2−Rcosα
, where R

is the distance from the source to the iso-center. The
reason for the fan-angle dependency is that S⃗1 and S⃗2
get closer to each other with increasing fan-angle, see
Fig. 2.

• re-binning the data into wedge-geometry [14].

• weighting the data with the cosine of the cone-angle and
ramp-filtering.

Figure 2: Sketch of the system geometry (left) for a certain source
position S⃗1. On the right, an example direct ray measured from S⃗1
is shown together with the complementary source position S⃗2.

Figure 3: Surview scan of a human thorax phantom acquired with
the dark-field CT prototype. A shows the conventional attenuation-
based surview, while B depicts the dark-field modality. By the
methods design, both channels are perfectly registered.

• For each voxel x⃗ to reconstruct, back-projection from
all projection angles β is done using an aperture weight-
ing scheme as described in [15] with the modification
that normalization of weights is done over 2π partners
instead of π partners, i.e., wall(β , x⃗) = 1

2
wap(β ,⃗x)

∑n wap(β+2πn,⃗x) .
This is analogue to the normalization concept for high-
resolution scans as described in [14].

For post-processing, we applied the same polyoxymethylene-
based beam hardening correction to the dark-field channel
that we use for axial scans, which is described in [12].

3 Results

To demonstrate the capabilities of the dark-field CT prototype
for surview and helical imaging, two test measurements were
performed with a human thorax phantom that was filled with
a neoprene foam material to simulate the porous microstruc-
ture of lung parenchyma. Additionally, plastic tubes filled
with water, cotton, and powdered sugar were inserted into
the phantom, as well as a polyoxymethylene cylinder.
First, a dark-field surview scan was performed with a tube
voltage of 80 kVp and a current of 200 mA. During scanning,
7006 shots were acquired in 3.2 s to cover a total scan length
of 45 cm. The resulting surview scan is depicted in Fig. 3.
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Figure 4: Helical CT scan of an anthropomorphic thorax phantom
acquired with the dark-field CT prototype. A shows a conventional
attenuation-based axial slice with window/level 1660/-170 HU,
while B depicts the dark-field modality. C and D show respective
coronal slices at height of the spine.

Second, a helical dark-field CT measurement was acquired
using a current of 540 mA, tube voltage of 80 kVp, and a
rotation time of 1.5 s. Using 32 detector rows, 35208 shots
were acquired to cover a length of 18 cm in z-direction with
a pitch of 0.6. The total acquisition time was 22.8 s. The
reconstructed helical scan is shown in Fig. 4.
In both the surview and the helical scan, it can be observed
that the porous materials – the neoprene insert, dry wool,
powdered sugar, and bone surrogate – exhibit a strong dark-
field signal, while the polyoxymethylene and water cylinders
as well as the soft tissue surrounding the ribs vanish fully in
the dark-field. This demonstrates the system’s capability to
differentiate between porous and homogeneous materials.

4 Conclusion

In this work, we presented new results using a dark-field
CT prototype based on a clinical system. With our updated
scanner, we could extend its imaging capabilities to perform
dark-field surview as well as dark-field helical CT measure-
ments. This development brings dark-field CT an important
step closer to clinical usage as it demonstrates as a first proof
of concept the feasibility of all three standard acquisition
modes of clinical CT scanners (axial, helical, and surview)
for human-sized dark-field imaging.
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Abstract Thyroid cancer is a malignant tumor which is the most common 
malignant tumor in the head and neck region. Early diagnosis is crucial 
for optimal prognosis. Compton camera-based single photon emission 
computed tomography (SPECT) is a new avenue to study organ functions 
and pathologies in this context. Compared to gamma camera-based 
SPECT, Compton camera requires no mechanical collimation and in 
principle rejects no gamma ray photon. Hence, radiation dose efficiency 
and/or signal-to-noise ratio will be improved by orders of magnitude for 
screening and follow-up scans of patients. However, image 
reconstruction for Compton camera-bases SPECT is challenging, and 
there is no analytic reconstruction approach. To address this issue, here 
we propose a deep learning approach to obtain high-resolution image by 
deblurring weighted backprojection image. Our simulation results show 
that the proposed framework can effectively deblur backprojection 
images and produce high-resolution SPECT images.  

1. Introduction 
Thyroid is a very important organ of the human body and 
serves as the largest endocrine gland. Thyroid gland 
controls energy production, protein synthesis, and human 
body regulation by secreting thyroid hormones. Thyroid 
hormones can promote growth, development, and 
metabolism. Therefore, when the thyroid function is 
abnormal, all organs of the human body will be affected, 
resulting in easy fatigue, depression or persistent 
hyperactivity, anxiety, insomnia, and severe cases will lead 
to death [1]. Besides, the 2020 Global Cancer Observatory  
survey reported that thyroid cancer is responsible for 
586,000 cases around the world [2]. Early diagnosis is 
important for recovery from thyroid cancer. Single photon 
emission computed tomography (SPECT) can image the 
anatomical structures such as the location, shape, and size 
of organs and lesions. And it can also provide information 
on blood flow, function, and drainage of organs and lesions 
[3]. This is helpful for early diagnosis of thyroid cancers. In 
recent years, there has been a growing interest in the 
development of SPECT imaging technologies and 
applications. Recent studies have focused on improving 
image resolution, reducing radiation exposure to the patient, 
and increasing the accuracy and reliability of SPECT 
imaging for a variety of medical conditions [4], [5]. 
Compared with the traditional SPECT imaging system like 
gamma camera, the advantages of high efficiency and wide 
energy ranges of the Compton camera make it very 
attractive in the real-time monitoring [6] and functional 
imaging.  

Among different types of Compton cameras, the design 
type based on the read-out chip Timepix3 [7] holds great 
potential for thyroid imaging. Because the Timepix3 does 

not require any collimator, it can offer a superior detection 
sensitivity over a broad field of view. Especially in the 
context of SPECT imaging, it improves the image quality 
and helps reduce the radiation exposure of the patient. 
Timepix3 has the capability to promptly transmit each hit 
pixel to a readout and simultaneously record the time-of-
arrival and energy of an incoming gamma rays in the pixel. 
By possessing information on both the energy and position 
of the events in the sensor, it is feasible to reconstruct the 
gamma source's image. However, there is no theoretically 
exact reconstruction algorithm available yet, particularly for 
3D case.  

In the recent years, deep learning methods have played 
an important role in medical image reconstruction [8]. Since 
there is no theoretically exact image reconstruction 
algorithm available for Compton camera-based SPECT, in 
this study, we propose a deep learning framework to solve 
this problem. To reconstruct high-quality SPECT images 
from data collected on a Timepix3 camera, we design a deep 
learning approach to approximate the deconvolution kernel 
for the 3D SPECT backprojection images. Extensive 
numerical simulations are performed to train our network. 
Our preliminary results demonstrate the merits of the 
proposed approach.  

2. Materials and Methods 
2.1. Compton Imaging 
The principle of Compton imaging technology is based on 
the Compton scatter effect, which refers to the process 
where an incident photon collides with an extranuclear 
electrons causing a change in direction and energy loss. In 
this event, the incident photon transfers a part of its energy 
to the extranuclear electron, forcing it to escape from the 
atomic nucleus as a recoil electron. Concurrently, the 
incident photon itself undergoes energy loss and becomes a 
scattered photon that is emitted in a different direction. 

        
Fig. 1 A typical Compton camera and its imaging event diagram. 
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During the Compton scatter process, by energy and 
momentum conservation, the energies of recoil and 
scattered photons, and the relationship between scattering 
angle and recoil angle can be derived as follows: 

  (1) 

 

  (2) 

  (3) 

where ,  and  are the energies of incident photons, 
recoil electrons and scattered photons respectively, and 

  are the scattering and recoil angles respectively, and
= 0.511 MeV is the rest mass energy of a free electron. 

Generally speaking, the interaction that occurs in the 
front detector is Compton scattering, while the interaction 
that occurs in the rear detector is photoelectric absorption. 
Therefore, for a typical double-layer Compton camera, 
there is only one Compton scattering. In the case of a single 
Compton imaging event, the physical process can be 
characterized as follows: the gamma rays emitted from the 
radioactive source directly enter the front detector without 
undergoing scattered. After a single Compton scattering in 
the front detector, the scattered photon is totally absorbed 
via photoelectric absorption in the rear detector. Then, the 
front detector could measure the position of the Compton 
scattering and the energy of the recoiled electrons, while the 
rear detector can determine the outgoing direction and 
energy of the scattered photon. Using Eqs. (1) and (2), the 
angle of Compton scattering can be estimated as  

  (4) 

2.2. Weighted Backprojection  
In this section, we present our reconstruction framework. 

First, a 3D weighted backprojection (WBP) algorithm in our 
previous study is used to backproject the obtained 
projection data into the image domain [9]. In the Compton 
cameras, a recorded Compton event could be from any 
position on a Compton cone surface. To reconstruct the 
underlying source distribution, the WBP algorithm directly 
backprojects all the events to the corresponding Compton 
cone surfaces in the 3D image domain. In a 2D image slice, 
it will trace an elliptical trajectory. In the entire 3D space, 
the intersection of the cone surfaces yields an initial 3D 
image of the radioactive source. However, the WBP image 
contains substantial blurrings. Inspired by the ramp filtering 
in CT, a 3D ramp filter is applied to the backprojected image 
for deblurring in our previous work [9]. In this study, the 
3D ramp filter is replaced by a 3D Gaussian high pass filter 
to improve the quality of the image. The 3D Gaussian high-
pass filter in the Fourier domain can be represented by: 

 
Fig. 2 Representative sagittal views of the Gaussian filtered images. (a) 
the ground truth, and (b)-(f) the results of d = 1, 2, 4, 6 and 8 respectively. 
H(u, v, w) = 1 - e^(-d2 * (u2 + v2 + w2) / (2 * σ2)), where (u, 
v, w) are variables in the (x, y, z) directions, σ is the 
standard deviation of the Gaussian function, and d is the 
cutoff frequency. The cutoff frequency in a Gaussian high-
pass filter determines the range in which the filter 
effectively reject low-frequency signals while passing high-
frequency signals outside. Clearly, the cutoff frequency 
affects the selectivity, transition band and sharpness of a 
Gaussian high-pass filter. Fig. 2 shows how different cutoff 
frequencies affect the quality of deblurred images.  
2.3. EU-Net 

In the medical imaging field, the detection of edges is a 
critical aspect of image analysis. These edges provide 
valuable information on boundaries between anatomical 
structures and tissues. It is essential for diagnosis and 
treatment planning under various medical conditions. This 
information is crucial in identifying anomalies, calculating 
dimensions and volumes, and detecting disease or injury. 
Inspired by the success of U-Net [10] and MLEFGN [11], 
here we adapt the Edge-Net from MLEFGN to construct our 
EU-Net to improve Compton camera-based SPECT image 
quality (see Fig. 3). 

The proposed EU-Net is described as follows. First, 
Edge-Net to obtain the edge prior of SPECT images. The 
Edge-Net consists of three modules including the 
convolution layer, residual block and dense block. It should 
be noted that Edge-Net is trained with U-Net 
simultaneously. The input and output of the Edge-Net are 
blurry SPECT images and clear edges respectively, to learn 
the capacity to produce clear edges from blurry SPECT 
images. Then, we use a skip connection to link the 
backprojected image to the U-Net. Finally, the U-Net takes 
both the Edge-Net output and the backprojected image as 
input to generate the recovery image.  

 
Fig. 3 Architecture of the Compton camera-based SPECT image 
reconstruction network model EU-Net. 
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Since the L1 norm is proven to be effective for image 
recovery [12], both the U-Net and Edge-Net use the L1 
norm to enforce the correctness of low-frequency structures. 
During the training process, the U-Net loss and edge loss 
are calculated as  
  (5)                                

  (6)                          

where  represents a predicted image,  is the 
predicted edge image,  is the reference image, and   

 the reference edge image. 
 

3. Results 
3.1. Experimental Setup 

To assess the proficiency and aptitude of the proposed 
EU-Net, two 3D numerical phantoms are designed for 
training. Specifically, it is assumed that technetium-99m 
and cesium-137 are distributed uniformly within these two 
phantoms, respectively. The gamma rays have energies of 
140keV and 662keV. The volume of the two phantoms 
includes 150x150x150 voxels. The number of Compton 
events for training datasets are 2*105, 2*106, and 1*105, 
respectively. Finally, a total of 900 pairs of images are 
utilized in the training phase. Additionally, a well-designed 
thyroid phantom used in our previous study [9], utilizing 
2*106 events, is employed to test the EU-Net. Both the 
training and testing dataset are applied by the 3D Gaussian 
filter, and the cutoff frequency is set to 2. The experiments 
are conducted on a workstation computer featuring an Intel 
i9-9920X CPU running at 3.50 GHz, and an NVIDIA 
GeForce 2080TI graphics processing unit (GPU). The EU-
Net is implemented using the PyTorch framework and 
optimized by the Adam optimizer. The minibatch size is set 
at 16, and the network is trained for 100 epochs. Finally, 3D 
rendering images are generated using MATLAB.  
3.2. Results and Analysis 

Fig. 4 illustrates three different views of the reconstructed 
SPECT images. The first column represents the ground 
truths, the second column depicts the WBP results, the third 
column presents the Gaussian high-pass filtering results, 
and the fourth column displays the results from the EU-Net. 
It can be observed that the WBP results are blurry, and it is 
difficult to distinguish the edges of the simulated thyroid 
lobes. If the unfiltered results are utilized directly as the 
input to the network, regardless of the duration of the 
training process, we cannot obtain satisfactory outcomes. 
While undergoing Gaussian high-pass filtering, after the 
high frequency noise removed, the image edges become 
clearer. However, there still exists significant amount of 
noise. After further processing by our proposed network, 
the blurring is efficiently eliminated, and the final results 
are very close to the ground truths.  

 
Fig. 4 Three different view of the reconstructed SPECT image from 
simulated Compton camera data. 
 

Fig. 5 presents 3D rendering results based on different 
algorithms. They are generated using MATLAB (Version 
R2021b, MathWorks, Natick, MA) Volume View App via 
maximum intensity projection. Those results further 
validate the conclusions observed in the 2D images. It can 
be observed that the result without Gaussian filtering is very 
blurry, and the two thyroid lobes are almost connected 
which makes it difficult for accurately diagnosis. After the 
Gaussian filtering, the two thyroid lobes are much clear, but 
they are still a little blurry. However, the performance of our 
framework remains satisfactory, and two lobes are clearly 
distinguishable.  
 

  
Fig. 5 Three-dimension rendering of the whole volumetric images using 
the maximum intensity projection. (a) is the ground truth, and (b)-(d) 
are using WBP, Gaussian filter, and EU-Net, respectively. 

U-Net clear clear 1
,I I¢= -L

edge edge edge 1
.I I¢= -L

clear I ¢ edgeI ¢

clear I

edgeI
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4. Discussions 
   Although the Compton camera can be used in many types 
of cancers, thyroid cancer is well suited for detection using 
a Compton Camera. There are several reasons as following. 
First, thyroid cancer is one of the most common endocrine 
cancers, and its incidence is increasing. Early and accurate 
diagnosis is crucial for effective treatment, and it can 
provide patient with the best opportunity for a positive 
health outcome. Furthermore, traditional imaging 
modalities such as ultrasound and CT scans have limitations 
in detecting small and benign thyroid nodules. The use of a 
Compton Camera, as a nuclear imaging modality, provides 
a more sensitive and specific alternative for thyroid cancer 
diagnosis. The high uptake of radioactive isotopes such as 
iodine by the thyroid gland makes thyroid cancer an ideal 
target for nuclear imaging, which can effectively capture 
and analyze the gamma rays emitted to produce high-
quality images of the thyroid. Additionally, due to small 
size of the current Timepix3 Compton camera detector, it is 
suitable to effectively image small organs such as the 
thyroid. 

Currently, we just use the U-Net as our backbone network 
to deblur the SPECT image. However, it has some 
disadvantages. First, the lack of interpretability associated 
with the model raises questions regarding its ability to 
provide insights into the underlying mechanism of the 
deblurring process. Furthermore, the limited generalization 
of deep learning model presents challenges when applying 
the model to new and diverse data. Additionally, the risk of 
overfitting must also be considered when training these 
models on small or noisy datasets, as it can result in poor 
performance on unseen data. As can be seen in our results, 
the quality of our final SPECT images still needs for further 
improvement. Compressive Sensing (CS) is a highly 
efficient method for denoising images, and it is totally 
interpretable. Therefore, by combining the traditional 
model-based CS method and data-driven deep learning 
techniques may is the next generation in the field of image 
reconstruction [13]. 

5 Conclusion  
A novel deep learning-based approach is presented in this 

paper for enhancing the quality of thyroid SPECT images 
obtained through a Compton camera. In this study, we take 
the advantages of the WBP and make a modification to this 
algorithm to generate the pre-backprojection SPECT 
images. And, then we use the EU-Net to obtain the 
deblurring reconstruction images. For the inputs with 150
×150 images, the prediction time is about 1.2s. The results 
of numerical simulations reveal that the proposed network 
is capable of effectively eliminating blurry and enhance 
image quality. But, there still exist some challenges at 
present, including deformations that may arise in the images 
processed by the network. In the future, we will incorporate 
more prior knowledge into the neural network model to 

enhance its scalability and extensibility. Additionally, 
acquiring some real experimental data to confirm the 
scalability of the proposed network is under our 
consideration.  
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Abstract The Zoom-In Partial Scans (ZIPS) is a recently 

introduced CT scanning scheme that utilizes the high geometric 

magnification in off-center scanning regions to boost the spatial 

resolution of clinical CT. ZIPS performs two complimentary 
partial scans of a region of interest, then merges the partial data 

into a high-resolution image. In this paper, we extend ZIPS to 

more dose-efficient and practical scanning scenarios. First, to 

minimize patient dose, each partial scan is limited to a 90-degree 

scan instead of a conventional 180+fan scan. Second, we account 

for lateral truncation due to the off-center position and the limited 

size of the CT detector array. Lastly, to fully realize the resolution 

capability of ZIPS, the two partial scans need to be accurately 

registered to compensate for the table/patient translation between 

the two partial scans. Results show the effectiveness of ZIPS in 

these challenging conditions and much improved resolution 

relative to a conventional centered CT scan.  

Keywords: high-resolution CT, super-short scan, limited angle, image 

reconstruction, motion estimation. 

1 Introduction 

 

The Zoom-In Partial Scans (ZIPS) is a novel CT scanning 
scheme that improves the spatial resolution of existing 

clinical multi-slice CT for region-of-interest (ROI) imaging 

[1]. Unlike a conventional CT scan where the ROI is 

centered in the field-of-view, in ZIPS the ROI is placed off 
center, leading to higher geometrical magnification and 

improving spatial resolution locally when combined with a 

small focal spot size. For an ROI offset of 20 - 30 cm 
relative to iso-center, the modulation transfer function 

(MTF) can improve by 30% to 80% when comparing ZIPS 

to a conventional centered scan [1,2]. 

However, there are a few limitations of the existing ZIPS 
method. (1) Previously, ZIPS was demonstrated in 

scenarios where each partial scan covers half-scan data (180 

+fan angle) [1,2]. This is sub-optimal in terms of dose-
efficiency due to a high level of redundancy between the 

two partial scans. To keep the radiation dose as low as 

possible, each partial scan may be ideally limited to a super-
short quarter-rotation scan (90° fan-beam) while the two 

scans together can still cover the complete Radon space 

(180° parallel-beam) of the off-center ROI. However, the 

limited-angle 90° fan-beam data cannot be directly handled 
by a standard filtered-backprojection (FBP) algorithm. One 

may rebin the two limited-angle sinograms into a full 

sinogram, but the interpolation approximations during 
rebinning may degrade the resolution of data, especially 

when considering extension to cone-beam data. More 

advanced algorithms such as the Katsevich derivative 
method and the differentiated backprojection method [6-9] 

may handle limited-angle fan-beam data, but they are not 
readily avaialble on existing clinical scanners. (2) Lateral 

truncation is another challenge to ZIPS. Due to the off-

center ROI and the increased magnification, the CT detector 
array may not be large enough to measure the full projection 

of the patient at some angles. The truncation boundary 

requires proper handeling to prevent artifacts from 
propagating into the reconstructed ROI image. (3) Although 

ZIPS is intended for imaging locally rigid anatomies such 

as bones, the ROI translation between two partial scans may 

be impacted by involuntary patient motion or imprecise 
table translation. We previously used a data-driven image 

alignment metric to register the two partial scans [2], but in 

the limited-angle and truncated senarios the feasiblity of 
such registration remains to be tested due to the less overlap 

between the partial data.  

In this paper, we extend ZIPS imaging to more dose-

efficient and practical scanning senarios that entail limited-
angle and truncated data. We introduce a cross-correction 

method to extend the partial sinograms into full sinograms 

while preserving the high resolution of the original 
measurements. We further iteratively correct for the 

missing data and compensate for the actual ROI translation 

to refine the final reconstructed image.  

2 Theory 

 

Notations 

We restrict this study to 2-D, although extension to 3-D is 

conceivable. Let 𝑓(𝒙) denote the 2-D ROI object we would 

like to reconstruct, where 𝒙 = (𝑥1, 𝑥2)𝑇. The fan-beam 

projections are measured by moving the x-ray source along 

a circular trajectory 𝒔(𝛽) = (𝑅 cos 𝛽 , 𝑅 sin 𝛽), where 𝛽 

denotes the angular position of the source and 𝑅 denotes the 

source-to-center distance. Let ℒ(𝛽, 𝜃): 𝒙 = 𝒔(𝛽) + 𝑡𝜽, 𝑡 ∈
[0, +∞) denote a projection ray originating from the source 

in the direction of a unit vector 𝜽 = (cos 𝜃 , sin 𝜃)𝑇. The fan 

angle of the ray is 𝛾 = 𝛽 − 𝜃. We denote the fan-beam 

transform of 𝑓(𝒙) by 

𝑝(𝛽, 𝜃) = ∫ 𝑓(𝒔(𝛽) + 𝑡𝜽)d𝑡
∞

0

. 

 

Zoom-in partial scans (ZIPS) 

ZIPS utilizes a dual partial scan scheme illustrated in Fig. 

1(a). The ROI is scanned at two off-center table positions 

and remains still during each scan. After the first partial 

scan is completed, the ROI is translated to the second 
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position, where the second partial scan is performed. Let 

𝒅𝑘 = (𝑑𝑘cos𝜑𝑘 , 𝑑𝑘sin𝜑𝑘)𝑇 denote the position of the 

ROI relative to the iso-center in the 𝑘th partial scan. In the 

example in Fig. 1(a), 𝑑1 = 𝑑2, and 𝜑1 = 45°, 𝜑2 = 135° 

(angle zero is defined at 12 o’clock position). Because of 

the higher goemetric magnification in off-center regions, 

high-resolution projections of the ROI are measured by the 

illustrated trajectory arcs. More details can be found in Ref 

[1]. 

  
(a) (b) 

Fig 1. Illustration of the ZIPS technique. (a) Two limited-angle partial 

scans are performed to collect high-resolution projections of the ROI in 

complimentary angular ranges. (b) To help confirm the completeness of 

data, the same source trajectories are viewed in the ROI’s local reference 

frame, i.e., the ROI is treated as stationary, but the CT scanner virtually 

translates from 𝑂 to 𝑂′. 

In the 𝑘th partial scan, the fan-beam transform of the off-

center ROI object is 

𝑝𝑘(𝛽𝑘 , 𝜃𝑘) = ∫ 𝑓(𝒔(𝛽𝑘) + 𝑡𝜽𝑘 − 𝒅𝑘)d𝑡
∞

0

, 𝑘 = 1, 2. 

Because of the super-short trajectories and lateral 

truncation, the measured data is restricted to an interval 

Λ𝑘 = {(𝛽𝑘 , 𝜃𝑘): |𝛽𝑘 − 𝜑𝑘| ≤
𝐴max

2
 and |𝛽𝑘 − 𝜃𝑘| ≤

𝛾max

2
}, 

where 𝐴max denotes the angle of gantry rotation with 

respect to the iso-center in each partial scan, and 𝛾max 

denotes the fan angle of the x-ray beam. In this study, we 

choose 𝐴max =
𝜋

2
 (quarter rotation). Because of the short 

distance between the x-ray source and the off-center ROI, 

the quarter rotation is sufficient to cover more than 90° 

parallel-beam data for the ROI, hence the two partial scans 

together cover the complete 180° parallel-beam data of the 
ROI. As shown in Fig. 1(b), any ray through the ROI 

intersects with at least one of the source trajectories. 

Depending on the ROI size and offset, it is possible to use 

𝐴max <
𝜋

2
 to further reduce patient dose while still covering 

the complete Radon space of the ROI.  

Collinear rays  

Although each partial scan suffers from substantial missing 

data thus cannot be directly handled by a standard FBP 

algorithm, the two partial scans together cover the complete 

Radon projection space of the ROI. Thus, if a ray (𝛽1, 𝜃1) 
is not measured by one of the trajectories, it can be 

interpolated from a collinear ray (𝛽2 , 𝜃2) from the other 

trajectory and their conjugate rays. 

Let ℒ𝑘(𝛽𝑘 , 𝜃𝑘) denote a ray measured by the 𝑘th scan. In 

the ROI’s local reference frame, the ray is 

ℒ𝑘(𝛽𝑘 , 𝜃𝑘): 𝒙 = 𝒔(𝛽𝑘) + 𝑡𝜽𝑘 − 𝒅𝑘 

Rays ℒ1 and ℒ2 are collinear when 

  𝜃2 = 𝜃1   (1) 

and 

signed distance(ℒ1, 𝑃) = signed distance(ℒ2, 𝑃), 

where 𝑃 is any point. For simplicity, choose 𝑃 = (0,0)𝑇, 

i.e., the center of the ROI, which gives  

signed distance(ℒ1, 𝟎) = signed distance(ℒ2, 𝟎) 

= |𝜽𝑘 , 𝒔(𝛽𝑘) − 𝒅𝑘| 
= 𝑅 sin(𝛽𝑘 − 𝜃𝑘) − 𝑑𝑘 sin(𝜃𝑘 − 𝜑𝑘) 

(2) 

where | ∙ | denotes matrix determinant. Eq. 1 & 2 give a 

condition by which the rays (𝛽2, 𝜃2) and (𝛽1, 𝜃1) are 

collinear. 
 

Cross correction between partial scans 

Using the above collinearity condition, we can extend 

partial sinograms into full sinograms by cross correction 

between 𝑝1 and 𝑝2.  
�̂�𝑘(𝛽𝑘 , 𝜃𝑘)

= {

𝑝𝑘(𝛽𝑘, 𝜃𝑘), if (𝛽𝑘, 𝜃𝑘) ∈ Λ𝑘                                   

𝑝�̃�(𝛽�̃�, 𝜃�̃� ), if (𝛽𝑘 , 𝜃𝑘) ∉ Λ𝑘  and (𝛽�̃�, 𝜃�̃� ) ∈ Λ�̃�

extrapolation, otherwise                                         
 (3) 

where �̂�𝑘 is the extended 𝑘th sinogram; 𝑘 = 1,2;  �̃� = 3 −
𝑘; (𝛽�̃� , 𝜃�̃�) is the collinear ray of (𝛽𝑘 , 𝜃𝑘) found by Eq. 1 & 

2. In the extended sinogram, 𝛽𝑘 ∈ [0,2𝜋) and 𝛾max is 

increased to cover the full projection of the ROI. The cross-

correction method addresses both the limited-angle and 
truncated data. If any missing data cannot be interpolated by 

the cross correction, we perform linear extrapolation along 

the lateral direction of the sinogram to ensure smooth 
transition at the boundary of the available data. The 

resulting full sinograms can be directly processed by a 

standard FBP algorithm. It should be noted that the 
contribution of the interpolated data will be filtered out in 

subsequent processing steps and will not degrade the 

resolution of the final reconstructed image. 

Image reconstruction and registration 

We reconstruct intermediate images from the extended 

sinograms by Parker-weighted FBP reconstruction  

𝑓𝑘(𝒙 − 𝒅𝑘) = (ℱ−1𝑚𝜑𝑘
(𝝆)ℱ)ℛ[�̂�𝑘(𝛽, 𝜃)], (4) 

where 𝑓𝑘 is a partial image reconstructed from �̂�𝑘; 𝒙 − 𝒅𝑘 

accounts for the off-center location of the ROI;  ℛ denotes 

the Parker-weighted FBP operator; ℱ and ℱ−1 denote the 

Fourier transform and its inverse; 𝑚𝜑𝑘
(𝝆) =  

𝑚𝜑𝑘
(𝜌cos𝜁, 𝜌sin𝜁) = {

1, when |𝜁 − 𝜑𝑘 + 𝑛𝜋| ≤
𝜋

4
0, otherwise
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is a Fourier-domain filter that selects a 90° subset of spatial 

frequencies from the image. The Fourier mask is aligned to 

the direction 𝜑𝑘 of the ROI offset thus it extracts a 90° range 

of angular frequencies only measured by the 𝑘th partial scan 

and, in the meantime, suppresses other angular frequencies 

such as from the interpolated data. With the Fourier 

masking, 𝑓1 and 𝑓2 contains complementary angular 

frequencies.  

To generate a final output image 𝑓zips, the partial images 𝑓1 

and 𝑓2 are registered and merged in the image domain  

𝑓zips(𝒙; Δ𝒅, Δ𝜃) = 𝑓1(𝒙) + 𝑓2(𝐓Δ𝜃(𝒙 − Δ𝒅)), 

where Δ𝒅 = (Δ𝑥, Δ𝑦)𝑇 and Δ𝜃 denote the relative 

translation and rotation between 𝑓1 and 𝑓2. 𝐓Δ𝜃 =

[
cos Δ𝜃 − sin Δ𝜃
sin Δ𝜃 cos Δ𝜃

] is a rotation matrix. The relative 

motion is not known exactly because of imprecise table 
translation and involuntary patient motion. The motion 

vectors are estimated by minimizing the entropy of the 

output image:  

Δ𝒅, Δ𝜃 = argmin
Δ𝒅,Δ𝜃

𝐽entropy (𝑓zips(𝒙; Δ𝒅, Δ𝜃)). 
(5) 

For more details on image registration, please refer to [2]. 

Iterative correction 

Given the estimated motion vectors Δ𝒅 and Δ𝜃, the 

collinearity condition (Eq. 1 & 2) should be adjusted and a 

new round of extended sinograms may be generated. The 

updated collinearity condition including the effect of the 

motion vectors is  

𝜃2 = 𝜃1 + Δ𝜃, 
|𝜽2, 𝒔(𝛽2) − (𝒅2 + 𝛥𝒅)| = |𝜽1, 𝒔(𝛽1) − 𝒅1|,  

where | ∙ | denotes matrix determinant. The image 

reconstruction steps above, including the cross correction, 

the FBP reconstruction, and the image registration (Eq. 3, 4 

& 5) are repeated iteratively to refine the quality of the final 

ZIPS reconstruction 𝑓zips.  

3 Results 

 

The new ZIPS imaging senarios and the corresponding 
image reconstruction algorithm were evaluated in a CatSim  

environment [3]. A 22 cm diameter phantom containing 

resolution features was scanned with a GE Revolution CT 

with 832 detector pixels, 1.1 mm detector cell pitch, 626 
mm source-to-isocenter distance, 1098 mm source-to-

detector distance, and 80 cm diameter bore opening. The 

phantom was positioned at the isocenter for standard CT, 
and nominally at 20 and 30 cm off center for ZIPS. Each 

ZIPS acquisition consisted of two 90° gantry rotations. 

Lateral truncation of projection data was incurred in both 20 
cm and 30 cm offset cases. To emulate the effect of 

involuntary patient motion between the two partial scans, 

the position of the phantom in the second partial scan was 

perturbed by [∆𝑥, ∆𝑦, ∆𝜃] = [3 mm, 6 mm, 12°] for the 20 

cm offset case, and [∆𝑥, ∆𝑦, ∆𝜃] = [3 mm, 6mm, 4°] for the 

30 cm offset case.  

All scans used a 70 keV monochromatic x-ray. The standard 

CT used a flux of 800 mAs. ZIPS used a total flux 

(including both partial scans) of 800 mAs for the 20 cm 
offset case, and 1600 mAs for the 30 cm offset case, 

respectively. The higher flux for the 30 cm offset case was 

to ensure the higher image resolution was not limited by 
statistical noise. We evaluated the effect of three angular 

sampling rates (1000 views/rot, 4000 views/rot, and 8000 

views/rot) and four focal spot sizes (0.8 mm, 0.4 mm, 0.3 

mm, and 0.1 mm).  A 10° anode angle was modeled in the 

simulation. 

The CT images were reconstructed on a 1024×1024 pixel 

grid over a 10×10 cm and 30×30 cm square ROI. Shepp-
Logan filter was used in all cases. The perturbation of the 

phantom was unknown to the image reconstruction 

algorithm. Four iterations of cross-correction and 

registration were used for ZIPS reconstruction.  

Fig. 2 shows the measured partial sinograms and 

algorithmically extended full sinograms after four iterations 

of correction of missing data and registration. The majority 
of the missing rays were filled by the cross-correction 

between the two partial sinograms. The remaining missing 

rays were extrapolated by linear extrapolation.  

Fig. 3 shows the ZIPS reconstructed image in comparison 

with the standard CT image. The visual sharpness and 

contrast of features are improved in the ZIPS image 

compared with the standard CT. The 400 µm features not 
distinguishable in the standard CT images are clearly 

revealed by the ZIPS images. On the other hand, Disabling 

the various correction components in the ZIPS 
reconstruction algorithm resulted in biased, saturated, or 

distorted images (Fig. 3(c), (d), (e)). The residual errors of 

the motion vectors estimated by the proposed method were 

no greater than 0.06 mm in translation and 0.08° in rotation.  

Fig. 4 shows the MTFs of various imaging techniques. 

Improvement of the MTF by up to 80% (MTF@10%) is 

observed when comparing ZIPS to conventional CT.  

4 Conclusion 

 

This paper improved the dose-efficiency and practicality of 

ZIPS by introducing super-short quarter-rotation partial 

scans and effectively correcting for missing data and inter-

scan ROI motion duirng image reconstruction. Clear 

improvement of visual detectability of fine features and up 

to 80% improvedment of MTF was achieved by ZIPS 

relative to standard CT. ZIPS does not require an upgrade 

of the CT detector array and thus has the potential to be 

applied to existing clinical CT systems. ZIPS CT is also 

orthogonal to pure algorithmic resolution-boosting methods 

and a combination may give further improvement.  
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partial 

scan 1 

     

partial 

scan 2 
 

    
 (a) original limited-angle 

and truncated sinograms 

(b) maps of data 

availability 

(c) extended sinograms 

with cross-correction 

(d) extended sinograms 

with cross-correction and 

linear extrapolation 

(e) ground truth 

Fig. 2. Correction of missing data in the sinogram domain. In the map of data availability (column b), the gray region represents the measured 

rays and their conjugate rays; the white region represents the rays from the complimentary partial scan; the black region represents rays not 

measured by either partial scan. The sinograms are from a 22 cm diameter phantom scanned with a 30 cm offset. The contours of the partial 

sinograms (column a) are visually similar because the phantom is circular, but their internal details are different.  

30 cm 

FOV 

     

10 cm 

FOV 

     
 (a) Standard CT (b) ZIPS with all 

corrections  

(c) ZIPS without 

registration 

(d) ZIPS without 

truncation correction  

(e) ZIPS without limited-

angle correction  

Fig. 3. Reconstructed images of different scanning and reconstruction techniques. The ZIPS image with all corrections shows superior resolution 

relative to the standard CT image. The widths of individual resolution bars in the 10 cm FOV images are 600, 500, and 400 µm. All cases used 

0.3 mm focal spot size and 8000 views/rot. The ZIPS images used 20 cm offset. The display window is [-1000, 400] HU.  

 
Fig. 4. MTFs of various CT techniques measured with a 50 m diameter 

wire. “FS” denotes focal spot size. 
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Abstract In cardiac CT, it is important to time the scan when the target 
chambers and vessels are near their peak contrast enhancement. In 
traditional bolus tracking, this timing is based on the increasing phase of 
observed time-intensity curve measured in a single region-of-interest 

(typically in the left heart) and is done empirically by imposing a 
diagnostic delay after the intensity reaches a pre-defined threshold. We 
are interested in more accurately predicting contrast peak arrival time of 
the left heart by analyzing the early contrast dynamics in both the right 
and left heart regions. We define a gamma-variate-convolution (GVC) 
model and we fit this model to the increasing phase up to the peak of the 
intensity curves in the right heart and the beginning phase of the left heart 
to predict the peak enhancement time of the left chambers. Myocardial 

perfusion CT datasets were analyzed to demonstrate that the model fits 
real patient CT contrast dynamics well. The same data was used to 
demonstrate prediction of the bolus peak enhancement time based on the 
early observation of bolus time-intensity curves of the heart halves. These 
times were compared with the optimal time, as defined by the bolus peak 
prediction time using full intensity measurements. The error was smaller 
than 1.1 sec in all cases. 

1 Introduction 

Intravenous contrast medium is often injected into a vein in 

the arm for better visualization of heart structure and blood 

vessels in cardiac CT. Since the concentration of injected 

contrast medium is dispersed throughout vessels and 
cardiac chambers after injection, it is not trivial to predict 

the respective contrast dynamics. In cardiac CT exams, scan 

timing needs to be carefully selected so that the contrast 
bolus is at its peak enhancement in the target vessels and 

chambers [1]. Timing the CT scan to coincide with the peak 

contrast concentration is traditionally done either with a 

‘timing bolus’ or with ‘bolus tracking’. With a timing bolus, 
a small volume of contrast is injected in a patient during a 

test session and repeated single-slice axial scans are 

performed to track the time-intensity curve and to estimate 
the delay between the start of the injection and the peak 

enhancement. After this, the diagnostic cardiac CT exam is 

performed with the full contrast bolus and the CT scan is 
started after the estimated delay. With bolus tracking, there 

is no test session: the full contrast bolus volume is injected, 

and single-slice axial scans are performed until the CT 

number in a region-of-interest reaches a predefined 
threshold. Then, the diagnostic scan will start after the 

‘diagnostic delay’ of several seconds. During the diagnostic 

delay, the scan table is repositioned, breath hold instructions 
are delivered, and the scanner collimation is reconfigured. 

Both approaches require highly trained operators to achieve 

consistent bolus enhancement. 

Our goal is to develop a smart cardiac CT scanner that 

autonomously triggers the scan by estimating bolus peak 

time from analyzing time-intensity curves of multiple 

cardiac chambers [2, 3]. For example, the bolus curve at the 
left heart is more dispersed than the right heart with a time 

delay, hence the bolus peak time of the left heart may be 

estimated from the right heart bolus curve if we can 
analytically model the relationship. One could train an end-

to-end neural network that directly estimates the bolus peak, 

but it may be challenging to collect sufficient data to train a 
robust network for this task. We here present a gamma-

variate-convolution (GVC) analytical model to formulate 

the bolus dynamics and to help estimate the peak arrival 

time. We demonstrate that the model can match to actual 
measurements from myocardial perfusion CT by comparing 

it with other reference models. Furthermore, we 

demonstrate that this simple model can predict the future 
bolus peak arrival time for a selected left cardiac chamber 

from the increasing phase up to the peak of time-intensity 

measurements of contrast dynamics in the right chamber 

and the beginning phase of left chamber.  

Many mathematical models have been proposed for the 

time-intensity curves of contrast medium injected to human 

body. Bae et. al. successfully established a simulated model 
of aortic and hepatic CT contrast enhancement in a patient 

based on a compartment kinetic model of a whole body 

using more than 100 differential equations [4]. Although the 
compartment kinetic model is controlled by physiologically 

meaningful parameters and gives a rigorous estimation of 

time-attenuation curves, people often use more tractable 

and simpler analytical models. Analytical expressions for 
time-intensity curves are often found in indicator dilution 

studies [5]. The goal of indicator dilution is to characterize 

hemodynamic parameters such as patient cardiac output and 
blood flow by infusing an indicator intravenously [6]. Dye 

(indicator) is injected to a patient upstream, and the 

concentration of dye at specific location of vessel 
downstream is measured to obtain a time-intensity curve. 

Several methods are available for the measurements, 

ranging from the classic invasive methods such as dye or 

thermodilution, to different imaging modalities such as 
ultrasound, magnetic resonance imaging, and computed 

tomography [5, 8]. Strouthos et. al. reviewed popular 

analytical models [5], including a lognormal function, a 
gamma-variate function, and a lagged normal function. The 

gamma-variate is probably the most commonly used 

mathematical function in this context. Although lognormal 

function and gamma-variate models were empirically 
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defined based on their resemblance with measured curves 

[8], some papers try to provide a physical interpretation for 
these mathematical models. For example, for the gamma-

variate model, flow in a blood vessel is modeled as a series 

of mixing compartments [7]. By solving the differential 
equations that describes the concentration change of each 

compartment,  the gamma-variate time-intensity curve 𝐼(𝑡) 

can be described by: 

𝐼(𝑡) =
(𝑡−𝑡0)𝛼𝑒

(−
𝑡−𝑡0

𝛽
)

𝛽(𝛼+1)Γ(𝛼+1)
𝛿(𝑡 > 𝑡0)  (1) 

Γ(𝛼 + 1) = ∫ 𝑥𝛼𝑒−𝑥𝑑𝑥
∞

0
, (2) 

where Γ(∙) is a gamma function, 𝛼 designates the number of 

theoretical mixing compartments, which in turn reflects the 

degree of turbulance in the flow, and 𝛽 is the ratio of the 

volume of a mixing compartment to the flow rate.  

According to [5], all analytical models show very similar 

fast wash-in and slow wash-out trends [5]. However, we 
have observed slightly different trends in the myocardiacl 

perfusion data, where the wash-in slows down before the 

peak and the wash-out accelerates after the peak, especially 
in the right cardiac chambers. For this reason, we use the 

gamma-variate-convolution (GVC) model, where the 

gamma-variate is used as an impulse response of a dilution 

system, as was proposed by Mischi et al [8]. Although the 
gamma-variate function is typically used as a model of the 

actual output time-intensity curve, Mischi et. al stated that 

the gamma-variate model can be interpreted as the impulse 
response of a dilution system using a stochastic derivation, 

and the time-intensity curve at the site of interest is given 

by the convolution of the injection function and the gamma-

variate function [7,  8].   

An advantage of the GVC model is that we can 

simultaneously model the right and left cardiac chambers by 

tuning a small set of physiologically meaningful 
parameters. We will compare the GVC model to traditional 

anlytical models (i.e. lognormal and original gamma-

variate) by fitting each model to actual measurement data 
from myocardial perfusion CT. We will also demonstrate 

that the GVC model can predict future peak arrival time in 

the left cardiac chamber from the increasing phase up to the 
peak of time-intensity measurements in the right chamber 

and the beginning phase of left cardiac chamber. 

2 Materials and Methods 

 

Gamma-variate-convolution (GVC) model 

Our gamma variate convolution model originates from 

gamma-variate function where a blood pool is modeled as a 

series of mixing compartments, each completely stirred and 
of equal volume. Instead of using the model to describe a 

final output, we will use it as an impulse response of the 

dilution system. To simplify the data fitting process, we first 
replaced the scaling factor of gamma-variate equation with 

a single parameter 𝐴 by 

𝑓(𝑡) = 𝐴(𝑡 − 𝑡0)𝛼𝑒
(− 

𝑡−𝑡0
𝛽

)
𝛿(𝑡 > 𝑡0)  (3) 

where the other physiological parameters were preserved. 

This function is convolved with an injection function. In our 

study, a simple rectangular function with injection duration 

𝑝 is used, 

ℎ(𝑡) = 𝑓(𝑡) ∗ 𝑟𝑒𝑐𝑡(𝑝).  (4) 

Figure 1 shows examples of time-intensity curves of the 

GVC model with different parameter settings. While 𝛼 and 

𝛽 control dispersion level uniformly (Fig. 1 (a)(b)), the 

parameter 𝑝 changes the shape of the wash-in and wash-out 

in a specific way. For smaller 𝛼 (Fig. 1 (c)) this shape 

change is more obvious than for larger 𝛼 (Fig. 1 (d)). This 

behavior exactly matches our observations in right versus 

left cardiac chambers, as shown later in the result section. 

In this study, 𝐴 and 𝑝 values were estimated for each patient 

but do not change between right and left heart, whereas 𝛼 

and time delay 𝑡0 were re-estimated for each heart half. 𝛽 

was empirically chosen and fixed to 3.5 across all patients. 

 

Model parameter estimation 

The parameters of the GVC model (and other reference 

models) were optimized by minimizing the mean squared 

error between the model prediction and measurements. 

MATLAB’s constrained optimization tool with Simplex 

method was used for the error minimization [9, 10]. Since a 

positive constant value was observed at the static state, the 

constant value (50HU) was added to all models. In general, 

it is known that bolus intensity converges slowly with 

secondary peaks due to the blood recirculation. For our 

application only the first pass is of interest, thus we exclude 

all data after the peak below the threshold (150 HU) from 

the optimization.       

 

Bolus peak estimation 

Traditionally, scan timing is performed based on the 

contrast in the left heart, such as the left ventricle and the 

    
(a) (b) (c) (d) 

Figure 1: Time-intensity curves generated by our gamma-variate convolution (GVC) model with different values for three parameters. 
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ascending aorta. Here we use time-intensity data both from 

the pulmonary artery (PA) and the left atrium (LA) for a 

time interval that includes the peak of the PA as well as the 

initial rise of the LA. First model parameters 𝐴, 𝑝, 𝑡0
𝑃𝐴  and 

𝛼𝑃𝐴 are estimated from the increasing phase of PA data up 

to the peak. Then, 𝐴 and 𝑝 are fixed and a new 𝑡0
𝐿𝐴 and 𝛼𝐿𝐴 

are estimated from the partially observed LA data. Based on 

these estimated parameters, the complete LA time-intensity 

curve is identified, and its peak time can be computed.   

3 Results 

 

We used five myocardial perfusion datasets acquired at 

University of California San Diego using a GE Revolution 

CT scanner. Iodine contrast agent (bolus) was administered 

to each patient, and about 26 ECG-gated CT scans were 

acquired for each exam, with 1.5-3.0 sec intervals and at 

100 kVp. Each gated data was reconstructed by 

512x512x128 voxels covering a 32-cm-diameter field-of-

view and 16 cm longitudinal coverage. Scan times for all 

scans were recorded.  

Three examples of time-intensity curves from myocardial 

perfusion datasets are shown in Figure 2. We first manually 

found slabs, each visually best represents right ventricle 

(RV), pulmonary artery (PA), left atrium (LA), left ventricle 

(LV), ascending aorta (AA), and descending aorta (DA). 

Then, we drew a circular region-of-interest (ROI) and 

averaged the values in the ROI over seven neighboring 

slices to measure the mean intensity. The ROI was selected 

for each scan to make sure the ROI is within each chamber. 

The time-intensity curve for superior vena cava (SVC) was 

excluded from the plot due to the spatial nonuniformity and 

extreme HU values. This is because the SVC is closer to the 

injection site and the bolus is not well mixed. The curve of 

right atrium (RA) could be noisy from the same reason. 

Therefore, for RA, larger non-circular ROIs were manually 

segmented to average the signal intensity to compensate for 

occasional poor mixing. At other locations, we observed a 

well mixed bolus with uniform values.  

Figure 2 shows that the shape of three curves for the right 

cardiac chambers (RA, RV, and PA) look similar, except for 

the relative delay. Similarly, the four curves for the left 

cardiac chambers (LA, LV, AA, and DA) look very similar. 

However, the curves for the left chamber are more dispersed 

than the curves for the right chambers due to the effect of 

the lung circulation. Figure 3 shows three models (GVC, log 

normal and gamma-variate) fitted to the myocardial 

perfusion PA and LA using all measurement data, for the 

three example patient datasets (a, b, and c). The estimated 

parameters for the GVC are listed in Table 1. For the PA, 

the GVC model visually better represents the shape of the 

wash-in and wash-out curves compared to the lognormal 

and gamma-variate functions. Even though there are only 

two free parameters for estimating LA given the two fixed 

parameters, the GVC curves visually fit quite well to both 

PA and LA measurement data. Quantitatively, the RMSE 

for lognormal, gamma-variate, and GVC were 37.3, 37.0, 

and 24.6 HU for PA, 16.3, 17.8, and 14.0 HU for LA over 

5 patients, confirming that GVC best approximates the 

measurements.  

In order to predict the scan start time, it is necessary to fit 

data observed over a partial time before the peak of the left 

heart.  The bolus peak estimation of LA from the increasing 

phase up to the peak of PA and the beginning phase of LA 

was implemented and evaluated only using the GVC model. 

Specifically, we truncated the PA/LA data by including 

only two more data points after the peak of the PA data. We 

then fitted the GVC model to the partially observed 

measurement data to estimate the model parameters. Figure 

4 shows three examples of peak time estimation using the 

GVC model. Starting from the incomplete measurement 

data (red for PA, dark blue for LA), the parameters 𝐴, 𝑝, 𝛼, 

and 𝑡0 were first estimated for PA in GVC model (orange), 

and then only 𝛼 and 𝑡0 were tuned for fitting the model to 

LA given the fixed 𝐴 and 𝑝 (light blue). Then, from the 

complete time-intensity curve estimation of LA, the peak 

time was found (vertical pink lines). The peak time obtained 

from the fully observed measurements is also shown 

(vertical purple lines). The error in peak time estimate 

between the two ranged between 0.3s and 1.1s. The 

complete measurement data was also plotted as the ground 

truth (green). Qualitatively, the GVC model predicts the LA 

curve well from the incomplete measurements. In this 

perfusion data, the data sampling interval includes multiple 

heart beats. Data samples in higher temporal resolution, 

such as those obtained with pulsed mode acquisitions with 

constant intervals, will likely improve the peak estimation. 

4 Conclusion 

 

We demonstrated that gamma-variate-convolution (GVC) 

model shows better fitting to the time-intensity curves 

(especially for right cardiac chambers such as right atrium, 

right ventricle, and pulmonary artery) from myocardial 

perfusion CT data than two reference mathematical models. 

The GVC well models the shape of the wash-in and wash-

out by convolving the gamma-variate function with an 

injection function. More importantly, we demonstrated that 

this simple GVC model can be used for bolus peak arrival 

time estimation from a sequence of measurements ending 

5-8 seconds before the peak with an error smaller than 1.1s. 

 

Table1: Estimated parameters of GVC model 

 𝐴 𝑝 𝑡0 (PA/LA) 𝛼 (PA/LA) 

ID26689 629.28 17.83 -0.26/6.29 1.29/3.32 

ID26499 838.99 16.21 -4.05/2.34 2.53/4.65 

ID27001 924.60 15.10 3.15/8.34 1.05/4.51 
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(a) Patient ID 26689  (b) Patient ID 26499 (c)  Patient ID 27001 

Figure 2: Time-intensity curves are plotted for three myocardial perfusion CT datasets for right atrium (RA), right ventricle (RV), pulmonary artery 

(PA), left atrium (LA), left ventricle (LV), ascending aorta (AA), and descending aorta (DA).  

   
(a) Patient ID 26689 (b) Patient ID 26499 (c)  Patient ID 27001 

Figure 3: Three different models are fitted to time-intensity curves from three myocardial perfusion data for pulmonary artery (PA) and left atrium 

(LA): lognormal function, gamma-variate, and our gamma-variate-convolution (GVC) model.  

   

(a) Patient ID 26689 (b) Patient ID 26499 (c)  Patient ID 27001 

Figure 4: Peak estimation of left atrium (LA) from incomplete measurement data using GVC model. Assuming that we observe two extra data 

points after the PA peak (red and dark blue), the parameters 𝐴, 𝑝, and 𝛼 are first estimated for PA and fitted (orange), and then only 𝛼 and 𝑡0 were 

adjusted for LA data fitting. The estimated LA curve is shown in light blue, and the estimated bolus peak time is shown in pink at the maximum. 
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Abstract Convolutional neural network (CNN) has shown tremendous 
success in post-processing of a variety of tomography medical imaging 
systems. CNNs are reliable in dealing with feature learning, handling 
noise, and handling non-linearity and high dimensional data. However, 
the efficiency of the conventional CNN largely depends on the 
undiminished and proper training set. To address this issue, in this work, 
we aim to investigate the potential for equivariant networks in order to 
reduce the dependency of CNN on the respective training set. We 
examine the equivariant CNN on spherical signals for tomographic 
medical imaging problems. We show higher quality and the 
computational efficiency of spherical-CNN on denoising and 
reconstruction of benchmark problems, e.g., we report an order of 
magnitude difference in the computational cost of same quality image 
reconstruction using spherical-CNN compared with CNN. Also, we 
discuss the possibilities of such a network for broader tomography 
applications, especially applications with omnidirectional representation.  

1 Introduction 
 
It is well established that artificial intelligence (AI) has 
immense potential to improve the quality of medical images 
in several ways such as enhancing spatial resolution, noise 
reduction, and lowering acquisition time. Among the AI 
tools, convolutional neural networks (CNN) are distinctly 
recognized as a powerful tool for image reconstruction and 
denoising in tomography. They can learn features from the 
2D images and use them to reconstruct high-quality 3D 
images. They can also be trained for image denoising while 
preserving the details of the images. CNN usage in 
tomography can improve image quality and make the image 
reconstruction process more efficient.[1-3] This approach 
has been shown to produce high-quality images that are 
comparable to or better than images produced by traditional 
reconstruction algorithms like as maximum likelihood 
expectation maximization (MLEM) [4, 5]. However, the 
enhancement of conventional CNNs has been hampered by 
many existing limitations that include: overfitting, limited 
interpretability, limited ability to handle non-Euclidean 
spaces (e.g. image on the sphere) and missing or insufficient 
data, and being computationaly expensive.  
Also, our work was motivated by recent studies [6-8] on AI 
image reconstruction of PET and SPECT which showed the 
inclusion of the equivariant rotated training data would 
enhance the image quality and lower the computational 
cost. 
Here, we aim to investigate the potential of equivariant 
spherical CNNs (S-CNNs) for medical imaging 
applications and particularly for problems where the 
representative domain is spherical such as brain image. We 
will discuss the efficiency of S-CNNs for denoising and 
reconstruction of a benchmark brain image.  

 2 Methods 
 
S-CNNs were first introduced by [9-11] as a specialized 
type of CNNs that are designed to work with data defined 
on the signals on a sphere. The sphere is a non-Euclidean 
space and traditional CNNs are not well-suited to handle 
data defined in non-Euclidean spaces. One of the key 
properties of S-CNNs is equivariance, which means that 
they are able to maintain the symmetry of the input data. 
For example, if an image of the earth is rotated, an S-CNN 
will be able to recognize that the image is still an image of 
the earth, even though it has been rotated. This is beneficial 
because it allows the network to learn features that are 
invariant to certain transformations, such as rotation. 
Another important property of S-CNNs is that they are able 
to handle data that is defined in a spherical space. This is 
beneficial because the sphere is a natural space for many 
types of data, such as images of the earth or the sky. In 
addition, the sphere has a constant positive curvature, which 
means that the distance between any two points on the 
sphere is always less than the distance between the same 
two points on a flat surface. This property allows S-CNNs 
to be more efficient at processing data than traditional 
CNNs, which are designed for flat, Euclidean spaces.  
Our S-CNN is built of only three layers that include input, 
hidden, and output layers with 8 rotational actions on the 
group space. Each layer is connected to the inner batch 
normalization and rectified linear unit (ReLU) activation. 
Input and hidden layers have regular representations with a 
kernal size of 3 and the output layer has an irreducible 
representation with one kernel (for the details of S-CNN 
descriptions and more information on the representative 
functions, see [12]). For the sake of comparison, a deep 
learning conventional CNN is chosen with 5 layers (3 
hidden layers), 64 channels, and a ReLU activation. 
We utilized the pytorch framework (https://pytorch.org/) 
[13] and the escnn package where the details are provided 
in [12, 14]. The training data/image is a brain image from a 
brain library of scikit-learn. Simulations were done on 
Linux Ubuntu v20.04 with an Intel Xeon E5-2687W 
3.1GHz CPU, 128GB RAM, and an NVIDIA TITAN RTX 
GPU card with 24GB of memory. 
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3 Results 
 
To examine the performance of our S-CNN model, we 
compare the S-CNN results with the conventional CNN for 
denoising of a noisy brain image and reconstruction from a 
sinogram of the brain image. Figures 1a and 1b show the 
true and noisy images respectively. The noise type is 
Poisson in this case. Both CNN and S-CNN are run for 2000 
epochs and the results of the denoised images are shown in 
figures 1c and 1d at 2000 epoch and figures 1e and 1f at 500 

epoch respectively.  
The loss function is estimated based on the mean square 
error (L2 norm) and the loss function vs epoch for SCNN 
and CNN are shown in Figures 1g and 1h, respectively.  

For denoising case, both CNN and S-CNN run on the GPU 
resulted in similar computational times for 2000 epoch 
iterations: 104 sec and 106 sec, respectively. 
For image reconstruction comparison, the sinogram of the 
brain image is generated by Radon transform and the 
forward propagation model is incorporated into the loss 
function of neural networks. 
Results of reconstruction for CNN and SCNN are shown for  
two epochs at 5000 and 500 iterations and the loss function 
vs epoch plots are shown in Figures 2c and 2f. Also, the loss 

 
function vs epoch plot is zoomed in for lower iteration in 
Figure 1g to show a clearer view of the result. The minimum 
loss function values for SCNN and CNN converge to 0.015 

True CNN, 2000 ep S-CNN, 2000 ep 

CNN, 500 ep S-CNN, 500 ep 

Noisy 

CNN, Loss S-CNN, Loss

a b c d

e f g h 

Figure 1: Denoising results of brain image. Plots a and b show true and noisy images, comparison between CNN and S-CNN are 
shown in plots c-f for 2000 and 500 epochs. The loss functions for CNN and S-CNN are shown in plots g and h respectively.  

CNN, 5000 ep 

S-CNN, 5000 ep S-CNN, 500 ep 

CNN, loss 

S-CNN, loss 

CNN, 500 ep 
a b

d e

c

f g

Figure 2: Reconstruction results. Comparison between the reconstructed image at 5000 and 500 epochs are shown in 
plots a and b for CNN and plots d and e for S-CNN. Plots c and f are loss function vs epoch for CNN and S-CNN 

respectively, subplot g shows the zoom-in view of loss function result for S-CNN. 
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and 0.14, respectively. The computational times of CNN 
and SCNN for 5000 epochs are 766 and 784 seconds, 
respectively, and the computational time for the SCNN at 
500 epochs is estimated to be 87 seconds. 

4 Discussion 
 
S-CNN results indicate higher accuracy images in both 
denoising and reconstruction cases which inherently is 
related to the inclusion of an equivariant dataset as input for 
S-CNN and that is not present in conventional CNN. To 
clarify this point in Figure 3, we show 8 equivariant 
rotational representative actions for denoising cases over 
one epoch iteration of S-CNN, and consequently, each 
training input is transformed into the group rotational space 
of representative actions. This suggests that the inclusion of 
equivariant representative actions lowers the dependency of 
S-CNN on the completeness of its training set and will 
result in higher accuracy of output. Also, S-CNN 
convergence is obtained in fewer iterations as the loss 
function sharply declines to near zero value.  In this regard, 
for the denoising case, the S-CNN loss value at 1000 epoch 
is nearly equivalent to the loss value of CNN at 2000 epoch 
and for the reconstruction case, the S-CNN loss value 
converges to a lower value (0.02) at 500 epoch while the 
CNN loss value converges to a higher value (0.14) at 5000 
epoch. Comparison between Figure 1a and 1e shows that 
the S-CNN reaches higher quality image reconstruction ten 
times faster in terms of the number of epochs and nearly 
nine times faster in terms of computational time.  
Additionally, we observe the loss function monotonically 
decreases with minimal instability up to the minimum loss 
value which is the main reason for the quick convergence 
of the S-CNN model. Beyond reaching the minimum, the S-
CNN loss function shows oscillatory behavior which is a 
consequence of the overfitting limitation that occurs for 
very small errors. On the other hand, for the case of CNN, 
the loss function shows some instabilities at the early 
epochs which relate to the main limitations of conventional 
CNN on dealing with non-Euclidean space and that is 
apparent in denoising of the noisy image.  

 
Figure 3: Rotational representative actions show output transforms of a 

noisy brain image. 

 

5 Conclusion 
 
In this work, we showed that equivariant S-CNNs improve 
the image quality for denoising and the reconstruction of a 
benchmark brain image while the computational cost is 
considerably lower than the conventional CNNs. The 
results indicate that the S-CNNs are viable AI tools for 
broader medical imaging applications, particularly for 
imaging modalities with omnidirectional outputs such as 
brain PET or cardiac dedicated scanners. Hence, we plan to 
further investigate the S-CNN’s applicability for these types 
of problems in the future. 
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Abstract Balancing computational cost and imaging quality, 

convolutional neural networks (CNNs) have been widely studied and 

applied in sparse-view photoacoustic tomography (PAT) restoration. 

However, it is difficult for CNNs to extract the long-range dependencies 

that exist in the continuous fine structures across the entire PAT images 

as CNNs are naturally localized. Vision Transformer (ViT), a promising 

deep vision model computing self-attention traversing the whole image, 

possesses the ability to extract such dependencies. Moreover, the 

restoration of detailed information, where the classical ViT model has 

limited utility, is equally important in PAT images.  High computational 

cost also limits its direct application. In this study, an efficient locally-

enhanced ViT—PACformer is proposed to restore the continuous fine 

structures as well as local details in sparse-view PAT. To avoid the 

excessive computational cost, reducing channel convolution (RCC) is 

proposed to save algorithmic complexity. On the mice in vivo dataset, 

PACformer significantly improves the reconstruction quality (~50% 

improvement on SSIM and ~10dB improvement on PSNR) compared 

with the classical Universal back-projection (UBP), compared with other 

existing deep networks, PACformer has a significant advantage in terms 

of computational complexity and has the best performance on SSIM and 

PSNR. 

. 

 

1 Introduction 

 

As a hybrid imaging modality combining optical excitation 

and ultrasound detection, photoacoustic tomography (PAT) 

overcomes the disadvantages of low contrast in ultrasound 

imaging and shallow depth in optical imaging [1]. Current 

limitations of PAT in system throughput and computational 

power require using a sparse sampling scheme, leading to 

degraded images [2], [3]. The consistent goal of both 

theoretical research and engineering is to efficiently 

reconstruct high-quality PAT images while using sparse-

view sampling. Model-based iterative reconstructions have 

been used to improve the quality of sparse-view PAT 

images [4], however, its optimization requires iterative 

minimization of the penalty function with high 

computational complexity. When enough paired images are 

available, supervised deep learning [5] yields excellent 

results while also considering time efficiency. It is currently 

one of the most extensively researched techniques for PAT 

reconstruction in conjunction with deep learning. 

Restoration networks generally use convolutional layers 

(Convs) for feature extraction but struggle with long-range 

dependencies [6]. Vision Transformer (ViT) based on multi-

head self-attentions (MSAs) can model long-range 

dependencies, making it a feasible solution for sparse-view 

PAT reconstruction. Shifted-windows (Swin) Transformer 

[7] achieves excellent performance in computer vision tasks 

while maintaining efficient computation.  

While Swin has achieved success, it still faces challenges 

when applied to sparse-view PAT restoration. Research [8] 

indicates that MSAs and Convs have opposite properties in 

certain aspects. Research [10] has shown that local 

convolution is beneficial in image restoration since it can 

leverage the neighborhood of a degraded pixel to restore its 

clean version. It is crucial to construct MSAs-Convs tandem 

models that take advantage of their respective strengths. 

Additionally, the attention score is computed as the dot 

product of the query and key vectors in the original Swin 

Transformer. The learned attention maps for certain blocks 

and heads are often dominated by a few query-key pairs in 

large models. Finally, U-shaped networks have a wide 

range of applications in image restoration [9], [10]. The 

decoding side of this structure performs feature dimension 

doubling, which is computationally expensive, especially 

for MSAs.  

To address these issues, this study introduces an efficient 

MSAs-Convs tandem model PACformer for sparse-view 

PAT restoration. PACformer replaces the feedforward 

network (FFN) layer with an effective local convolution 

layer Moved-up Invrted Bottleneck (MIB) for better feature 

extraction. It also optimizes attention score calculation to 

prevent any single pixel from dominating the process. 

Additionally, reducing channel convolution (RCC) is used 

for reducing complexity. The results show that PACformer 

outperforms three popular convolutional networks on the 

open-source sparse-view reconstruction PAT dataset [9]. In 

most experiments, the proposed method performs better 

than Uformer despite having only 47% of its algorithmic 

complexity and 65% of its parameter size.  
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2 Materials and Methods 

Dataset and Network Implementation 

The dataset used is from the open-source sparse-view PAT 

dataset [9]. It consists of 98 groups of the vascular phantom 

and 274 groups of mice in vivo. Each of the t datasets consists 

of 8, 16, 32, 64, 128 sparse views reconstructed PAT images 

and 512 full-view reconstructed Ground Truth. 

The network in this study was implemented via pytorch 

framework (python 3.8, torch1.11). The loss function is 

Charbonnier loss  l(I′, Î) = √||I′ − Î||2 + 𝜖2 , 𝜖 = 10−3 , 

where Î is the ground-truth image, and 𝜖 is a constant in all 

the experiments,  the optimizer is AdamW, with initial 

learning rate  1×10-4 and decreasing to 1×10-6 with cosine 

annealing strategy, batch size is set as 8, and the number of 

iteration epochs is set as 200. 

Overall Architecture 

The framework of the proposed network in this study is shown 

in Fig. 1(a), it is a U-shaped end-to-end network. On the coding 

side, given an input degraded image 𝐼 ∈ 𝑅1×h×w, PACformer 

first uses 3×3 convolution to obtain the multidimensional low-

level features 𝐹0. Subsequently, 𝐹0 is fed into a 4-stage coding 

block consisting of the proposed PACformer Blocks, shown in 

Fig. 1(b).  On the decoding side, the output features of the 

bottleneck are passed into the decoding end of the network. 

Notice that after concatenation, the number of feature channels 

will be doubled, we use RCC to halve the dimensionality of 

the concatenated features before feeding them to the decoder.  

PACformer Blocks 

 (1). Replace the computation of the self-attention score 

from the scaled dot production with scaled cosine similarity. 

As shown in Fig. 2(a), in the classical self-attention 

computation, the attention score is designed as a scaled dot 

production t of queries (Q) and keys (K) vectors. However, 

this leads to a learned attention map for some blocks and 

heads dominated by a few pixel pairs. To mitigate this 

problem, we compute the attention score using scaled 

cosine attention.      

(2). Considering the importance of detail information 

recovery in PAT images, as shown in Fig. 2(b), the FFN 

layer in the standard Swin Transformer block is replaced by 

an efficient local convolutional layer MIB, which is close to 

the algorithmic complexity of both compared with FFN.  

Fig. 1. Overall architecture of the proposed network.  

Fig. 2.  Proposed PACformer Blocks and its enhancements. 
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Compared Methods 

In order to evaluate the performance of the proposed 

method, we compare several representative deep networks 

for quality enhancement. These include RedCNN [11], a 

classical approach in sparse-view CT reconstruction, two 

representative works of the U-Net family, Att-Unet [12], 

Res-Unet [13], and Uformer [10] which enjoys a high 

capability for capturing both local and global dependencies 

for image restoration. 

3 Results 

 

As shown in Fig. 3(a), all the convolutional networks 

perform poorly in the suppression of background artifacts, 

the predicted images of RedCNN and Att-Unet show low-

value regions that are inconsistent with the surrounding 

background in the dashed green area. Observing the upper-

right yellow ROI region of all images, it can be found that 

PACformer accurately recovers the signal compared with 

Fig. 3.  Comparison of the quality of reconstruction of vessel phantom. (a) Reconstructed PAT images from 16 views. (b) 

Reconstructed PAT images from 32 views. The best and second-best results are underlined and marked in bold, respectively. 

The red box is the signal region selected for the calculation of CBR, the blue box is the background region, and the yellow box 

is the zoomed-in ROI region, the green dashed lines indicate artifacts. 

Fig. 4.  Comparison of the quality of reconstruction of mice in vivo. (a) Reconstructed PAT images from 32 views. (b) 

Reconstructed PAT images from 64 views. The best and second-best results are underlined and marked in bold, respectively. The 

red box is the signal region selected for the calculation of CBR, the blue box is the background region, and the yellow box is the 

zoomed-in ROI region, the green dashed lines indicate artifacts. 

Table Ⅰ.   Comparison of model parameter sizes and algorithm 

complexity. 

 

 

 

 

157 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

Ufomer, while other convolutional networks appear false 

negative predictions. Similarly, convolutional methods in 

Fig. 3(b) show obvious residual artifacts in the background 

region. Uformer and the proposed method have the 

performance of a more uniform background region. 

Observing the zoomed-in area of the ROI region in the 

yellow box. The proposed method not only can better 

suppress the positive reconstruction artifacts but also has 

obvious advantages in detail retention and recovery ability. 

As shown in Fig. 4(a), PACformer has the best performance 

in all three metrics. It can be seen that there is a diagonally 

distributed signal region in the ROI amplification region of 

the yellow box from Ground Truth, which can be recovered 

by Uformer and PACformer, while convolutional methods 

can hardly recover it. At the denser 64 views in Fig. 4(b), 

the image quality of several methods is significantly 

improved, but similar to the previous ones, the three 

convolutional methods perform poorly in the suppression of 

the background barring artifacts, with residual barring 

artifacts suggested by the green arrows.  

4 Discussion 

 

In this study, an efficient ViT model PACformer is 

proposed for sparse-view PAT restoration. PACformer 

shows more significant PSNR enhancement relative to the 

Convs-based methods in Fig. 3 and Fig. 4, the zoomed-in 

ROI region indicates that MSAs have better recovery ability 

for this continuous long-range distributed signal region, 

which may be related to the ability of MSAs to capture the 

remote dependencies. As Fig.5. shown the proposed method 

learns global long-range dependency features similar to the 

features of the intermediate bottleneck layer at the shallow 

layer of the network. This may be a source of superiority of 

the proposed method. 

Thanks to the parameter-saving RCC design, PACformer 

has a significant advantage in computational complexity 

(shown in Table. Ⅰ). Compared to the three convolutional 

networks, PACformer achieves consistently better 

performance in sparse-view PAT reconstruction as shown 

in Fig. 3 and Fig. 4. Uformer, which is also based on the 

MSAs, achieves a comparable performance to the proposed 

method. This indicates the superiority of the MSAs models 

over the compared convolutional networks. 

5 Conclusion 

 

The proposed PACformer outperforms three representative 

convolutional networks as well as the same MSA-based 

Uformer on sparse-view PAT restoration. Thanks to the 

RCC and the effective improvements in PACformer blocks, 

the proposed method maintains the state-of-the-art while 

having significantly lower computational complexity.  

Acknowledgments 

This work was partly supported by the Key Research and 

Development Program of Shaanxi Province under Grant No. 

2023-YBSF-204, the Natural Science Foundation of 

Chongqing under Grant No. CSTB2023NSCQ-MSX0955, 

the Fundamental Research Funds for the Central 

Universities under Grant No. ZYTS23186, and the Science 

and Technology Program of Guangzhou under Grant No. 

2023B03J1255. 

References 
 

[1]. Pan J, Li Q, Feng Y, et al. Parallel interrogation of the chalcogenide-

based micro-ring sensor array for photoacoustic tomography. Nature 

Communications, 2023, 14(1): 3250.  

[2]. Guan S, Khan A A, Sikdar S, et al. Limited-view and sparse 

photoacoustic tomography for neuroimaging with deep learning. 

Scientific Reports, 2020, 10(1): 8510. 

[3]. Hu P, Li L, Lin L, et al. Spatiotemporal antialiasing in photoacoustic 

computed tomography. IEEE transactions on medical imaging, 2020, 

39(11): 3535-3547. 

[4]. Huang C, Wang K, Nie L, et al. Full-wave iterative image 

reconstruction in photoacoustic tomography with acoustically 

inhomogeneous media. IEEE transactions on medical imaging, 2013, 

32(6): 1097-1110. 

[5]. Antholzer S, Haltmeier M, Schwab J. Deep learning for 

photoacoustic tomography from sparse data. Inverse problems in science 

and engineering, 2019, 27(7): 987-1005. 

[6]. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 

16x16 words: Transformers for image recognition at scale. arXiv preprint 

arXiv:2010.11929, 2020. 

[7]. Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision 

transformer using shifted windows. Proceedings of the IEEE/CVF 

international conference on computer vision. 2021: 10012-10022. 

[8]. Park N, Kim S. How do vision transformers work? arXiv preprint 

arXiv:2202.06709, 2022. 

[9]. Davoudi N, Deán-Ben X L, Razansky D. Deep learning optoacoustic 

tomography with sparse data. Nature Machine Intelligence, 2019, 1(10): 

453-460. 

[10]. Wang Z, Cun X, Bao J, et al. Uformer: A general u-shaped 

transformer for image restoration. Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition. 2022: 17683-

17693. 

[11]. Chen H, Zhang Y, Kalra M K, et al. Low-dose CT with a residual 

encoder-decoder convolutional neural network. IEEE transactions on 

medical imaging, 2017, 36(12): 2524-2535. 

[12]. Oktay O, Schlemper J, Folgoc L L, et al. Attention u-net: Learning 

where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018. 

[13]. Xiao X, Lian S, Luo Z, et al. Weighted res-unet for high-quality 

retina vessel segmentation. 2018 9th international conference on 

information technology in medicine and education (ITME). IEEE, 2018: 

327-331. 

 

Fig. 5. Representation structure of Res-Unet and PACformer 

show significant differences, with PACformer having highly 

similar representations throughout the model. 

 

158 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Generation of photon-counting spectral CT images using a
score-based diffusion model

Dennis Hein1 and Mats Persson1

1Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden and MedTechLabs, BioClinicum, Karolinska University Hospital,
Solna, Sweden.

Abstract Deep learning is playing an increasingly important role
in medical imaging. One important factor for the development and
evaluation of high performing and robust networks is the availability
of large and diverse datasets. However, this availability is lacking
for novel technologies such as photon-counting spectral CT. One way
of generating synthetic data is using score-based diffusion models, a
novel class of generative models that have recently shown to perform
on par with, or outperform, generative adversarial networks. This paper
explores the possibility of utilizing a score-based diffusion model to
generate photon-counting spectral CT images. We train a network
to generate a pair of 70 and 100 keV virtual monoenergetic images
from which we can subsequently recover material basis images via a
simple linear transformation. Our results are very encouraging as the
resulting network is able to generate realistic output with limited data
and training time and with minimal hyperparameter tuning.

1 Introduction

Deep neural networks are applied in medical imaging for a
large variety of different tasks. However, the performance
and robustness of these data driven methods is highly depen-
dent on the availability of large and diverse datasets. If these
are not readily available, as is the case for photon-counting
spectral CT, then we might want to turn to deep generative
models to augment our existing dataset. Generative adversar-
ial networks (GANs) [1] have proven capable of generating
amazing results in a myriad of different task. However, due
to their adversarial nature, they are notoriously difficult to
train. Recently, score-based [2] and denoising diffusion prob-
abilistic models [3] have proved to outperformed GANs in
various data generation tasks. Using stochastic calculus,
[4] unifies these two classes of models into one framework,
which we may call score-based diffusion models [5]. Song
et al. [4] models the diffusion process from target data to
a prior noise distribution as the solution to a stochastic dif-
ferential equation (SDE). Generating samples then involves
the reverse-SDE, which is also a diffusion process. Notably,
this reverse-SDE only depends on the gradients of the data
distribution, that is, the score function [4]. Estimating the
score function with a neural network gives us a complete
framework to generate samples from noise. In this paper,
we apply the framework in [4] to the problem of generating
photon-counting spectral CT images. Instead of directly gen-
erating material basis images, we opt to generate a pair of 70
and 100 keV virtual monoenergetic images and then recover
material basis images via a linear transformation. We do this
as material basis images in photon-counting spectral CT are
usually exceedingly noisy.

2 Materials and Methods

2.1 Score-based modeling via stochastic differential
equations

In this paper we smoothly diffuse the data into noise using
a SDE as suggested in [4]. One can subsequently generate
samples from noise via the reverse-time SDE once we have
an estimate of the score function. More formally, suppose
we have i.i.d. samples from the D-dimensional data distri-
bution xxx(0) ∼ p0. Let {xxx(t)}t∈[0,T ] denote the process that
smoothly diffuses the data to a prior distribution xxx(T )∼ pT .
This diffusion process can be obtained as the solution to the
Itô SDE

dxxx = fff (xxx, t)dt +g(t)dwww (1)

where www ∈ RD is a standard Wiener process, f (·, t) : RD →
RD is the drift coefficient, and g(t) ∈ R is the diffusion co-
efficient. Note that we can handcraft the prior by choos-
ing f (xxx, t),g(t) and T s.t. the diffusion process approaches
some tractable prior distribution π(xxx) ≈ pT (xxx) at t = T. In
particular, [4] presents three families of SDEs for this task:
Variance Exploding (VE), Variance Preserving (VP), and
subVP SDEs1. In this paper we consider the VE SDE. It is
now possible to generate samples from the data distribution
xxx(0)∼ p0 by sampling xxx(T )∼ pT from the prior distribution
and reversing the process in (1). Fortunately, a result from [6]
states that this SDE has a corresponding reverse-time SDE
which is also a diffusion process on the form

dxxx = [ fff (xxx, t)−g(t)2
∇xxx log pt(xxx)]dt +g(t)dw̄ww, (2)

where w̄ww is a standard Wiener process that is running in
reverse time, from T to 0, and dt is an infinitesimal, negative,
time step. The forward and reverse-time SDEs are illustrated
in Fig. 1. Now, if we know the time-dependent score function
∇xxx log pt(xxx) then we can generate a sample xxx(0)∼ p0 from
via (2). Let sssθ (xxx, t) be a neural network parametrized by
θθθ . We then learn θθθ s.t. sssθ (xxx, t) ≈ ∇xxx log pt(xxx) via score-
matching. In particular,

θθθ
∗ = argmin

θθθ

Et{λ (t)Exxx(0)Exxx(t)|xxx(0)[||sssθ (xxx, t)

−∇xxx(t) log p0t(xxx(t)|xxx(0))||22]}, (3)

where t ∼U(0,T ), λ : [0,T ]→ R+ is a weighting function,
xxx(0)∼ p0(xxx),xxx(t)∼ p0t(xxx(t)|xxx(0)) and pst(xxx(t)|xxx(s)) is the

1For more details see [4] and relevant appendices therein.
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transition kernel from xxx(t) to xxx(s) [4]. Typically λ (t) ∝

[||∇xxx(t) log p0t(xxx(t)|xxx(0))||22]−1.

2.2 Data

We train the network on a simulated photon-counting spec-
tral CT dataset. These data were obtained by first generating
numerical basis phantoms by thresholding CT images from
the KiTS19 dataset [7]. We subsequently simulated photon-
counting imaging by using the fanbeam function in Matlab
and a spectral response model of a photon-counting silicon
detector [8] with 0.5×0.5 mm2 pixels for 120 kVp and 200
mAs with 2000 detector pixels and 2000 view angles. We
then simulated Poisson noise and used the maximum likeli-
hood method to decompose the simulated energy bin sino-
grams into soft tissue and bone material basis sinograms.
Finally, images were reconstructed on a 1024×1024 pixel
grid using FBP. Two examples slices from this simulated
dataset are illustrated in Fig. 2.

2.3 Training details

A total of 2025 slices are split into a training (1575 slices)
and a test set (450 slices). We trained for 100k iterations2

on an NVIDIA A6000 GPU using Adam [9] and a learning
rate of 2× 104. We use a batch size of 32. Images were
resized to 512×512 to reduce graphics memory constraints.
For network, we use a version of NCSN++, where we have
omitted the anti-aliasing filter and the progressively grow-
ing architecture, from [4]. We used channel dimension 16,
channel multipliers [1,2,4,8,16,32,32,32], one ResBlock
per resolution, and self-attention layers at the 16×16 resolu-
tion. We augment the training data by randomly flipping the
images horizontally. This means that the network will learn
to generate images where the anatomy has been mirrored,
which might actually be the case for some patients.3 To solve
the reverse-time SDE we use the predictor-corrector sampler
from [4] with 1000 steps.

3 Results

Qualitative results are available in Fig. 3. We can see di-
rectly that the network does a fairly good job of producing
realistic images. The size, shape, and anatomy seems reason-
able. We note again that since we used random horizontal
flipping during training, a mirrored anatomy is not made up
by the network and therefore not considered an deviation
from realism. Considering the soft tissue basis images in
the top two rows, we can see that the network has produced
realistic lungs. In addition, the position and shape of the

2This was a limitation imposed by time constraints for this preliminary
study. We note however that network would most likely benefit from more
training.

3Situs inversus is a rare congential condition where organs are mirrored
from their normal (situs solitus) locations.

aorta seems fairly reasonable. In the third and fourth rows we
can see that the network is able to produce realistic kidneys
and intestines. Shape, position, size, and small details all
seem reasonable. Finally, in the last row, we can see that
the network has learned to produce artifacts resembling what
you expect to see from photon starvation when imaging the
pelvis.

4 Discussion

Although data generation is a very important and interesting
issue in computer vision, data generation in medical imag-
ing is often a means to an end rather than an end by itself.
For instance, we might be interested in data generation to
augmented our existing datasets. Another interesting appli-
cation is virtual clinical trials. Note that how realistic the
generated data is required to be depends on the application.
For instance, in the case of data augmentation, the only re-
quirement is that training on an augmented data set improves
performance and robustness of a given network. For virtual
clinical trials the bar might be significantly higher. In future
work, we will explore how the results in this paper can be
used for data augmentation. In addition, we will compare,
quantitatively and qualitatively, score-based diffusion mod-
els with other deep generative networks, for instance GANs,
for data generation in photon-counting spectral CT. More-
over, we note that score-based diffusion models are very well
suited for solving inverse problems [10]. Hence, there are a
myriad of interesting applications of score-based diffusion
models in medical imaging beyond data generation.

5 Conclusion

This paper presents some preliminary results on using score-
based diffusion models to generate photon-counting spectral
CT images. The results are very encouraging as we are
able to get good performance despite data and training time
limitations and with very little hyperparameter tuning.
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Figure 3: Examples of generated data. The virtual monoenergetic images are the output from the network and the material basis images
are recovered via a linear transformation. From left to right: bone, soft tissue, 70 keV, and 100 keV.
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Abstract Abdominal organ segmentation is critical in abdomen le-
sion diagnosis, radiotherapy, and follow-up. It is time-consuming and
expensive for oncologists to delineate abdominal organs efficiently
and accurately. Deep learning (DL)-based strategies have been shown
great potential for abdominal organ segmentation and then manual
delineation efforts reduction. It should be noted that most of the DL-
based segmentation methods are constructed via full-view CT images
which are reconstructed through multiple views projections at normal
dose. Meanwhile, the radiation dose effect is a major concern in the
CT imaging, especially for the full-view CT acquisition. Then, the
accumulated radiation dose of the training CT dataset is also serious.
Lowering radiation dose, i.e., sparse view sampling, is an effective
way in the CT imaging. It is challenging to delineate the abdominal
organs in the sparse-view CT images due to the artifacts. In this work,
to achieve this goal, we add the effort to segment organ directly from
the sparse-view CT measurements. Specifically, we first construct the
VVBP-tensor from the sparse-view measurements. Based on the above
dataset, we construct a VVBP-Tensor segmentation network (VVBP-
SegNet). Experimental results on simulated dataset demonstrate that
the proposed VVBP-SegNet obtains best segmentation results than
the other competing methods in qualitative and quantitative assess-
ments. This can provide a new insightful strategy for abdominal organ
segmentation in the sparse view CT imaging.

1 Introduction

Abdominal organ segmentation is a fundamental image anal-
ysis task that supports many clinical applications, i.e., or-
gan size quantification, disease diagnosing, radiotherapy and
follow up. Manual segmentation of abdominal images is
time-consuming and may result in inter- and intra-operator
variability. Various segmentation methods have been devel-
oped [1]. Among them, deep learning based segmentation
methods have achieved remarkable results in medical imag-
ing field [2, 3]. For example, E. Gibson et al. [3] introduced
dense connection in each encoder block to segment multiple
organs on abdominal CT.
Although these DL-based methods have shown great poten-
tial, they still have intrinsic limitations. On the one hand,
most of these methods are trained based on full-view CT
images which are reconstructed through multiple views pro-
jections at normal dose. The radiation burden associated
with CT imaging has been a major concern in the wide ap-
plications. Reducing radiation dose (i.e., lowering mAs,
sparse-view sampling) directly without any treatments would
lead to severe noise-induced artifacts or streak artifacts in
the images. The DL-based strategies are generally used to

*Corresponding author: D. Zeng, zd1989@smu.edu.cn

improve low-dose CT image quality, for example, iRadon-
MAP [4], SLSR-Net [5], VVBP-Net [6], etc. Furthermore,
it is challenging to delineate abdominal organ region in the
sparse-view CT images with streak artifacts directly.

On the other hand, most of the existing DL-based segmenta-
tion methods are designed based on image domain, failing to
consider the characteristics latent in the projection/sinogram
domain. At the same time, some researches are also devel-
oped directly for organ segmentation from the projection data
[7, 8]. For example, D. Edmunds et al. segment diaphragm
tissue for localizing lung tumor in individual projections [7].
These methods directly delineate the organ in the projection
domain, avoiding being influenced by the artifact effect on
the reconstructed image. But they neglect the structure char-
acteristics, region size and shape in the image, which leaves
a large room for segmentation performance promotion. Thus,
the DL-based method constructed based on both projection
and image domain is an alternative strategy in the abdominal
organ segmentation task, which is also the goal in this study.

In this work, based on the previous study [9], we develop an
abdominal organ segmentation network based on the view-by-
view backprojection tensor (VVBP-Tensor) measurements
which considers the characteristics in both sinogram and im-
age domains in sparse-view CT imaging. For simplicity, the
proposed network is termed as VVBP-Tensor segmentation
network (VVBP-SegNet). In the proposed VVBP-SegNet,
the sparse-view samplings are backprojected into 3D data be-
fore summation, and the 3D data are transformed into VVBP-
Tensor measurements after applying a sorting operation. The
VVBP-Tensor measurements have the potential to provide
lossless information for processing and preserve fine details
of image. Then we construct the VVBP-SegNet with the
VVBP-Tensor measurements in the network. Experiments
were conducted using simulation studies with three sparse-
view sampling cases. The results demonstrate that the pro-
posed VVBP-SegNet obtains accurate segmentation results
with higher Dice coefficient (DSC) and lower 95% Haus-
dorff distance (HD) in both single-organ and multi-organ
segmentation tasks, outperforming the competing method
with sparse-view images.
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Figure 1: Framework of the proposed VVBP-SegNet.

2 Materials and Methods

2.1 VVBP-SegNet

Figure ?? shows the architecture of the proposed VVBP-
SegNet. Based on the previous study [9], the conventional
FBP algorithm can be technically decomposed into three
steps: (a) filtering, (b) view-by-view backprojection (VVBP),
and (c) summing along the z direction (view direction). The
filtered sinogram is shown in Figure ?? (a), and the data
following VVBP can be treated as an 3-order tensor (VVBP-
Tensor) as shown in Figure ?? (b). Then, each mode-3 vector
of the VVBP-Tensor is independently sorted according to
its pixel values. After sorting, the VVBP-Tensor contains
structures similar to those objects as shown in Figure ?? (c),
indicating that it has the same organ shape and size as the FBP
reconstructed image. Moreover, VVBP-Tensor can provide
more information on abdominal organs than the conventional
CT images due to the tensor measurements.
As shown in Figure ?? (d), VVBP-SegNet treats the VVBP-
Tensor as the network input, and produce the desired abdom-
inal organ segmentation results directly from the network.
More, we observe that the structures in different slices of
the tensor are highly correlated. We only select 10 middle
slices of the tensor as the input to promote network efficiency.
Besides, middle slices of VVBP-Tensor have fewer artifacts,
which is beneficial for segmentation.

2.2 Network structure and loss function

In the proposed VVBP-SegNet, nnU-Net [10] is selected
as the backbone network due to its high segmentation per-
formance The nnU-Net is based on the U-Net with down-
and up-sampling convolution levels to extract features. The
network loss function is the sum of dice loss and binary
cross-entropy loss (DC-BCE loss) as follows:

LDC =
−2∑i ŷiyi

∑i yi +∑i ŷi
, (1)

LBCE = ∑
i

yilogŷi +(1− y i) log(1− ŷi), (2)

L = LDC +LBCE . (3)

(a)

FBP

FBP

(b)

Figure 2: Frameworks of the other two competing methods, (a)
F-SegNet; (b) S-SegNet.

2.3 Dataset

To validate and evaluate the segmentation performance of the
proposed VVBP-SegNet, the AbdomenCT-1k dataset is used.
The Abdomen-1k dataset is shared online about abdomen
CT images for four-organ segmentation, containing the liver,
kidney, spleen, and pancreas [11]. We choose about 3000
images of 60 patients, divided into 8/2 for training/validating
with some additional cases for testing. The sparse-view CT
images and VVBP-Tensor data are obtained based on the pre-
vious study [9, 12]. In the experiment, sparse-view sampling
with 60 views, 90 views, and 120 views are simulated.

2.4 Compared methods and training details

As shown in Figure ??, two strategies are chosen as the com-
peting methods, i.e., F-SegNet and S-SegNet. Specifically,
the F-SegNet is constructed based on the CT images acquired
with full-view measurements, and S-SegNet is constructed
based on sparse-view CT images with no treatments. The
number of epochs for all methods is 1000 when the training
and validation loss curves converge. The optimizer is SGD
with 0.99 momentum, and the attenuation coefficient is 3e−5.

3 Results

3.1 Single-organ segmentation results

Figures ?? and ?? show the single-organ segmentation results
obtained by all methods at three different sampling views.
The F-SegNet is able to obtain segmentation results of the
pancreas closest to the ground truth. Both the presented
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Figure 3: The segmentation comparisons of S-SegNet, VVBP-SegNet and F-SegNet in case 1.

S-SegNet 60 S-SegNet 90 S-SegNet 120 VVBP-SegNet 60 VVBP-SegNet 90 VVBP-SegNet 120 F-SegNet

Ground Truth

Figure 4: The segmentation comparisons of S-SegNet, VVBP-SegNet and F-SegNet in case 2.

VVBP-SegNet and S-SegNet methods can obtain similar seg-
mentation performance with the pancreas with bean-shaped
at different sampling views, as shown in Figure ??. In Figure
??, S-SegNet fails to delineate the elongated pancreas at 60
and 90 views due to the severe artifacts in the CT image. The
proposed VVBP-SegNet achieves robust pancreas segmenta-
tion results in all cases, indicating its segmentation ability in
the sparse-view imaging. The main reason is that the VVBP-
Tensor measurements have the potential to provide lossless
information for processing and preserve fine details of image.
The numerical comparisons of the average Dice score (DSC)
and 95% Hausdorff distance (HD) of testing cases are shown
in Table ??. The VVBP-SegNet has higher Dice scores and
lower HD than the S-SegNet algorithm, and is closer to the
F-SegNet.

3.2 Multi-organ segmentation results

Figure ?? shows the multi-organ segmentation results ob-
tained by the different methods at three different sampling
views. From the results, the S-SegNet fails to segment the
pancreas with elongated shape at 60 and 90 views, as the
same as Figure ?? above. Our proposed VVBP-SegNet pre-
dicts shapes of four organs, having similar segmentation
results with the F-SegNet in all cases. Table ?? summarized
the quantitative measurements on the competing methods in
all cases, and the results suggest that the proposed VVBP-
SegNet performs better than the S-SegNet, which is consis-
tent with those in the single-organ segmentation task.

Number of views DSC 95% HD

F-SegNet 0.835 3.651
S-SegNet 60-views 0.665 4.789

90-views 0.729 4.500
120-views 0.757 4.266

VVBP-SegNet 60-views 0.746 4.238
90-views 0.800 3.954

120-views 0.803 3.937

Table 1: The average Dice coefficient (DSC) and 95% Hausdorff
distance (HD) of three methods for single-organ segmentation.

Number of views DSC 95% HD

F-SegNet 0.959 15.904
S-SegNet 60-views 0.937 20.486

90-views 0.951 17.970
120-views 0.950 17.789

VVBP-SegNet 60-views 0.938 18.457
90-views 0.952 17.900

120-views 0.953 17.327

Table 2: The average DSC and 95% HD of three methods for
multi-organ segmentation.
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Figure 5: The multi-organ segmentation comparisons among different segmentation methods. The liver is red, kidneys are green, spleen
is blue, and pancreas are yellow.

4 Discussion

The point of the proposed method is identifying the three-
dimensional morphology of internal organs with a smaller
number of scanning angles. Therefore, the clinical translation
of our method would consider the situations of reducing
radiation of patients, for example, calculating the volume of
organs and nodules with sparse-view CT.
The methods of restoring sparse-view CT image followed by
segmentation involves two steps. Compared to our proposed
method, the workload of these methods is double. These
methods need to suppress artifacts carefully, in case new
artifacts introduced further affect subsequent segmentation.
In addition, there is still a lot of difficulty for segmentation
task due to low contrast and blurry details in restored image.
In the proposed method, VVBP-Tensor measurements after
sorting reconstruct the pixel values, and exactly highlight the
contours of various organs, which is a solution to the above
problems.

5 Conclusion

In this work, we develop a VVBP-SegNet for abdominal
organ segmentation in the sparse-view CT imaging through
the newly developed VVBP-Tensor measurements which
considers the characteristics in both sinogram and image do-
mains. The experimental results on the simulated sparse-view
CT images at the different sampling views demonstrate that
the proposed VVBP-SegNet can provide a similar segmen-
tation performance with the F-SegNet, compared with the
ground-truth. In the future, more studies will be conducted
to demonstrate the efficiency of the proposed VVBP-SegNet.
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Abstract Quantitative material decomposition is one of the advan-
tages offered by photon-counting-based dual-energy CT (DECT) or
multi-energy CT (MECT). For this task, it is important to determine
proper thresholds that separate energy channels to minimize the decom-
position error of the material of interest. In this study, we developed
an analytical expression for the error that considered projection noise
level and mathematical properties of the material decomposition ma-
trix and proposed to use that to determine optimal energy thresholds.
Comprehensive simulations were performed to verify this idea in an ex-
ample problem of quantifying gold concentration. We simulated x-ray
projections of a phantom with various inserts containing gold solutions
under a 140 kVp x-ray tube voltage, a range of photon counts from
4000 to 128000 per pixel, and enumerated possible energy thresholds.
We calculated gold concentration in each setting. Simulation results
showed that the optimal energy channels that minimize the error of the
gold image were (30,42] and (42,140] keV for DECT, and (30,42],
(42,62]and (62,140] keV for MECT with three channels. The optimal
thresholds estimated by the proposed method matched the simulation
results for both DECT and MECT cases.

1 Introduction

Material decomposition is one of the main applications of
dual-energy or multi-energy computed tomography (DECT
or MECT). The benefit of material decomposition is not only
to enhance the visibility of the region of interest but also
to provide quantitative information of the target material.
While most DECT and MECT approaches for material de-
composition have employed conventional energy-integrating
detectors [1], recent advances in photon-counting detectors
(PCD) have offered a new direction for this problem with
technological advantages, such as better spectrum separation
[2–5].
PCD often operates in a mode acquiring photon counts above
user-specified energy thresholds to allow separating photons
into different energy channels. Therefore, selecting appropri-
ate thresholds is of critical importance for the achievement
of accurate material decomposition and quantification of the
spatial distribution of the material of interest. Over the years,
great efforts have been devoted to investigating PCD-based
material decomposition [4, 5]. Yet, there is a lack of studies to
address the relationship between energy threshold selection
and resulting accuracy. When K-edge material is one of the
base materials, although it is well-accepted that the K-edge
should be included in one of the thresholds, other quantities,
such as the noise in the projection data, can also affect the
decomposition accuracy. In addition, material decomposition

usually generates two or more material images, while only
one of them may be of interest. In this study, we address the
energy threshold selection problem in PCD-based DECT and
MECT with an example problem of a quantitative assessment
of gold contrast agent concentration. In recent years, there
has been increasing interest in using gold nanoparticles for
imaging and therapy applications [6]. Due to toxicity con-
cerns, there is a strong need to optimize the imaging system’s
sensitivity to gold to enable visualization and quantification
of gold distribution at low concentration levels.
The contribution and significance of this study are threefold.
First, we derived an expression for the numerical accuracy of
the decomposition result of the material of interest and pro-
posed to optimize energy thresholds based on this quantity.
Second, we found that the optimal selection of thresholds is
governed by the balanced consideration of projection data
noise and numerical properties of the material decomposi-
tion matrix. Third, we performed numerical simulations to
validate our theoretical derivations.

2 Methods

2.1 Theory

Let us define m ∈ RNv×Nm as the material images to be de-
termined, P ∈ RNpNd×Nv as the x-ray projection system ma-
trix, A ∈ RNm×Ne as the material decomposition matrix, and
u ∈RNpNd×Ne as the projection data acquired in a PCD-based
CT system after logarithm transform. Assuming that the
decomposition matrix A is well-calibrated, the model of ma-
terial decomposition can be expressed as

PmA = u, (1)

where Np is the number of projections, Nd is the number of
detector pixels, Nv is the number of voxels, Ne is the number
of energy channels, and Nm is the number of base materials.
For an actual CT scan, the acquired data û = u+δu due to
errors such as noise, the decomposed result becomes m̂ =
m+δm. We have

PδmA = δu. (2)

Suppose the first column of m is the material image of interest,
we abstracted this image by multiplying a vector S to the right
of m, namely m1 =mS, where S≡ [1,0, ..,0]⊤ ∈RNm×1. Thus

Pm1 = PmS = uA+S, (3)
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δm1 = δmS = P+
δuA+S. (4)

where ·+ denotes matrix pseudo-inverse. Note that ∥S∥p = 1
for all p. We have

∥P∥∥m1∥ ≥ ∥Pm1∥= ∥uA+S∥, (5)

∥δm1∥ ≤ ∥P+∥∥δuA+S∥. (6)

With these two equations, we arrive at

∥δm1∥
∥m1∥

≤ κP
∥δuA+S∥
∥uA+S∥

≡ κPC(T ). (7)

In Eq. (7), κP is the condition number of P, reflecting the error
propagation during the CT reconstruction process. This fact
is not affected by energy threshold selection. In the second
term, as we adjust the energy threshold T , both u and A will
be affected. Here we defined the term C(T ) and explicitly
indicated its dependence on T . The threshold will impact
the noise level of u, as the photon counts in each energy
channel are changed. It will also modify the properties of
the material decomposition matrix A because basis vectors of
different materials in the space spanned by energy channels
depend on the threshold T . With this expression, we propose
to select the optimal energy threshold T to minimize C(T ),
in order to minimize the relative error of the concentration of
the decomposed gold material.

2.2 Simulation study

We considered the setup for an in-house PCD-based CT sys-
tem for small-animal imaging and image guidance in pre-
clinical radiation experiments [5]. The source-to-isocenter
distance was 30.49 cm, and the source-to-detector distance
was 44.21 cm. The CdTe PCD had 512 pixels with a 0.1 mm
pixel size and 0.75 mm width.
Filtered by a 0.25 mm copper sheet, a 140 kVp x-ray spec-
trum S(E) was used (Figure 1(a)). While 140 kVp is likely
too high for small-animal applications, we chose this to
achieve enough photon counts above the K-edge of gold
at 80 keV. The lowest threshold was fixed at 30 keV to elim-
inate the electronic noise. To select proper thresholds, we
generated a pool of candidate energy thresholds ranging from
32 to 110 keV with a 2 keV step. For DECT, the goal was to
select one threshold T from all the candidates to form energy
channels: (30,T ] and (T,140] keV. For MECT with three
energy channels, we selected two thresholds T1 and T2 for
energy channels (30,T1], (T1,T2] and (T2,140] keV.
The unattenuated photon counts C0 ranged from 4000 to
128000 per pixel to cover the typical CT dose in small animal
imaging settings. For a C0, we repeated the following calcu-
lations for each threshold T in the DECT case, or threshold
combinations T = {T1,T2} for the MECT case to compute
C(T ) and hence decide the optimal selection.

Figure 1: (a) X-ray spectrum at 140 kVp; (b) Calibration setup;
(c) The phantom.

2.2.1 Calibration

The calibration setup is depicted in Figure 1(b). Two vials
contained pure water and 39 mg/g gold solution, which mim-
icked the calibration configuration used in our lab. We sim-
ulated detector photon counts for a given energy channel
defined by energy threshold TL and TH :∫ TH

TL

S(E)C0 exp
[
−
∫

L
µ(x,E)dl

]
dE, (8)

where L is the line connecting the x-ray source to each de-
tector, and µ(x,E) is the x-ray attenuation coefficient at x
for energy E, computed based on known material compo-
sition in the calibration configuration. The noise was not
included in the simulation, because in calibration we do not
have dose constraint, and it is possible to acquire sufficient
data to mitigate noise.
The fundamental equation for the calibration is the same as
Eq. (1), but we formulated it as BA = g, where B ≡ Pmgt

is the summation of path length times the density of every
material along the x-ray line to a detector pixel, mgt is the
known material density map for the calibration configuration,
and g is the projection data computed above after logarithm
transform. Solving this equation with respect to A yielded
the decomposition matrix.

2.2.2 Material decomposition

We generated a digital phantom with a 3 cm diameter (Figure
1(c)) consisting of gold solutions of various concentrations
in a water background. We computed projection data for
a DECT/MECT scan with 600 projections uniformly dis-
tributed over a 2π angular range. For each detector bin, the
projection data were calculated using the same equation as
Eq. (8) except that Poisson noise was generated according
to the calculated photon counts. With the computed projec-
tion data, we first reconstructed CT images of each energy
channel with 312×312 voxels with 0.1 mm voxel size. We
then computed the material images through m̂ = f̂ A+, where
f̂ = P+û is the DECT/MECT images, and P+ was imple-
mented via the filtered back projection algorithm[7].

2.2.3 Evaluation

Using the decomposition results, we calculated the relative
error norm ∥δm1∥/∥m1∥. We enumerated all the energy
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threshold values T and searched for the value that minimizes
the relative error norm as the optimal threshold. Meanwhile,
Eq. (7) provided the upper bound for the decomposition error.
We evaluated the upper bound without the condition number
of P, namely C(T ), which was compared with ∥δm1∥/∥m1∥
to evaluate the consistency between the simulation and the
theoretical calculations. The condition number of P was
not computed because it is a great challenge to estimate
the condition number for large matrices. Since it does not
depend on the energy threshold, we ignore this scalar when
comparing theory and simulation results.

3 Results

3.1 DECT case

For DECT, the threshold T splits the entire spectrum into
two energy channels. The decomposition errors in the gold
image computed with simulations and its counterparts C(T )
estimated by our theory with respect to different thresholds
at C0 = 4000 are plotted in Figure 2(a). Because the relative
error term and C(T ) differ by a factor κP, it is expected that
the two curves share the same trend. While T = 80 keV, the
K-edge of gold, appeared to be a local minima, the actual
minima existed at 42 keV for both simulation and theory.
This indicated that different from the common setup that uses
the K-edge as the threshold to define energy channels, the
optimal choice of T actually is much lower.
To look at this behavior in more detail, we plotted several
other curves. Specifically, the first one is the dependence
of the relative uncertainty of projection data ∥δu∥/∥u∥ on
the threshold T and photon counts C0, as in Figure 2(b).
As expected, ∥δu∥/∥u∥ increased as C0 was reduced due to
amplified counting noise. As for the dependence on T , when
one of the energy channels is too narrow, the noise in that
channel will dominate the error. Therefore, there must be a
threshold (58 keV in our case) in the middle to balance the
number of photons at two energy channels.
The second curve is the dependence of the condition num-
ber of A matrix (κA) on T , as in Figure 2(c). This quantity
governs the propagation of noise to the decomposed image
during the material decomposition process by solving a linear
model. Essentially, the two columns of A contained effec-
tive attenuation coefficients of gold and water in different
channels. They are linear representations of the gold and

Figure 2: (a) ∥δm1∥/∥m1∥ and C(T ); (b) ∥δu∥/∥u∥ versus T and
C0; (c) κA versus T and C0.

water materials in the linear space defined by the two energy
channels. The more linear independence between the two,
the more favorable it is in terms of the accuracy of material
decomposition. The choice T = 80 keV at the gold K-edge
gave a local minima of κA, as the sharp jump of the x-ray
attenuation coefficient of gold at the K-edge differentiates
gold from water, when having the two energy channels above
and below the K-edge. As moving away from the K-edge,
the condition number started to increase. But after a certain
energy range, it started to decrease again. As the threshold T
further deviates from the K-edge, the two effective attenua-
tion coefficients of gold in the two channels are sufficiently
different from those of water, yielding even lower condition
numbers of A than that when T equals the K-edge. Note
that since we assume that A was well-calibrated, κA does not
depend on C0.
While ∥δu∥/∥u∥ and κA are not directly related to C(T ) due
to its complex form, they provided some insights about the
overall behavior of C(T ) as a function of T . It is the combina-
tion of the two effects, namely projection noise level affected
by photon counts and decomposition matrix A’s properties,
that led to the overall behavior of the decomposition accuracy
observed in Figure 2(a).
Finally, to directly look at the decomposition results, we show
in Figure 3 the decomposed gold images with the threshold
at 42, 54, 58, and 80 keV respectively. 54 keV and 58 keV
are the minima from κA and ∥δu∥/∥u∥, respectively, 42 keV
is the optimal threshold selected by our method, and 80
keV is gold’s K-edge. Clearly, the gold image with the
threshold at 42 keV is the least noisy. Quantitatively, we
computed the decomposition results of gold density for each
insert at C0 = 4000 and 128000, as seen in Figure 4(a). With
increasing C0, the result approached the ground truth and
the uncertainty became smaller. T = 42 keV gave the most
accurate results compared to other thresholds for all the gold
inserts.

3.2 MECT case

For MECT with three energy channels and C0 = 4000, Fig-
ure 5(a) depicts the relative error of simulation results with
the minimal value appearing at T = {T1,T2}= {42,62} keV,
and the function C(T ) with the minimal at the same energy
thresholds. In contrast, κA had the minima at T = {78,80}
keV, and the relative noise error of u reached its minimum at

Figure 3: Gold images with C0 = 4000 at thresholds at 42, 54, 58,
and 80 keV respectively. Display window: [0,0.2] g/cm3.
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T = {54,66} keV. The gold material decomposition results
are shown in Figure 5(b) for the optimally selected thresholds
by the simulation and theory, and for the thresholds at the
minimum of κA and ∥δu∥/∥u∥. The derived gold concen-
trations are presented in Figure 4(b). Again, the case with
T = {42,62} keV outperformed all other cases.

4 Discussion

The selection criteria C(T ) included terms related to the
projection data. Hence, the result is actually case-dependent.
In practice, it is necessary to decide the optimal thresholds
using the proposed method and evaluate C(T ) with a phantom
most representative of the actual experiments, e.g. with
similar phantom size, the material of interest, and material
concentrations, etc. We used a phantom with a 3 cm diameter
and a range of gold concentrations to illustrate our proposed
approach in a setup intended for an experiment currently
ongoing in our lab using gold nanoparticle as a probe for
kidney damage. For applications in clinical settings, a large
phantom mimicking a human should be used. While the
method is still expected to be valid, the selected thresholds
will be likely different. Additionally, realistic issues such as
beam hardening and scattering should be considered.

This study only considered a simple linear reconstruction and
decomposition model. It is well-known that employing a reg-
ularization approach, classical or recent deep learning-based
could further suppress noises in material decomposition prob-
lems. Once a regularization term is used, the proposed thresh-
old selection method would not be applicable, and it would
be difficult to derive theoretical guidance in these setups.
However, we expect that the analysis here based on the linear
model could still provide insights for those more complicated
decomposition models, because the decomposition results
would be still largely determined by the linear model rather
than the regularization terms.

Figure 4: Gold quantification results at each inset for different C0
at (a) DECT and (b) MECT. Yellow lines indicate that the mean
equals the ground truth.

Figure 5: (a) ∥δm1∥/∥m1∥, C(T ), κA and ∥δu∥/∥u∥ versus T =
{T1,T2}; The red stars indicate the minima locations; (b) Gold
images with C0 = 4000 at T ={T1,T2}={42, 62}, {54, 66}, and {78,
80} keV respectively. Display window: [0,0.2] g/cm3.

5 Conclusion

In this study, we derived an expression to characterize the de-
pendence of material decomposition accuracy in PCD-based
DECT/MECT on the energy thresholds and used that to guide
threshold selection. We focused on the accuracy of only the
material of interest. The selection criteria balanced consid-
erations of photon counting noise levels and the numerical
properties of the decomposition matrix. Our simulation vali-
dated the proposed method in DECT and 3-channel MECT
cases.
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Abstract Tumor tracking is an important task in image-guided radi-
ation therapy for lung cancer. This study investigated the feasibility
of Kilo-voltage Real-time Imaging with Scatter Photons (KRISP) us-
ing a photon-counting detector (PCD) to measure Compton-scattered
x-ray photon signals for real-time volumetric image and tumor track-
ing during treatment delivery. We used a 120 kV x-ray slice beam
to irradiate a slice containing the tumor. We acquired the photons
scattered off this plane using a PCD with a parallel-hole collimator.
Using a prior CT image as prior information, we formulated the image
reconstruction problem as an optimization problem with respect to the
deformation vector field between the prior image and the real-time
image. The problem was solved via a forward-backward splitting
(FBS) algorithm. We conducted an initial evaluation on KRISP using
a CIRS lung phantom. It was found that the reconstructed image can
capture tumor motion information with a root mean square error of 1.2
mm. Radiation exposure and interference from scattered photons from
the mega-voltage therapeutic beam were also investigated.

1 Introduction

In lung cancer radiotherapy, real-time image tumor tracking
is of critical significance for the management of respiration-
induced tumor motion during radiation delivery. Pre-
treatment imaging modalities, such as respiratory phase re-
solved 4D cone beam CT, are available to image the patient’s
internal anatomy. Yet it is still important to image the anatom-
ical motion on-the-fly during treatment delivery, which offers
valuable information for managing variations of motion am-
plitude and phase, as well as baseline drift from the motion
observed prior to the treatment[1].
To date, there is no approach that can provide safe, accurate,
reliable, and low-cost real-time imaging and tumor tracking
functions. 3D/4D-cone beam CT or tomosynthesis cannot
achieve this goal due to the long data acquisition time. X-ray
projection-based methods suffer from poor tumor contrast
because of the projection of 3D anatomy to a 2D plane. In-
directly estimating tumor position via anatomy surrogates
is not reliable. While methods tracking implanted fiducial
markers using orthogonal x-rays are accurate and reliable,
the invasive procedure to implant markers increases patient
risks. Recent advancement in MRI-linear accelerator enables
MRI-based tumor tracking. Yet the high cost and hardware
complexity likely hinder its clinical penetrations.
The challenge of real-time imaging is to acquire adequate
relevant data within a short period of time, e.g. 0.2 sec,
to derive motion information. In this study, we investigate
the feasibility of an innovative solution Kilo-voltage Real-

time Imaging with Scatter Photons (KRISP) that measures
scattered x-ray photons in a unique imaging geometry with
a photon-counting detector (PCD) and derives images in
real-time assisted by patient-specific prior information. In
previous studies, we proposed the KRISP idea and studied its
feasibility via numerical simulation [2] and initial experimen-
tal studies [3]. The current study performs comprehensive
experimental validations on this method to characterize its
performance, evaluate its accuracy in tumor tracking, and
investigate several practical issues for clinical applications.

2 Methods

2.1 KRISP setup

The basic setup of KRISP is illustrated in Figure 1. Using
the x-ray tube of cone beam CT on a typical medical linear
accelerator, a planar x-ray beam is delivered to the patient.
Different from the typical fan-beam geometry in a CT scan
that delivers the x-ray to an axial plan, the planar x-ray in
KRISP intersects with the body at a plane of interest (POI)
containing the iso-center and parallel to the superior-inferior
direction. To image anatomy in the POI, a 2D detector that is
oblique to both the x-ray beam plane and the mega-voltage
(MV) therapeutic beam plane captures photons scattered out
of this POI. The detector has a parallel-hole collimator, so
that each pixel receives photons primarily from the direction
normal to the detector plane. With this signal, it is possible to
form an image capturing anatomical information on the POI.
The output of KRISP is a real-time 3D volumetric image with
tumor motion information, which is reconstructed by solving
an optimization problem that ensures fidelity to the measured

x/cm

y/cm

20.5

R
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kV
MV
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L
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Figure 1: (A) Geometry configuration of the proposed system on
LINAC. (B) An illustration of the geometry and imaging process.
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Figure 2: Experimental setup on a Varian TrueBeam medical
linear accelerator.

scatter signal, aided by a patient-specific prior image. KRISP
targets at a temporal resolution of 0.2 sec, estimated based on
typical tumor motion speed under respiration and the targeted
geometry accuracy.

2.2 Experimental study

The experiment was performed on a Varian TrueBeam ma-
chine (Varian Medical System, Palo Alto, CA) with a CIRS
lung phantom (Sun Nuclear, Melbourne, FL). The geometry
and the experimental setup are illustrated in Figure 2. The
on-board x-ray tube was rotated to the gantry angle of 45◦ lo-
cation. The on-board kV flat panel detector was retracted and
the THOR photon-counting detector (PCD) (Varex Imaging,
Salt Lake City, UT) assembly was installed at 135◦ gantry
angle position along the horizontal direction. The detector
pixel pitch is 100 µm and the sensitive area is 5×10 cm2. A
low-energy high-resolution (LEHR) parallel hole x-ray col-
limator (NuclearFields, Des Plaines, IL) was placed against
the front surface of the PCD. The collimator was made from
lead with 0.2 mm septa, 1.5 mm hole size, and 35 mm height.
The kV fan beam emitted at 120 kVp (half value layer (HVL)
of 4.9 mm Al) with 20 mAs (200 mA, 100 ms). The beam
size was 4× 0.5 cm2 at iso-center. We measured scattered
photon signals with the PCD using an energy threshold of 24
keV to capture photons above this level.

The CIRS phantom contained a spherical tumor with a diam-
eter of 2 cm in the left lung. The tumor was placed at the
isocenter as a steady tumor for reference. Next to it was a
tunnel along the superior-inferior direction. We inserted an
acrylic cylinder as the tumor under motion as shown in the
red box in Figure 2. The acrylic cylinder was 12 mm long
with a 6.5 mm diameter. We manually moved the target tu-
mor in and out along the tunnel to mimic tumor motion, and
recorded the relative distance to the reference tumor during
the experiment at various positions as the ground truth tumor
position used to study tumor tracking accuracy by KRISP.

2.3 Image reconstruction and motion tracking

Due to the low count of scattered photons, it is difficult to
form a high-quality image of the POI directly using the mea-
sured scatter signal. The left subfigure in Figure 3 illustrates
a typical measurement. We employed a patient-specific prior
image, e.g. the right subfigure in Figure 3, to facilitate the
reconstruction of the real-time image. As such, we formu-
lated the reconstruction task as an optimization problem with
respect to a motion vector field between the prior image fp(x)
and the image to be reconstructed:

v = argmin
v

E[v]

= argmin
v

1
2
∥K⊗ fp(x+ v(x))−Cg∥2

F +
λ

2
∥∇v∥2

F ,
(1)

where K is the blurring kernel under the parallel-hole collima-
tor, g is the corrected measured signal, ⊗ is the convolution
operator. fp is the 2D prior CT image extracted from the
volumetric CT image at the incoming kV fan-beam plane.
The second term enforces solution smoothness, and λ is a
parameter empirically chosen to balance the importance of
the two terms. The intensity of CT images was assumed to be
proportional to the x-ray attenuation coefficient dominated
by Compton scattering. The correction on g from the raw
measured photon counts was applied to manage factors such
as x-ray attenuation along the beam path connecting the x-ray
source to each pixel. A constant C was introduced in Eq. (1)
to manage the intensity difference between the two terms,
which was obtained via a normalization step. An example
image of corrected measurement g and the prior image fp are
shown in Figure 3.
Similar to a SPECT setup, the blurring kernel K depends on
factors such as collimator hole size, septa height, the distance
between the detector and scatter location, etc. Because of
the imaging geometry, the distance between each detector
pixel and scatter location varies among pixels, and hence
the kernel is pixel dependent. In this study, we ignored this
variation and used one position-independent blurring kernel
K corresponding to the one at the isocenter.
We employed a forward-backward splitting (FBS) algorithm
[4] to solve the optimization problem. As such, we consid-

Figure 3: Left: experimental image and right: CT-reconstructed
image of the slice of interest at phase 1. Display window: [0,1].
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ered the optimality condition with respect to v of E[v]:

δE[v]
δv

= ∇ fpK⊗ (K⊗ fp−Cg)−λ∆v ∋ 0. (2)

Let us introduce an auxiliary image s and re-write Eq. (2) by
adding two additional terms:

δE[v]
δv

= ∇ fpK⊗ (K⊗ fp−Cg)−λ∆v

+∇ fp( fp− s)−∇ fp( fp− s) ∋ 0.
(3)

We split Eq. (3) into:

∇ fpK⊗ (K⊗ fp−Cg)−∇ fp( fp− s) = 0,

∇ fp( fp− s)−λ∆v = 0.
(4)

Assuming ∇ fp ̸= 0, the FBS algorithm can be implemented
as an iterative process with the following three steps:

(1) Calculating s = fp−K⊗ (K⊗ fp−Cg).;

(2) Solving v← argminv
1
2∥ fp− s∥2

F + λ

2 ∥∇v∥2
F

(3) Updating fp with v.

Note that the second step corresponds to an image registration
problem between fp and s, which was implemented using the
Demons algorithm.
Once the solution v was obtained, we derived the recon-
structed image by deforming the prior image fp with this
vector field. Tumor location was calculated based on the
known tumor position in the prior image and the deformation
vector field at the tumor position.

2.4 Evaluations

We evaluated KRISP from the following perspective. For
imaging capability and tumor tracking, in addition to visu-
ally inspecting the measured scattered photon images, we
performed quantitative measurements on tumor tracking ac-
curacy. As such, we measured the derived tumor position
from the reconstruction results and compared that with the
ground truth tumor position. We evaluated the agreement
between the two using Root Mean Square Error (RMSE).
Regarding its practicality, we evaluated two aspects: radia-
tion exposure and interference from the therapeutic MV beam.

Figure 4: Left: Measured images with both kV and MV beams
on. Right: Time structure for data acquisition and MV scatter
correction.

Figure 5: (a) Slice images from the experiment. (b) Zoomed in
view of the measurement in a region of interest containing the
moving tumor. (c)-(d) Zoomed-in and full view of reconstructed
images assisted by the prior image. Display window: [0,1].

Specifically, we measured the x-ray exposure to compute the
effective dose and peak entrance skin dose. Since KRISP will
be used for intra-fractional tumor tracking during treatment
delivery, interference of scattered photons from the MV ther-
apeutic beam is a major concern. We investigated this issue
experimentally in the same setup as in Figure 2) with the
clinically realistic condition of a 600 MU/min 6 MV beam
dose rate. As expected, the strong scattered MV beam had a
strong contribution to the measured scatter signal, masking
the kV image signal (Figure 4). To overcome this challenge,
we propose the following approach to remove the impacts of
MV photons. As KRISP targets temporal resolution of 0.2
sec with data acquisition duration 0.1 sec, we acquired data
during the 0.1 sec interval with kV beam off for a certain
length (e.g. 0.08 sec as in Figure 4), which contained solely
scattered signals from the MV beam. This MV scattered
signal can be scaled (e.g. 0.1/0.08 in this case) to account for
the time duration difference and removed from the measured
kV+MV signal. As subtraction cannot remove noise, we sub-
tracted the denoised MV signal using a denoising algorithm
considering Poisson noise statistics, and denoised the final
result one more time. To demonstrate the validity of this
approach, we acquired the kV+MV signal and the MV signal
separately with the specific time duration, and investigated
the resulting image quality using the stationary tumor in the
phantom for simplicity. Note that the actual time structure
in Figure 4 was not implemented in this proof-of-principle
study.

3 Results

The measured scattered x-ray photon images from the experi-
ment at the different tumor positions are plotted in Figure 5(a).
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Figure 6: Measured tumor position.

The image has a lower intensity at the bottom due to photon
fluence attenuation as propagating in the phantom. Within
the lung region, we observed that the fixed tumor was visible,
but the target (moving) tumor was much weaker due to its
small size and blurring effects. Figure 5(b) shows the images
of the ROI. In Figure 5(c), we plotted the registered images
fp for the 9 phases. The target tumor motion was clearly
reflected in these images, and matched well with the exper-
iment results. Finally, we reassembled the full slice image
with the registered image fp, as shown in Figure 5(d).
As for the tumor tracking task, Figure 6 presents the tumor
position derived from the motion vector field, as compared to
the ground truth tumor position. The RMSE of the calculated
tumor position was 1.2 mm.
Based on measured x-ray exposure, the effective dose rate
was 0.27 mSv/min and the peak entrance skin dose rate was
240 mGy/min under the very small illumination area (slit
beam). In radiotherapy, the gantry rotates to multiple posi-
tions, smearing out the skin dose. Fundamentally, our ap-
proach is very similar to a cardiology intervention procedure,
with a comparable peak skin dose level but a much smaller
x-ray beam area and lower effective dose.
Figure 7 presents the images using the scheme proposed
in Figure 4 with the MV interference signal removed. The
images were acquired at a few phantom positions, with the
large tumor clearly visualized. The images were more blurry
than those measured for the kV scattered signal only (e.g.
Figure 5(a)) due to the application of denoising operations
to suppress noise after subtracting MV signal from kV+MV
measurement.

4 Discussion

In the present study, only the planar image on the plane of
x-ray illumination was reconstructed, as the measurement
data did not contain information outside this plane. However,

Figure 7: Scatter image with MV interference removed for a few
phantom positions.

the imaging geometry was determined in such a way shown
in Figure 1, such that this plane is of the most importance
for tumor tracking in radiotherapy. Specifically, the plane is
perpendicular to the therapeutic MV beam. Motion in this
plane moves the tumor out of the therapeutic beam and hence
may substantially underdose the tumor, as well as move nor-
mal tissues into the beam and overdose them. In contrast, the
impact of motion perpendicular to this plane on the delivered
dose is characterized by beam depth dose, which is much
more gradual (3mm change in depth causes 1% dose change
for a 6MV therapeutic photon beam. Meanwhile, it is well
known that tumor motion follows a patient-specific tumor
model [5]. Adding this model and volumetric prior image to
the image reconstruction process can potentially allow us to
achieve volumetric real-time imaging and 3D tumor tracking.
For simplicity, we used Matlab to perform the image process-
ing tasks. The computation time cannot meet the requirement
for real-time tumor tracking. It is our future work to develop
GPU-acceleration technologies and more computationally
efficient algorithms to support real-time applications.

5 Conclusion

In this study, to address the task of tumor tracking in image-
guided radiation therapy for lung cancer, we investigated
the feasibility of KRISP that employs a PCD to measure
Compton-scattered x-ray photon signal for real-time volu-
metric image and tumor tracking during treatment delivery.
We performed phantom experiments using a 120 kV x-ray
slice beam to irradiate a slice containing the tumor and ac-
quired the photons scattered off this plane using the PCD
with a parallel-hole collimator. Aided by a prior CT image,
we successfully reconstructed the image for the plane of x-ray
illumination and derived the tumor position with an RMSE
of 1.2 mm. Radiation exposure and interference from the
therapeutic beam were also investigated.
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Abstract The lifetime of ortho-positroniums can be influenced by 
the microstructure and the concentration of bio-active molecules 
in human tissue, thereby providing valuable information for better 
understanding of disease progression and treatment response. 
There is currently a lack of efficient lifetime image reconstruction 
methods. Existing methods are either computationally intensive 
or have poor spatial resolution. This paper presents a fast lifetime 
image reconstruction method called SIMPLE-Moment, which can 
reconstruct ortho-positronium lifetime images with a 
computational time equivalent to that of reconstructing three 
standard PET activity images. The implementation of this method 
requires minimal modification to the conventional ordered subset 
expectation maximization (OSEM) algorithm. A Monte Carlo 
simulation study using GATE demonstrates that the proposed 
method can reconstruct high-resolution lifetime images using a 
PET scanner with an existing time-of-flight (TOF) resolution. 
 
Novelty and impact: An efficient positronium lifetime image 
reconstruction method that utilizes the moments of lifetime is 
developed. This method provides a fast alternative to the 
previously proposed reconstruction methods.  

1 Introduction 
 
Recently, there has been an increasing interest in 
investigating the lifetime of positrons before they annihilate 
with electrons in biological tissue using positron emission 
tomography (PET). Prior to the annihilation, about 40% of 
positrons form positroniums (Ps) in human tissue. There are 
two types of Ps, namely ortho-positronium (o-Ps) and para-
positronium (p-Ps), with o-Ps occurring 75% of the time 
and p-Ps occurring 25% of the time. The lifetime of p-Ps is 
relatively short (125 ps) and is unlikely to be affected by the 
surrounding micro-environment. However, the lifetime of 
o-Ps can vary in biological tissue due to two effects—pick-
off annihilation and spin-exchange interaction—which 
result from the interaction between the o-Ps and its 
surrounding microenvironment. Pick-off annihilation 
occurs when the positron of the o-Ps annihilates with a 
foreign electron, while spin-exchange is induced when the 
surrounding molecules possess unpaired electrons. 
Therefore, the o-Ps lifetime is dependent on the size of 
intermolecular voids and the concentration of bio-active 
molecules in biological materials [1]. It has been reported 
that the o-Ps lifetime in human adipose tissue is about 0.7 
ns longer than that in myxoma tissue [2]. A study also 
showed that the o-Ps lifetime can be affected by the oxygen 
concentration in water [3]. Therefore, estimating the o-Ps 
lifetime in vivo can provide useful information for a better 

understanding of disease progression and treatment 
response. 

Currently there is a lack of efficient image 
reconstruction methods for positronium lifetime imaging 
(PLI). The time-of-flight (TOF) direct backprojection 
method, which positions each event based on the TOF 
information, is fast but has very poor spatial resolution. We 
previously introduced a penalized maximum likelihood 
(PML) method [4], which can produce high-resolution 
lifetime images but suffers from high computational cost 
and uses a monoexponential decay model that is inadequate 
for real-world lifetime distributions. Another method that 
we developed, known as SPLIT (Statistical Positronium 
Lifetime Image reconstruction via time-Thresholding) [5], 
can perform 3D reconstruction and correct random events. 
This method leverages existing reconstruction algorithms to 
reconstruct a threshold-activity curve for each voxel and 
then estimate the lifetime image from these curves. While it 
has much lower computational cost than the PML method, 
it still requires reconstruction of tens of activity images to 
form the threshold-activity curves and perform curve fitting 
for each voxel. To further reduce the computational cost and 
eliminate the need for curve fitting, we proposed an 
alternative method called SIMPLE (Statistical IMage 
reconstruction of Positron Lifetime via time-wEighting) 
that can reconstruct images of the average lifetime of all the 
interaction pathways [6]. The computational cost of this 
method is equivalent to two standard activity image 
reconstructions. However, this method cannot estimate the 
o-Ps lifetime directly.  

To overcome this limitation, here we extend the 
SIMPLE method to include higher orders of moments so 
that the o-Ps lifetime can be estimated directly. The method 
of moments has been previously used in optical imaging to 
estimate fluorescence lifetime [7] and in dynamic PET for 
kinetic parameter estimation [8]. The proposed SIMPLE-
Moment method has the advantage of fast computation 
speed without the need for curve fitting. This method 
represents a significant improvement over our previous 
methods for PLI, as it allows for direct estimation of the o-
Ps lifetime while maintaining computational efficiency. 

2 Materials and Methods 
 
A. Lifetime Event Model in PLI 

 
In this paper, a lifetime event is defined as a tri-coincidence 
consisting of two annihilation photons and a prompt 
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gamma. It is represented by a line of response (LOR) 𝑖𝑖𝑘𝑘 
determined by the detection positions of the two 
annihilation photons and a time delay between the emission 
of prompt gamma and the annihilation of positron. The 
distribution modeling the time delay of the events 
originated from voxel 𝑗𝑗 can be represented as a summation 
of multiple exponential decays convolved by a Gaussian 
function 𝑔𝑔(𝜏𝜏) that is characterized by the time resolution of 
the PET scanner: 

𝑓𝑓�𝜏𝜏|𝐴𝐴𝑙𝑙,𝑗𝑗, 𝜆𝜆𝑙𝑙,𝑗𝑗, 𝑙𝑙 ∈ {𝑜𝑜,𝑝𝑝,𝑑𝑑}� =

𝑔𝑔(𝜏𝜏) ∗ � 𝐴𝐴𝑙𝑙,𝑗𝑗𝜆𝜆𝑙𝑙,𝑗𝑗 exp�−𝜆𝜆𝑙𝑙,𝑗𝑗𝜏𝜏� 𝑢𝑢(𝜏𝜏)
𝑙𝑙∈{𝑜𝑜,𝑝𝑝,𝑑𝑑}

, (1) 

where 𝜆𝜆𝑙𝑙,𝑗𝑗 is the decay rate (inverse of lifetime), 𝐴𝐴𝑙𝑙,𝑗𝑗 is the 
intensity of the 𝑙𝑙 th pathway of positron annihilation, and 
𝑢𝑢(𝜏𝜏) is a unit step function. We consider three pathways of 
annihilation including forming o-Ps, p-Ps and direct 
annihilation, labeled by the subscripts 𝑜𝑜,𝑝𝑝,  and 𝑑𝑑 , 
respectively.  
 
B. Lifetime Estimation via the Method of Moments 
 
Using the above PLI event model, the 𝑛𝑛𝑡𝑡ℎ moment of the 
lifetime is written as 
𝑚𝑚𝑗𝑗
𝑛𝑛 = 𝐸𝐸[𝜏𝜏𝑛𝑛] = ∫ 𝜏𝜏𝑛𝑛∞

−∞ 𝑓𝑓�𝜏𝜏|𝐴𝐴𝑙𝑙,𝑗𝑗, 𝜆𝜆𝑙𝑙,𝑗𝑗, 𝑙𝑙 ∈ {𝑜𝑜,𝑝𝑝,𝑑𝑑}�𝑑𝑑𝜏𝜏, (2) 
which can be reduced into the following form:  

𝑚𝑚𝑗𝑗
𝑛𝑛 = �

𝑛𝑛!
(𝑛𝑛 − 𝑠𝑠)!

𝜇𝜇𝑛𝑛−𝑠𝑠𝐺𝐺𝑠𝑠,𝑗𝑗

𝑛𝑛

𝑠𝑠=0

, (3) 

where 𝜇𝜇𝑘𝑘 = 𝐸𝐸𝑔𝑔(𝜏𝜏) [𝜏𝜏𝑘𝑘] is the kth moment of the Gaussian 
distribution 𝑔𝑔(𝜏𝜏) and  

𝐺𝐺𝑠𝑠,𝑗𝑗 = �
𝐴𝐴𝑙𝑙,𝑗𝑗
𝜆𝜆𝑙𝑙,𝑗𝑗𝑠𝑠𝑙𝑙∈{𝑜𝑜,𝑝𝑝,𝑑𝑑}

. (4) 

With equations (3) and (4), we can estimate the lifetimes 
and intensities in two steps: first, we calculate an empirical 
estimate of the moments 𝑚𝑚𝑗𝑗

𝑛𝑛 and then find 𝐺𝐺𝑠𝑠,𝑗𝑗  using 
equation (3); second, we estimate the lifetimes and 
intensities using equation (4).  

When there is no prior information about the lifetimes 
and intensities, we need six moment equations (zeroth to 
fifth) for the six unknowns ( 𝐴𝐴𝑙𝑙 , 𝜆𝜆𝑙𝑙 , 𝑙𝑙 ∈ {𝑜𝑜,𝑝𝑝,𝑑𝑑} ). 
Fortunately, we know the ratio of the occurrence between 
o-Ps and p-Ps (𝐴𝐴𝑜𝑜

𝐴𝐴𝑝𝑝
= 3). Furthermore, we can assume that 

the lifetimes of p-Ps and direct annihilation are known and 
fixed at 0.125 ns and 0.4 ns, respectively. Therefore, only 
three moment equations (zeroth to second) are required and 
the closed-form solution of 𝜆𝜆𝑜𝑜 is given by 

𝜆𝜆𝑜𝑜 =
−𝐵𝐵 + √𝐵𝐵2 − 4𝐴𝐴𝐴𝐴

2𝐴𝐴
, (5) 

 
where 
𝐴𝐴 = 𝐺𝐺0𝜆𝜆𝑑𝑑 − 𝐺𝐺1𝜆𝜆𝑑𝑑2 − 𝐺𝐺0𝜆𝜆𝑝𝑝 + 𝐺𝐺2𝜆𝜆𝑝𝑝𝜆𝜆𝑑𝑑2 + 4𝐺𝐺1𝜆𝜆𝑝𝑝2

− 4𝐺𝐺2𝜆𝜆𝑝𝑝2𝜆𝜆𝑑𝑑,  

𝐵𝐵 = −3𝐺𝐺0𝜆𝜆𝑝𝑝2 + 3𝐺𝐺2𝜆𝜆𝑝𝑝2𝜆𝜆𝑑𝑑2 , 
𝐴𝐴 = 3𝐺𝐺0𝜆𝜆𝑝𝑝2𝜆𝜆𝑑𝑑 − 3𝐺𝐺1𝜆𝜆𝑝𝑝2𝜆𝜆𝑑𝑑2 .  
 
C. Reconstruction of Moment Images 

 
In order to estimate positronium lifetime images using the 
method of moments, we must first obtain moment images 
from the measured lifetime events. Direct reconstruction of 
the moment images is difficult, so we instead reconstruct an 
intensity-weighted moment image 𝑤𝑤𝑗𝑗𝑛𝑛 = 𝑥𝑥𝑗𝑗𝑚𝑚𝑗𝑗

𝑛𝑛  and divide 
it by the intensity image 𝒙𝒙, which is reconstructed using the 
two annihilation photons of all the tri-coincidence events.   

To reconstruct the intensity-weighted moment image 
𝒘𝒘𝑛𝑛, we need to find a projection whose expectation is the 
forward projection of 𝒘𝒘𝑛𝑛, 

𝑧𝑧𝑛𝑛���𝑖𝑖 = �𝐻𝐻𝑖𝑖𝑗𝑗𝑤𝑤𝑗𝑗𝑛𝑛

𝑗𝑗

= �𝐻𝐻𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑚𝑚𝑗𝑗
𝑛𝑛

𝑗𝑗

= �𝐸𝐸[𝑦𝑦𝑖𝑖𝑗𝑗]𝑚𝑚𝑗𝑗
𝑛𝑛

𝑗𝑗

, (6) 

where 𝑯𝑯 is a standard PET system matrix and 𝑦𝑦𝑖𝑖𝑗𝑗  is the 
number of events originated in voxel 𝑗𝑗 and detected in LOR 
𝑖𝑖. An empirical estimate of 𝑚𝑚𝑗𝑗

𝑛𝑛 is  

𝑚𝑚𝚥𝚥
𝑛𝑛� =

1
𝑦𝑦𝑖𝑖𝑗𝑗

� 𝜏𝜏𝑘𝑘𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖𝑖𝑖

, (7) 

where 𝐾𝐾𝑖𝑖𝑗𝑗 denotes the set of list-mode indices of the events 
originated in voxel 𝑗𝑗  and detected in LOR 𝑖𝑖 , and 𝐾𝐾𝑖𝑖 =
⋃ 𝐾𝐾𝑖𝑖𝑗𝑗𝑗𝑗 . Thus, we have  

�𝐻𝐻𝑖𝑖𝑗𝑗𝑤𝑤𝑗𝑗𝑛𝑛

𝑗𝑗

= �𝐸𝐸� � 𝜏𝜏𝑘𝑘𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖𝑖𝑖

�
𝑗𝑗

= 𝐸𝐸 �� 𝜏𝜏𝑘𝑘𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

� . (8) 

Equation (8) indicates that the intensity-weighted moment 
image can be estimated from time-delay-weighted 
projection data 

𝑧𝑧𝑖𝑖𝑛𝑛 = � 𝜏𝜏𝑘𝑘𝑛𝑛

𝑘𝑘∈𝐾𝐾𝑖𝑖

. (9) 

We used a list-mode OSEM algorithm to reconstruct the 
intensity-weighted moment image 𝒘𝒘𝑛𝑛  with the following 
updating equation: 

𝑤𝑤𝑛𝑛
𝑗𝑗
(𝑟𝑟+1) =

𝑤𝑤𝑛𝑛
𝑗𝑗
(𝑟𝑟)

∑ 𝐻𝐻𝑖𝑖𝑗𝑗𝑖𝑖
�

𝐻𝐻𝑖𝑖𝑘𝑘𝑗𝑗𝜏𝜏𝑖𝑖𝑘𝑘
𝑛𝑛

∑ 𝐻𝐻𝑖𝑖𝑘𝑘𝑗𝑗𝑤𝑤𝑛𝑛
𝑗𝑗
(𝑟𝑟)

𝑗𝑗𝑘𝑘∈𝑆𝑆𝑟𝑟

, (10) 

where 𝑆𝑆𝑟𝑟  denotes the 𝑟𝑟𝑡𝑡ℎ  subset of the list-mode event 
indices. The moment image 𝒎𝒎𝑛𝑛 is then obtained by taking 
the voxel-wise ratio of the image 𝒘𝒘𝑛𝑛  over the activity 
image 𝒙𝒙. 
 
D. Simulation Study 
 
We performed a Monte Carlo simulation to validate the 
proposed method. A rodent phantom was simulated in 
GATE with an average activity concentration of 20 kBq/cc 
and a scan duration of 30 minutes. The activity ratio was set 
to 10 : 15 : 2 : 1 for the lesion, kidneys, liver, and body 
background to mimic 44Sc-PSMA uptake. The o-Ps lifetime 
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was set to 2.0 ns inside the lesion and 2.5 ns elsewhere; the 
lifetimes of p-Ps and direct annihilation were set to 0.125 ns 
and 0.4 ns, respectively, throughout the body. The 
occurrence of Ps was set to 40%. The simulated PET 
scanner was the Neuro-EXPLORER scanner with a ring 
diameter of 52 cm, an axial length of 49 cm, and a TOF 
resolution of 250 ps. Prior to the reconstruction, the travel 
time difference between the prompt gamma and 
annihilation photons in each PLI event was corrected. To 
obtain the travel time for each photon, its travel distance 
was calculated as the distance between the detector and the 
most likely annihilation position determined by the TOF 
information along the LOR. The proposed method was 
compared with the previous SPLIT method. OSEM with 3 
subsets and 2 iterations was used to reconstruct the activity 
and intensity-weighted moment images for the SIMPLE-
Moment method and the lifetime-thresholded activity 
images for the SPLIT method. The reconstruction field-of-
view (FOV) was 50 × 50 × 180 mm3 and the reconstruction 
voxel size was 0.8 × 0.8 × 1.6 mm3.  

3 Results 
 
The reconstructed first and second moment images are 
shown in Fig. 1 in comparison with the ground truth images. 
The biases (standard deviations) in four regions of interest 
(ROIs) are listed in Table 1. Both 1st and 2nd moment images 
are accurate in terms of the mean and the variance is 
increased with the higher moment image. Fig. 2 displays the 
reconstructed activity and lifetime images, with the 

corresponding lifetimes in the four ROIs listed in Table 2. 
In the displayed images, the voxels with activity lower than 
50% of the activity in the body background had their 
lifetime set to zero. The proposed SIMPLE-Moment 
method slightly under-performed in the lesion as compared 
to the SPLIT, yielding an average lifetime value that is 0.8% 
higher than the ground truth. In the normal region, the 
SIMPLE-Moment method has a higher accuracy and a 
slightly better variance as compared to the SPLIT method.  
 

4 Discussion 
 
The major advantage of the proposed SIMPLE-Moment 
method is its low computational cost, which depends on the 
number of intensity-weighted moment images to be 
reconstructed. In this study, two intensity-weighted moment 
images and one activity images were reconstructed, 
resulting in a 3-fold computational cost compared to a 
standard activity reconstruction. In comparison, the SPLIT 
method in this study reconstructed 53 lifetime-thresholded 
activity images. The computational time of the SIMPLE-
Moment method was approximately 10.5 minutes, while the 
SPLIT reconstruction took around 119 minutes, including 
95 minutes for the OSEM reconstruction and 24 minutes for 
fitting threshold-activity curves. All computations were 
performed on a Dell computer with dual Intel Xeon E5-
2630 v3 2.4 GHz CPUs. 

In the absence of prior knowledge about lifetime, 2𝑛𝑛 −
1 moment images are required to solve a lifetime model 
with 𝑛𝑛  interaction pathways. For a typical three-pathway 
model, this means the first to the fifth moments. However, 
since the occurrence ratio of o-Ps to p-Ps is known, it is 

 

Truth Reconstructed Truth Reconstructed 

1st moment 2nd moment 
Fig 1. Reconstructed first and second moment images and their 
ground truths. 
 
Table 1. The biases (standard deviations) of the estimated moments 
in the lesion, kidney, liver, and body background (in ns for the first 
moment; ns2 for the second moment). 

  Lesion Kidney Liver BG 

1st 
Truth 0.8525 1.0025 1.0025 1.0025 

Recon 0.002(12) 0.001(13) 0.000(20) 0.000(32) 

2nd 
Truth 2.6036 3.9536 3.9536 3.9536 

Recon 0.02(9) 0.00(12) 0.00(19) 0.00(29) 

 

  

Truth Reconstructed Truth SPLIT SIMPLE-
Moment 

Activity Lifetime 
Fig 2. Reconstructed activity and lifetime images and their ground truths.  
 
Table 2. The biases (standard deviations) of reconstructed lifetimes in 
the lesion, kidney, liver and body background (in ns). 

 Lesion Kidney Liver BG 

Truth 2.0 2.5 2.5 2.5 

SPLIT 0.007(54) 0.028(59) 0.035(91) 0.014(136) 

SIMPLE-
Moment 0.015(56) -0.006(55) -0.002(87) -0.003(132) 
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reasonable to reduce one moment image. To obtain a simple 
closed-form solution to equation (3) and (4) in this study, 
we further assumed that the lifetimes of p-Ps and direct 
annihilation are fixed and known in biological tissue. This 
assumption may be strong and requires further validation 
through experimental studies.   

5 Conclusion 
 
We have proposed the SIMPLE-Moment method, a fast and 
curve-fitting-free approach for reconstructing o-Ps lifetime 
images based on intensity-weighted moment images. The 
proposed method has a computational cost comparable to 
that of three standard activity image reconstructions. The 
simulation study showed that the proposed SIMPLE-
Moment method can accurately reconstruct lifetime images 
with low variance. Future work will apply the SIMPLE-
Moment method to real data. 
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Abstract Volumetric breast density (VBD) has been conventionally 

measured on mammogram or digital breast tomosynthesis (DBT) 

projection image acquired using single x-ray energy spectrum, which 

could be greatly impacted by different breast compressions. We aim to 

develop a method for reproducible VBD measurement using dual-energy 

(DE) material decomposition with DE DBT, which uses both 

conventional dual-shot (DS) technique for image acquisition and a dual-

layer (DL) detector to minimize patient motion in clinical practice. In-

silico experiments were conducted using a virtual clinical trial software 

(VICTRE) with digital breast phantom and image simulations. The breast 

attenuations in high- and low-energy image were calibrated using 

analytical calculations for DS and DL technique. Our results show 

consistent VBD measurements among all projection angles and 

reproducible measurements for breast under different compressions. For 

DL technique, a correction method was applied to reduce the uncertainty 

in the decomposed thickness map and VBD map. 

 

Novelty and impact: We developed a method to measure VBD using DE 

DBT and applied it to DS and DL image acquisition technique, which 

allows reproducible VBD measurement for masking risk and breast 

cancer risk assessment for dense breast patients. 

 

1 Introduction 

 

Breast density describes the fraction of fibroglandular tissue 

(FGT) perceived radiologically in the breast, and has been 

used to assess the risk of masking breast lesions and as a 

biomarker for breast cancer risk.1 Methods have been 

developed to measure volumetric breast density (VBD) 

using conventional mammogram or digital breast tomo-

synthesis (DBT) projection image acquired using a single 

x-ray energy spectrum.2 This single-energy method 

typically assumes a simple shape for compressed breast that 

contains fatty tissue only in the periphery, which introduces 

errors in measured VBD that is greatly impacted by 

different breast compressions.  

 

Dual-energy (DE) material decomposition has been used to 

measure VBD from DE mammograms.3 It measures breast 

attenuations from high-energy (HE) and low-energy (LE) 

images and directly solves for breast thickness and density 

without assumptions made in single-energy method, and it 

has shown accurate measurement of VBD. Conventional 

DE image acquisition is based on dual-shot (DS) technique 

where two images are acquired separately, which is prone 

to patient motion in clinical practice. This will introduce 

errors in the quantification for VBD. DE imaging with dual-

layer (DL) detector has been used in radiography and allows 

DE images acquired simultaneously with one x-ray 

exposure to minimize motion artifacts.4 

 

This study aims to develop methods for VBD measurement 

using DE DBT and material decomposition. We evaluated 

the performance for DE images acquired using DS and DL 

techniques by in-silico experiments with digital breast 

phantoms and image simulations. 

 

2 Materials and Methods 

 

The experiment was conducted using a virtual clinical trial 

software (VICTRE) based on Monte-Carlo simulation and 

developed by FDA.5 The image acquisition for DS and DL 

technique is illustrated in Figure 1. For DS technique, the 

geometry of Siemens Mammomat Inspiration DBT system 

was modeled. Twenty five projections were generated in an 

angular range of 50 degrees. For DL technique, the central 

projection images were generated. The simulated images 

included quantum noise and electronic noise and did not 

include scatter radiation. 
 

 
Figure.1 Image acquisition for dual-shot and dual-layer technique 

 

Anthropomorphic breast phantoms were generated with 

pre-defined VBD and compressed to clinical-relevant breast 

thickness using VICTRE. To evaluate the reproducibility of 

our method for repeated measurement, each breast phantom 

was compressed to different breast thicknesses to simulate 

a breast under different breast compressions in clinical 

practice. A slice in a digital breast phantom was shown in 

Figure 2. The voxels in the phantom volume were labelled 

to determine their tissue type. In the breast volume, the 

tissue types other than fatty tissue, skin, and nipple are 

classified as FGT for two-material decomposition. 

 

The breast attenuations in HE and LE image for a given 

breast thickness and VBD were calibrated by analytical 

calculations using the Lambert-Beer’s law, which includes 

spectral simulation, attenuations of fatty tissue and FGT, 

and the detector response. Figure 3 shows a wide range of  

calibrated data with each point in the graph (black dot) 
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recording the breast attenuation in HE image (SHE) and LE 

image (SLE) for a given breast thickness and VBD. During 

image decomposition, the breast attenuations measured 

from the images for each pixel location can be similarly 

plotted in the graph (red dot). The nearest calibrated point 

to the measurement was selected to determine the breast 

thickness and VBD for that pixel location.  
 

 
Figure.2 digital phantom slice showing simulated breast tissues 

 

The FGT thickness for each pixel location was calculated as 
  

𝑡𝐹𝐺𝑇 = 𝑡 × 𝑉𝐵𝐷𝑝𝑖𝑥𝑒𝑙 
 

where t (total breast thickness) and VBDpixel were obtained 

from the decomposition. 

 

The total breast volume Vbreast and the total FGT volume 

VFGT measured from the HE and LE image pair at oblique 

angle θ were calculated separately as 
 

𝑉 =∑𝑡𝑖 × 𝐴 × cos(𝜃)

𝑖

 

 

where A is the pixel size and ti is the value of pixel i on the 

breast thickness map or the FGT thickness map, and it sums 

up all pixels in the breast region. 

 

The VBD was calculated as 
 

𝑉𝐵𝐷 =
𝑉𝐹𝐺𝑇
𝑉𝑏𝑟𝑒𝑎𝑠𝑡

× 100% 

 

For DL technique, the decomposed thickness map was 

corrected to reduce uncertainty by estimating the iso-

thickness contour on the map. 2D interpolation between 

contours was used to create a smooth thickness map that 

decreases continuously in the breast peripheral region. The 

corrected thickness was used as a prior knowledge and 

constraint in the decomposition to determine the VBD.  

 
Figure.3 calibrated (black) and measured (red) breast attenuations 

 

3 Results 

 

3.1 Dual-shot technique 

Figure 4 shows the material decomposition using DE 

projection images of a digital breast phantom with an 

average thickness (4.6cm) and high density (25.9%). The 

VBD and breast thickness is quantified throughout the 

entire breast region including the periphery with decreasing 

thickness. The method is applicable to central and oblique 

projection views. 

 

 

 
Figure.4 Simulated LE DBT projection images, breast thickness 

and density maps from material decomposition, and the calculated 

FGT thickness map for the central (0-degree) and the most 

oblique (25-degree) projection angle. 

 

Figure 5 shows that the measurement for breast volumes 

and VBD is consistent among all projection angles.  
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Figure.5 Measurements from DE projection images for all angles. 

 

Table 1 summarizes the simulated digital breast phantoms 

in different sizes compressed to various clinical-relevant 

thicknesses. Average (~15%) and high (~30%) density were 

simulated. The changes in VBD for compressed phantoms 

with different thicknesses are negligible, which allows 

evaluation for the reproducibility of measurements. 

 
Table.1 Breast phantoms for evaluation of reproducibility. 

 
 

Figure 6 shows the reproducibility for the proposed method. 

The average absolute discrepancy between two repeated 

measurements for all phantoms is 2.3% ± 1.1%. Largest 

discrepancy is 3.9% for phantom 1 with 20 mm difference 

in compressed thickness (40 vs. 60 mm) representing a large 

variation in breast compression in clinical practice. 
 

 
Figure.6 Repeated measurements of VBD for breast phantoms. 

 

3.2 Dual-layer technique 

Figure 7 shows the decomposed breast thickness and 

density maps of a digital breast phantom using DE 

projection images acquired with DL detector. Without 

correction, the decomposed maps show high image noise. 

The corrected thickness map shows uniform thickness in the 

breast center and continuous decreases in the periphery. The 

noise in the corrected density map using corrected thickness 

map as constraint for decomposition is much reduced. 
  

 
Figure.7 Decomposed breast thickness and density maps before 

and after correction using DE images acquired from DL detector. 

 

4 Discussion 

 

The analytical model used for calculating calibration data 

could deviate from the physical model in VICTRE used for 

image simulation, which could introduce systematic errors 

to the measurement by DE decomposition. The FGT 

defined includes other tissue types such as blood vessels and 

ligaments which have x-ray attenuations larger than the 

FGT. The skin layers on the top and bottom surface of the 

compressed breast add additional attenuation to the x-ray 

passing through the breast and are not excluded. 

 

The accuracy of breast attenuations measured from the DE 

images will be reduced by scatter radiations. Since anti-

scatter grid is usually not implemented in DBT systems, an 

effective image-based scatter removal technique will be 

required. 

 

Future work includes comparing the VBD measured from 

DE DBT with those obtained using single-energy methods, 

and correlating the results with MRI. 

 

5 Conclusion 

 

We developed a method to measure VBD using DE DBT 

with material decomposition and applied it to DS and DL 

image acquisition technique. Our results show consistent 

VBD measurements among all DBT projection angles and 

reproducible measurements for breasts under different 
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breast compressions. The proposed method could allow 

reproducible VBD measurement for masking risk and 

breast cancer risk assessment for dense breast patients.  
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Abstract Data consistency conditions (DCCs) for projection operators
have been of great relevance in the field of tomography, as they allow
the determination of measured data’s feasibility prior to reconstruction.
Particularly useful are DCCs comparing two projections, accordingly
called pairwise DCCs (PDCCs). Such conditions compute certain
linear functionals dependent on individual projections, whose values
must coincide for consistency to hold. For many projection operators,
such PDCCs are known, but for the exponential fanbeam transform –
which is relevant for Single Photon Emission Tomography (SPECT) –
they are not. We show mathematically that no condition of this type
can exist for a pair of exponential fanbeam projections. Moreover, we
present a novel class of pairwise data consistency conditions, requiring
that the difference between certain linear functionals of two projections
lie in a specified interval, instead of coinciding as they would in
classical PDCCs. This new condition is substantiated by numerical
experiments (simulation study) on some phantoms.

1 Introduction

Tomographic techniques have become a vital tool in
medicine, allowing doctors to observe patients’ interior fea-
tures. A mathematical operator (projection operator) models
the underlying physics of the measurement process. The
data is usually structured in so-called projections, referring
to the data obtained during a specific measurement step. The
choice of projection operator depends on the measurement
setup used. The capability to determine whether measured
data is consistent with the model/projection operator has
found broad applications, such as identification/correction
of corrupted data, geometric calibration, parameter identifi-
cation, and motion detection [1–6]. Particularly useful are
conditions capable of finding inconsistencies from just two
projections, because small collections of arbitrarily oriented
projections can be tested using such conditions. We refer to
them as pairwise data consistency conditions (PDCCs).

A typical example is parallel-beam Computed Tomography
(CT), which is modeled by the Radon transform

[R f ](ψ,s) :=
∫
R

f (sϑ
⊥
ψ + tϑψ)dt (1)

for ψ ∈ [0,π[, s ∈ R and f ∈ C ∞
c (R2) (smooth function with

compact support), where ϑψ = (cosψ,sinψ)T and ϑ⊥
ψ =

(−sinψ,cosψ)T are the projection directions with the angle
ψ . In this case, the PDCCs are well-known [7]. For ψ1,ψ2 ∈
[0,π[ and all f ∈ C ∞

c (R2), they take the form∫
R
[R f ](ψ1,s)ds =

∫
R
[R f ](ψ2,s)ds. (2)

We denote by RΛ the operator R only containing two projec-
tions Λ = (ψ1,ψ2); we call it the pairwise Radon transform.

For several other projection operators, PDCCs have been
found, two examples being the fanbeam operator [8] and
the parallel-beam exponential operator [9]. One noticeable
projection operator whose PDCC is yet unknown, is the (pair-
wise) exponential fanbeam transform

[E Λ
µ f ](λ ,φ) :=

∫
R+

f (λ + tϑφ )eµt dt (3)

for λ ∈ Λ = (λ1,λ2) ∈ R2 ×R2 (the fan vertex positions),
φ ∈ [−π,π[ and f ∈ C ∞

c (Ω) with constant attenuation pa-
rameter µ ∈ R. Here, Ω is an open, connected set whose
compact closure does not intersect with the line containing λ 1
and λ 2. This operator finds applications in pinhole SPECT
imaging and corresponding PDCCs could find applications
in the alignment of SPECT/CT data [10]. Here, a projection
corresponds to all rays converging on λ from any direction.
The exponential term models constant attenuation processes;
more general attenuation can – under certain assumptions –
be converted to this exponential model, making this a mild
restriction for many applications. Figure 1 illustrates the
associated geometry. In this work, we explore PDCCs for the
exponential fanbeam operator. For the conventional fanbeam
transform (µ = 0), the PDDC has the form∫

π

−π

[E Λ
0 f ](λ 1,φ)

ϑ⊥
φ
·∆ dφ =

∫
π

−π

[E Λ
0 f ](λ 2,φ)

ϑ⊥
φ
·∆ dφ (4)

with ∆ = λ2−λ1 [8]. Mathematically, (4) states that the func-
tion

(
1/(ϑ⊥

φ
·∆),−1/(ϑ⊥

φ
·∆)

)
is orthogonal to Rg(E Λ

0 ),

which corresponds to the backprojections of 1/(ϑ⊥
φ
·∆) for

both projections being equal. Other mentioned PDCCs are
of similar mathematical structure. Hence, one might aim to
find a pair of functions Gλ 1,λ 2 ,Gλ 2,λ 1 such that

∫
π

−π

[E Λ
µ f ](λ1,φ)Gλ 1,λ 2(φ)dφ

=
∫

π

−π

[E Λ
µ f ](λ2,φ)Gλ 2,λ 1(φ)dφ (5)

for all f ∈ C ∞
c (Ω). As we will show, there are no PDDCs

of this form for the exponential fanbeam transform, i.e., (5)
does not possess a solution.

2 Nonexistence of PDCCs

We first set some relevant notation. Since the map (φ , t) 7→
λ + tϑφ present in (3) is a diffeomorphism for any λ ∈ R2,
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Ω

y
λ2

λ1

x = λ1 + tϑφt

φ

x

∆

Figure 1: Illustration of the geometry of the fanbeam transform
with two projections. The black point x on the bold red line and
its parametrization in fanbeam coordinates with respect to the
projection λ 1 is highlighted.

we define the inverse parametrizations

φ i(x) = arg(x−λi) and ti(x) = |x−λi| (6)

for i ∈ {1,2}. Further, we define Ω′ = ({λ 1} × Φ1) ∪
({λ 2}×Φ2) with Φi = φ i(Ω) for i ∈ {1,2}; so Ω′ is es-
sentially a 2-projection sinogram domain.

Theorem 1. There is no pair of non-zero functions Gλ 1,λ 2 ∈
L1

loc(Φ1) (functions absolutely integrable on any compact
subset) and Gλ 2,λ 1 ∈ L1

loc(Φ2) such that (5) is satisfied for
all f ∈ C ∞

c (Ω) when µ ̸= 0.

Sketch of proof. We assume Gλ 1,λ 2 and Gλ 2,λ 1 non-zero sat-
isfying (5) were to exist. Plugging the definition of the expo-
nential fanbeam transform into (5) implies∫

Φ1

∫
R+

f (λ 1+tϑφ )eµt dt Gλ 1,λ 2(φ)dφ

=
∫

Φ2

∫
R+

f (λ 2+tϑφ )eµt dt Gλ 2,λ 1(φ)dφ . (7)

Substituting x = λ i+tϑφ for i ∈ {1,2}, this is equivalent to

∫
Ω

f (x)
Gλ 1,λ 2(φ 1(x))

t1(x)
eµt1(x) dx

=
∫

Ω

f (x)
Gλ 2,λ 1(φ 2(x))

t2(x)
eµt2(x) dx. (8)

Since this statement is assumed to be true for all f ∈ C ∞
c (Ω),

the fundamental lemma of variational calculus implies

Gλ 1,λ 2(φ1(x))
t1(x)

eµt1(x) =
Gλ 2,λ 1(φ2(x))

t2(x)
eµt2(x) (9)

for almost all x ∈ Ω. We show that this equation does not pos-
sess a solution (thus contradicting our original assumption)
by setting

hλ 1,λ 2(φ) = hλ 2,λ 1(φ) =
1

∆ ·ϑ⊥
φ

̸= 0, (10)

which, for all x ∈ Ω, satisfies

hλ 1,λ 2(φ 1(x))
t1(x)

=
hλ 2,λ 1(φ2(x))

t2(x)
. (11)

Hence, we set gλ 1,λ 2 := ln(Gλ 1,λ 2 /hλ 1,λ 2) and gλ 2,λ 1 :=
ln(Gλ 2,λ 1 /hλ 2,λ 1) which (combining (9), (11)) satisfies

gλ 1,λ 2(φ 1(x)))− gλ 2,λ 1(φ 2(x)) = µ(t2(x)− t1(x)). (12)

Moreover, expressing t1(x)− t2(x) explicitly via basic com-
putation – e.g., using the Law of Sines – shows that

gλ 1,λ 2(φ 1)−gλ 2,λ 1(φ 2) = µ
∆ · (ϑ⊥

φ1
−ϑ⊥

φ2
)

ϑ⊥
φ 1
·ϑφ 2

(13)

for all φ 1 ∈ Φ1 and φ 2 ∈ Φ2. It seems dubious that the right-
hand side of (13) can be the sum of functions only depending
on φ 1 or φ 2, respectively, as required by the left-hand side.
Proving that is slightly technical, so we do not go into detail
here, but roughly speaking it involves observing that the
left-hand side of

gλ 1,λ 2(φ 1)−gλ 1,λ 2(φ̃ 1)

= µ
∆ · (ϑ⊥

φ1
−ϑ⊥

φ2
)

ϑ⊥
φ 1
·ϑφ 2

−µ

∆ · (ϑ⊥
φ̃1
−ϑ⊥

φ2
)

ϑ⊥
φ̃ 1
·ϑφ 2

(14)

does not depend on φ 2, but the right-hand side does, as can
be verified via evaluation for certain values φ 1, φ̃ 1,φ 2 when
µ ̸= 0. Since the function in (14) is analytical when the
denominator is not zero, the equation is wrong for almost
every tuple, particularly the ones representing Ω. So (13) has
no solution, and consequently neither does (9), as required to
prove the theorem.

Many of the steps in the proof of Theorem 1 are not specific
to the exponential fanbeam transform, but also apply to other
projection pair operators. Thus the approach can be used to
check if a projection pair operator possesses a PDCC, and
also gives a method for identifying them if they do.

Not only range conditions of the specific form (5) cannot
exist, but in fact, no L2(Ω′)-continuous conditions of any
kind can; even if they were non-linear.

Theorem 2. When µ ̸= 0, there is no continuous function
F : L2(Ω′)→ R which satisfies

1. F(g) = 0 when g ∈ Rg(E Λ
µ),

2. There is g ∈ L2(Ω′) with F(g) ̸= 0.

Sketch of proof. As a direct consequence of Theorem 1, the
range of E Λ

µ must be dense in L2(Ω′) as no non-trivial orthog-
onal vector exists. If F as described were to exist, it would
be zero on a dense set, and by continuity zero everywhere,
contradicting the second point.

Real world data are always imperfect – and therefore incon-
sistent. A DCC which is continuous will be nearly satisfied
for very mildly inconsistent data. Thus, a continuous DCC
is favoured in practice, even though it can only identify the
closure of the range. It is not yet known, whether the range
of the exponential fanbeam transform is closed.
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3 Alternative consistency conditions

That no PDCCs exist, does not imply that there is no over-
lapping information whatsoever. There might still be a large
class of functions for which some kind of consistency criteria
are possible.

Evidently, the ratio for λ 1 to λ 2 of the exponential weight
applied by E Λ

µ to any point x is eµ(t1(x)−t2(x)), and aside from
this factor, the measurements behave like conventional fan-
beam data (µ = 0). Hence, we define

δ µ =max
x∈Ω

(
µ
(
t1(x)−t2(x)

))
, δ µ =min

x∈Ω

(
µ
(
t1(x)−t2(x)

))
.

Theorem 3. Let f ∈ C ∞
c (Ω) with f ≥ 0 not constantly zero.

Then ∫
π

−π
[E Λ

µ f ](λ 1,φ)
1

ϑ⊥
φ
·∆ dφ∫

π

−π
[E Λ

µ f ](λ 2,φ)
1

ϑ⊥
φ
·∆ dφ

 ∈
[
eδ µ ,eδ µ

]
. (15)

Note that the left-hand side of (15) (henceforth called con-
sistency quotient) would be 1 for the conventional fanbeam
transform (see (4)). So this condition states that the expo-
nential fanbeam transform satisfies the conventional fanbeam
transform’s PDCC within a certain margin dependent on
the geometry (the extent of Ω and positions λ 1,λ 2) and the
attenuation coefficient.

Satisfying (15) does not guarantee consistency, as mildly
inconsistent data might still be within the bounds. However,
violating the condition implies inconsistency with certainty.

This result does not contradict Theorem 2 since the consis-
tency quotient in (15) is not continuous at f = 0. For f giving
a non-zero denominator in (15), the denominator does not
become zero when sufficiently small noise is added, making
the condition stable under low noise conditions.

Sketch of proof. We define the function f̃ (x) =
f (x)eµ(t1(x)−t2(x)) and the conventional fanbeam’s PDCC (4)
for f (x)eµt1(x) implies∫

π

−π

[E Λ
µ f ](λ 1,φ)

1
ϑ⊥

φ
·∆ dφ

=
∫

π

−π

[E Λ
µ f̃ ](λ 2,φ)

1
ϑ⊥

φ
·∆ dφ . (16)

Moreover, using the mean value theorem, it is easy to see
that

[E Λ
µ f̃ ](λ 2,φ)

[E Λ
µ f ](λ 2,φ)

∈
[
eδ µ ,eδ µ

]
. (17)

Combining the right-hand side of (16) with (17) and basic
integration properties, Theorem 3 follows directly.

4 Numerical experiments

We conducted numerical experiments to corroborate The-
orem 3’s result and to show that the interval proposed in

(0,0)

80cm

40cm

40cm

20cm

24cm

Figure 2: Illustration of the geometry used for numerical experi-
ments, with the blue dots representing the fan vertex positions. The
central 40 cm × 40 cm box represents the imaging domain con-
taining activity overlayed with an illustration of our choice of Ω.
On the right: (upper left) the NCAT phantom and its shifted form
(lower left), (upper right) the rectangular domain Ω and (lower
right) the second phantom consisting of a hot source located in the
bottom right corner of Ω.

(15) is not chosen needlessly big, but is violated by incon-
sistent enough data. To that end, we considered the fol-
lowing setup: We had fan vertex positions λ = 80ϑϕ for
ϕ = {−90◦,−88◦, . . . ,88◦,90◦}. The imaging domain was a
40 cm × 40 cm square centered at the origin, and the attenua-
tion parameter µ =−0.154 (the attenuation per cm of water).
We chose Ω= [−20 cm,20 cm]× [−14 cm,8 cm] reflecting a
box with width and height to encompass the activity. We com-
puted the consistency quotient for two activity distributions
designed to highlight specific aspects of Theorem 3. Those
activities were the NCAT phantom [11] and a (Hot Source)
phantom with constant activity in a circle with radius 1 cm at
the bottom right extremity of Ω. Those phantoms were digi-
tally represented on an array of Nx×Nx pixels with Nx = 400
and were transformed into sinograms with Ns = 200 detec-
tor pixels positioned equispaced on a flat detector covering
the relative angular range of [−arctan

( 5
12

)
,arctan

( 5
12

)
]; see

Figure 2. The exponential fanbeam transform was executed
with Gratopy [12] employing a pixel-driven approach. We
simulated motion inconsistencies by shifting the phantom for
projections with ϕ > 4◦ by 4 cm in the x-direction. This cor-
responded to an abrupt movement of the patient at 8 minutes
after the beginning of a 15-minutes scan.

Figure 3 depicts the evaluation of condition (15) for the
two scenarios by showing the consistency quotient for the
middle projection (associated with ϕ = 0) paired with any
other λ , and the corresponding bounds (the right-hand side
of (15)). For the NCAT phantom without motion (consistent
projections) the consistency quotient remained close to one,
and stayed well within the bounds given by Theorem 3. For
the NCAT phantom with motion, the consistency quotient
behaved similarly, but did violate the consistency bounds
for projections near the reference projection. For the second
phantom, the data were consistent (no motion) and, as ex-
pected, the consistency quotient remained within the bounds,
but closely followed the upper right arm of the bounds, which
supports the notion that these bounds cannot be improved
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Figure 3: Evaluation of (15) in the numerical experiments, on
the top for the NCAT phantom, below the second phantom. The
consistency quotient of the consistent measurements and the incon-
sistent measurments with motion at the 8-minute mark are depicted.
These observations are made for λ 1 = ϑϕ with the angle ϕ = 0,
while the angles of λ 2 are on the x-axis.

when using this particular consistency quotient. Simulations
with the hot source in the other three corners of the rectangu-
lar support region result in tracing the other three arms of the
bounds.

5 Summary and Outlook

This paper discussed data consistency conditions for the
exponential fanbeam transform, showing that (classical) pair-
wise data consistency conditions cannot exist for this trans-
form. As an alternative, Theorem 3 provides a weak form
of PDCC whereby a certain expression, the consistency quo-
tient, must lie within a defined interval if the two projections
are consistent. The NCAT simulations illustrated three conse-
quences of Theorem 3, namely (i) that if the projections are
consistent, the consistency quotient will lie within the bounds
defined by the interval; (ii) equivalently, values lying outside
the bounds definitely indicate inconsistency; and (iii) values
inside the bounds do not provide information on consistency.
For similar projections (fanbeam vertex positions fairly close
to each other) the bounds are reasonably small and effec-
tively detected inconsistency. For distant projections though,

the bounds can be very broad, which limits their usefulness.
However, the functional in (15) can probably be improved
upon, to achieve tighter bounds and a consequently stronger
PDCC. This might be the topic of future work.

We have illustrated the potential for patient motion identi-
fication, but other applications, such as detector sensitivity
response or identification of pinhole positions, are conceiv-
able.
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Abstract In dental cone-beam computed tomography (CBCT), the
presence of metallic inserts such as implants, crowns, and dental fill-
ings causes severe streaking and shading artifacts in a CT image, which
consequently prevent the accurate restoration of teeth and bones. Ex-
isting metal artifact reduction (MAR) methods have limitations in their
ability to preserve morphological structures of teeth in reconstructed
CT images. This study presents a novel data-driven approach for MAR
in dental CBCT that takes advantage of radiation-free intra-oral scan
(IOS) data as an extra-condition for CT image reconstruction. The IOS
data play a crucial role by providing sophisticated knowledge for teeth
morphological structure and dentition in such a way of acting as an
appropriate condition during MAR. We adopt a conditional generative
adversarial network framework, where a metal artifact corrector is
trained to generate a metal artifact-free image sampled from the target
distribution (i.e., the distribution of metal-free CBCT images) under
the condition of IOS data. Realistic simulations were performed to
show the usefulness and effectiveness of the proposed MAR method.

1 Introduction

In various fields of clinical dentistry, dental cone-beam com-
puted tomography (CBCT) has been widely utilized to under-
stand complicated anatomical structures of mandible, maxilla,
or skeleton [Sukovic2003, Yun2022]. However, in the pres-
ence of metallic inserts (e.g., implants, crowns, and dental
fillings), a CBCT image is deteriorated by metal artifacts,
making it difficult to accurately perform downstream tasks
such as bone and teeth segmentation [Gateno2007]. Hence,
reducing metal-related artifacts has drawn increased attention
in digital dentistry workflows.
Metal artifacts are caused by several physical factors, such as
beam hardening, scattering, noise, nonlinear partial volume,
and photon starvation [Lee2019, Park2017]. Streaking and
shadowing artifacts are created, resulting in a significant loss
of anatomical details such as teeth morphological structures
[Bayaraa2020]. Because multiple and large metallic objects
commonly present in dental CT scans, it is very difficult to
effectively deal with metal artifacts due to strong contami-
nation. What is more, in the practical dental CBCT imaging
environment, offset detection, FOV truncation, low radiation
dose, and 3D reconstruction characteristics attribute to make
metal artifacts more severe [Park2022A, Hyun2022].
There have been numerous studies on metal artifact reduction
(MAR), which include sinogram inpainting-based correction
[Meyer2010], statistical iterative correction [DeMan2001],
and dual-energy reconstruction [Lehmann1981]. However,
existing MAR methods are not fully satisfactory for clinical
use. The inpainting-based correction can generate secondary

Figure 1: Schematic representation of the proposed approach for
metal artifact reduction in dental cone-beam CT with an extra-
condition of intra-oral scan data.

artifacts owing to inaccurate interpolation along the metal
trace. The statistical iterative correction and dual-energy ap-
proaches require a large computational cost and an additional
radiation dose, respectively.
Recent advances in deep learning technology have been be-
ing progressing in various medical imaging fields includ-
ing MAR [Hyun2021]. Existing data-driven MAR methods
[Zhang2018, Gjesteby2019, Park2018, Lin2019, Yu2020]
have shown great potential to improve the overall image
quality, whereas it is still arduous to effectively restore sig-
nificantly corrupted or missing morphological structures. It
appears to be caused by using already severely corrupted pro-
jection data only as explicit base knowledge for recovering a
target artifact-free image [Hyun2022].
Along with the rapid development of intra-oral scan (IOS)
technologies, 3D teeth morphological information can be ac-
quired in a digital form, whose accuracy is in a similar level
to the conventional physical impression [Albayrak2021,
Roig2020]. Moreover, its data acquisition is irrelevant to ra-
diation threaten. IOS data are timely available as a new means
for assisting MAR by providing sophisticated knowledge for
teeth morphological structure and dentition. A schematic
representation is provided in Figure 1.
In this study, we present a novel data-driven approach for
MAR in dental CBCT that takes advantage of radiation-free
IOS data as an extra-condition for CT image reconstruc-
tion. We adopt a conditional generative adversarial network
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Figure 2: Data-driven approach for metal artifact reduction in dental cone-beam CT with an extra-condition of intra-oral scan data.

(GAN) framework [Mirza2014, Gauthier2014] so that IOS
data can be leveraged as an extra-condition during MAR. A
reconstruction map is trained to generate a metal artifact-free
image sampled from the target distribution (i.e., the distribu-
tion of metal-free CBCT images) under the condition of IOS
data. The training is performed using a realistic triplet train-
ing dataset [Zhang2018, Park2018], where metal-affected
images are simulated according to the CT physics model and
IOS data are using teeth segmentation from metal-free CBCT
scans.
Experiments using clinical CT and simulated IOS data vali-
dated the usefulness and effectiveness of the proposed MAR
method.

2 Method

Let p be a metal-artfacted CBCT projection, which can be
represented by

p = Sub(−ln
∫

E
η(E)exp(−AµE)dE +n), (1)

where Sub is a subsampling operator depending on the detec-
tor arrangement, η represents a normalized energy distribu-
tion of a X-ray source, A is a cone beam forward projection
operator, µE is a 3D attenuation coefficient distribution of
a human body at an energy level E, and n is CT noise. A
CBCT image is reconstructed by z = A† p, where A† is the
FDK algorithm [Feldkamp1984]. In the presence of metallic
objects, z is severely contaminated by metal artifacts.
Let x be the artifact-free CBCT image corresponding to z.
A MA corrector G : z→ x can be learned through a varia-
tional model by solving the following minimization problem
[Park2022B]: For λ > 0,

G = argmin
G

d(pG, px)+λ‖G(z)− x‖2
`2 , (2)

where d(pG, px) is a metric that measures a distance between
pG and px, and ‖G(z)− x‖2

`2 represents a pixel-wise loss that
constrains to preserving image information in z. Here, pG

and px are probability distributions for G(z) and x, respec-
tively. However, in the presence of metallic objects, existing
methods have shown limited performance for estimating px;

Figure 3: Training data generation for metal affected image and
IOS data.

so that images in pG tend to lose anatomical details such as
teeth boundaries.
The main objective of this study is to learn the corrector G
with an extra-condition of IOS data as a tool for preventing
the loss or corruption of teeth boundaries. The overall process
is illustrated in Figure 2. Denoting the corresponding IOS
data to z by s, we seek to learn a corrector G : (z,s)→ x such
that

G = argmin
G

d(pG, px,s)+λ‖G(z,s)− x‖2
`2 , (3)

where px,s is a joint probability distribution for x and s. Note
that, in the case when the distance d is given by the Pearson
divergence, the minimization for dist(pG, px,s) can be alter-
natively achieved using the conditional least-squares GAN
framework [Goodfellow2020, Gauthier2014, Mao2017].
To be precise, we assume that N triplet training samples
{(z(i),x(i),s(i))}N

i=1 are given. The proposed method finds
an optimal G by the aid of a discriminator D through the
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Figure 4: Qualitative evaluation in two test cases using clinical CBCT and simulated intra-oral scan data.

following minimization: For γ > 0,
argmin

G

1
N

N

∑
i=1
‖D(G(z(i),s(i)),s(i))‖2

`2 + γ‖G(z(i),s(i))− x(i)‖2
`2

argmin
D

1
N

N

∑
i=1
‖D(G(z(i),s(i)),s(i))+1‖2

`2 +‖D(x(i),s(i))−1‖2
`2

,

(4)
which comprises the mean squared loss under the condition s
and conditional least-squares adversarial loss related to the
discrepancy between learned and target distributions under
the condition s.

3 Result

Metal artifact-free scans were obtained from 20 subjects by
a commercial CT device (Q-FACE, HDXWILL) with a tube
voltage of 85 keV. A voxel size is 800× 800× 400 with a
resolution of 0.2× 0.2× 0.2 mm3. For network training,
metal affected and IOS data were generated. The CT physics
model in (1) were used for the generation of metal artifacts.
Once tooth segmentation was performed in metal artifact-free
images, simulated IOS data were obtained by the followed
Laplacian filtering, image erosion, and binarization. See
Figure 3.
For the generator G, the U-shape FCN [Ronneberger2015]
was used as a backbone network architecture. For the discrim-
inator D, we applied three 4×4 and one 1×1 convolution
operations with the stride of 2 and 1, respectively. The former
three operations were performed with an activation function
of Leaky ReLU and the last of hyperbolic tangent. The train-
ing was based on Adam optimizer, batch normalization, and

200×200 image patches for reducing a total computational
cost [Hyun2020].
All experiments were conducted in a computing environment
equipped with four GTX3080ti GPUs, two Xeon CPUs E5-
2630 v4, and 128GB DDR4 RAM.
We tested the proposed method by using clinical (not sim-
ulated) CBCT data with metal artifacts and simulated IOS
data. Qualitative evaluations are provided in Figure 4. We
compared the proposed method with the U-shape FCN that
was trained by data pairs of z and x without IOS data. The
experimental results showed that the proposed method can
considerably improve fine details of teeth

4 Discussion and Conclusion

This study investigated the usefulness of IOS data as extra
information for MAR in dental CBCT. IOS data containing
sophisticated knowledge for teeth morphological structures
can be leveraged as an image prior in such a way of acting as
an extra-condition in MAR. To show the effectiveness and
potential of IOS data in MAR, we conducted experiments
using clinical CBCT and simulated IOS data.
Our future research subjects include the following two topics.
The first is to test the proposed method by using real IOS
data. The second is to apply our algorithm in a unsupervised
learning setup.
For the application using real IOS data, the registration to
dental CBCT is prerequisite. Since manual registration is
time-consuming and labor-intensive, it is recommended to
use an automatic registration method. Fortunately, several
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deep learning algorithms for dental CBCT-IOS registration
[Chung2020, Jang2022] were recently proposed, seemingly
promising high performance even in the circumstance that
severe CT artifacts present. These methods can be potentially
combined with the proposed method toward imaging in the
practical environment.
In recent digital dentistry workflows, the integrated use of
IOS, facial soft-tissue scanner, and dental CBCT has been
becoming common [Shujaat2021]. Similar to IOS data, sur-
face knowledge contained in facial soft-tissue scan data might
be utilized as another constraint for MAR.
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Abstract Spectral CT has been investigated widely for a range of 

diagnostic applications with increasing potential interest for cone-beam 

CT (CBCT) applications. Current CBCT technology has largely focused 

on flat-panel detectors due to their relatively small form factor and ease 

of integration within a compact gantry that fits well in an interventional 

suite. The recent commercial availability of triple-layer flat panel 

detectors has provided a new avenue for spectral CBCT. In particular, 

while many spectral systems are limited to two channels with different 

energy sensitivity (e.g. dual layer detectors, kV-switching systems, etc.), 

a triple-layer system has the potential to be able to perform three material 

decomposition without additional constraints. Unfortunately, the spectral 

separation of a triple-layer panel is modest leading to a relatively ill-

conditioned material decomposition problem (which consequently can be 

highly noise magnifying). In this work, we explore the possibility of three 

material decomposition and CBCT using a triple-layer panel and two 

sophisticated processing approaches: 1) model-based projection-domain 

material decomposition and 2) deep-learning-based projection-domain 

decomposition. Both approaches use simple filtered-backprojection of 

material line integral estimates to form 3D material maps. A simulation 

study with realistic measurement models is conducted using 

anthropomorphic phantoms and three material bases (water, calcium, and 

exogenous gadolinium contrast agent). A preliminary performance 

evaluation of reconstructed phantom data is provided to illustrate the 

potential of spectral CBCT using triple-layer detectors. 

1 Introduction 

 

Spectral x-ray imaging has the potential to enable a number 

of novel clinical diagnostics and CT image quality 

improvements [1] including non-contrast-enhanced image 

synthesis, virtual monoenergetic images, beam hardening 

and metal artifact reduction. The capability of spectral 

method to provide material separation similarly has the 

potential to enhance various clinical tasks like artery 

calcification detection and visualization, uric acid 

characterization/quantification, etc. Such applications are 

increasingly being developed and translated using 

diagnostic CT scanners. Research into the application of 

spectral imaging is also being investigated in cone-beam 

CT[1]. Cone-beam CT (CBCT) applications often target 

specific interventional procedures and their associated 

diagnostics. Applications include hemorrhage detection 

(including contrast agent extravasation), revascularization 

assessments, and vascular lumen characterization[2]. 

Tube voltage switching[3] and multi-layer flat-panel 

detector[4] are two approaches that have been investigated 

for spectral cone-beam CT data acquisitions. Tube voltage 

switching can provide large spectral separation and is 

compatible with the conventional flat-panel detectors 

(FPDs). However, this strategy requires a more complex x-

ray generator and may have increased sensitivity to patient 

and gantry motion due to projection mismatches between 

different energy channels. In contrast, recently available 

multi-layer flat-panel detectors provide projection data 

where spectral channels are collected simultaneously, 

minimizing cross-channel geometry mismatches and 

motion-induced artifacts. Dual-layer flat-panel detector [4] 

has been explored for radiography and interventional 

imaging systems. Strictly speaking, such two channel 

systems only permit differentiation between two materials. 

While a volume constraint could be added to permit a third 

material estimate, such a constraint does not hold 

universally (e.g. in the lungs).  

Three-material decomposition is particularly important for 

separation of exogenous contrast agents and from 

anatomy[5]. Applications include angiography [6], 

perfusion studies, and lesion enhancement.  

 

Recently available triple-layer flat panel detectors provide 

one potential avenue to produce three-material 

decompositions without an explicit volume constraint. 

However, such technology is challenged by the relatively 

poor spectral separability of these detectors (and 

consequent ill-conditioning of the decomposition problem). 

In this work, we conducted a study to investigate the 

potential of creating accurate water, calcium, and contrast 

density images using triple-layer CBCT. We developed and 

evaluated two processing schemes to produce 3D material 

estimates: 1) a model-based iterative approach; and 2) a 

deep-learning-based decomposition. Both approaches 

consider a projection domain decomposition followed by 

FDK reconstruction. Preliminary evaluations comparing the 

two approaches are provided. 

2 Materials and Methods 

The two material decomposition approaches are introduced 

in the following sections.    

2.1. Model-based projection-domain decomposition 

The general forward model for a multi-layer flat-panel 

detector can be written in matrix notation as [7]:  

�̅�(𝑞) = 𝐁𝐒 exp(−𝐐𝐀𝜌 ) = 𝐁𝐒 exp(−𝐐𝑙) (1) 

where 𝑙 ∈ ℝ𝑗𝑘 is the vectorized material density projection  

(i.e., the physical density 𝜌 of each basis material forward 

projected by operator 𝐀 ) with 𝑗  pixels and 𝑘  basis 

materials, 𝐐  stacks the mass attenuation coefficients of  

each basis material, and exp(−𝐐𝑙)  represents the total 

attenuation in each energy bin. The matrix  𝐒 characterizes 
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the overall spectral sensitivities of the system and 𝐁 models 

the (potentially) layer-dependent blur kernels. 

Assuming measurements 𝑦 follow a multivariate Gaussian 

distribution, 𝑦~𝒩(�̅�, 𝚺) , the regularized likelihood 

objective function for material decomposition can be 

written as: 

𝑙 = argmax𝑙(Φ(𝑙; 𝑦)) (2)

where Φ(𝑙) = (𝑦 − �̅�(𝑙))𝑇𝚺 
−1(𝑦 − �̅�(𝑙)) + 𝛽𝑙𝑇𝐑𝑙

 

 

A quadratic regularization functin (𝑙𝑇𝐑𝑙) is used in this work 

that penalizes the differences between the 4-nearest 

neighboring pixels within each material map. We applied 

Newton’s method to solve the objective. Within the nth 

iteration, the material maps are updated according to: 

𝑙𝑛+1 = 𝑙𝑛 − 𝛼(∇𝑙
2Φ)

−1
∇𝑙Φ (3) 

where the gradient, ∇𝑞Φ , and Hessian, ∇𝑞
2Φ , of the 

objective are given by:  

∇𝑞Φ = 𝐐T𝐃𝟏𝐒𝐓𝐁𝐓𝚺−𝟏(𝐁𝐒exp(−𝐐𝑙) − 𝑦) + 𝛽𝐑𝑙 (4) 

∇𝑞
2Φ ≈ 𝐐𝐓𝐃𝟏𝐒𝐓𝐁𝐓𝚺−𝟏𝐁𝐒𝐃𝟏𝐐 + 𝛽𝐑 (5) 

where 𝐃𝟏 = diag{exp(−𝐐𝑙)}. The update step size, 𝛼, is 

empirically chosen to be 0.5.   
We additionally adopted the following strategies to model 

additional physical effects, improve performance, and 

accelerate convergence: 1) The middle and bottom layer 

projections were registered to that of the top layer using an 

affine transformation to account for geometry mismatch and 

pixel grid misalignment among the layers; 2) The 

projections were pre-processed by deconvolving the blurs 

𝐁 using the Richardson–Lucy method [8], thus making the 

pixels approximately separable; 3) An initial material 

decomposition was first performed on 8x downsampled 

projection data, upsampled to the full resolution, and then 

used as initialization for the Newton update. The latter 

strategy increased robustness against local minima induced 

by image noise. 

The application in this work focuses on contrast-enhanced 

studies using gadolinium as the contrast media. The three 

basis materials were therefore chosen to be water, calcium, 

and gadolinium. The material-specific regularization 

strength parameters, 𝛽, were chosen to minimize the error 

in the gadolinium images. The values are set to 2 ×

10−6, 2 × 10−5,  and 2 × 10−4  for water, calcium, and 

gadolinium, respectively. 

2.2. Deep-learning projection-domain decomposition  

We have previously developed a deep learning network 

capable of performing three material decomposition using 

simulated data generated from a realistic forward model of 

the triple layer detector (Eq.1).  The network architecture is 

shown in Fig. 1 The input to the network consists of a three-

channel input formed by concatenating the three projections 

from the triple-layer detector, while the output consists of 

three basis material maps. Material decomposition is 

performed by a network following the ResUnet architecture 

with 9 residual blocks (ResBlock) [9]. Each block consists 

of two 3×3 convolution layers separated by a LeakyReLU 

activation layer, one residual connection adding the block 

input to output, and a final LeakyReLU activation layer. 

Each ResBlock in the encoder portion of the network 

reduces the dimension of the input by half and doubles the 

number of feature channels, while each ResBlock in the 

decoder portion does the opposite. A final 1×1 convolution 

layer is applied to reduce the number of channels to three - 

the number of basis materials.  

For training, we adopted the following loss function: 

ℒ = ℒ𝑝 + 𝜆1ℒ𝑒𝑑𝑔𝑒 + 𝜆2ℒ𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (6) 

The first term, ℒ𝑝(𝑙, 𝑙) = ‖𝑙 − 𝑙‖
2

2
, is a typical MSE loss 

which quantifies the difference between the predicted 

material density projections, 𝑙, and the ground truth, 𝑙. We 

additionally included a gradient-based loss term,  
ℒ𝑒𝑑𝑔𝑒(𝑙, 𝑙) = ‖∇𝑙 − ∇𝑙‖

1

 
, which has been explored to 

preserve spatial resolution[10]. The third term is a data 

consistency loss that penalized differences in the 

measurement (𝑦) domain rather than the material density 

line integral ( 𝑙 ) domain, i.e., ℒ𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(𝑦, 𝑙) =

‖𝐁𝐒 exp(−𝐐𝑙) − 𝑦‖
2

2 
. Such loss functions have been 

investigated in previous work to incorporate a physics-

driven constraint to the network output[11]. The scalars, 

𝜆1, 𝜆2, control the relative weight of each term. Different 

combinations of 𝜆1, 𝜆2 were investigated for their impact on 

imaging performance. The optimal weighting was selected 

to minimize the MSE over all three material maps (𝜆1 = 10 

and 𝜆2 = 1). The network was implemented in PyTorch. 

We used the Adam optimizer with a batch size of 4 and 

Figure 1: ResUnet network architecture with triple layer projection data (𝑦) as an input, and predicted material projections (𝑞ො) as the output.  
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terminated after 400 epochs based on empirical observation. 

The loss function typically decreased by <0.1% in the last 

100 iterations.  

 

2.3 Phantoms and data simulation 

Imaigng phantoms in this work were generated using the 

XCAT package[12]. High resolution volumetric chest 

phantoms were genereated at a voxel size of  0.4 mm×0.4 

mm×0.4 mm. The ground truth density of water and calcium 

are obtained using an image-domain decomposition method 

applied to two attenuation images generated at 60 keV and 

100 keV. Vessels are uniformly assigned to 20 mg/ml of 

gadolinium. The ventricles and atria in the heart were 

intentionally not enhanced for better visualization of 

overalying vessels. 

To generate simulated projection data for both the model- 

and learning-based methods, we used the detector blurs, 𝐁, 

and spectral sensitivities,   𝐒 , shown in Fig.2. These 

characteristics are intended to model a realistic triple-layer 

panel comprised of three stacked indirect flat-panel 

detectors with ~250 µm of CsI in each layer. Projection data 

were simulated according to Eq.1 using a pixel size of 

0.28mm×0.28mm. Noisy projections was obtained by 

adding independent Poisson noise before applying 𝐁. 

To generate training data for the learning-based 

decomposition algorithm, we used 24 XCAT patient models 

to obtain different realizations of chest phantoms. We 

simulated 100 projections evenly distributed over 360o for 

each phantom to obtain 2400 projections, of which 2000 

were used for training while the remaining 400 were used 

for validation. We randomly extracted 32 patches (256 

pixels×256 pixels) from each projection, and randomly 

applied horizontal or vertical flips for data augmentation.    

2.4 Reconstruction 

The model-based and learning-based algorithms were 

applied to 360 projections uniformly distributed over 360o. 

The resulting estimated material density line integrals 𝑙 
were reconstructed using an in-house FDK algorithm to 

obtain the 3D density distribution (𝜌).  

2.5. Evaluation  

We evaluted the structural similarity index measure (SSIM) 

and root-mean-square error (RMSE) of the estimated 3D 

density distribution with ground truth. Note that the ground 

truth here is the FDK reconstruction of the ground truth 

mateiral density line integrals from the XCAT phantom. We 

further compared line profiles through anatomical 

structures for spatial resolution comparison.  

3 Results 

Figure 3 shows the 3D density distribution of water, 

calcium, and gadolinium following the model- and 

learning-based decomposition methods.  

Figure 3:  FDK reconstruction of material projections obtained by model-based decomposition, learning-based decomposition, and ground 

truth projections. The color images display the pixel-wise absolute error. RMSE unit: mg/ml. 

Figure 2: Spectral sensitivities (A) and MTFs for each channel (B). 
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From visual observation, the model-based method exhibits 

significant bias in all three material images – the water 

image appears overly smooth; lung parenchyma is absent in 

the water images but present on the calcium image; chest 

wall and patient boundary are present in the gadolium 

image. Larger errors are observed around tissue boundaries, 

consistent with previous observations of cross talk effects 

amongst material maps. Careful tuning and design of 

regularization can potentially mitigate such biases[13].  

The learning-based method, on the other hand, is able to 

achieve low bias in the calcium and gadolinium images. The 

water image presents significant artifacts, likely from the 

propagation of different estimation bias from individual 

projections. The advantage of the learning-based method 

over model-based method is also reflected in the higher 

SSIM and lower RMSE in all three material images.  

To further evaluate algorithm performance, we plotted the 

line profiles across anatomical structures in each material 

image. Consistent with visual observation, the model-based 

method produced blurred water and calcium images. The 

gadolinium image has comparable spatial resolution with 

the ground truth but exhibits an over-estimation of 

concentration by ~25%. The learning-based method shows 

better performance, with line profiles closely resembles 

those from the ground truth in both spatial resolution and 

density estimates.  

4 Discussion and Conclusion 

We have presented a simulation study to explore the 

potential of three material decomposition using a triple-

layer panel. Such a system would fit within the current 

interventional imaging paradigm that largely uses flat-panel 

detectors for imaging. In our preliminary studies, we find 

that both model-based and deep-learning methods can 

provide three material estimates in a water-calcium-

gadolinium decomposition problem, though imaging 

performance is significantly improved with the deep 

learning approach. We note that the deep learning approach 

has a significantly faster processing speed making it more 

appropriate for the workflow of an interventional suite.  

A number of limitations of this preliminary work are noted 

including the focus on gadolinium contrast (as opposed to 

the more popular iodine contrast agent) due to the greater 

potential for separation from calcium; a limited 

investigation of regularization strategies for the model-

based approach; and a limited phantom evaluation. Despite 

these limitations, the technology appears to hold promise 

and we seek to continue to address these limitations in 

ongoing simulation studies and physical experiments. 
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Abstract In X-ray computed tomography(CT), sparse-view CT has
been proposed as a way to reduce a radiation dose. However, sparse-
view CT generates streak artifacts that degrade image quality (IQ).
To address this problem, various deep learning (DL)-based methods
for streak artifacts reduction have been developed. To assess the
performance of streak artifacts reduction methods, root mean square
error (RMSE) and structural similarity index measure (SSIM) are
commonly adopted. However, these two assessments cannot guarantee
superiority in terms of diagnostic task performance. In this work, we
performed a signal detection task using a convolutional neural network
(CNN)-based ideal observer (IO) to evaluate the diagnostic IQ of streak
artifacts reduction methods. We compared the performances of three
DL-based streak artifacts methods with two differences: the domain
where the input of CNN was defined and where the loss function
was computed. Our result shows that the methods utilizing CNN
in the image domain outperform the methods utilizing CNN in the
sinogram domain in terms of SSIM, and RMSE. On the contrary, the
methods utilizing CNN in the sinogram domain performed better IO
performance of the detection task than the methods utilizing CNN in
the image domain.

1 Introduction

To reduce radiation exposure during computed tomography
(CT) scans, sparse-view sampling using a smaller number
of projection views can be adopted [1]. However, when
CT images are reconstructed from sparse-view sinograms
via filtered back-projection (FBP), streak artifacts are gen-
erated, which degrades image quality (IQ). To address this
problem, various methods such as iterative reconstruction
and deep learning (DL)-based methods have been proposed
[2, 3], and shown superior performances in terms of full
reference image quality (FR-IQ) metrics such as root mean
square error (RMSE) and structural similarity index measure
(SSIM) [4]. Based on these FR-IQ results, previous stud-
ies [3, 5] concluded that DL-based methods are effective for
streak artifacts reduction.
However, these FR-IQ metrics cannot guarantee the superi-
ority of diagnostic tasks such as detection tasks and other
diagnosis-related tasks, because the FR-IQ metrics focus
on comparing the corrected image with original full-view
images. To address this limitation of FR-IQ metrics, per-
formances of the detection task can be employed as task-
based IQ (Task-IQ) metrics, and the numerical observers are
commonly used to evaluate detection task performances [6].
Among them, an ideal observer (IO) can be used to evalu-
ate the amount of restored information related to the signal
detection task. However, the calculation of IO performance
is intractable in complex background images such as CT

images. Therefore, convolutional neural network (CNN)-
based techniques [7, 8] have been proposed to approximate
IO performance.
By using CNN-based IO, Zhang et al. and Li et al. [9, 10]
evaluated the IO performances of image restoration meth-
ods and have confirmed that image domain-based methods
cannot improve IO performance. These results are in agree-
ment with the data processing inequality (DPI) theorem [11]
which means post-processing cannot restore the degraded
information. However, previous studies are limited to im-
age domain-based methods and did not examine sinogram
domain-based methods for streak artifact reduction in sparse-
view CT. Sinogram domain-based methods can reduce the
additional information loss during the image reconstruction
process by increasing the number of projection views of the
sinogram, thus IO performance can be improved compared
to sparse-view CT images.
Therefore, this study aims to compare the detection perfor-
mance of image domain-based and sinogram domain-based
streak artifacts reduction methods.

2 Method

2.1 Implementation of DL-based streak artifacts re-
duction methods

In this study, we evaluated three streak artifacts reduction
methods, and the network architectures are based on the en-
hanced deep super-resolution network (EDSR) [12]. EDSR
is a network designed for super-resolution of the natural im-
age that ensures high performance through multiple residual
connections and an upsampling module with pixel-shuffle
layers [13] as shown in Figure 1. Furthermore, we designed
the methods with two differences: 1) the domain in which
the EDSR is applied and 2) the domain in which the loss
function is calculated.
First, we evaluated the method of performing streak arti-
facts reduction trained by calculating the loss between the
output image and the full-view image, referred to as image
domain processing-image domain loss method (IPIL). Since
the resolution of the input and target images are the same,
the upsampling module in the EDSR is removed in IPIL.
Next, we evaluated the method of obtaining upsampled sino-
grams from sparse-view sinograms trained by calculating
the loss between the output sinogram and the full-view sino-
gram, referred to as sinogram domain processing - sinogram
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domain loss method (SPSL). The upsampling modules of
the EDSR in SPSL used 1D pixel-shuffle layers because it
performs 1D upsampling along the projection views unlike
the EDSR designed for super-resolution of 2D images. The
output sinograms are reconstructed into images via full-view
FBP to compare results with other methods.
Last, we evaluated the method of obtaining upsampled sino-
grams in the same way as SPSL, but the loss is calculated
in the image domain after FBP. This method is referred to
as sinogram domain processing - image domain loss method
(SPIL). Descriptions of three DL-based streak artifacts reduc-
tion methods are illustrated in Figure 2.

Figure 1: Architecture of EDSR

(a) Image domain processing - Image domain loss
(IPIL)

(b) Sinogram domain processing - Sinogram domain loss (SPSL)

(c) Sinogram domain processing - Image domain loss
(SPIL)

Figure 2: Descriptions of streak artifacts reduction methods

2.2 Formulation of Signal Detection Task

To evaluate the three streak artifacts reduction methods in
terms of Task-IQ, we formulated a signal detection task
designed as signal-known-exactly (SKE) and background-
unknown conditions. A signal detection task classifies
whether a given image satisfies signal absent hypothesis H0

Figure 3: Architecture of ResNet-IO

or signal present hypothesis H1. In detail, the signal detection
task can be expressed for a given image g as follows:

H0 : g = H (FBP(N (sb)))

H1 : g = H (FBP(N (sb + ss)))
(1)

where sb denotes sinogram of background, and ss denotes
sinogram of signal. H and N denote image domain pro-
cessing and sinogram domain processing operator, respec-
tively. Note that the operator H and N are dependent on
the specific method used for streak artifacts reduction. For in-
stance, in the case of SPIL, H and N represent the identity
operator and the EDSR-based sinogram domain upsampler,
respectively.
We trained a CNN-based IO to classify the signal present
case and signal absent case. As a CNN-based IO, we used
a CNN architecture that contains residual connections [14],
and it is denoted as ResNet-IO.
The architecture of ResNet-IO is shown in Figure 3. To
improve the performance of ResNet-IO closer to IO, deter-
mining the optimal depth to avoid underfitting or overfitting
is important. Therefore, we trained the network using differ-
ent numbers of convolution layers with residual connections,
including 4, 6, 8, 10, and 12 layers and selected the network
with the best validation loss.

2.3 Dataset preparation and training details

We used the "2016 NIH-AAPM-Mayo Clinic Low-Dose CT
Grand Challenge" dataset from the Mayo Clinic. This dataset
consists of normal-dose data and low-dose data, and we
used datasets of 10 patients in normal-dose data to generate
paired full-view and sparse-view datasets. We generated full-
view sinogram data by using 512-view projections through
Siddon’s algorithm [15] on a fan-beam geometry system.
After that, sparse-view sinograms were generated by down-
sampling full-view sinograms into 64-view projections, and
sparse-view and full-view CT images were reconstructed
through FBP. The fan-beam geometry parameters are sum-
marized in Table 1.
For training streak artifacts reduction networks, we used
paired datasets from 8 patients: 6 patients for the training, 1
patient for the validation, and 1 patient for the test. We used
the L1 loss function with the initial learning rate of 1×10−4.
In addition, we used Adam optimizer [16], and β1 and β2
were set as 0.9 and 0.999.
For the dataset of the signal detection task, 2 patients’ data
were used. We generated Gaussian signals for the signal

196 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Table 1: Parameters of fan-beam CT geometry

Distance between source and detector center (mm) 1085.6
Distance between source and isocenter (mm) 595

Number of detector elements 512
size of each detector element (mm) 1.6

Reconstructed Image resolution (pixels) 0.668
The pixel size of the reconstructed image 512×512

detection task and varied the size and intensity of the signals:
1) fixing the peak signal intensity to 80 HU and changing
the standard deviation of Gaussian signal as {1.5,2,2.5,3}
pixels, 2) fixing the standard deviation of Gaussian signal
as 2 pixels and changing the peak signal intensity within
{40,60,80,100} HU. Then, 512-view and 64-view sino-
grams of Gaussian signals were obtained and inserted into
the full-view and sparse-view background sinograms, respec-
tively. These signal-inserted sinograms were reconstructed
into images by each reconstruction method: 64-view FBP,
512-view FBP, IPIL, SPSL, and SPIL. The reconstructed CT
images were cropped into patches of 64× 64 pixels where
the signal is located in the center of each patch. We randomly
cropped a total of 66000 patches for each method to train a
ResNet-IO model, excluding the part where the background
of the patch is air. From 66000 patches, 50000 patches were
used as training data, 6000 patches as validation data, and
the remaining 10000 as test data. We used the binary cross
entropy (BCE) loss function with the initial learning rate of
3×10−5. In addition, we used Adam optimizer [16], and β1
and β2 were set as 0.9 and 0.999.

2.4 Image quality assessments

For FR-IQ metrics, we used SSIM and RMSE. For the Task-
IQ metric, we calculated the Pc value from the result of
ResNet-IO. The Pc value is a measure of the accuracy of
predicted values. By comparing the Pc values, it is possible
to compare the amount of restored information related to the
detection task of the three streak artifacts reduction methods
relatively.

3 Result

3.1 FR-IQ evaluation of streak artifacts reduction
methods

we evaluated streak artifacts reduction methods in terms of
FR-IQ metrics. Table 2 presents the average SSIM and PSNR
values from the test dataset. Three DL-based streak artifacts
reduction methods show improved values compared to the
64-view FBP images in terms of FR-IQ metrics. Among
the three DL-based methods, IPIL shows the highest per-
formance, and SPIL shows better values than SPSL.These
results confirm that utilizing CNN in the image domain is
superior to utilizing CNN in the sinogram domain in terms

Figure 4: Application results of (a) 64-view FBP, (b) IPIL, (c)
SPSL, (d) SPIL, and (e) 512-view FBP, respectively. 2nd and 3rd

rows show enlarged patches emphasized in 1st row for two cases,
each signal present and signal absent. The display windows are
[−250 300]HU for 1st row and [−200 150]HU for 2nd and 3rd

rows.

Table 2: Average SSIM and RMSE calculated over all 533 test CT
images.

64 view FBP IPIL SPSL SPIL
SSIM 0.367±0.0433 0.8753±0.0233 0.8715±0.024 0.8739±0.0239

RMSE(HU) 103.9112±13.1631 21.5347±1.6883 22.3133±2.4603 22.0533±2.39

of FR-IQ metrics.

3.2 Task-IQ evaluation of streak artifacts reduction
networks

Task-IQ evaluation was performed using the signal detec-
tion task. Figure 4 shows the example patches of the signal
present and signal absent case. In 64-view FBP images, it
is difficult to classify the signal present case and signal ab-
sent case because of streak artifacts. Similarly, in the case
of IPIL, it is difficult to classify the signal present case and
signal absent case even though streak artifacts are removed.
In contrast, the signal present and signal absent cases can be
classified clearly in the case of SPSL and SPIL.
These observations are also confirmed in the evaluation using
Pc values shown in Figure 5. The SPSL and SPIL methods
show significantly higher Pc values compared to the IPIL
method. The results of the Pc evaluation demonstrate that the
application of CNN in the sinogram domain is more effective
for improving IO performance enhancement of signal detec-
tion task than the application of CNN in the image domain.

4 Conclusion

In this study, we compared the detection task performance of
three DL-based streak artifacts methods that have differences
in the domain where the CNN is utilized and the loss function
is computed. We employed the ResNet-IO performance as
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Figure 5: Plots of Pc values and its 95% confident intervals:
(a) Peak value of the signal is changed, (b) Size of the signal
is changed.

a Task-IQ metric to evaluate ability to restore information
related to the detection task. Our study showed that SPSL
and SPIL significantly outperformed IPIL in terms of the
ResNet-IO performance of the signal detection task. This
investigation suggests that sinogram domain processing is
one of the key factors for improving the detection task per-
formance in the field of sparse-view CT.
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Abstract Scatter correction methods currently in clinical use often
require first-pass reconstruction and subjected to artifacts and trunca-
tion. We use the deep scatter estimation (DSE) introduced in [1] to
predict the scatter signal of an on-board CBCT system in the projection
domain. To demonstrate that DSE can be trained with scatter estimates
other than those from Monte Carlo simulations. The projections and
the scatter distribution for training was calculated with a fast-linear
Boltzmann transport equation (LBTE) solver. The simulated CBCT
system has an anti-scatter grid, a bowtie filter, a titanium prefilter
as well as a shifted detector. Training and validation of the neural
network used simulated data, while testing was done on simulations
as well as phantom measurements. We benchmarked DSE against
a kernel-based scatter correction and the LBTE which was used to
generate the training data. For the simulated scans, DSE outperforms
the kernel and LBTE methods using the mean absolute error compared
to a scatter-free reconstruction. For the measurements no scatter free
scan is available, again, the DSE shows less visible scatter artifacts.

1 Introduction

With cancer being one of the leading causes for death world-
wide [2], the effort to extend and improve cancer treatment is
significant. One of the principal treatments is radiation ther-
apy, which uses ionizing radiation to deactivate cancer cells.
The type of particle used depends on availability, tumor type,
and location, but for all particles, accurate representation of
the patient’s anatomy is required to create a good treatment
plan. Better imaging results in less damage to healthy tissue.
Therefore, imaging techniques are an important part of ra-
diation therapy. Today’s treatment systems, such as Varian
Medical Systems’ Ethos™, feature an on-board CBCT in the
gantry of a linear accelerator (LINAC). This gives the pos-
sibility to adapt the treatment plan and help to position the
patient for each treatment session.
Current clinical practice in radiotherapy is to acquire a plan-
ning CT of the region of interest (ROI). For this, clinical CTs
are used, due to the limited image quality of on-board CBCTs.
Inferior image quality is caused by artifacts such as scatter or
beam hardening, which always occur when the physics of CT
data acquisition are not modeled appropriately. In the case
of scattering, the reconstruction algorithms assume that the
detected photons travel in a straight line through the scanned
object, when in fact photons passing through the tissue are
scattered, reducing their energy and changing their direction.
Thus, the scattered photons cause a secondary signal at the
detector, distorting the actual signal of the unscattered pho-

tons. In the reconstruction, the scatter is visible as streaks,
dark areas and cupping. This results in inaccurate CT values,
which are important for calculating the treatment plan.
In conjunction with scatter suppression methods, such as
anti-scatter grids or collimators [3], various scatter estima-
tion methods can be used to correct for the artifacts. The
gold standard among these methods is Monte Carlo (MC)
simulation, which has the disadvantage of very high compu-
tation time. For a clinical application, faster methods such as
a deterministic solver of the linear Boltzmann transport equa-
tion (LBTE) [4, 5] or so-called kernel-based approaches [6]
are used. More recently, deep learning (DL) methods such
as neural networks are investigated [1, 7, 8]. Most DL-based
approaches have the benefit to estimate the scatter in the pro-
jection domain and do not rely on a prior reconstruction.
In this work we investigate, the possibility to train DSE with
scatter estimated by the LBTE solver Acuros® CTS, which
was introduced in [4, 5]. However, it has the downside of
relying on a prior reconstruction. Thus, training DSE with
scatter estimates can give better results in edge cases such as
truncation, for which no complete prior can be reconstructed.
In addition, if DSE shows promising results, it should be
possible to adapt it to other systems rather easily when they
already use Acuros as scatter correction method.

2 Materials and Methods

2.1 Scatter Estimation

Deep Scatter Estimation (DSE)

The deep scatter estimation (DSE) was introduced in refer-
ence [1] for scatter estimation in industrial CT, and it was
shown that it can be trained by MC simulations for CBCTs
with different tube voltages, noise levels, and anatomical
regions [7]. More recently, it also showed promising results
for the cross and forward scatter estimation in clinical CTs
[9]. DSE is a deep convolutional neural network based on
the U-net [10]. The encoding (downward) path consists of
seven encoding blocks, each of which has three convolutional
layers with a 3×3 kernel followed by a rectified linear unit
(ReLU) activation. For pooling, a 3×3 convolution with a
stride of 2×2 was used and the number of feature channels
is doubled, starting with 32 going up to 2048. DSE was
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Figure 1: CT reconstructions of a simulated and truncated patient scan with and without scatter correction. The ground truth reconstruction
used the scatter free forward projections. C = 0 HU, W = 1000 HU

implemented using PyTorch Lightning 1.7.7 and PyTorch
1.12.1. Training was performed on an Nvidia RTX A5000
with an AdamW [11] optimizer, an improved version of the
Adam [12] optimizer. The weights were initialized using a
uniform initialization as proposed in reference [13] and the
biases with zeroes. The loss function was the mean absolute
percentage error (MAPE) scaled to the scatter-to-primary ra-
tio, the so called SPMAPE as it was introduced in reference
[9]:

SPMAPE =
1
N ∑

∣∣∣∣SBT −SDSE

SBT

SBT

Iprimary, BT

∣∣∣∣ (1)

=
1
N ∑

∣∣∣∣SBT −SDSE

Iprimary, BT

∣∣∣∣ , (2)

where S is the scatter intensity estimated by a Boltzmann
transport (BT) equation solver or DSE and Iprimary, BT the
primary intensity as calculated by the BT solver. The initial
learning rate was set to 5 ·10−5 and a plateau scheduler was
used to decrease the learning rate by half if the validation
loss did not decrease for 20 epochs. In addition, an early
stopping was used if the validation loss did not decrease for
35 epochs, otherwise the training stopped after 200 epochs.
Scatter distributions are known to be of low frequency. There-
fore, DSE was not applied to the full projection, but to a
downsampled version with 320×320 pixels. As input, the
so-called pep function ([7]) was used, which is the scaled
projection p and given by:

pep = pe−p, (3)

with p as:

p =− ln
(

Iprimary, BT +SBT

I0

)
, (4)

Linear Boltzmann Transport

The work process of the deterministic LBTE solver Acuros
can be summarized into three steps. First, the photons are
traced from the source to all voxels, in a second step the
scattering and absorption is calculated in an iterative way,
starting with the distribution of unscattered photons. From
there, the scatter flux from each voxel to every other voxel can
be calculated giving the flux of first order scattered photons
at each voxel. This is repeated until a convergence criteria
is reached. In the last step, the total scattering flux from all
voxels is traced to the detector pixels [4, 5].

2.2 Dataset

Geometry

The scanner geometry used in the simulation corresponds to
the Ethos™ by Varian Medical Systems. It includes a titanium
pre-filter and bowtie filter, a one-dimensional anti scatter
grid, a tube voltage of 125 kV and has a detector shifted by
175 mm to extend the field of measurement. The detector
has 1280×1280 pixels with a 1×4 binning, resulting in a
projection size of 1280×320.

Simulation

For training and validation of the proposed DSE several
thousand projections were simulated with the LBTE solver
Acuros® CTS. For the simulation, 50 clinical CTs from a
Siemens Somatom Force (tube voltage of 70 kV) were used
as patient prior. Since the scans were from neck to abdomen,
several simulations were done at different z position. To
simulate realistic projections, the z positions were chosen in
a way, that the primary forward projection did not contain the
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upper or lower edge of the prior CT. To train the network on
as many different anatomies as possible, a circular scan was
simulated every 34.8 cm. This corresponds to the maximal
possible reconstruction size in z. As explained above, the
patient position has an influence on the scatter distribution,
therefore different x and y positions of the patient were simu-
lated for every z position by randomly shifting the patient 5
times between ±5 cm. For each of these positions, 47 projec-
tions were simulated uniformly distributed over 360°. In total,
32,195 projections were simulated and 40 patients were used
for training while 10 were used for validation. For testing,
several patients from the validation set were fully simulated
(840 projections per scan) and iterative reconstructed with a
slice thickness of one millimeter. For DSE every 25th projec-
tion was scatter corrected and interpolated for the projections
in between. The estimated scatter intensity was clipped to
95% of the uncorrected projection value and smoothed with
a Gaussian with a sigma of σx,y = 5 px.

2.2.1 Measurements

In addition for testing, a Multipurpose Chest Phantom N1
“LUNGMAN” by Kyoto Kagaku® was measured with dif-
ferent couch positions. As mentioned above, the simulation
mimic the Ethos by Varian Medical Systems, thus the mea-
surements were done on said scanner. One scan consisted
out of 896 projections and was iterative reconstructed with a
slice thickness of one mm. The clipping and the smoothing
was applied as described for the full simulated scans.

3 Results

3.1 Simulation Results

The DSE scatter corrected reconstructions are compared to
the ground truth, the scatter free reconstruction of the simu-
lated forward projection, and the different scatter correction
methods applicable at the CBCT system, the LBTE solver
Acuros and a kernel based approach called fast adaptive scat-
ter kernel superposition (fASKS). Table 1 shows the results
for the different scatter correction methods. As introduced
above, the scatter correction with the LBTE solver relies on a
prior reconstruction, which was scatter corrected with fASKS
for better results. On truncated scans as seen in Figure 1 the
deviation to the ground truth, the reconstruction of the scatter
free forward projections, for the DSE appears to be smaller
than Acuros. As mentioned earlier, this is to be expected
since LBTE methods rely on a first-pass reconstruction that
is not completely artifact-free or even truncated. This leads
to errors in the estimated scatter.

3.2 Phantom Measurement

For the phantom measurements, DSE and fASKS were com-
pared to Acuros, since it is the Varian preferred standard and
there is no scatter free ground truth. Again DSE performs

Correction Method MAE

Kernel 52.3 HU
BT 11.1 HU
DSE 6.7 HU
Uncorrected 104.3 HU

Table 1: Mean absolute error (MAE) at the patient between the
reconstruction of the simulated primary projection without scatter
and the reconstruction of the scatter-corrected projection for the
different methods and without any correction.

Correction Method MAE

Kernel−BT 26.1 HU
Uncorrected−BT 73.3 HU
DSE−BT 20.6 HU

Table 2: Mean absolute error (MAE) at the patient of the re-
constructed measurements of the Lungman phantom between the
projections corrected with the linear Boltzmann equation solver
(BT) and the projections corrected with DSE or a kernel based
approach.

better than fASKS (2), and as it can be seen in Figure 2 the
dark streaks from the scatter of the rib bone, seems less pro-
nounced for the DSE corrected scans compared to the other
methods.

4 Discussion

DSE shows good results for the simulated scans. The mean
absolute error to the ground truth, the scatter free reconstruc-
tion, is smaller for DSE than for the other two correction
methods, kernel based and BT solver. The patient position
relative to the rotation center appears to be important for the
scatter estimation, highlighted by the fact, that the perfor-
mance of DSE improves if additional input about the patient
position are supplied for the scatter estimation. On measured
data, no slit scan was available, therefore the BT corrected
reconstruction was used for the comparison, since it is the
baseline scatter correction by Varian on the used scanner.
Again, DSE outperforms the Kernel based approach. In ad-
dition, the dark streaks caused by the scatter of the rib bone,
seems less pronounced in the DSE reconstructed image, com-
pared to BT corrected image.

5 Conclusions

DSE can be trained on scatter estimations of a deterministic
LBTE solver and shows good performance on real scans.
Supplying the network with additional information about the
patient position increases the performance.
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Figure 2: CT reconstructions of a Lungman measurement with and without scatter correction. The difference to Acuros is chosen,
because it is the baseline scatter correction for the Ethos system. The red arrow show a dark streak which appears to be less pronounced
in the DSE corrected reconstruction, compared to the other methods. C = 0 HU, W = 1000 HU
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Abstract Partial Volume Effect impacts the spatial resolution of
SPECT images. We investigated the feasibility of a deep learning-
based Partial Volume Correction method (PVCNet) that compensates
for the effect of collimator blurring on 2D projections, before re-
construction. A large dataset containing 600,000 pairs of synthetic
projections was generated and used to train two consecutive UNets
(one for denoising, one for PVC). Scatter and attenuation were not yet
considered in the database. Our proposed PVCNet method achieves
12.8% NMAE reduction compared to conventional Resolution Model-
ing on the IEC phantom but Recovery Coefficients were not always
better for smallest spheres.

1 Introduction

Single-Photon Emission Computed Tomography (SPECT)
images are impacted by several physical effects that need to
be compensated in order to achieve a reasonable image qual-
ity [1]: photon attenuation, photon scatter and Partial Volume
Effect (PVE). Several works have been able to effectively
reduce the impact of the three effects [2–4], but PVE still
remains the main limiting factor, leading to inaccurate quan-
tification of the radioactive tracer uptake [5]. PVE is defined
as the apparent underestimation of activity in an object of
interest due to limited spatial resolution. It is particularly
an issue for objects whose size is smaller than the system’s
resolution volume [6], approximately defined as twice the
Full-Width at Half Maximum (FWHM) of the Point Spread
Function (PSF) obtained by imaging a point source located
at the center of the Field Of View (FOV). Several elements
contribute to degrade the spatial resolution: detector and elec-
tronics response, collimator septal penetration, collimator
scatter and collimator geometric response. The main one is
the geometrical response of the collimator that depends on
the source-to-collimator distance and the characteristic of the
collimator such as hole diameter, septal thickness, length and
material. Typical values for the FWHM at 10 cm from the
collimator front surface range between 5-15 mm according
to the collimator type.
A widely used Partial Volume Correction (PVC) is the Res-
olution Modeling (RM) method [7] applied in the system’s
matrix used for forward and back-projections of the Ordered
Subset Expectation Maximisation (OSEM) reconstruction
algorithm. This method has good noise reduction properties
and theoretically converges to the true activity distribution
but the resolution gain achieved in practice is limited because
of the loss of high frequency information leading to Gibbs
artefacts as the number of iteration increases [4]. For this
reason, a regularization can be applied, e.g. [8], resulting in
a smoother image and requiring additional parameter tuning.

Other PVC techniques [4] include image deconvolution [9] or
region-based correction [10]. A drawback of deconvolution
methods is that they tend to amplify noise. Region-based cor-
rections rely on a segmentation mask of Regions of Interest
(ROI) which may not be easy to define.
Recently, Deep Learning methods have shown promising
results in various tasks in nuclear medicine [11]. In SPECT,
recent works showed that some neural networks architec-
tures were able to perform scatter correction [12], image
reconstruction [13] or projection interpolation [14]. How-
ever, to our knowledge, only very few works investigated
deep learning-based PVC, e.g. in [15, 16] the net was trained
with small datasets and with ground truth images obtained
with conventional PVC.
In this work, we propose a deep learning framework trained
to compensate the effect of the PSF due to the collimator
on the 2D projections, before 3D reconstruction. A large
training dataset is first generated by simulation and contains
600,000 pairs of corresponding projections with and without
PVE+noise. Our PVC networks are two consecutive UNets
henceforth denoted as PVCNet.

2 Materials and Methods

2.1 Database

We generated a large dataset of simulated pairs of correspond-
ing input and target 2D SPECT projections. Input projections
are the realistic ones with PVE and noise, while target ones
are artefact-free.
We first created 3D sources of 99mTc made of a large el-
liptic cylinder background with variable axis size (90-260
mm) with several hot sources (between 1 and 8) of ellipsoidal
shapes (8-128 mm axis) randomly oriented and located within
the background. Hot source to background activity ratios
between 1/1000 and 1/8 were considered. A total of 5 000 3D
voxelized (2563 voxels of 2 mm size) activity sources were
randomly generated. Then, 2D projections were obtained by
forward-projecting each one of the 5 000 sources with ray-
tracing using RTK [17] in two different ways: once without
resolution modeling (PnoPVE projection) and once with reso-
lution modeling (PPVE projection). Resolution modeling was
performed during forward-projection operator by applying
depth-dependant Gaussian convolutional kernel [7] whose
parameters were derived from the dimensions of the Siemens-
Intevo LEHR collimator following the analytical analysis
provided by [6]. We obtain FWHM(d) = 0.048 + 1.11d
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where d is the distance from the source to the collimator front
face. For PnoPVE, the same operator was applied but with
FWHM(d) = 0, so that the simulated projection is the one
that would have been obtained without collimator blurring.
PnoPVE will thus serve as target projections. Each projection
contains 2562 pixels with a size of 2.39762 mm. Sources
were simulated in air to avoid attenuation and scattering, and
the 140 keV photo-peak window of 99mTc was considered.
Poisson noise was applied to PPVE to roughly mimic the
data detection process. The resulting projection was denoted
PPVE,noisy. For each of the 5000 sources, we applied the
same projection process for 120 evenly distributed angles
between 0° and 360°, resulting in 120 triplets (Pi

PVE,noisy,
Pi

PVE, Pi
noPVE), for i = 1, ...,120. The source distributions

were randomly scaled so that the total number of counts in
each projection was comprised between 5,000 and 500,000
such as in realistic clinical applications.

2.2 Networks and training

The database described in the previous section was employed
to train simultaneously two neural networks: a Denoiser and
a PVC network. The Denoiser network was trained to take
PPVE,noisy as inputs and to output projections close to the
corresponding unnoisy PPVE projections. Input and output of
the Denoiser have the same number of channels. The PVC
network then takes as input the output of the Denoiser and
is trained with PnoPVE as target to perform PVC with one
projection angle as output. The idea behind this is that since
the database generation is completely analytical, we have
access to useful intermediate information that can be used to
divide training into these two supervised tasks.
Both networks were UNets with 3 encoding/decoding
residual blocks with skip-connections. The first
layer was a Conv2d expanding the number of chan-
nels to 32. Then, each encoding (resp. decod-
ing) block was composed by a sequence of Conv2d
(resp. TransposeConv2d)-InstNorm-LeakyRelu-Conv2d-
LeakyRelu-InstNorm-MaxPooling(resp. Conv2d). Both net-
works end by a final convolution layer that outputs the needed
number of channels. All kernels were (3,3) convolutions.
The input of the Denoiser network was extended to consider
several PPVE,noisy projections corresponding to different pro-
jections angles of the same source. Considering that the
projection to be corrected is at angle i, the Denoiser takes
as input projections of angles : (i◦, i−3◦, i+3◦, i+90◦, i+
180◦, i+270◦), i.e. the projection to be corrected, two adja-
cent angles, two orthogonal and opposite ones. Moreover, we
further enrich the input of the Denoiser to take an additional
channel previously obtained by using the full sinogram (120
angles) PPVE,noisy to reconstruct a coarse volume with one
iteration of OSEM and RM and then forwardprojecting this
volume (without RM) on the same 120 angles to obtain one
additional channel per angle. The input/output of Denoiser
then have 7 channels whereas the PVC network has 7 chan-

nels as input and outputs only one channel (i.e. the estimated
projection P̂i

noPVE). The idea here was to exploit additional in-
formation contained in the data to help solving this ill-posed
inverse problem (different noise realisation, source depth,
RM) and to ensure a continuity in the corrected projections.
Parameters of both networks were optimized to minimize a
L1 loss functions. Networks were trained during 100 epochs
with Adam optimizer, with 4 GPUs, a batch size of 256 per
GPU and a learning rate of 10−4 halved every 20 epochs.

2.3 Evaluation data and metrics

Performance of the proposed method was evaluated with
three experiments. First, we considered an analytical version
of the standard NEMA IEC phantom composed of six spheres
with increasing diameters 10-37 mm, with 1/40 background
ratio and projections obtained with RTK like for the train-
ing database. Several reconstructed images were compared:
the images reconstructed from PnoPVE projections (noPVE-
noPVC), from PPVE,noisy projections and RM (PVE-RM),
from projections corrected by the networks (PVE-PVCNet)
and from projections without any PVC (PVE-noPVC). Then,
we evaluated the performance of our proposed method on
real acquisition of the NEMA IEC phantom, obtained with
a 1/10 background-to-source ratio and the Siemens-Intevo
SPECT/CT system. PVCNet was applied to the primary en-
ergy window and scatter window independently before scatter
correction with the DEW was applied (k=1.1). Finally, we
tested our proposed network on real patient data.
All reconstructions were performed with OSEM with 8 sub-
sets and 5 iterations (except for PVE-RM for which 20 it-
erations were needed), scatter and attenuation correction.
Resulting image resolutions were compared by computing
the hot sphere contrast Recovery Coefficient (RC) [18] for
each sphere and correction method. We also computed the
Normalized Root Mean Square Error (NRMSE), Normalized
Mean Absolute Error (NMAE), Peak Signal-to-Noise Ra-
tio (PSNR) and Structural Similarity Index (SSIM) of each
image.

3 Results

Database generation took 3 hours using one hundred parallel
CPUs. Training took 50 hours for 100 epochs using 4 GPUs.
The proposed PVCNet method was compared to the ground-
truth image (noPVE-noPVC), to the widely used Resolution
Modeling (RM) method and to the un-corrected one (PVE-
noPVC). From now on, FWHM refers to the collimator res-
olution value at a distance of 28 cm, which corresponds to
the employed isocenter-collimator distance to generate the
simulated projections and for the acquisition. Visualisation
and RC results for the analytical IEC phantom are shown in
Figure 1 and show promising results in terms of activity re-
covery, Gibbs artefact reduction and error reduction. NMAE
was divided by two and PVCNet was significantly better in
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term of all global metrics shown in Figure 1c. However,
small spheres (size<FWHM) were completely lost by the
network.
Reconstructed images and RC curves for the real IEC ac-
quisition are shown in Figure 2. Figure 2b underlines that
we only achieved better correction than RM on the largest
sphere (of size 37 mm) in terms of RC. Similarly to the pre-
vious experiment, the network struggles to correct PVE on
small spheres and some distortion artefacts are visible on the
corrected spheres. On the other side, Figure 1a shows that
for sphere with size>FWHM, the homogeneity was better
retrieved with PVE-PVCNet than PVE-RM and regarding the
other studied criteria, PVE-PVCNet outperfomed PVE-RM
(Figure 2c).
Real patient reconstructed images are shown in Figure 3 for
visual assessment only, as no reference was available.

4 Discussion and conclusion

For the first time, this work investigated the feasibility of
training a network from simulated projections to compensate
the effect of the PSF and to denoise projections, before re-
construction. We showed that building such a database is
feasible, and we designed an adapted deep learning archi-
tecture to correct both noise and PVE. On simple test cases,
PVCNet reduced Partial Volume Effect compared to standard
RM method, while requiring less iterations and no regular-
ization. However, on real data acquisition, while NRMSE,
NMAE, PSNR and SSIM were better than the values ob-
tained with RM, RC was not. Small spheres were not well
recovered. We now envision to improve the realism of the
training database by using tumor-like source shapes, hetero-
geneous activities and projections generated by (fast) Monte
Carlo simulations [19, 20]. Finally, considering more projec-
tion angles as input could be useful to increase source-depth
information.
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Figure 1: (a) Slice of the four reconstructed images (noPVE-noPVC, PVE-RM, PVE-noPVC, PVE-PVCNet), (b) the corresponding
Recovery Coefficient (RC) for each reconstructed sphere with respect to the ratio sphere diameter / FWHM (c) comparison of NRMSE,
NMAE, PSNR and SSIM. The reference image was the initial voxelised 3D source used for forward projection.
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Figure 2: (a) Slice of the four images (source, Reconstruction by the INTEVO SPECT system, PVE-RM, PVE-PVCNet) divided by the
total number of counts in each image (b) the corresponding Recovery Coefficient (RC) for each reconstructed sphere with respect to the
ratio sphere diameter / FWHM (c) NRMSE, NMAE, PSNR and SSIM with a manually contoured reference image knowing the injected
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Abstract:  We propose a dynamic PET analysis methodology that 
improves on top of previously established non-matrix factorization 
algorithms. Our primary innovation is the improved factor 
initialization approach and subsequent data driven spatial masking. 
The initialization is based on time series k-means which detects 
subsets of voxels whose time-activity curves captures essential 
features of underlying dynamics. The dynamic binary mask 
developed based on the initialization work further removes portions 
of background in order to unmix the factors prior to performing 
factor analysis of dynamic structures (FADS). We provide the initial 
validation and simple illustration of our approach using a simulated 
dynamic dataset. Then, the proposed workflow is applied to clinical 
dynamic cardiac PET data reconstructed using straightforward 
filtered back projection (FBP) algorithm, a very challenging type of 
PET data to work with because of low counts and high noise. In both 
simulated and real patient data, our algorithm is efficient in 
identifying different tissues based on inherent tracer dynamics. We 
first show the importance of a dynamic-targeted initialization, and 
then improve upon the initialization with our spatiotemporal 
clustering. The extension of this methodology can enhance the 
relevance and applicability of dynamic imaging in the clinical 
domain.   

1 Introduction 
Dynamic Positron Emission Tomography (dPET) is an 
approach to PET where a series of spatial distribution of 
time series is acquired instead of a single static 3D 
distribution of the injected radiotracer, thereby producing a 
4D dataset. Dynamic imaging has been applied to other 
cases of nuclear imaging and has shown to provide a more 
succinct representation of the tracer kinetics [1]. A principal 
advantage of dynamic PET is its capacity to detect 
differences in tracer exchange rates. This detection then 
translates into the ability to resolve fine differences in tissue 
physiology which may have not been captured by the static 
scan [2]. 
 
The primary challenge of dynamic PET comes from the 
requirements imposed on the acquisition protocols and data 
processing functionality. The classic approach to dynamic 
imaging solves for the compartmental model parameters of 
the tracer kinetics. However, this approach requires data to 
be acquired over a long time from tracer injection to steady 
state [3]. Multiple approximation models such as the 
reference tissue model, have been proposed which can 
decrease the time used [4]; however, they stringently 
require imaging during steady state, and can suffer from 
approximation errors of varying severity. An inadvertent 
consequence of these acquisition, and processing issues is 
that the information content from dynamic PET can be 
limited. This paradox creates technical obstacles which 

prevent the widespread dynamic PET adoption, while the 
lack of adoption halts technological progress in dynamic 
PET. We think that by developing techniques for applying 
dynamic processing to data acquired using the same (or 
essentially similar) protocols as used in clinic now, the 
adoption of the methodology would be more feasible. 
Therefore, even a small practical improvement achieved in 
this area can herald significant down-the-line progress [5]. 
 
Non-compartment modelling techniques aided by machine 
learning have also been applied to dynamic PET processing. 
A dynamic image processing approach that avoids some of 
the known challenges can use data driven techniques to 
separate different tissues based solely on their curve 
shape/time activity. Earlier, our team reported using non-
negative matrix factorization method called cluster-
initialized factor analysis in dynamic brain PET [6][7]. In 
this paper, we further improve this method, and apply it to 
clinical dynamic cardiac PET images. In light of pursuing 
adoption-oriented goals, we would like to show how one 
can resolve tracer dynamics, and the corresponding tissue 
distributions from data acquired, and reconstructed using a 
common type of scanner, and a generic clinical protocol.  
 
Filtered backprojection (FBP) is a reconstruction algorithm 
that is widely applied in earlier x-ray computed tomography 
(CT), PET, and other common tomographic modalities. 
Since it is an analytic inverse problem solution to the 
tomographic model, it is numerically correct, and capable 
of generating excellent images from properly sampled 
projections that are not overly contaminated by noise. 
However, in nuclear medicine, FBP is highly suboptimal, 
both because the angular sampling may be too coarse, and, 
most importantly, because filtering 
amplifies structual and random  
noise, while the backprojection 
propagates it through to the image 
(Fig.1). Despite this, due to its 
speed, FBP is still used in some 
diagnostic scenarios. For example, 
the patient data we will use for our 
algorithm’s performance evaluation: 
the data are FBP-reconstructed PET 
images of the human heart.  
 
At the submission stage of the paper, 
we describe the details of the basic processing algorithm, 
and show examples of its successful application to 

 
Figure 1. Original 
FBP reconstruction of 
cardiac PET, a single 
time frame. 
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simulated dynamic data and real patient cardiac dynamic 
PET data. 

2 Materials and Methods 
 
The principal data processing approach used in the 
presented work is Factor Analysis of Dynamic Structures or 
FADS. This is a non-negative matrix factorization method 
which represents all time-dependent behavior in the imaged 
volume as a linear superposition: 
           D(r, t) = Sj Cj(r) ´ fj(t)         (1) 
Here, D denotes the 4D distribution, dependent on spatial 
position r and time t. The factors are denoted by index j; 
usually no more than J=3~4 factors are used. Factor choice 
J is often determined by a priori of the tissue imaged and is 
based on the region imaged (i.e in this case we expect 
myocardium, left and right ventricle, and background). 
Equation (1) is often presented in a discrete form and solved 
for J factors or factor curves f and the corresponding factor 
images C.  
 
Even though we are not aware of direct proof of 
physiological meaningfulness for such representation, the 
factors curves will correspond to commonly recognizable 
types of radiotracer dynamics such as blood concentration, 
specific-binding, and non-specific-binding tissue curves. 
Consequently, the factor images represent spatial 
distributions of blood vessels of said tissues. The key steps 
of FADS and other initialization techniques have been 
developed, and presented in the past. The present 
implementation has been presented in [6].  
 
Establishing the right-hand-side terms in (1) is a complex 
optimization problem with multiple methodological, and 
numerical challenges such as non-uniqueness, local 
minima, tissue overlap, etc. Our team overcomes some of 
these problems by applying additional clustering techniques 
during the factorization steps. As noted, non-uniqueness is 
a prevalent issue within the factorization implementation. 
Yet, a meaningful initialization can aid in this scenario as it 
drives the decomposition in the correct direction.  

 
A. Initialization 
An integral part to our initialization approach is the ability 
to use data-driven initialization without the need for region 
of interest (ROI) segmentation. We first sample a random 
large subset of N voxels within the data to get a noisy 
estimate of the dynamic activity occurring in different 
regions. Then, we apply time series k-means clustering (2) 
to the sampled voxels and find J clusters with corresponding 
centers fj. We treat the fj curves as the initialization for the 
following four distinct dynamic regions (pertinent to 
cardiac imaging): background, right ventricle, left ventricle, 
and myocardium:  

argmin∑ ∑ (𝑥 − 𝜇!(
"

#∈%!
&
!'(       .         (2) 

At time-resolution of some dynamic scans, the temporal 
behavior of the myocardium, and the background can be 
similar in shape despite having different spatial 

distributions. The indicated effect drives the optimization 
step of FADS to maximally separate the curves despite their 
inherent temporal similarity, and therefore obscures the 
underlying representation. This behavior was a predominant 
target of our efforts, and led to the exploration, and 
development of the proposed methodology described 
below. Additionally, as a byproduct of the Gaussian 
filtering used on the noisy FBP dataset, the background, and 
myocardium images overlap significanly, more than partial 
volume observed in images reconstructed using iterative 
statistical algorithms.   
 
Despite the effective initialization used improving FADS 
results, in some datasets, FBP amplified the noise to the 
extent where the improvements in the initialization may be 
insufficient to allow FADS to extract the correct images. In 
that case, we apply additional masking, and preprocessing 
as described below.  
 
B. Dynamic Spatial Masking  
Factorization of the myocardium ROI can be obstructed by 
the background. Manual masking of different tissue regions 
is time consuming, and ineffective. To combat this, we appy 
the cluster-based improvements described below. Prior to 
factorization, all voxels in the data are clustered by 
considering their distance from each of the cluster centers fj. 
Background cluster is identified by using the curve-shape, 
and the coefficient distribution.Voxels that have been 
assigned into the background cluster are subsequently 
removed from the dataset using a dynamic binary mask (3):  

𝑀! = .0, 𝑖𝑓	𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑	𝑐𝑙𝑢𝑠𝑡𝑒𝑟																1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.																																								(3) 

After removal the background, only J–1 factor curves 
remain: the myocardium, and the left and right ventricles.  
 
C. Clustering updates during factorization  
The newly masked dataset is factorized using FADS [6]. 
Further improvement of the method comes from employing 
additional clustering techniques near FADS convergence. 
We use Density Based Clustering Applications with Noise 
(DBSCAN) and apply it to the factor images to determine 
which voxels are within the 
coefficients ROI, and 
which ones are obfuscating 
the decomposition [8]. This 
update to the methodology 
is performed for each of the 
J–1 coefficients. Clusters 
that are not central to the 
region of interest shown in 
Fig. 2 are masked out, for example (b); whereas clusters 
within the ROI are kept, such as (a). This is applied to the 
last 5-8 iterations.   
 
Fig. 2 shows the result at the very last step prior to 
convergence. The area marked by (a) is a part of this regions 
desired spatial cluster, while the area marked by (b) is 

  
Figure 2: (i) 2D slice 
example. (ii) Final DBSCAN 
result.  

(i) 
 

(ii) 

b 
a 
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outside of this region, and therefore should not be 
considered for this Ji coefficient.  

3 Results 
 
A. Simulation 
The work was divided in two stages: demonstrating the 
validity of the initialization using simulated dynamic data, 
and subsequently applying the initialization, and update 
steps on real data. A 128´128 dynamic dataset was created 
with four regions of different tissues, Fig 3.ii. These regions 
overlapped at the edges to simulate partial-volume effect or 
blurring due to filtering. Regions were designed to have 
different shapes, and levels of overlap. Tissue texture was 
added using random small variations. Each of the four 
regions was characterized by distinct temporal tracer 
dynamics (which can be edited to be more or less similar). 
Fig.3.i shows the known ground truth dynamic curves.   
 
The dataset was tested with the proposed initialization 
algorithmic update, and compared with another effective 
NMF initialization technique, Non-negative Double Single 
Value Decomposition (NNDSVD) [9]. NNDSVD has been 
shown to be an effective initialization technique for matrix 
factorization. This method is also data-based, and is used 
here as a comparison to show how important a dynamic-
data-specific initialization is. Each initialization method 
selected the known number of J-1 factors and revealed the 
resulting factor curves, and factor coefficients were 
compared. Fig.3.c and Fig.3.d illustrate the results of the 
reconstruction.  

 

   
Figure 3: (i) Simulated phantom ground truth with four distinct 
regions (ii) (a is blue, b is orange, c is green, and d is red). (iii) is 
the normalized NNDSVD result plotted against normalized 
ground-truth. (iv) is the normalized result for our proposed 
dynamic-targeted initialization plotted against the normalized 
ground-truth.  
 
Results of the simulated dataset reconstruction demonstrate 
that despite NNDSVD’s ability to successfully drive 
factorization in many other applications, it may struggle to 
reveal the temporal nature of tissues in the dynamic cardiac 
PET modality. Sampling and clustering voxels, therefore, 
drives the factorization toward the global minimum, and is 
better suited for dynamic datasets. The proposed 

initialization’s effectiveness (Fig.3.iv) is expressed as a 
closer approximation of the factorized curve shape to the 
known ground truth (Fig.3.i), since after normalization of 
values to be in the [0,1] range, the (Fig.3.iv) curves overlap 
the known ground-truth curves, demonstrating that the 
curve shape is revealed using the dynamic-targeted method. 
The units on y-axis are arbitrary, the key aspect is each 
curve’s relative shape to one-another. Outfitted with an 
effective start for factorization we then focused on 
improving the final factorized results using imbedded 
clustering.  
 
B. Dynamic NH3 PET Results 
We used dynamic 13N-ammonia cardiac dPET scans 
acquired at UCSF using a PET/CT scanner (Discovery 
VCT, GE Healthcare). Each dataset consisted of 25 or 40 
images acquired between 0 and 15 minutes post-tracer 
injection. Each timeframe was reconstructed on the scanner 
using vendor provided FBP. In order to mitigate intense 
backprojection noise (see Fig. 1), a (sigma = 2.27x, 2.27y, 
1z) 3D Gaussian filter was applied to each data frame. A 
smaller window around the ROI was selected 
approximately 70x70x30 voxels. Factorization was 
performed on the dataset, with the proposed initialization, 
one with and one without the dynamic masking. Fig.4.d-f 
shows the factorization without removing background 
clustered pixels. Fig.4.a-c shows our applied methodology 
of removing the pixels clustered as background and 
factorizing for three factors and successively updating the 
factors using density based clustering. Fig.4.(i) shows the 
factor curves resulting from our final factorization. In these 
curves we can clearly see the expected temporal behaviour 
of the myocardium, the right ventricle and the left ventricle. 
Furthermore, spatially, the myocardium is more 
pronounced in our applied methodology: Fig.4.a-c, as 
compared to Fig.4.d-f, where restricting the decomposition 
only to a better initialization still resulted in a ROI obscured 
by the presence of the background factor. No clear 
myocardium factor was observed (Fig.4.d) versus the clear 
myocardium in (Fig.4.a) from our method.  

 

 
Figure 4: (i) Our final curves. Blue is (a), orange is (b), green is 
(c). (a-c) 2D slice of our result coefficient images. (d-f) 
coefficient images with the improved factorization, but no 
spatial clustering.  

(iii) (iv) 
(i) 
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4 Discussion 
 
As seen in the results, processing dynamic images is 
extremely sensitive to the initialization of factor curves. The 
initial curves are the driving force for a better 
decomposition which can mean the difference between the 
noisy decomposition, and one that reveals the ROIs, and 
inherent tracer dynamics. Additionally, the nature of this 
noisy data type, and the usage of FBP reconstruction further 
complicates the factorization which is where the proposed 
methodology demonstrates advantages over the traditional 
method. Even in the simulation we can observe cases when 
factorization intermediation, such as the clustering 
proposed, is needed to successfully reveal the underlying 
factor coefficient ROIs, and the factor curves.  
 
By using voxel TACs allocated into several clusters, 
initialization becomes more data-driven, and consequently, 
patient-specific, and data type independent. This 
methodology better estimates the temporal behavior, and 
can reveal important aspects of the data such as the expected 
number of clusters. Yet, as seen in the real data, subsampled 
voxels’ TACs are often noisy, and can be unresolvable by 
simple factorization despite having a ROI which is clearly 
seen within the dataset. Thus, for these cases the application 
of our method’s dynamic cluster masking improves the 
factorization result as the desired region of interest is more 
pronounced, and no longer has temporal behavior mixed 
with the background. The methodology therefore expands 
the application of factorization to more nuanced data, and 
further increases the relevance of dynamic imaging in 
clinical settings where the acquisition method may be 
suboptimal.  Similarly, the application of Density-based 
clustering is an important addition to the factorization steps, 
and itself aids in improving the results since it considers the 
spatial domain, and aids in spatial ROI unmixing. 

5 Conclusion 
 
We hope that this methodology will find applications in 
datasets where the factorization may be obstructed by the 
inherent noise from the background, and hope that the 
methodology can be further applied to other dynamic 
imaging modalities which suffer from the same drawbacks 
of factor mixing. Throughout this work we have presented 
the difference that an improved initialization technique has 
on the factorization. Conjointly, we also showed that data 
driven dynamic masking effectively aids in factorization of 
datasets where the temporal behavior of more than one 
region is similar. The case presented here was a dataset 
which failed to have a meaningful factorization result prior 
to the application of the presented workflow. Our effort now 
is focused on deriving better quantitation parameters from 
dynamic data, clustering differentiation, and extending the 
methodology to be completely unsupervised. As curve 
shape improves from unmixing with our method, we expect 
down-the-line improvement in values calculated from the 
curves. In the future, we would like to validate our work 
with kinetic parameters. 
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Abstract In this work, we describe a new self-calibration algorithm in
the case of 3D cone-beam geometry with sources on a plane parallel to
the detector plane. This algorithm is hybrid, so it combines data con-
sistency conditions (DCCs) and the partial knowledge on the pattern
of the calibration cage. We explain how we build this algorithm with
the modelling of calibration markers by Diracs and the generalization
of existing DCCs for this geometry to distributions. This new method
can work with truncated projections if the marker projections are not
truncated. With this hybrid approach, we build an analytical self-
calibration algorithm based on DCCs, robust to projection truncations.
We show numerical experiments.

1 Introduction

In the recent work [1] a hybrid approach to calibrate a cone-
beam system was proposed. This method combines data
consistency conditions (DCCs), special equations on projec-
tion data, and detected anatomical markers. We continued
the development of similar methods and presented hybrid
methods in 2D fan-beam geometry and 3D cone-beam geom-
etry, both with sources on a line, see [2, 3]. In our approaches
we modelled the calibration markers by Dirac distributions
and exploited DCCs on distributions. Compared with [1], our
calibration algorithms with such DCCs are analytical, thus
we don’t need to solve numerical optimization procedures.
Moreover, because we use DCCs only on markers, the projec-
tion data may be truncated. Only the marker projections must
be non-truncated. Thus, moment conditions of DCCs on
the set of Diracs yields the extension of existing calibration
procedures based on DCCs to truncated projections.
In [4] DCCs for functions were proposed for the 3D cone-
beam with sources on a plane parallel to the detector plane. In
this work, we show that the generalisation of these DCCs to
distributions helps to overcome difficulties in the construction
of the analytical calibration procedure for this geometry and
allows the hybrid geometric self-calibration with truncated
data.

2 Calibration problem

3D divergent X-ray systems lead to the cone-beam projection
data defined by the following transform:

Definition 2.1. The cone-beam transform of the function f
of compact support describing an object is

D f (⃗sλ , ζ⃗ ) :=
∫ +∞

0
f (⃗sλ + lζ⃗ )dl, (1)

Figure 1: The cone-beam geometry with sources on a plane paral-
lel to the detector.

where λ ∈ R is the trajectory parameter of the source s⃗λ ∈
R3 and the (usually unit) vector ζ⃗ is the direction of the
integration line.

For the cone-beam transform with sources on a plane parallel
to the detector, we work with the geometry presented in the
Figure 1, see also [4]. Here we have sources moving in a
plane parallel to the detector plane: the source trajectory
is s⃗λ = (λ1,λ2,0)T , the detector is in x3 = D, the non-unit
direction of the integration line ζ⃗ = (u,v,D)T − (λ1,λ2,0)T ,
u and v are parameters of the detector. In this case we can
rewrite our data as:

Definition 2.2. The cone-beam transform with sources on a
plane parallel to the detector plane of a function f of compact
support between the source plane x3 = 0 and the detector
plane x3 = D is

D f (λ1,λ2,u,v) :=
∫ +∞

0
f (λ1+l(u−λ1),λ2+l(v−λ2), lD)dl.

(2)

We can denote the cone-beam transform for fixed λ1 and λ2
with Dλ1,λ2 f (u,v) :=D f (λ1,λ2,u,v) for f with support in
Y3 = R2 × (D1,D2), 0 < D1 < D2 < D. Then we consider
Dλ1,λ2 f as a function of two variables.
Suppose that we work with a lattice of u,v, but the system is
moving. So, we don’t know exactly:

• source positions λ1i and λ2i for P projections, i∈ [[0,P−
1]],

• detector shifts ui, vi for each source position i.
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Figure 2: The 3D cone-beam geometry with sources on a plane
with the calibration cage of two groups of 8 parallel sticks each.

We know mi(u,v), where mi(u,v) =Dλ1i,λ2i f (u−ui,v− vi).
We need to estimate the geometric calibration parameters
λ1i, λ2i, ui, vi, i ∈ [[0,P− 1]]. We want to do it with the
specific calibration cage presented in the Figure 2. So, we
add some calibration object with unknown position. We want
to use DCCs on projections of this object to perform the full
analytical calibration.
Our task can be separated into two independent tasks to find
the couple of λ1i and ui for the first task with the help of the
first part of the calibration cage (8 vertical sticks) and λ2i and
vi for the second task with the second part of the calibration
cage (8 horizontal sticks).
We place these sticks as close as possible to the detector
and two groups of sticks are separated such that it’s possible
to select one horizontal detector line for the vertical sticks
and one vertical detector line for horizontal sticks containing
only projections of one part of our calibration cage. Thus,
it’s possible to work separately with the projection of vertical
sticks for one fixed detector line and the projection of hori-
zontal sticks for another fixed detector column. So, we can
say that we need to select two appropriate detector lines (one
horizontal and one vertical) for the current source position or
two oblique planes (one horizontal Hoblique and one vertical
Voblique) passing through each detector line and the current
source position. Let us consider the intersection of sticks
with one selected oblique plane and points of the calibration
cage in this intersection as Dirac distributions.
For each group of 8 sticks we have a known pattern, the same
as we used in our previous works [2, 3]. Let us consider
only the first vertical group of sticks (the same can be written
for the second group). Each subgroup of 4 sticks belongs to
one plane. Let us use the superscript l = a or l = b for each
group of 4 sticks. We have more unknowns in our calibration
problem:

• the first 4 sticks are in the unknown plane x3 =Ca
3 , the

second 4 sticks are in the unknown plane x3 =Cb
3 ,

• we suppose that sticks are perpendicular to the x1-axis,
then points in the intersection of sticks and the fixed
oblique plane Hoblique are ca

11 = pa − k1L, ca
21 = pa −L,

ca
31 = pa + L, ca

41 = pa + k1L, cb
11 = pb − k2L, cb

21 =

pb − k3L, cb
31 = pb + k3L, cb

41 = pb + k2L, where pa, pb
are unknown and define the x1-position of the center of
mass of each subgroup, L, k1 > 0, k2 > 0, k3 > 0 are
known; we also assume that D is known.

Thus, by knowing the abscissas ql
i j (i ∈ [[0,P−1]], j ∈ [[1,4]],

l ∈ {a,b}), the detected projections of the stick intersections
with the oblique plane Hoblique, for one fixed detector line and
some parameters of the pattern of the calibration cage (see
previous paragraph), we want to identify the geometrical cal-
ibration parameters λ1i, ui, i ∈ [[0,P−1]], and the unknown
position of the calibration cage pa, pb, Ca

3 , Cb
3 . With es-

sentially the same procedure (see the next section), but the
vertical oblique plane and 8 horizontal sticks, we identify λ2i,
vi, i ∈ [[0,P−1]], pc, pd , Cc

3, Cd
3 .

3 Hybrid solution

The mathematical theory of the cone-beam transform on
distributions with sources on a plane parallel to the detector
allowed to build the similar hybrid algorithm that we used in
our previous works [2, 3], see section 4.

Let us define ra =
D−Ca

3
Ca

3
, rb =

D−Cb
3

Cb
3

. It was possible to derive
analytical formulas to calibrate with DCCs in this case (for
the first task, the similar algorithm can be constructed for the
second task):

1. ra and rb can be uniquely estimated from{
∑

4
j=1(q

a
i j)

2 = (1+ ra)
2(2+2k2

1)L
2 +Ka(i)

∑
4
j=1(q

b
i j)

2 = (1+ rb)
2(2k2

2 +2k2
3)L

2 +Kb(i),
(3)

where

Kl(i) =
1
4

[
4

∑
j=1

ql
0 j

]2

+2∆M̃l
1(i)

4

∑
j=1

ql
0 j +4[∆M̃l

1(i)]
2,

∆M̃l
1(i) =

1
4

(
4

∑
j=1

ql
i j −

4

∑
j=1

ql
0 j

)
,

and then we can deduce Ca
3 and Cb

3 from ra and rb,

2. pa and pb can be estimated from

4

∑
j=1

ql
0 j = (1+ rl)4pl, l ∈ {a,b}, (4)

3. from the linear system

ui −λ1irl = ∆M̃l
1(i) (5)

we compute ui and λ1i for each projection: (5) gives us
2 equations with 2 unknowns, since l ∈ {a,b}.
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4 Mathematical basis

In this section we describe the theory that we built and used
in the derivation of our algorithm. Firstly, we generalize
the definition of the cone-beam transform from the second
section to distributions. Then we provide the generalization
of known DCCs given in [4] to distributions.
Definition. Denote for any open set ΩN ⊂ RN the spaces of
compactly supported smooth functions D(ΩN), the spaces
of smooth functions E (ΩN), N ∈ {2,3}. Then D ′(ΩN) and
E ′(ΩN) state for the sets of corresponding distributions.
We need to define the dual operator D∗

λ1,λ2
of Dλ1,λ2 . For

f ∈ D(R3) and φ ∈ E (R2):

(Dλ1,λ2 f ,φ) =
∫
R2

Dλ1,λ2 f (u,v)φ(u,v)dudv

=
∫
R2

∫ +∞

0
f (λ1+l(u−λ1),λ2+l(v−λ2), lD)dlφ(u,v)dudv

=
1
D

∫
R2

∫ +∞

0
f
(

λ1 +
t3
D
(u−λ1),λ2 +

t3
D
(v−λ2), t3

)
dt3

×φ(u,v)dudv =
∫ +∞

0

∫
R2

f (t1, t2, t3)

×φ

(
Dt1 −λ1(D− t3)

t3
,
Dt2 −λ2(D− t3)

t3

)
D
t2
3

dt1dt2dt3

= ⟨ f ,D∗
λ1,λ2

φ⟩, (6)

where (·, ·) is the scalar product in L2(R2), ⟨·, ·⟩ is the scalar
product in L2(Y3), we used the change of variables t3 = lD,
dl = dt3

D ; t1 = λ1 +
t3
D(u−λ1), du = D

t3
dt1; t2 = λ2 +

t3
D(v−

λ2), dv = D
t3

dt2.
We can define the dual operator for functions from E (R2):

D∗
λ1,λ2

φ (⃗x) :=
D
x2

3
φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)
.

(7)

Definition 4.1. The cone-beam transform on a plane at fixed
λ1 and λ2 of a compactly supported distribution f ∈ E ′(Y3)
is a distribution from E ′(R2) defined by the dual equality

(Dλ1,λ2 f ,φ) = ⟨ f ,D∗
λ1,λ2

φ⟩ (8)

with the dual operator from (7).

Since we model the intersection at c⃗ of a projection line with
an opaque stick by a Dirac distribution δ⃗c, then

(Dλ1,λ2 δ⃗c(u,v),φ(u,v)) = ⟨δ⃗c(⃗x),D∗
λ1,λ2

φ (⃗x)⟩

=

〈
δ⃗c(⃗x),

D
x2

3
φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)〉
=

D
c2

3
φ

(
Dc1 −λ1(D− c3)

c3
,
Dc2 −λ2(D− c3)

c3

)
=

D
c2

3
δc̃(φ),

where c̃ =
(

Dc1 −λ1(D− c3)

c3
,
Dc2 −λ2(D− c3)

c3

)
. (9)

It’s easy to see that c̃ is the perspective projection of c⃗ in the
geometry of Dλ1,λ2 .
For the sum of Diracs f = ∑

n
j=1 δ⃗c j

Dλ1,λ2 f =
n

∑
j=1

D
c j

2
3

δc̃ j ,

c̃ j =

(
Dc j1 −λ1(D− c j3)

c j3
,
Dc j2 −λ2(D− c j3)

c j3

)
. (10)

DCCs. The DCCs for functions from [4] state:

Theorem 4.1. Define

Jk(λ1,λ2,U,V ) =
∫ +∞

−∞

g(λ1,λ2,u,v)(uU +vV )kdudv (11)

for all k = 0,1,2, ... Then Jk(λ1,λ2,U,V ) =
Pk(U,V,−λ1U − λ2V ), Pk(U,V,W ) is a homogeneous
polynomial of degree k and g(λ1,λ2, ·, ·) has a compact
support for all (λ1,λ2) if and only if g =D f with compactly
supported f in z > 0.

We can generalize the necessary part of these DCCs to distri-
butions of compact support:

Theorem 4.2. If f ∈ E ′(Y3), gλ1,λ2 = Dλ1,λ2 f is the cone-
beam transform on a plane of f for fixed λ1, λ2, then:

1. gλ1,λ2 ∈ E ′(R2),

2. for k = 0,1,2, . . . we have the moment conditions:

(gλ1,λ2(u,v),(uU + vV )k) = Pk(U,V,−λ1U −λ2V ),
(12)

where Pk(U,V,W ) is a homogeneous polynomial of
degree k.

Proof. Let us prove here the moment conditions that we plan
to use. Obviously (u,v) 7−→ (uU + vV )k ∈ E (R2), then

(Dλ1,λ2 f (u,v),(uU+vV )k)= ⟨ f (⃗x),D∗
λ1,λ2

((uU+vV )k)(⃗x)⟩

=

〈
f (⃗x),

D
x2

3

(
Dx1 −λ1(D− x3)

x3
U +

Dx2 −λ2(D− x3)

x3
V
)k
〉

=

〈
f (⃗x),

D
xk+2

3

(Dx1U +Dx2V +(D− x3)(−λ1U −λ2V ))k

〉

=

〈
f (⃗x),

D
xk+2

3
∑
i, j,l

i+ j+l=k

k!
i! j!l!

(Dx1U)i(Dx2V ) j

×((D− x3)(−λ1U −λ2V ))l
〉
= ∑

i, j,l
i+ j+l=k

k!
i! j!l!

U iV j

× (−λ1U −λ2V )l

〈
f (⃗x),

D
xk+2

3

(Dx1)
i(Dx2)

j(D− x3)
l

〉
= Pk(U,V,−λ1U −λ2V ).
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Non-uniqueness of the solution. Let fM,⃗t (⃗x) := f (Mx⃗+ t⃗)

with M =

1 0 −(u′+λ ′
1)/D

0 1 −(v′+λ ′
2)/D

0 0 1

 and t⃗ =(λ ′
1,λ

′
2,0)

T , then

it can be shown for functions

D fM,⃗t(λ1,λ2,u,v) =D f (λ1 +λ
′
1,λ2 +λ

′
2,u−u′,v− v′).

(13)
It can be generalized to distributions f = δ⃗c ∈ E ′(Y3). Let us
define fM,⃗t ∈ E ′(Y3) as ⟨ fM,⃗t (⃗x),φ (⃗x)⟩ = ⟨ f (⃗x),φ(M−1(⃗x−

t⃗)⟩, where M−1 =

1 0 (u′+λ ′
1)/D

0 1 (v′+λ ′
2)/D

0 0 1

, thus M−1(⃗x −

t⃗) =

x1 −λ ′
1 +

u′+λ ′
1

D x3

x2 −λ ′
2 +

v′+λ ′
2

D x3
x3

. Then (δ⃗c)M,⃗t is the distribution

δM−1 (⃗c−⃗t) ∈ E ′(Y3). Then it’s easy to show

(Dλ1,λ2 (δ⃗c)M,⃗t (u,v),φ(u,v)) =

= (Dλ1+λ ′
1,λ2+λ ′

2
δ⃗c(u−u′,v− v′),φ(u,v)). (14)

If we shift the detector by u′, v′ and the source positions by
−λ ′

1, −λ ′
2, then there exists another object with the same pro-

jection data from the original source and detector positions.
Thus, the source positions cannot be identified better than up
to a global shift (idem for the detector shifts) from the data
only.
Derivation of the algorithm. If we write projection data as

ml
i(u,v) =Dλ1i,λ2i f l(u−ui,v− vi), (15)

f l = ∑
4
j=1 δ⃗c l

j
, then from the moments of order 1 of the

type Ml
1(i) = (ml

i(u,v),u) and moments of order 2 of the
type Ml

2(i) = (ml
i(u,v),u

2) we can derive formulas (3), (4),
(5). Note that along with the direct calculation of mo-
ments for (15), we used that we can compute the same mo-
ments with the detected points ql

i j as Ml
1(i) = D

(C l
3)

2 ∑
4
j=1 ql

i j,

Ml
2(i) = D

(C l
3)

2 ∑
4
j=1(q

l
i j)

2.

5 Numerical results

For numerical simulations we launched our algorithm twice:
for the first part of the calibration task to find λ1i, ui and for
the second task to find λ2i, vi. All values of parameters are
given in cm:

1. The known parameters of the calibration cage pattern:
L = 0.4, k1 = 3, k2 = 1, k3 = 2. We used the same
pattern for the group of vertical sticks and for the group
of horizontal sticks.

2. The true positions of sticks: pa = 5, pb = 8.2, pc = 4,
pd = 7.2, Ca

3 = 8, Cb
3 = 9.5, Cc

3 = 8, Cd
3 = 9.5.

3. The true calibration parameters: we randomly selected
P = 30 values for source positions in [0,10] and fixed
λ10 = 0. We chose the grid on u ∈ [0,10] with the sam-
pling step 0.01. The detector jitters ui were generated
as random uniform noise on the interval [−0.05,0.05),
u0 = 0. The same was done for the sets of λ2i, vi.

4. The source-detector distance is fixed D = 10.

Noise
level

Noise
std

MAE for
λ1iλ1iλ1i, λ2iλ2iλ2i

MAE for
uiuiui, vivivi

MAE for
plplpl

MAE for
C l

3C l
3C l
3

0% 0 3.86E−13 9.67E−14 6.50E−14 7.65E−14
10% 0.001 1.80E −2 3.79E −3 3.26E −3 4.42E −3
50% 0.005 1.02E −1 2.08E −2 1.66E −2 2.25E −2
100% 0.01 1.89E −1 3.76E −2 2.82E −2 4.37E −2
200% 0.02 3.87E −1 7.97E −2 6.47E −2 8.91E −2

Table 1: Mean absolute errors (MAE) for calibration parameters
and positions of the markers; all errors are in cm.

In the Table 1 we present the results of our calibration algo-
rithm from two oblique planes. To simulate detection errors,
we added to ql

i j realisations of the Gaussian noise N(0,σ),
σ = 0.01 ·nl, where nl is the noise level, 0.01 is the pixel size
of the initial image.

6 Conclusion

We have presented a hybrid approach to calibrate cone-beam
projections with sources on a plane parallel to the detector
with a marker set of partially known geometry and DCCs
generalized to compactly supported distributions. We used
DCCs on geometric projections of the spherical markers.
Thus, DCCs can be computed if projections of the marker
set are non-truncated (the rest of the object can be truncated).
This is the main advantage of the approach. One disadvantage
of our method is the placement of the calibration cage: it has
to be parallel to the source and detector planes. Moreover, we
see in the Table 1 that our algorithm is sensitive to detection
errors. This method requires further numerical simulations
and comparisons with other self-calibration methods.
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Abstract Medical Image Segmentation is a useful application for
medical image analysis including detecting diseases and abnormalities
in imaging modalities such as MRI, CT etc. Deep learning has proven
to be promising for this task but usually has a low accuracy because
of the lack of appropriate publicly available annotated or segmented
medical datasets. In addition, the datasets that are available may have
a different texture because of different dosage values or scanner prop-
erties than the images that need to be segmented. This paper presents
a StyleGAN-driven approach for segmenting publicly available large
medical datasets by using readily available extremely small annotated
datasets in similar modalities. The approach involves augmenting the
small segmented dataset and eliminating texture differences between
the two datasets. The dataset is augmented by being passed through six
different StyleGANs that are trained on six different style images taken
from the large non-annotated dataset we want to segment. Specifically,
style transfer is used to augment the training dataset. The annotations
of the training dataset are hence combined with the textures of the
non-annotated dataset to generate new anatomically sound images.
The augmented dataset is then used to train a U-Net segmentation
network which displays a significant improvement in the segmentation
accuracy in segmenting the large non-annotated dataset.

1 Introduction

CT Image Segmentation is a hallmark of Computer-Aided
Diagnosis (CAD). Medical professionals often use it to iso-
late specific areas of interest in a medical image. This allows
them to conduct effective medical analyses for detecting ab-
normalities such as lung cancer and positioning implants [1].
However, manual segmentation can become time-consuming
and complicated depending on what part of a body is being
analyzed. Deep learning can make this task significantly
more efficient, affordable, and accessible. Nevertheless, this
approach is currently very ineffective due to the low avail-
ability of large labeled and annotated training datasets. The
reasons for this shortage include privacy concerns and the
high cost of labeling CT datasets by human experts.
In addition, the added challenge with segmenting a CT
dataset is that there is a lot of variability between the publicly
available datasets. For example, the images frequently have
different dosages which is the difference in amount of x-ray
radiation used to synthesize CT images or they could be gen-
erated from several different machines each having different
parameters for CT reconstruction, which for example could
mean the thickness of tissue that each image slice represents
may vary. Hence, if we train a segmentation network with
a dataset that has images of different dosage and scanner
properties than the set of images we intend to segment then
the deep network will have low accuracy.

Figure 1: Flow starts at the top right corner with the two datasets -
a small segmented and a large unsegmented dataset. It illustrates
the inputs and outputs involved in training the StyleGANs and the
U-Net to finally segment the test set taken from the large dataset.

We present a new strategy for augmenting segmented datasets
which eliminates the differences between the segmented
dataset we use for training and the dataset we wish to seg-
ment, by using texture learning. This strategy will create
synthetic images which imitate dosage and scanner prop-
erties of the unsegmented dataset and maintain anatomical
accuracy within the process.
As shown in Figure 1, we build on our previous work of tex-
ture learning [2] to expand our small annotated dataset with
textures present in the large unlabeled dataset. In the first step,
we ask an expert, a radiologist in this case, to manually seg-
ment a few CT images from the large non-segmented dataset
which were chosen as "style images" for our StyleGAN train-
ing. We then use the StyleGAN architecture presented in
Krishna et al. [2] to create new CT images based on the
texture of a style image and the content, or segmentation
maps, of another image.
We train 6 different StyleGANs with 6 separate texture
images. Since these texture images came from the non-
annotated dataset which contains the images we want to
segment, the newly generated segmented images will make
good candidates for training the segmentation network. Next,
we take all the segmentation maps of the small segmented
dataset and use it as "content" inputs to each of 6 trained
StyleGAN networks to generate new images. This technique
augments the segmented dataset by 7 folds and creates ad-
ditional images with sample textures from the unsegmented
dataset. We then train a U-Net [3] segmentation network with
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Figure 2: Our Expanded Dataset. For "m" images in annotated
dataset and "n" style images, expanded dataset size is mx(n+1).
Note, that the heart anatomy isn’t perfect in the generated images,
but as long as generated images could exhibit enough anatomy and
texture, it could still help in improving final segmentation accuracy.

the augmented segmented dataset. The trained U-Net is then
used to segment all the images of the large non-annotated
dataset. Segmentation accuracy of the network is computed
on a test set that consists of around 100 randomly chosen
images from the non-annotated dataset. In the absence of the
ground-truth for the test set, annotations are created manually
with the assistance of a few radiologists.
To the best of our knowledge, we are the first to enhance seg-
mentation accuracy by reducing texture differences between
training and testing CT datasets using StyleGANs.

2 Materials and Methods

Fig. 1 highlights each step of the process. As discussed,
there are three major steps: training the StyleGAN networks,
augmenting the annotated dataset, and then training the seg-
mentation U-Net with this augmented dataset. We will briefly
describe each step below

2.1 Datasets

The top right corner of Fig. 1 highlights the two different
datasets (in red colored boxes) that were involved in this
work. The smaller dataset consists of 512x512 high dose
chest CT images along with their segmentation maps of thirty
patients depicting their lungs, heart, spinal cord, esophagus,
surrounding tissue and bones within their torso. The larger
dataset consists of non-annotated low dose chest CT images
of similar resolution of around 14k patients taken with sev-
eral different scanners at several different locations. As stated
before, for using the datasets together for improving segmen-
tation, we pre-process and augment the smaller annotated

dataset multiple folds [2] using CT image textures present in
the larger dataset.

2.2 StyleGAN

We use our encoder-decoder based styleGAN architecture
and segment-wise style loss [2] for learning and generating
segment-wise textures of heart, torso and surrounding tissues
present in the larger dataset. For this, we first choose five or
six different "style images" from the large dataset. Since the
dataset contains low-dose CT scans collected over a period
of three years from several different scanners, it contains a
few distinct textures over all the CT-scans corresponding to
distinct noise characteristics of these scanners. The "style-
images" are manually selected corresponding to these distinct
textures. For our large dataset six style-images seem enough
to cover all the different texture features present in the dataset.
Images in the top row of Figure 2 show three such style im-
ages. Note that as per our styleGAN architecture, the segmen-
tation maps of both "style images", from the large dataset,
and "content images", from the small dataset, are needed for
generating CT images having textures of the large dataset’s
images while retaining anatomy of the small dataset’s "con-
tent images". This is maintained by our segment-wise style
loss, Ls and content loss, Ls which is as follows:

Ls = ∑
sg∈SG

∑
l∈SL

1
4N2

l M2
l
∥G(Rl

sg)−G(Sl
sg)∥2

F (1)

Lc = ∑
sg∈SG

∑
l∈CL

1
2NlMl

∥Rl
sg −Ol

sg∥2
2 (2)

where Ol , Sl , and Rl denote the feature maps extracted from
the pre-trained VGG network at layer l, for the original image
xo, the style image xs and the stylized image output xr respec-
tively; G(Rl) and G(Sl) denote the encoded Graham Matrices
[4] of those feature maps; SG is the set of all six segments
including heart, torso, lungs, spinal cord and esophagus in
the CT images and SL/CL is the set of all style/content layers
in the VGG network. Since, the large training dataset’s CT
scans are not segmented, we manually build the segmentation
maps of the chosen six style images with the assistance of a
radiologist, as mentioned.
The StyleGAN architecture proposed by Krishna et al. [2]
takes the segmentation map of one image xo and the seg-
ments’ texture of another image xs as input, and outputs a
new image xr with the contents (organs) of the segmentation
map xo and style of image xs. Similar to the original work,
all the training images are resized to 512x512 pixels. Each
StyleGAN is trained for 100 epochs. For the loss function,
the input images, generated images, and style images along
with their segmentation maps are fed into a VGG-19 network.
The feature maps generated by VGG-19 are used to calculate
style loss and content loss. Both content loss and style loss
are calculated separately for each segmented region and then
combined.
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Figure 3: Left: A standard U-Net network which segments a low-dose soft-tissue CT image into lungs, heart, torso, spinal-cord and
esophagus. Right: Top row shows some well formed segmentation maps of various ct scans, while bottom row highlights flawed results
from the U-Net when trained on a smaller different dataset with high-dose CT images.

2.3 Augmenting Segmentation Training Dataset

Next, all the segmentation maps of the smaller CT segmenta-
tion training dataset are passed through each trained Style-
GAN networks as inputs generating new CT images for each
segmentation map. Note that we train six style generators cor-
responding to each style image hence augmenting the dataset
seven fold. The original 700 images segmented lung CT
dataset is now expanded to around 4900 images. In our case,
the generated images have textures simulating low dosage CT
images similar to the images of the large dataset we intend to
segment. Also, all of the generated images have associated
annotations or segmentation maps which are the same as the
inputs or the annotations of the original dataset
Figure 2 shows a few results of the expanded annotated
dataset. In the figure we are showing results for three such
generators corresponding to three style images shown in the
top row and three segmentation maps corresponding to three
"content"/training dataset images shown in the right-most
column. Since these generators do not serve as our final
segmentation networks, the generated images do not have to
be anatomically prefect as long as they can learn and exhibit
enough anatomy with the large dataset’s texture in generated
images that could help in training a U-Net effectively in our
last step. We chose the soft tissue window of CT scans for
texture learning and augmenting the smaller dataset. Soft
tissue images exhibit all the anatomical details necessary
for learning annotations of the smaller dataset which in our
case are segmentation maps having segments depicting heart,
lungs, torso esophagus and spinal cord. These segments are
clearly distinguishable in the soft tissue window based on the
pixel values of the images. Having the ability to learn annota-
tions or segmentation from the augmented dataset will enable
the trained U-Net to recognize the CT images’ segments from
the larger dataset having similar textures.

2.4 Training the U-Net

We train a U-Net [3] for creating a segmentation map as
output when given a chest CT image as input. We chose the
U-Net architecture due to its excellent performance for seg-
menting biomedical images, especially when coupled with
data augmentation techniques like elastic deformation. The

architecture of the network is based on the original work done
by the authors where each blue block in Figure 3a consists
of two convolutional layers with a batch normalization layer
in between those layers and a max-pooling layer as the last
layer. In the up-sampling part, max-pooling layers are re-
placed by the transposed convolutions layer as the first layer
followed by the two convolutional layers. As shown in the
figure the results of each block in the down-sampling part are
concatenated to their corresponding block in the up-sampling
half. Kernels of size 3x3 are used for convolutional layers
with a stride of 2. We use the augmented textured annotated
dataset created in the previous step for training our U-Net.
Having similar texture across the two different datasets helps
training a segmentation network on the segmented dataset to
segment the images of the large non-annotated dataset. We
use the trained U-Net to segment randomly chosen 100 CT
images of the larger dataset which forms our test set.
We analyze the improvement of the network trained on the
augmented CT image dataset as compared to the network
trained on the small high-dose image dataset. In the absence
of the ground-truth segmentation maps for the test set, we
manually corrected the erroneous predicted segmentation out-
puts of the network models with the help of a few radiologists.
The corrected segmentation outputs of the test set images are
then treated as the ground truths for the images. The first row
of Figure 3b highlights some of these well formed ground
truth segmentation maps, while the second row shows the
erroneous predicted segmentation maps from the network
trained on the smaller high-dose image dataset. We discuss
the improvements and compare the two networks in the next
section. Both are trained for 30 epochs with a batch size of
16.

3 Results, Further Work and Conclusion

Figure 4 highlights some of our results. We observe that
the U-Net trained with our style learning based augmented
data (U-Net 2) has a greater segmentation accuracy than
the network trained with the original annotated dataset (U-
Net 1). For instance, the augmented dataset-trained network
classified much more of lung and torso matter correctly than
the network trained with the original dataset. As for metrics,
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Figure 4: The above figures display a side-by-side comparison of the test results of the segmentation network (U-Net 1) trained on the
small high-dose CT dataset versus the network (U-Net 2) trained on the augmented dataset. The segmentation maps generated by the
augmented dataset show greater visual accuracy than those by the network trained on the small dataset.

U-Net 2 has a testing accuracy of 95.7% whereas the U-Net
1 has a testing accuracy of 93.1%.

We also observe that we still have segmentation flaws around
smaller segments like esophagus and spinal cord. Since the
small dataset represents limited anatomy of a few patients,
there are errors in the segmentation outputs of the patients in
the larger dataset with more varied anatomy. This becomes
more evident around smaller segments since the segmentation
maps of the small dataset are on an average significantly
smaller, i.e., have less spatial detail, than those of the large
dataset which is due to the differences in positioning of the
scanner lens between the two datasets.

One way to resolve this is to explore the PCA space of seg-
ments within segmentation maps as we did in Krishna el al.
[2] to generate CT images with varied anatomy through our
styleGANs for augmenting the small annotated dataset. Also,
we propose to further improve our segmentation network
accuracy by training U-Nets and StyleGANs in a cyclic ap-
proach. We will use StyleGANs to augment a dataset, pass it
through the segmentation network, and then use the segmen-
tation maps generated by this network to provide additional
data for the StyleGAN training and then repeat the process.
Another option is to use a combination of all CT window
images including lung and bone windows for segmenting the
images. We propose to use a combination of above mentioned

strategies to further improve our segmentation accuracy.
According to these results, augmenting medical datasets us-
ing StyleGANs has proven to be a promising method to re-
solve texture differences between different medical datasets
paving a way to analyze one dataset based on the annotations
of another. In the segmentation task of lung CT, the Style-
GANs assisted expanded dataset helped a U-Net to improve
its accuracy by 2.6% on a completely different dataset. Hope-
fully, this new technique can mitigate the annotated medical
data shortage issue that is required for training data intensive
deep learning networks for various applications.
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Abstract Conventional image quality metrics are unsuitable to eval-
uate the realism and medical accuracy of synthetically generated CT
images. We describe an approach based on the concept of Visual
Turing Test that engages medical professionals to assess the generated
images and provide useful feedback that can inform the generative
process. We first describe our approach for synthesizing large numbers
of novel and diverse CT images across the full Hounsfield range using
a very small annotated dataset of around thirty patients and a large
non-annotated dataset with high resolution medical images. Using
an anatomy exploration interface we can generate CT images with
anatomies that were non-existent within either of the datasets, with-
out compromising accuracy and quality. Our approach works for all
Hounsfield windows with minimal depreciation in anatomical plausi-
bility. We then describe our Visual Turing Test methodology in detail
and show results we have obtained.

1 Introduction

Deep learning in medical applications is limited due to the
low availability of large labeled, annotated or segmented
training datasets. The scarcity persists not only because of
privacy and ownership concerns but also because of the high
cost of labeling such datasets by human experts. Likewise,
publicly available annotated high resolution image datasets
are also often very small or even non-existent.
In this work we first present a methodology that reduces or
even eliminates he problem of such small datasets by convert-
ing them into large datasets without the loss of anatomical
accuracy. Our approach goes beyond simple data augmen-
tation techniques like stretching or flipping existing images
and adds new data instances with anatomies that may not
even exist in these datasets. With this approach we are able to
increase not only the size but the overall diversity of images
in datasets significantly.
Our method uses a dataset of segmented CT images from
thirty patients and a large dataset of unsegmented CT im-
ages. Our method builds on our previous work of texture
learning [1] to expand the small annotated dataset with tex-
tures present in the large dataset. Subsequently we extract
segmentation maps from the unsegmented large dataset via a
trained U-Net. Next we train a cycleGAN on both the small
segmented data and large unsegmented data in an alternate
fashion to generate new images with segmentation maps as
inputs. This synthesis step expands on our previous work
[2] and explores the PCA space of segmentation maps in
conjunction with the cycleGAN to create CT images with
novel anatomies not present in either of the datasets.
Since commonly used image quality metrics are unsuitable

Figure 1: Flow starts at the top right corner with two datasets -
a small segmented and a large unsegmented dataset. Three differ-
ent Deep-Learning networks are used starting from a StyleGAN
followed by a U-NET segmentation network and 5 CycleGANs
which train generators for the final step.

to evaluate the realism and medical accuracy of synthetically
generated CT images, we have designed a framework that
engages medical professionals to assess the generated im-
ages along these qualitative figures of merit. Our evaluation
interface is based on the concept of Visual Turing Test and
provides several design elements to determine the degree of
realism and the sources of anatomical imperfections.

2 Our CT Synthesis Methodology

Figure 1 highlights our sequence of steps. We will briefly
summarize each step in the same sequence below.

Texture Augmentation. The smaller dataset consists of
chest CT scans with segmentation maps (lungs, heart, etc.)
of 30 patients. The larger dataset consists of non-annotated
chest CT scans of ∼14k patients. To use the two datasets
together we modified the textures of the smaller dataset with
those of the larger one, augmenting the smaller annotated
dataset 3-fold. We used the network architecture of [1] for
segment-wise texture learning and created new CT images
with the anatomy from the small dataset and the textures
from the larger dataset.

Further Augmentation from Label Training. We train
a U-Net [3] to output a segmentation map given a chest CT
image as input. We use the augmented annotated dataset
created in the previous step for training our U-Net. Having
similar textures across the two different datasets helps in
training a segmentation network on one dataset to segment
the images of another. We use the trained U-Net to segment
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Figure 2: Above figure shows two examples of novel CT scans generations. The sequential training and generation learns the correlations
of anatomical details and can be clearly seen within the columns as we move from left to right. The last two columns depict the anatomical
consistency observed in different HU windows than in generated ones. Each red arrow represents a generator of the two generators trained
in a cycleGAN setup for corresponding modalities.

all 14k patient images. Since the smaller dataset has limited
anatomy, there are errors in the segmentation outputs of the
larger dataset. k-NN classifiers are used to rank them by accu-
racy using certain characteristics of the segmentation images.
We choose the best 1/4 of segmentation outputs and add them
with their CT scans to the smaller segmented dataset. This
dataset along with the larger dataset of unsegmented images
is then used to train the generators for the synthesis.

Decomposing the Hounsfield Range for Generation
Steps. Our method generates images at full Hounsfield in
five separate steps. Fig. 3a shows the average distribution
of pixels values of a chest CT-scan over HU values. Fig.
3b shows an image in (-160, 240) HU range while Fig. 3c
shows an image in (-600, -1000) HU ranges. Two separate
generators are used to generate these HU ranges thereby as-
sisting the GANs to focus on the minute details within these
ranges since discriminators within a GAN setup focus on the
accuracy of the majority group of pixels within a particular
HU range. Hence we use five generators to generate five
distinct sets of images for five distinct HU ranges for a single
CT image generation. We first generate the middle HU range
image using the segmentation map as input since it details the
major anatomical features such as bones and organs. We then
use this generated image as input for generating the other HU
range images. This is shown in detail in Fig. 2.

Figure 3: We use 5 CycleGANs to train 5 generators for 5 non-
overlapping HU ranges (-1000, -600), (-600, -160), (-160, 240),
(240, 640), (640, 1000)

Paired and Unpaired Training via CycleGAN. To gen-
erate the CT images we follow the network architecture of
[4] for paired and unpaired training. We use a different
algorithm and data setup for training since our paired and
unpaired datasets come from different sources. We use only
the large CT dataset for unpaired training while we use all
the segmentation maps for both paired and unpaired training.
Training was done in an alternate fashion; every iteration of
paired training was followed by two iterations of unpaired
training to learn the anatomical diversity present in the un-
segmented dataset. As mentioned before, we have five such
setups to produce five relevant generators to cover all five HU
ranges. Figure 2 shows the image synthesis sequence we use
to cover the full HU-range. Shown are two CT images which
exhibit novel anatomy. The left two columns demonstrate
their anatomical consistency in the lung and bone windows.

Addition of Segmentation Maps via PCA. The larger
dataset contains CT scans of around 14k patients while we
have segmentation maps for only 3k patients. To balance
the number of segmentation maps with CT-scans for training
the cycleGAN we interpolate new segmentation maps in the
PCA space of existing ones. For this we used our previous
methodology [2] of representing segmentation maps as a
set of B-Spline curves. Since interpolations may not be
perfect anatomically we use k-NN classifiers to rank the
validity of segmentation maps and chose the best ones as
input for training the generators in paired/unpaired training
in the cycleGAN [4] setup. The creation of new segmentation
maps also helps in creating CT images with novel anatomy.

3 Our Visual Turing Test for Evaluation

Some of the popular metrics generally used to evaluate gener-
ated medical images are Structural Similarity Index (SSIM),
Peak Signal to Noise Ratio (PSNR), Fréchet inception dis-
tance (FID) and Inception Score (IS) among others. These
metrics are a good representation of how much the generative
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model is able to mimic the training distribution and some
metrics even give us a good idea of how much a model is
able to diversify its outputs. When evaluating models that
generate medical images like Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), Chest X-rays etc. a
fundamental aspect to be considered is to verify the “medical
accuracy” of the generated images. Currently, no metric can
provide us with such evaluation of generative models used in
medical imaging. Metrics such as FID and IS have a large
dependence on the pre-trained networks which can be trou-
blesome when the model fails to capture spatial relationships
between various parts of the image. Other popular metrics
such as PSNR and SSIM are numerical metrics that could be
more reliable but they have been shown to be closely related
to Mean Square Distance / Error (MSE) [5] for two images
which is widely known to be poorly correlated with human
perception of image quality or anatomical accuracy. This
is a big drawback of these metrics in context of anatomical
accuracy. So, we propose using the ability of humans having
expertise in CT to assess our generated lung CT images and
provide a better description of the generated images in the
form of a Visual Turing Test for Medical Images.

Introduction - Visual Turing Test. The Visual Turing
Test is a variation of the Turing Test that was first intro-
duced by Geman et al [6] as a way to measure the level of
understanding of a computer vision model. In the area of
medical imaging this test was used to evaluate models based
on how realistic synthetic medical images are. Chuquicusma
[7] applied it to evaluate generated malignant and benign
lung nodules while Han et al [8, 9] used it to evaluate brain
MR images. The test is administered to human experts by
showing them a randomly chosen medical image from a set
of real and generated images one at a time in a random order.
The expert then proceeds to give a feedback for each image
shown to them without any knowledge of their actual labels.
The feedback involves the experts’ opinion of whether an
image is obtained from a real patient (Real) or whether it is a
computer generated image (Fake). The primary idea of this
test is to assess if a model is successfully able to generate
medically accurate images which can be determined by mea-
suring the number of times the model is able to fool experts
into thinking that a model generated medical image is in fact
a medical image obtained from a real human being. When
experts are unable to separate the images into real or fake at
least 50% (chance baseline) of the time, the model is said to
have passed the visual Turing test.

Implementation Details. We designed a website to carry
out the Visual Turing Test with a primary focus on evaluating
generative frameworks that synthesize lung CT scans. The
user interface for this website was created using Next.js (a
server side framework built on top of react.js), tailwindCSS,
Framer motion and sanity.io (GROQ Queries) as a back-
end to store all the responses. All responses are stored in
a state which is managed by using redux, a state container.
The website is hosted using vercel and is live at https:

Figure 4: Left: Expert user evaluation interface for our Visual
Turing Test. They can choose one of "Real" and "Fake" options.
Right: More options pop up if they chose "Fake".

//visual-turing-test.vercel.app.
As the test begins, the study participant is presented with
an image and 2 options: "Real" or "Fake". If they choose
"Fake", a sub-section pops up asking them to choose another
option that best represents how fake the image looks. As
shown on the right side of Figure 4 they could choose one
of the "Almost Real", "Somewhat Real" and "Clearly Fake"
options. After choosing a "fakeness level" the participant
is shown a window as in Figure 5 where they can mark the
areas that look fake in the CT image. Once they are sure of
their choices the participant "submits" their feedback. We
designed the test to be 30 images long so as not to overwhelm
the participants. It ensures their responses are well thought
out and yield an accurate measure of anatomical accuracy for
our synthesized CT images. The images shown are randomly
chosen from one of the three windows namely bone, lung
and subdural/soft-tissue.
The test provides the following functionalities:

• Evaluates a model based on human expert feedback.
• Evaluates how close the model is to generating realistic

medical images, gauging medical accuracy.
• Collects the areas of an image marked as fake by the ex-

pert, which can later be used for training better models.

Figure 5: The interface that pops up after an expert user submits
the "Fake" option for an image. The red boxes indicate the ar-
eas of above image annotated by the user that he/she thinks look
anatomically too inconsistent for the image to be real.
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Radiologist Accuracy TP TN FP FN Almost
Real

Somewhat
Real

Clearly
Fake

1-Competent 83.33% 86.67% 80% 20% 13.33% 20% 40% 20%
2-Competent 73.33% 93.33% 53.33% 46.67% 6.67% 26.67% 26.67% 0
3-Proficient 96.67% 100% 93.33% 6.67% 0 0 60% 33.33%
Average 84.44% 93.33% 75.56% 24.44% 6.67% 15.56% 42.22% 17.78%

Table 1: Statistics of responses given by 3 radiologists

Experts chosen for this test consisted of doctors, radiologists
and senior radiology fellows. Since every participant will
have different levels of expertise, in order to measure the
performance of the model across different levels of expertise,
each person is asked to indicate their medical knowledge at
the end of the test.

Results. The test was taken by 3 radiologists, 1 of whom
had "proficient" expertise and the others had "competent"
expertise in radiology. Each of these tests presented the
radiologists with 30 images belonging to 3 different windows
(soft tissue, lung and bone) comprising 15 real CT images
and 15 fake CT images in a random order.
Upon analyzing the responses, it was found that senior radi-
ologists that are proficient were able to distinguish between
fake and real images better than the radiology fellows who
marked themselves as "competent". This can be clearly seen
in confusion matrices shown in Fig. 6 where the competent
test takers had difficulties in identifying all the fake images.
Also, according to the table, among the chosen fake images,
very few of them seemed to be "clearly fake" to the non-
experts. The statistics shown in Table 1 indicate that the
generative framework in consideration has not passed the
Visual Turing Test as expert radiologists can easily identify
most fake lung CT images from the real ones.

Analysis - The Heart Issue On closer inspection of the radi-
ologists’ feedback, we found out that expert radiologists were
able to identify the fake images because of the anatomical
errors in the heart. Our large lung CT dataset is entirely low-
dose and has CT scans from different parts of patients’ chest
collected over multiple scanners. Depending on the location
on a patient’s chest where the CT-scan was taken, a low-dose
CT image could show either 2 or all 4 chambers of the heart
in a blurry fashion. Since the low-dose CT images often did
not clearly show these chambers, the generator could not
learn these textures. This led the synthesized images to often
exhibit arbitrary number of chambers. Conversely, the other
parts of the synthesized CT images including bones, mus-
cles and the surrounding tissue looked anatomically accurate,
according to the participating radiologists.

Proposed Improvements for Future Work. One of the
improvements that could correct the anatomy of a heart in
low-dose CT is a more focused conditional generation of

Figure 6: Confusion matrices for responses of 3 radiologists.

the heart in a CT image. The conditional parameter could
either be size, shape or a template heart image taken from a
training dataset. Denoising Diffusion Probabilistic Models
(DDPMs) [10] have recently shown that they could be strong
candidates for high-def. conditional generation of images.
Further, conditional-DDPMs like ILVR-DDPMs [11] can
also be added as a refinement / extra layer for heart gener-
ation over an existing stable diffusion-based model of lung
CT, giving a user more control over the synthesis process.
DDPMs are more stable as compared to GANs and unlike
GANs could be easily customized over existing models elim-
inating the need to train new models from scratch.

4 Conclusion

Our work suggests that careful implementation of texture
based data augmentation combined with generative models
could eliminate the "small annotated-data problem" in med-
ical imaging domain. We also present an interactive visual
turing test to evaluate these models with the help of the ex-
perts’ feedback which could help develop new strategies for
overcoming the shortcoming of these models.
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Abstract Our contribution focuses at improving the image recon-
struction process for specific Compton imaging systems able to detect
multiple classes of events, in the field of nuclear imaging. For each
existing prototype of such systems, one or several processing meth-
ods have already been proposed to retrieve the activity map. Most
of them get their inspiration from maximum likelihood expectation-
maximization (MLEM), but none of them actually compute the MLEM
solution. Some exploit the fully detected events only (e.g. in three-
gamma imaging, the simultaneous detection of a pair of annihilation
photons and of a third photon), and other combine several classes of
detected events in a suboptimal way. In this paper, we first introduce
a general framework for the reconstruction of a single activity map
from multi-class events, and we provide the suited list-mode MLEM
update equation. We then consider the case of XEMIS2, a preclini-
cal prototype of a Compton telescope for three-gamma imaging, for
which four distinct classes of partial detections coexist with the full
detection class. As a preliminary step towards effective multi-class
reconstruction, we generate a sensitivity map for the five classes using
a dedicated Monte Carlo simulator.

1 Introduction

In nuclear imaging, some scanner prototypes based on Comp-
ton imaging allow the detection of different types of events.
For instance,

• The MACACO camera [1] is a Compton telescope with
three layers of plane detectors having different energy
resolutions. Photon (or gamma) interactions in different
combinations of layers lead to events with different
spatial resolution properties.

• The WGI preclinical prototype [2] has a full-ring ge-
ometry with a scatterer detector close to the scanned
subject and an absorber further away. In addition to
Compton imaging, WGI performs positron emission
tomography (PET) imaging by detecting annihilation
photons in coincidence. With radio-isotopes emitting
nearly simultaneously a positron and a (third) gamma,
3-gamma (3γ) imaging can be performed [3]. The emis-
sion point can be localized near the intersection of the
Compton cone-of-response (COR) of the third gamma
and the PET line-of-response (LOR) of the annihilation
photons.

• The XEMIS2 preclinical prototype [4] is a Compton
telescope using liquid xenon as a single continuous de-
tection medium. It has been specifically designed for 3γ

imaging.

All scanners described above detect distinct types of events
during a single acquisition. To avoid the widespread term
type, we call them classes of events hereafter.
In terms of image reconstruction, the WGI prototype sepa-
rately considers Compton or PET image reconstructions [2].
With 3γ , a single back-projection is performed [3]. For
XEMIS2, a method has been proposed to transform 3γ data
into TOF PET data in order to use conventional PET recon-
struction methods [5]. Only 3γ data were used while single
or double γ events were discarded. For MACACO, all event
classes were considered together in the reconstruction pro-
cess. An extension of the MLEM algorithm was proposed
lacking a theoretical derivation, where the update term is the
sum of contributions from each event class and weighted by
the sum of the sensitivities of each class [6].
Here, we first introduce a theoretical framework for the re-
construction of a single activity map from multi-class events.
In particular, we derive a proper list-mode MLEM algorithm
suited to the multi-class case. In a second stage, we consider
3γ imaging based on XEMIS2 as a specific case. As a prelim-
inary step towards effective multi-class reconstruction, we
generate a sensitivity map for each class using a dedicated
Monte Carlo simulator.

2 Derivation of the multi-class list-mode MLEM

In what follows, λλλ := {λ j} j∈J1,JK denotes a voxelized density
of events, where each λ j represents the expected number of
emitted events from the jth voxel. As mentioned earlier, we
consider a multi-class data approach, where the available
information about λλλ arises from several distinct datasets.

2.1 Multi-class data

Let yyy := {yyyn}n∈J1,NK be the set of N collected data. It is com-
posed of K ∈ N∗ disjoint classes of physically independent
events. A class refers to a specific type of event that can
be detected and identified. We assume that each observed
event can be attributed to one class, so that the set yyy can be
expressed as the union of K independent classes:

yyy :=
K⋃

k=1

{
yyyk

n
}

n∈J1,NkK, N =
K

∑
k=1

Nk, (1)
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where each yyyk
n ∈ Rdk

is a measurement vector containing
photon interaction coordinates and deposited energies for the
nth event.

2.2 Multi-class likelihood

We assume that within each class k, the events
{

yyyk
n
}

n∈J1,NkK
are independent and identically distributed (iid) according
to the probability density function of sampling yyyk from any
point of the λλλ distribution:

yyyk
n ∼ pk(yyyk|λλλ

)
∀k ∈ J1,KK. (2)

The log-likelihood function then reads:

l(λλλ |yyy) :=
K

∑
k=1

Nk

∑
n=1

ln pk(yyyk
n|λλλ
)
=

K

∑
k=1

lk(
λλλ |yyyk) (3)

where lk(λλλ |yyyk) denotes the log-likelihood of the kth class.
Under standard Poisson assumptions, we can decompose
lk
(
λλλ |yyyk

)
as

lk(
λλλ |yyyk) :=

Nk

∑
n=1

ln

(
J

∑
j=1

ak
n jλ j

)
−Nk ln

(
J

∑
j=1

λ jsk
j

)
, (4)

where ak
n j := Ak

j
(
yyyk

n
)

defines an element of the system matrix
specific to class k and voxel j, expressed as a continuous
function of the nth measurement vector, and sk

j denotes the
sensitivity of voxel j for class k:

sk
j :=

∫
v∈Ωk

Ak
j (v)dv ∀ j ∈ J1,JK, k ∈ J1,KK, (5)

where Ωk denotes the continuous detection domain related to
the kth class.

2.3 Multi-class list-mode MLEM

To perform the estimation of λλλ , we must extend the list-mode
MLEM algorithm [7, 8] to simultaneously account for the K
classes. The result is the following update equation:

λ̂
(t+1)
j := λ̂

(t)
j × 1

∑k sk
j

K

∑
k=1

Nk

∑
n=1

ak
n j

1

∑ j′ ak
n j′ λ̂

(t)
j′ + εk

n

, (6)

where εk
n can be used to modelled random and scatter detec-

tions for each class. For a complete derivation of (6), we first
need to express the log-likelihood of the complete dataset,
along the same lines as in [7]. In the multi-class framework, a
specific property is that the latter is a sum over the K classes.
The update equation (6) is then obtained from (3) within the
model of the EM algorithm [9] and allowing the decomposi-
tion of the auxiliary function Q(λλλ |λλλ (t)) into a sum of lower
bound approximation on the likelihood for each class:

Qk(
λλλ |λλλ (t)) := Ezzzk|yyyk,λλλ (t)

(
ln pk(yyyk,zzzk | λλλ )

)
∀k ∈ J1,KK

(7)

where zzzk denotes the latent data vector.

3 Application to three-gamma imaging

3.1 XEMIS2 camera

The above results can be applied to XEMIS2, in the context
of 3γ imaging. This imaging modality makes use of an
isotope that quasi-simultaneously emits a positron (leading
to the annihilation in two photons of 511 keV) and a so-
called third photon. In our application, scandium-44 (44Sc)
is used where the third photon is isotropically emitted with
an energy of 1157 keV. The XEMIS2 camera is a preclinical
prototype based on a continuous cylindrical liquid xenon
(LXe) detector [4]. The axial length of the active zone is
24 cm with an internal (resp. external) radius of 7 cm (resp.
19 cm). The design of the camera only allows to operate at
low count rates resulting in low random rates. The energy
resolution at 511 keV is 9% (FWHM) which would allowed
to remove most of scattered photon using a tight energy
window.

3.2 Classes of detections with XEMIS2

Based on the energy of the detected photons, K = 5 classes
of events are possible:

• 1γ
511
COR events correspond to the detection of a single

annihilation photon. Its emission position belongs to a
COR with a half-opening angle β ∈ [0,π] given by the
Compton scattering angle formula:

β := acos
(

1− mec2E1

E0 (E0 −E1)

)
(8)

where mec2 is the mass energy of an electron, E0 is the
total energy of the incident photon, i.e. E0 = 511 keV
for this class, and E1 is the energy deposited in the
detection medium during the scattering effect.

• 1γ
1157
COR events correspond to the detection of the third

photon. Akin to the former case, it is possible to define
a COR using eq. (8) with E0 = 1157 keV.

• 2γLOR events correspond to the detection of both anni-
hilation photons. As standard PET imaging, the source
of annihilation belongs to a LOR.

• 2γCOR events correspond to the detection of a single
annihilation photon and the third photon (combination
of 1γ

511
COR and 1γ

1157
COR). The origin of the decay belongs

to the intersection of the two CORs.

• 3γ events correspond to the independent combination
of a 2γLOR event with a 1γ

1157
COR one.

The imaging procedures currently available for XEMIS2 (e.g.,
[5]) only exploit 3γ events. The other classes correspond to
partial detections. Yet, they could bring additional informa-
tion to the image reconstruction process, and thus lead to
estimated activity maps λ̂λλ of enhanced quality using a suited
multi-class reconstruction algorithm such as eq. (6).
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(a) 1γ511
COR (b) 1γ1157

COR (c) 2γLOR (d) 2γCOR (e) 3γ

Figure 1: Examples of detection obtained with the Monte Carlo simulator dedicated to XEMIS2. The LXe continuous detection medium
is represented by the hollow cylinder, and the studied image by the box in the center. Blue LORs and CORs are obtained from annihilation
photon(s), and red CORs from the third photon.

(a) 1γ511
COR (b) 1γ1157

COR (c) 2γLOR (d) 2γCOR (e) 3γ

Figure 2: A cross-section of the sensitivity maps (%) for each class of event at z = 0.

3.3 Monte Carlo simulator

Multi-class image reconstruction can be first assessed
through simulation. To this end, a Monte Carlo simulator was
implemented to generate 3γ emissions and their detection in
a continuous medium, according to the geometry of XEMIS2.
It is based on a ray-tracing method, allowing us to simulate
emissions from voxels within the field-ov-view (FOV) by
randomly selecting three directional vectors to define the
positron range, the trajectories of the annihilation photons
along the LOR, and the third photon. Once a photon reaches
the LXe zone, new random draws were performed to simulate
the mean free path and the radiation-matter interactions that
may occur, such as Compton scattering, Rayleigh scattering
and photoelectric effect. Cross-section values were extracted
from the XCOM database [10]. We neglect the Rayleigh
effect since its normalized cross-section is strictly lower than
10% over the entire energy range of interest i.e. for ener-
gies lower than 1157 keV. The resulting code, named Pollux,
is open-source and freely available at mlatif/tep3g-pollux.
Fig. 1 presents examples of detection for each event class
obtained with Pollux.

3.4 Sensitivity computation of XEMIS2

The mathematical expression of the voxelwise sensitivity (5)
involves multi-integrals that cannot be evaluated analytically.
We thus used Pollux to generate approximate maps of the
sensitivity for an empty FOV. To this end, the whole FOV
was discretized into 19×19×24 voxels of 5×5×10 mm3.
M = 2×105 3γ emission points were uniformly generated in
each voxel and the event class was recorded for each emission.
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Figure 3: Mean sensitivity (%) along the axial direction for each
class of event. The 0γ curve corresponds to the mean distribution
of non-detected emissions.

Fig. 2 displays the sensitivity map obtained for each class
for a transaxial cross-section at the center of the FOV, while
Fig. 3 shows the same maps along the axial direction. The
sensitivity distributions of the different classes are spatially
heterogeneous, and tend to complement each other, which is
an interesting observation in the perspective of multi-class
reconstruction. For instance, the sensitivity maps of classes
3γ and 2γLOR are maximal at the center of the FOV, while
the trend is reversed for the sensitivity of 1γ

511
COR and 1γ

1157
COR.

Let us remark that non-detected events can be gathered in
a sixth class 0γ , whose “sensitivity map” (as displayed in
Fig. 3) can rather be understood as a non-sensitivity one.

Table 1 displays the distribution of detected events by class,
which represent 69% of the emissions that led to the detection
of at least one photon. We note that approximately 13% of
the emissions lead to the detection of 3γ , which is small
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compared to the partially detected events, totalizing almost
87% of all cases. Obviously, we expect the most informative
events to be in the 3γ class, and the 2γLOR events to be more
informative than the other events on CORs. However, 3γ

and 2γLOR classes represent about a quarter of the detected
events.

Class 1γ
511
COR 1γ

1157
COR 2γLOR 2γCOR 3γ

% of detection 22.86 32.07 10.2 21.67 13.2

Table 1: Classification of detected events (≈ 69%) for emissions
uniformly distributed within the set voxels in the discretized FOV.

4 Discussion and perspectives

Our contribution focuses at designing an image reconstruc-
tion process for specific Compton imaging systems able to
detect multiple classes of events, in the field of nuclear imag-
ing.
First, we introduced a theoretical framework for the recon-
struction of a single activity map from multi-class events,
from which we deduced the suited list-mode MLEM up-
date equation. The latter is potentially applicable to several
existing prototypes of Compton imaging systems, such as
MACACO, WGI, and XEMIS2. Let us also mention that
the multi-class version of MLEM could be extended to cases
where a regularization term is considered, as proposed in [11],
for instance.
In a second part, we made a step further towards an ap-
plication to XEMIS2, which is a preclinical prototype of a
Compton telescope for 3γ imaging. In the XEMIS2 case, four
distinct classes of partial detections coexist with the 3γ class.
Using a dedicated Monte Carlo simulator, we determined a
sensitivity map specific to each class, which is prerequisite
to implement our multi-class version of MLEM. Besides, the
obtained sensitivity maps clearly indicate that partial detec-
tions are far more frequent than perfect detections. Moreover,
we noticed that some partial detection classes spatially com-
plement the 3γ class. On the one hand, each partial detection
is less informative than a full detection, but on the other
hand, partial detections are more frequent. An interesting
task will be to determine the amount of information brought
by each class. This could be formally achieved by expressing
the Fisher Information Matrix in the multi-class case, as an
extension of the standard framework of [7]. We could then
anticipate which classes are worth to be incorporated, despite
the increased computational cost.
The next important step of our project will be the imple-
mentation of the proposed multi-class MLEM algorithm on
the CASToR (Customizable and Advanced Software for To-
mographic Reconstruction) platform [12]. Based on Pollux
simulations, we are currently working at allowing continuous
measurements and COR events within the CASToR frame-
work. We also plan to implement a more realistic simulator
using the GEANT4 toolkit [13].
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Abstract New generations of X-ray sources based on carbon nan-
otubes (CNT) enable the design of multi-sources computed tomog-
raphy (CT) scanners. CT scanners with CNT often use a limited
number of stationary sources and corresponding projections. Three-
dimensional CT theory evaluates whether a given continuous source
trajectory provides sufficient data for stable reconstruction of an im-
aged object. This paper extends a local incompleteness metric to derive
a three-dimensional map and quantify tomographic incompleteness
for a finite set of sources. We illustrate this incompleteness with a
dedicated phantom. The reconstructed CT images of the phantom
match the results predicted by the incompleteness map.

Keywords X-ray cone-beam CT; Stationary architecture; Tomo-
graphic incompleteness

1 Introduction

Computed tomography (CT) is one of the most commonly
used imaging modality for three-dimensional (3D) recon-
struction in the medical and industrial fields. In the past few
years, new X-ray sources have been developed based on car-
bon nanotube (CNT) cathodes [1]. Their small size enables
the design of a new generation of CT scanners. It would ben-
efit both industry with cheaper and motionless systems and
medical applications with light-weight and mobile scanners
which could be brought to emergency sites.
In a 3D context, CT scanners can be split into two categories:
non-stationary architectures with mobile source(s) and sta-
tionary architectures with static source(s). Non-stationary
architectures are the most common ones with source trajec-
tories such as the conventional helix path or the circle-line
path [2] which is adapted to C-arm scanners. Micro CNTs
have opened new horizons for CT scanners with stationary
architectures. The idea is to place several stationary sources
around the scanned area. Gonzales et al. [3] and Vogtmeier et
al. [4] have proposed two stationary designs for controlling
luggage at airports.
3D CT theory has a few tools to help with the geometrical
design of a CT scanner. Assuming non-truncated projections,
Tuy [5] gave a condition to verify if a continuous source
trajectory is sufficient to reconstruct an open region Ω. The
condition can be stated as: every plane that intersects the
imaged region Ω must intersect the scanning trajectory at
least once. In practice, all scanners are limited by a finite set
of source locations instead of a continuous curve and Tuy’s
condition is never strictly satisfied. However, it is known
that discrete sampling of a helical trajectory allows stable

reconstruction.
Several metrics have been studied to quantify the impact of
tomographic incompleteness, i.e. when Tuy’s condition is
not met. Metzler et al. [6] and Lin and Meikle [7] calculate
a voxel-based percentage considering the unit sphere by lo-
cally linking Orlov’s and Tuy’s conditions [6]. Their metric
is similar to that of Liu et al. [8] which was derived from
the theory of the 3D Radon transform. They numerically
evaluate the fraction of planes which are intersected by the
source trajectory by sampling the unit sphere. This kind of
measure is only possible for continuous source trajectories
and the authors indicate that it is difficult to predict the re-
construction quality from this metric as, for example, 99%
may lead to poorer image quality than 96%. Clackdoyle and
Noo [9] quantify tomographic incompleteness to measure
how far a voxel is from locally satisfying Tuy’s condition
in a given direction. Stopp et al. [10] proposed to average a
similar measure in all directions. These last two criteria can
be applied to both continuous and discrete source trajectories.
Our work aims at evaluating tomographic incompleteness for
the design of new CT scanners assuming (first) non-truncated
projections. We build on the quantification of tomographic
incompleteness [9] to predict the worst direction in each spa-
tial position of a 3D map. For four selected geometries, we
demonstrate the relevance of this quantification by recon-
structing a phantom made of three parallel cylinders placed
at the worst location and oriented in the worst direction ac-
cording to the incompleteness map.

2 Materials and Methods

2.1 Source trajectories

The incompleteness map is computed for a given source
trajectory. We have chosen to compute it for four discrete ge-
ometries assuming that the imaged object is contained in the
same 2563 mm3 cube for all geometries. Fig. 1 illustrates the
trajectories from the object point of view and Tab. 1 provides
key parameters of each geometry. The first two architectures
are conventional non-stationary architectures: circle-line and
helix. The circle only satisfies Tuy’s condition in the trajec-
tory plane. We have selected the circle-line among several
variants to extend the reconstructible region [2]. Here, we
study the discrete form of this geometry and place the line
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a) Circle-Line b) Helix

c) L d) Helix arc

Figure 1: The four geometries studied in the object’s coordinate
system. a) combines a circle, which allows stable reconstruction
only in its plane, with an orthogonal line above to complete data in
the superior half of the object. The imaged object translates in the
z direction for the b), c) and d) geometries. b) consists of a source
with a circle path which makes it a helix when the object translates
axially. c) has an L shape with sources placed on two orthogonal
segments which are repeated when the imaged object moves. In d),
sources are located on a helix arc and are duplicated in the axial
direction.

Table 1: Key parameters of the four source trajectories.

Object translation Sources Radius Special attributes
(mm/cycle) (mm) (mm)

Circle-line None 120 (C) + 60 (L) 240 (360◦) line height: 240
Helix [0,0,24] 120 x 20 cycles 240 (360◦)
L [0,0,24] 120 x 21 cycles 240 (straight)
Helix arc [0,0,24] 120 x 18 cycles 240 (245◦) helical pitch: 120

above the circle only. In this context, Tuy’s condition is not
satisfied below the circle and the incompleteness should be
lower above it. The helix source path is the geometry of most
diagnostic CT scanners. It is composed of a source follow-
ing a circle path while the imaged object translates axially
through the circle which results in a helix in the coordinate
system of the scanned object. For a continuous source curve,
Tuy’s condition is satisfied, and we anticipate a very low
incompleteness for a finite set of source points.
The other two architectures are stationary: L and helix arc.
The L geometry was one of the first stationary architecture
commercialized for airport security [3]. It is made of two
segments of sources which leaves space for detectors on the
opposite side. The helix arc places sources along an arc of
helix. For these two geometries, the imaged object is trans-
lated through the gantry. From the object’s point of view, the
pattern of sources is repeated according to the object motion

in several identical cycles.

2.2 Tomographic incompleteness

Clackdoyle and Noo [9] defined their local directional incom-
pleteness criterion I(x, n) ∈ R+ at x ∈ Ω ⊂ R3 in the
direction n ∈ S2, where S2 is the unit sphere, for a source
trajectory {s1,s2, ...,sn} ∈ R3×n as following:

I(x,n) = min
{
||si−pi||
||x−pi||

: i = 1,2, ...,n
}

(1)

where pi ∈ R3 is the projection of the source si onto the plane
Πx,n passing through the point x and of normal direction n:

pi = si− ((si−x) ·n)n. (2)

This criterion evaluates the minimum tangent of the angles
defined by the plane Πx,n and the X-ray lines, i.e. the lines
passing through the point x and the source positions along the
trajectory. If I(x,n) = 0, the plane cuts the source trajectory.
Therefore, if I(x,n) = 0 for all n ∈ S2, the point x satisfies
Tuy’s condition and can be reconstructed if the acquired
projections are not truncated. If I(x,n)> 0, the plane with
co-direction n does not intersect the source trajectory and the
point x does not satisfy Tuy’s condition.
We use this criterion to evaluate the 3D spatial distribution
of the tomographic incompleteness in the imaged region Ω.
Since we aim at identifying the less complete location and
direction, we only record the maps of the worst directions
n∞ : Ω → S2

n∞(x) = argmax
n∈S2

{I(x,n)} ∀ x ∈ Ω (3)

and the corresponding incompleteness I∞ : Ω → R+

I∞(x) = I(x,n∞(x)) ∀ x ∈ Ω. (4)

In practice, n∞ and I∞ are computed numerically by dis-
cretizing both the unit sphere S2 and the object space Ω. A
unit hemisphere is sufficient due to the symmetry I(x,−n) =
I(x,n). We sampled 3000 directions using Fibonacci lattice
method [11]. Fibonacci lattice arranges points along a spher-
ical spiral homogeneously. Iteratively, each new point is
placed evenly between the largest gap of the previous points.

2.3 Simulation phantom

To verify the incompleteness map, we simulated noiseless
and untruncated projections for each geometry with a ded-
icated phantom. The phantom was made of three parallel
cylinders with a 24 mm radius, a 6 mm height and a center-
to-center distance of 6 mm. According to the incompleteness
result of each geometry, the phantom’s center was placed at
the worst position in the subregion Ω̃ ⊂ Ω which can fully
contain the phantom

x∗ = argmax
x ∈ Ω̃

{I∞(x)} (5)
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and in the worst direction n∗ ∈ S2

n∗ = n∞(x∗). (6)

CT images were reconstructed with RTK [12] using a least-
squares iterative reconstruction with conjugate gradient mini-
mization without regularization. We used 60 iterations which
was visually deemed a good compromise between conver-
gence, overfitting and image quality.

3 Results

3.1 Tomographic incompleteness map

Fig. 2 shows the incompleteness map of each studied geome-
try. It is a combination of the result of Eq. 3 and Eq. 4 for a
given imaged region and source trajectory. In each position x
of the imaged region, the value I∞(x) and the worst direction
associated n∞(x) are calculated. The map illustrates both
information using colors and 3D cones respectively.
The incompleteness maps of the circle-line and helix trajec-
tories confirm the well known theory. For the circle-line
trajectory, the incompleteness is low in the convex hull of the
trajectory, min{I∞(x)} ' 0.016. However, below the circle
plane, the imaged region is not reconstructible which trans-
lates into high incompleteness values max{I∞(x)} ' 0.675.
The worst direction n∗ at the bottom is almost orthogonal to
the circle plane, as expected since the plane Πx∗,n∗ is parallel
to the trajectory circle and is not intersecting it nor the trajec-
tory line. The helix’s map displays a small incompleteness
everywhere, 0.005 ≤ I∞(x) ≤ 0.016. The residual incom-
pleteness stems from the helix sampling.
For stationary architectures, the L trajectory is incom-
plete at the opposite of the two rectangles of sources with
max{I∞(x)} ' 0.456. In this case, the worst direction n∗
defines a plane parallel to the convex hull of the trajec-
tory, which is consistent with Tuy’s criterion. Near the
sources, the incompleteness is small min{I∞(x)} ' 0.006,
as expected, and the direction depends on the source sam-
pling. Finally, the incompleteness map of the helix arc is
similar to the non-stationary helix due to their similar tra-
jectories: 0.005≤ I∞(x)≤ 0.030. It proves that a stationary
design can compete with non-stationary architectures if a
similar number of source locations is used.

3.2 Simulation & Reconstruction

The simulated 3D phantom of three parallel cylinders is
placed at the worst position x∗ (Eq. 5) and in the worst direc-
tion n∗ (Eq. 6) in Ω̃ for each geometry. The reconstructed
images are shown in Fig. 3 such that the phantom is centered
with n∗ vertical.
The helix and helix arc trajectories have good image quality
as predicted by their respective incompleteness maps. The
circle-line trajectory has the worst image quality, and it is dif-
ficult to separate the cylinders. Finally, the L reconstruction

0.002

0.006

0.02

0.066

0.21

0.675

a) Circle-Line b) Helix

c) L d) Helix arc

Figure 2: Tomographic incompleteness maps of the four studied
geometries. Each map is centered on the imaged region Ω (ratio
1/2 in each direction with respect to Fig. 1 and the same camera
angle). The direction and the color of each cone represent the worst
direction n∞(x) (Eq. 3) and the corresponding incompleteness
I∞(x) (Eq. 4), respectively. The bigger cone shows the worst
position x∗ (Eq. 5) in the worst direction n∗ (Eq. 6) in Ω̃.

has a slightly better image quality than the circle-line trajec-
tory, but it is also difficult to distinguish the three cylinders.

4 Discussion

The incompleteness map presented in this work accurately
predicts image quality of a dedicated phantom. The incom-
pleteness map is based on Tuy’s theory and assumes un-
trucated projections. Accounting for the truncation of the
projections was beyond the scope of this work.
The computation of the worst directions n∞ was done numer-
ically by sampling the unit sphere. The sampling pattern [11]
was selected because it homogeneously samples the sphere.
We took about 3000 points on the hemisphere which does
not warrant to find the worst direction. However, the incom-
pleteness maps I∞ and n∞ are quite smooth, at least for larger
values which are not influenced by the trajectory sampling,
and this discretization of the unit sphere may be sufficient
to have a good estimate of n∞. Finally, it is common for
stationary architectures to use iterative reconstruction algo-
rithms. We have chosen to use the same iterative algorithm,
without regularization but a fixed number of iterations, which
provides a quite fair comparison of all geometries.
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a) Circle-Line b) Helix

c) L d) Helix arc

Figure 3: Least squares reconstruction of the same phantom for
each geometry. The phantom is composed of three parallel cylin-
ders and, for each geometry, it is placed at the worst position x∗
(provided by Eq. 5) and in the worst direction n∗ (provided by
Eq. 6) in Ω̃, as shown with a bigger cone in Fig 2. For comparison
purposes, we have registered the reconstructed images to place the
phantom in the center and such that n∗ is vertical.

5 Conclusion

Our work defines the tomographic incompleteness map
which was computed on four architectures: two non-
stationary and two stationary. We have chosen a similar
number of sources, radius and other characteristics to make
them comparable. The results show that the incompleteness
map is in agreement with Tuy’s theory (on which it is based).
These maps adequately predict the image quality of a dedi-
cated disk phantom scanned at the worst location and in the
worst direction provided by the incompleteness map. The
incompleteness map may be used to design a compact geom-
etry scanner with a limited number of sources by minimizing
the incompleteness value in a scanned region.
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Abstract Limited-angle computed tomography (CT) is one of the major 

challenges in imaging reconstruction problems. To tackle this ill-posed 

inverse problem, various supervised deep learning based approaches 

have been proposed and shown impressive results. However, these 

methods have fundamental weaknesses such as the blurring effect caused 

by L2 loss, and difficulty in gathering a large amount of paired data in 

clinical practice. In this work, we propose a novel self-supervised 

limited-angle CT reconstruction algorithm, which effectively addresses 

the aforementioned limitations. We utilize the coordinate-based neural 

representation to obtain the missing angle data. In addition, we integrate 

the prior knowledge of CT image into the network via learned 

initialization, which dramatically enhanced the reconstruction quality. 

The numerical results demonstrate the superior performance of the 

proposed method compared to other conventional methods. We believe 

the presented self-supervised and patient-specific algorithm suggests a 

paradigm shift for limited-angle CT research based on deep learning. 

1 Introduction 

 

Computed Tomography (CT) is one of the most commonly 

used medical imaging modalities. It enables the non-

destructive visualization of the internal body structures by 

reconstructing the image with X-ray projections acquired 

from different angles around the body. Mathematically, this 

reconstruction process is referred to as solving an inverse 

problem from projections to reconstruct the image of a 

scanned object. If a sufficient number of projections is 

acquired, an exact reconstruction is possible by using 

analytical reconstruction such as filtered-backprojection. 

However, when the acquired projection data is not sufficient 

like in limited-angle CT or sparse-view CT, the 

reconstructed image using filtered-backprojection suffers 

from severe artifacts due to the missing information.  

To tackle these ill-posed inverse problems, many deep 

learning based approaches have been proposed and shown 

promising results [1,2,3]. Nevertheless, there still remain 

the limitations such as the blurring effect caused by L2 loss, 

and the difficulty in gathering a large amount of paired data 

for supervised learning in clinical situations. Recently, to 

overcome the aforementioned limitations of general deep 

learning (i.e., supervised learning) method, the concept of a 

patient-specific neural network using implicit neural 

representation has emerged [4,5,6]. Specifically, Kim et al. 

[5] proposed a streak artifact reduction algorithm using 

neural representation in a self-supervised fashion, and 

Liyue Shen et al. [6] used a similar approach with prior 

utilization to reconstruct sparse-view CT image. 

Motivated by the previous works, we propose a novel image 

reconstruction algorithm for limited-angle CT. By utilizing 

implicit neural representation, we obtain a high-quality 

prior image for the imputation of missing angle data. 

Moreover, as shown in Figure 1, CT image based weights 

initialization was activated to ensure the decent quality of a 

prior image. By using the limited-angle sinogram of a single 

patient, our proposed algorithm achieved an outstanding 

reconstruction quality. Numerical comparisons demonstrate 

the powerful performance of our proposed method.  

To summarize, our main contributions are: 

 

 We propose a novel image reconstruction algorithm 

for limited-angle CT in a self-supervised manner.  

 We integrate the prior knowledge of CT image into 

the implicit neural representation by using a learned 

initialization scheme, which in fact leads to dramatic 

improvement of reconstruction quality. 

2 Methods 

 

In this section, we will illustrate the overall framework of 

the proposed method to reconstruct a limited-angle CT 

image. The main idea is to obtain a high-quality prior image 

(i.e., an estimate of a full-angle CT image) by using implicit 

neural representation with learned initialization. Then, by 

using a prior image, we regenerate the limited-angle 

artifacts, which are then subtracted from the original 

limited-angle FBP image to obtain the artifacts-corrected 

result.  

 

The algorithm can be conceptually separated into three parts, 

where the first part is to initialize the weights of coordinate-

based multi-layer perceptron (MLP) using the original 

limited-angle FBP image as an image domain prior. Second, 

starting from the initialized point, we optimize the MLP 

using a limited-angle sinogram to obtain a prior image. 

Lastly, we regenerate the limited-angle artifacts from the 

prior image to impute the missing angle data. Since this 

entire process can be utilized with a single limited-angle 

sinogram, no large-scale data is required. The schematic 

diagram of the proposed algorithm is illustrated in Figure 2. 

Figure 1. Illustration of learned initialization to find θ∗ 
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2.1 Learned Initialization of weights 

 

In CT imaging, coordinate-based MLP can be expressed as 

where 𝑣 represents the coordinate in the given CT image (d-

dimensional space), and 𝜇 is the corresponding pixel value.  

A straightforward approach of using this MLP to optimize 

the neural representation of CT image can be an option in 

limited-angle CT similar to the previous work in sparse-

view conditions [5]. However, when it is applied to limited-

angle CT, the result fails to recover anatomical details and 

limited-angle artifacts remain. This is because the MLP 

only relies on the inductive bias when representing data that 

belongs to the missing angle. Furthermore, compared to 

sparse-view CT, limited-angle CT can be regarded as a 

more ill-posed inverse problem since its projection is 

literally limited. Therefore, additional knowledge must be 

activated for further improvements. 

 

Here, we choose weights initialization scheme to feed prior 

information to the network. This can be easily done by first 

fitting the MLP to the original limited-angle FBP image 

with simple L2 loss described in Eq. (2). Since we can 

obtain the image from limited-angle projections via filtered-

backprojection, there is no need for additional data.  

Although limited-angle FBP image has severe artifacts, we 

demonstrate that it can still act as an image domain prior, 

for instance, giving network structural shape information of 

CT image. In addition, as the optimization of the CT image 

after the weight initialization is done by minimizing the loss 

calculated in the sinogram domain, this operation can be 

viewed as integrating the knowledge from dual domain (i.e., 

sinogram and image domain). Once again, we make it clear 

that high-frequency details are not considered at this step 

since this process only aims to find a better starting point 

(Figure 1). We minimized the loss in Eq. (2)  for 500 

iterations using the Adam optimizer [7] with a learning rate 

of 5×10-4. 

 

2.2 Optimizing CT Image Representation 

 

Using the initialized weights as a starting point, we now 

optimize the neural representation to obtain a high-quality 

prior image. Normally, this procedure can be done by 

minimizing the difference between an estimated value and 

the ground truth pixel in the image domain. However, this 

is impossible in practical CT scenarios where ground truth 

(i.e., full-angle CT image) is unavailable. Therefore, we 

indirectly optimize the network by utilizing a differentiable 

projection layer.  

 

Let 𝒫  denote the differentiable projection layer, then the 

coordinate-based MLP ℳ can be supervised by updating 

the loss in Eq. (3) with gradient descent. Note that the entire 

process of optimization is in a self-supervised fashion 

because we calculate the loss with the acquired sinogram. 

For illustration, please refer to Figure 3. 

We used an MLP consisting of eight fully connected layers 

with a rectified linear unit (ReLU) for implicit neural 

representation. All hidden layers had 128 channels and the 

output layer had a single output channel. Furthermore, 

instead of putting input coordinates directly into the MLP, 

we used Gaussian random Fourier Feature Mapping (FFM) 

[8] in both the initialization and optimization process, of 

which the function is formulated as  

The FFM is known to improve the performance of MLPs in 

regard to representing high-frequency details. In our study, 

𝐵 was sampled from Gaussian distribution 𝒩(0, σ2), and σ 

  (1) 

 

 

(3) 

 

 

(2) 

  (4) 

Figure 2. Schematic diagram of the proposed method 
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was experimentally set to five. The network was optimized 

for 70k iterations with a learning rate of 1×10-5. 

 

2.3 Missing Data Imputation 

 

The output prior image of implicit neural representation can 

serve as a high-quality reconstruction result. Nevertheless, 

in order to ensure the reliability of the outcome, we decided 

to use the prior image for imputing the missing data from 

the original limited-angle FBP image. In this way, we can 

enhance the image quality as well as the reliability. 

 

The severe artifacts in limited-angle CT image are induced 

by the missing angle. Therefore, if we impute the missing 

angle data with the one acquired from the prior image, we 

can expect to reduce the artifacts in limited-angle CT image. 

For imputation, we simply regenerated the limited-angle 

artifacts. The steps are as follows. First, we obtained an 

estimated full-angle sinogram by a forward projection of the 

prior image. Next, by masking the full-angle sinogram, we 

acquired the corresponding limited-angle sinogram. Then, 

with filtered-backprojection, we reconstructed the images 

of full- and limited-angle CT. After that, we calculated the 

difference between these two images, which becomes an 

estimate of limited-angle artifacts. Finally, regenerated 

artifacts were subtracted from the original limited-angle 

FBP image to present the final corrected output.  

 

2.4 Data Generation 

 

A numerical extended cardiac-torso (XCAT) phantom [9] 

was used for a simulation study. The fan-beam geometry for 

the simulation is shown in Table 1. 

 

 

The limited-angle projections were acquired using Siddon’s 

ray-driven algorithm [10] with a 120⁰ scanning range, and 

the full-angle projections were obtained with 513 views 

equally distributed over 360⁰. The angular distance between 

the views was set equal for both projections. 

 

2.5 Compared methods 

 

For comparison, we employed the conventional FBP 

reconstruction, total variation-based iterative reconstruction 

(TV-IR), and implicit neural representation without learned 

initialization. To be specific, the TV-IR was implemented 

with a gradient-projection-Barzilai-Borwein formulation 

[11] and the regularization parameter was set to 0.05 

empirically. In addition, the weights of compared implicit 

neural representation were randomly initialized from 

𝒰(−√𝑘, √𝑘), where 𝑘 = 1/in_features. Note that this is the 

default initialization scheme for a fully connected layer in 

Pytorch [12]. To fairly compare the effects of initialization,  

we also followed the steps in section 2.3 for randomly 

initialized neural representation. For each method, we used 

peak signal-to-noise ratio (PSNR) and structural similarity 

index (SSIM) [13] as quantitative evaluation.  

3 Results 

 

Figure 4 compares the resulting images using FBP, TV-IR, 

randomly initialized neural representation,  the proposed 

method, and the full-angle FBP (reference), respectively. It 

is shown that the proposed method effectively reduced the 

limited-angle artifacts and achieved superior reconstruction 

quality. The quantitative evaluation also demonstrates the 

superior performance of our proposed algorithm (Table 2). 

 

As can be observed, it is clear that FBP and TV-IR struggle 

to recover anatomical details. FBP results in severe artifacts 

due to the incomplete input sinogram. TV-IR recovered 

some artifacts, but residual artifacts persist. Particularly, the 

image along the direction perpendicular to the missing 

angle is severely damaged. Compared to TV-IR, the 

randomly initialized neural representation suppressed the 

artifacts more effectively. However, there still has some 

structural distortions. In contrast, the proposed method 

reduces the artifacts of limited-angle CT very effectively, 

which is more evident in the regions of interest images 

Parameter Value 

Source to iso-center distance 100 cm 

Source to detector distance 150 cm 

Detector cell size (Size of detector array) 0.08 cm (512 × 1) 

Data acquisition angle 360⁰ (full) / 120⁰ (limited) 

Reconstructed image matrix size 256 × 256 

Reconstructed image pixel size 0.05 × 0.05 cm2 

Figure 3. The optimization process of implicit neural representation in limited-angle CT 

Table 1. Parameters of the fan-beam geometry 
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indicated by yellow and green arrows (Figure 5). To sum up, 

the proposed method shows outstanding reconstruction 

quality in terms of limited-angle artifacts reduction and 

preserving anatomical details compared to all the methods 

above. 

4 Conclusion 

 

In this paper, we proposed the self-supervised implicit 

neural representation based algorithm for limited-angle CT 

reconstruction, which is one of the major challenges in 

image reconstruction problems. Since the naïve approach of 

using neural representation fails to recover anatomical 

structures, we integrated the image prior knowledge of CT 

with learned initialization. Lastly, by imputing the missing 

data from the acquired high-quality prior image, we 

effectively suppressed the artifacts. 

Numerical results demonstrate that our proposed algorithm 

can enable limited-angle CT reconstruction of fine quality. 

We believe the presented self-supervised method suggests 

a shifting paradigm for limited-angle CT research regarding 

deep learning approaches. 
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Table 2. The quantitative evaluation 
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Abstract Computed tomography image efficiently helps diagnose po-
tential problems or diseases before symptoms appear with the specific
reconstruction kernel. Different reconstruction kernels produce CT
images with different styles which exhibit various anatomical struc-
ture information. However, the standard reconstruction algorithms
would reach the limit of its capacity for reconstructing the CT im-
ages with multiple image styles of different kernels, i.e., the multi-
kernel style image reconstruction task. In this work, we design a
deep learning network for accurate and efficient multi-kernel style
image reconstruction task in low-dose CT imaging. The sorted view-
by-view back-projection measurements at low-dose are fed into the
deep learning network to reconstruct CT images with a bundle of var-
ious kernels. We demonstrate the feasibility of our deep learning net-
work on Mayo CT dataset. The experimental results demonstrate that
our deep learning network efficiently solves the simultaneous multi-
kernel style image reconstruction issue.

1 Introduction

Computed tomography (CT) is a pivotal technology for clin-
ical diagnose and radiotherapy, i.e., CT images exhibit abun-
dant anatomical structures with high time and spatial res-
olution which is essential for acute disease diagnosis [1],
tumor metastasis analysis [2] and image-guided intensity-
modulated radiotherapy [3]. The CT image styles exhibit-
ing different texture and structure properties are largely
determined by the reconstruction kernels which filter and
maintain the specific frequency information in filtered back-
projection algorithm [4], indicating the selection of recon-
struction is important to determine the imaging protocols
and essential for specific clinical task. However, limited
by the reconstruction speed and memory capability of hard-
ware, standard reconstruction algorithms usually release the
raw data after reconstructing image with one kernel, which
is called multi-kernel style image reconstruction task. There-
fore, it fails to reproduce the CT images at the same slice
with various reconstruction kernels, which disable the retro-
spective analysis or longitudinal studies for the patients.
In order to handle the multi-kernel style image reconstruc-
tion task, various methods have been developed based on
image post-processing technology. For example, Kenneth
et al. developed a hybrid filter method by combining high-
and low-pass kernels to simultaneously characterize differ-
ent anatomical tissues [5]. Masaki et al. utilized the point
spread functions of the system to determine the filter func-
tion to transfer the image reconstructed from one kernel

to the one from another kernel [6]. Recently, inspired by
the successful applications of deep learning (DL) technol-
ogy in computer vision and nature language processing, DL-
based methods have been developed to obtain various CT
image styles of different reconstruction kernels. Such as the
convolutional neural network (CNN) methods [7, 8] and a
cycle-consistent generative adversarial network (cycleGAN)
based method [9]. However, due to the FBP-reconstructed
images lose partial information of the original anatomical
structure, especially in low-dose and sparse-view imaging
field, directly conducting style conversion of different ker-
nels in image domain might produce over-smoothed results
or introduce artifacts in the images.
To solve this issue, we introduce a view-by-view back-
projection reconstruction network (shorten as VVBP-Net)
for the multi-kernel style image reconstruction task in low-
dose and sparse-view imaging situation. Specifically, the
presented VVBP-Net back-projects the unfiltered noisy CT
measurements into image domain view-by-view and sorts
them along the view direction [10], shown in Figure 1(b).
Then, the sorted back-projection of all views are fed into
the followed network which employs an encoder-decoder ar-
chitecture, shown in Figure 1(c). During the features be-
ing fed into following decoder, multiple reconstruction ker-
nels are simultaneously convolved to reconstruct CT images
with a bundle of various kernels in Figure 1(c). To achieve
the goal, a kernel bank (bundle of various kernels) is con-
structed which consists of multiple reconstruction kernels,
and each reconstruction kernel represents specific distribu-
tion of pixel values or noise pattern in the CT images. The
novelty of this work is that our VVBP-Net enrolls all the
structural characteristics of image and noise statistics of the
raw measurements for CT image reconstruction, as the Fig-
ure 1(b) shows.

2 Materials and Methods

2.1 FBP Implementations

The FBP implementation generally consists of three key
steps: filtering, view-by-view back-projection, and sum-
ming, as the Figure 1(a) shows. The filtering operation
can remove noise and blur in the CT measurements. In the
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Figure 1: (a) The flowchart of conventional FBP reconstruction procedure. (b) The flowchart of VVBP-Net reconstruction procedure.
(c) The architecture of our VVBP-Net. The VVBP-Net takes sorted backprojection of all views without unfiltering as the VVBP-Net
input, and then multiple reconstruction kernels are simultaneously convolved to reconstruct CT images with a bundle of various kernels.

view-by-view back-projection step, the filtered CT measure-
ments are back-projected into image domain view-by-view.
Finally, the back-projection of all views are summed to ob-
tain desired CT image. We can observe that the filtering
operation might remove some critical structure details and
lose measurement noise characteristics, and summing op-
eration could miss more important structural characteristics
compared with sorting back-projection of all views without
summing, as the Figure 1(a) shows.

2.2 VVBP-Net framework

Figure 1(c) shows the architecture of the VVBP-Net. The
VVBP-Net contains 5 components: data compressing block
Φ(F), data contracting block Φ(C), a set of residual blocks
Φ(R), kernel-mapping block Φ(M) and kernel-controlled ex-
pansive back-end Φ(E), which can be expressed as follows:

ÎN,k = Φ(E)[Φ(R) ◦Φ(C) ◦Φ(F),Φ(M)(cK)], (1)

where ÎN,K is the estimated image with reconstruction kernel
K. V denotes the VVBP measurements. The operation ◦
denotes functional composition. cK is the code of kernel K

with the dimension 1×3. Specifically, the codes of the three
different reconstruction kernels (i.e. smooth, standard and
sharp) for one sample are [1, 0, 0], [0, 0, 1] and, [0, 1, 0]
respectively.

2.3 Loss function construction

The loss function of our VVBP-Net is comprised of percep-
tual loss function [11] and mean-squared error (MSE) loss
function. Specifically, the perceptual loss is based on VGG-
16 network Φ(V GG) [12]. The perceptual loss function mea-
sures the similarity of the feature representations of ground
truth IN,K and VVBP-Net output ÎN,K , and the perceptual
loss can be expressed as follows:
Lpercep =

∑
j∈N

1
x jy jz j

E(IN,K ,ÎN,K)

∥∥∥Φ(V GG)
j (IN,K)−Φ(V GG)

j (ÎN,K)
∥∥∥2

2
,

(2)
where x j, yi and z j are the width, height and channel of the
feature maps at jth layer in Φ(V GG), respectively. N is the
number of the selected layers in Φ(V GG). In this work, the
outputs of the 4, 9, 16, 23 and 30th layers in Φ(V GG) are
selected for calculating the perceptual loss. The MSE loss
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Figure 2: Reconstruction results of different methods from the
chest CT case. The display window is [-1000, 100] HU.

function can be expressed as follows:

LMSE = E(IN,K ,ÎN,K)

∥∥IN,K − ÎN,K
∥∥2

2 , (3)

Therefore, the final loss function can be expressed as fol-
lows:

L = Lpercep +βLMSE , (4)

where β is the trade-off parameter for the MSE loss and set
to be 20 in this work.

2.4 Implementation details

In this work, we use the Mayo clinic dataset which can
be obtained from the 2016 NIH-AAPM-Mayo Clinic Low-
Dose CT Grand Challenge. We simulate the low-dose with
sparse-view projection data (i.e., 1/8 routine dose with 145
sampling views). Moreover, we compared our VVBP-Net
with RED-CNN [13]. RED-CNN is a residual encoder de-
coder convolutional neural network (CNN) which combines
auto-encoder, deconvolution network and shortcut connec-
tions. Both the VVBP-Net and RED-CNN are implemented
in Pytorch [14] library, and their loss functions are optimized
through Adam optimizer algorithm [15]. During training pe-
riod, the settings of RED-CNN are determined according to
the suggestions from the original paper. As for the VVBP-
Net, the learning rate is set to be 1e-4 which decays at the
100th and 150th epoch by multiplying 0.5 for all 200 epochs.
Limited by the hardware memory, the mini-batch size is set
to be 4. All the networks are trained on two NVIDIA Tesla
P40 GPUs.
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Figure 3: Difference images by subtracting the ground-truth and
the CT images reconstructed by the FBP, RED-CNN and VVBP-
Net methods, respectively. The display window is [-50, 50] HU.

3 Results

Figure 2 shows the low-dose with sparse-view CT images
directly reconstructed by the FBP method with three differ-
ent reconstruction kernels, respectively. The difference im-
ages between the FBP images and the ground-truth at the
three different reconstruction kernels are also displayed. It
is obviously that these images are commonly affected by the
severe streak-type artifacts, which could limit the diagnos-
tic efficacy. From the results, the RED-CNN demonstrates
streak-type artifacts can be suppressed greatly compared to
the network input. However, the RED-CNN results suffer
from resolution loss and edge blurring compared with the
VVBP-Net results. In contrast, the VVBP-Net can maintain
acceptable spatial resolution at the same time suppress arti-
facts successfully benefiting from the VVBP operation.
Moreover, the difference images between the RED-CNN im-
ages and the ground-truth are calculated, as shown in Fig-
ure 3. As sampling views decreases and noise levels in-
creases, we clearly observe that the VVBP-Net is superior
to the RED-CNN in terms of noise-induced artifacts sup-
pression and resolution preservation, exhibiting much bet-
ter multi-kernel style reconstruction performance in compar-
ison to the RED-CNN.
Furthermore, we use contrast-to-noise ratio (CNR), peak
signal-to-noise ratio (PSNR) and structural similarity
(SSIM) index measurements to evaluate the VVBP-Net per-
formance for the multi-kernel style images reconstruction.
Table 1 summarizes the quantitative results. Due to the is-
sue of over-smooth and fine structural information loss in
the RED-CNN, the RED-CNN results are obviously infe-
rior to the VVBP-Net reconstruction results, especially in
the sharp kernel cases. Therefore, the quantitative results
demonstrate that the VVBP operation helps to reveal much
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CNR PSNR SSIM

Sharp
FBP 10.60±4.87 16.23±1.33 0.7501±0.1477

RED-CNN 31.32±4.68 22.48±1.15 0.8685±0.0643
VVBP-Net 33.14±4.65 40.08±1.10 0.9909±0.0475

Standard
FBP 16.96±12.20 27.58±0.96 0.8624±0.0413

RED-CNN 32.68±2.32 32.83±0.85 0.9402±0.0402
VVBP-Net 38.55±2.29 41.99±0.70 0.9960±0.0224

Smooth
FBP 21.51±4.99 32.09±1.34 0.9148±0.0227

RED-CNN 34.30±4.08 36.16±0.62 0.9659±0.0267
VVBP-Net 39.85±3.95 42.47±0.35 0.9988±0.0221

Table 1: Quantitative measurements of the FBP, RED-CNN, and
VVBP-Net reconstructed images in the testing dataset.

finer structures that might be lost in the FBP images.

4 Discussion

Building on recent development in deep learning, we have
proposed a VVBP-Net for low-dose and sparse-view CT im-
age reconstruction via explicit reconstruction kernel learn-
ing. The proposed VVBP-Net takes unfiltered view-by-view
back-projections as network input, and then reconstructs
multiple CT images with a bundle of various kernels simulta-
neously from an extreme low-dose scan protocol. Once the
network is trained, the VVBP-Net enables flexibility to con-
trol kernels during reconstruction to obtain task-specific CT
images and efficiently provides easy access to radiologists,
while conventional CT reconstruction methods are regulated
manually and subject to expert knowledge. All the informa-
tion latent in the extreme low-dose measurements is used for
VVBP-Net construction, and the intermediates from view-
by-view back-projection contain rich structure details and di-
agnostic information similar to those of desired CT images,
further improving reconstruction performance. The VVBP-
Net allows for scaling to multiple CT images with multiple
kernels simultaneously, either from "smooth" reconstruction
kernel to "sharp" reconstruction kernel. This significantly
reduces computation time compared with those methods re-
constructing CT images with one reconstruction at a time,
and enable more flexibilities to control reconstruction ker-
nel switching for radiologists. Therefore, our VVBP-Net al-
lows radiologists to efficiently reconstruct their own kernel
models and conveniently diagnose disease.
However, there are some limitations in this work. First, the
number of patients used in the experiments is limited and
the potential bias is unknown. More clinical patients would
be enrolled for evaluation. Second, the VVBP-Net is not
designed for particular body region, and in the future study
clinical task oriented assessment methods should be added
to further evaluate and promote the VVBP-Net reconstruc-
tion performance. Third, all the clinical studies in this work
are based on digital simulation due to the limited access to
the raw data, but this could provide a promising way for re-
searchers to design and construct new CT imaging system,
for example, multi-source clinical CT system.

5 Conclusion

In conclusion, we demonstrate the VVBP-Net takes a criti-
cal step forward in accurate reconstruction of diagnosis CT
images for multi-kernel style image reconstruction task, and
there is great potential for designing CT systems that ob-
tain extreme low-dose measurements reasonably with deep
learning techniques.

References

[1] A. Bivard, C. Levi, V. Krishnamurthy, et al. “Perfusion computed
tomography to assist decision making for stroke thrombolysis”.
Brain 138.7 (2015), pp. 1919–1931.

[2] A. Adam, A. K. Dixon, J. H. Gillard, et al. Grainger & Allison’s
Diagnostic Radiology E-Book. Elsevier Health Sciences, 2014.

[3] T. R. Mackie, J. Kapatoes, K. Ruchala, et al. “Image guidance for
precise conformal radiotherapy”. International Journal of Radia-
tion Oncology* Biology* Physics 56.1 (2003), pp. 89–105.

[4] G. L. Zeng. Medical image reconstruction: a conceptual tutorial.
Springer, 2010.

[5] K. L. Weiss, R. S. Cornelius, A. L. Greeley, et al. “Hybrid convo-
lution kernel: optimized CT of the head, neck, and spine”. Amer-
ican Journal of Roentgenology 196.2 (2011), pp. 403–406.

[6] M. Ohkubo, S. Wada, A. Kayugawa, et al. “Image filtering as an
alternative to the application of a different reconstruction kernel
in CT imaging: feasibility study in lung cancer screening”. Med-
ical physics 38.7 (2011), pp. 3915–3923.

[7] J. Kim, J. K. Lee, and K. M. Lee. “Accurate image super-
resolution using very deep convolutional networks”. Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion. 2016, pp. 1646–1654.

[8] S. M. Lee, J.-G. Lee, G. Lee, et al. “CT image conversion among
different reconstruction kernels without a sinogram by using a
convolutional neural network”. Korean journal of radiology 20.2
(2019), pp. 295–303.

[9] S. Yang, E. Y. Kim, and J. C. Ye. “Continuous conversion of CT
kernel using switchable CycleGAN with AdaIN”. IEEE transac-
tions on medical imaging 40.11 (2021), pp. 3015–3029.

[10] X. Tao, H. Zhang, Y. Wang, et al. “VVBP-Tensor in the FBP Al-
gorithm: Its Properties and Application in Low-Dose CT Recon-
struction”. IEEE Transactions on Medical Imaging 39.3 (2020),
pp. 764–776. DOI: 10.1109/TMI.2019.2935187.

[11] J. Johnson, A. Alahi, and L. Fei-Fei. “Perceptual losses for
real-time style transfer and super-resolution”. Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part II 14. Springer.
2016, pp. 694–711.

[12] K. Simonyan and A. Zisserman. “Very deep convolutional
networks for large-scale image recognition”. arXiv preprint
arXiv:1409.1556 (2014).

[13] H. Chen, Y. Zhang, M. K. Kalra, et al. “Low-dose CT with a
residual encoder-decoder convolutional neural network”. IEEE
transactions on medical imaging 36.12 (2017), pp. 2524–2535.

[14] A. Paszke, S. Gross, S. Chintala, et al. “Automatic differentiation
in pytorch” (2017).

[15] D. P. Kingma and J. Ba. “Adam: A method for stochastic opti-
mization”. arXiv preprint arXiv:1412.6980 (2014).

238 

https://doi.org/10.1109/TMI.2019.2935187


17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Realistic CT noise modeling for deep learning training data generation
and application to super-resolution

Mengzhou Li1, Peter W. Lorraine2, Jed Pack2, Ge Wang1, and Bruno De Man2*

1Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
2GE Research, Niskayuna, NY, USA ∗ Corresponding author (email: deman@ge.com)

Abstract Much progress has been made in deep learning based CT
image processing, while little attention has been paid on inserted noise
for network training. Additive Gaussian noise model is widely used in
existing studies due to its simplicity and efficiency for large training
data generation despite its distinctly uncorrelated texture compared
to real CT noise. However, we find that this unmatched noise could
significantly degrade the inference performance on clinical images
with real CT noise and has been seriously overlooked. In this study, we
investigate the impact of noise modeling on deep learning-based super-
resolution (SR) in terms of noise type/level/anisotropy to emphasize
the importance of realistic noise insertion. To address this challenge,
we provide a step-by-step recipe for fast generation of large datasets
with realistic CT noise by modulating white noise in the frequency
domain with a predetermined analytical formula modeling a realistic
3D noise power spectrum (NPS). In our experiments, the generated
noise patterns demonstrate almost the same textures and 3D NPS
shapes as in the realistic CT noise reference. By comparing the SR
performances of several models of the same network structure but
trained under different noising conditions, our results suggest that (1)
the Gaussian noise model is more vulnerable and a suboptimal choice
compared to the model trained with CT noise, (2) the noise level and
texture anisotropy can seriously affect the SR performance, and (3)
covering the whole range of noise levels and noise anisotropy expected
in the testing data could significantly boost the model performance
and robustness.

1 Introduction

Deep learning has been widely used in CT imaging fields for
many tasks including image denoising, low dose reconstruc-
tion, data correction, etc. Our topic of interest, CT image
super-resolution (SR) with deep learning, has seen several ad-
vances in recent years with many techniques adopted from the
general computer vision domain [1–3]. For better real-world
performance, a certain degree of noise is often introduced
into the training data to gain robustness [1]. As realistic CT
noise can be affected by numerous factors during the scan,
additive Gaussian noise has been widely used in most works
as an efficient model, despite its distinct differences in texture
and noise correlation. Inevitably, any deviation from the real
degradation model could give rise to poor performance in
real-world scenarios [4], just a matter of the performance
drop difference. But the SR performance drop resulting from
noise discrepancy has been widely overlooked, and little
work has been done to quantify this impact and elaborate
how to choose appropriate noise distributions for network
training.
To demystify these questions, this study focuses on intro-
ducing realistic CT noise into the training and studying the
impact of different noise types/level/anisotropy in the con-
text of deep learning SR performance. We characterize the

resulting models trained under different noise conditions by
testing their performance both on data with the type of noise
they were trained on and on the other types of noise in the
study to understand whether improvements are specific to a
single type of noise or are more broadly applicable.

2 Materials and Methods

2.1 Noise generation framework
There exist several ways to generate CT noise. Realistic
CT simulators like CatSim [5] offer the most realistic re-
sults but have a relatively high barrier to entry and can be
time-consuming to generate many large datasets. Sinogram-
domain noise insertion [6] is one of the most accurate tech-
niques, but requires access to sinogram data and can be time-
consuming since every noise realization needs to undergo
a full reconstruction. Image domain noise insertion [7] is
another popular method that efficiently simulates CT noise in
the image domain rather than the projection domain. It can
generate multiple noise realizations for one CT image more
efficiently compared to the simulation-based and projection-
domain methods but consumes more time for a new image.
Since deep learning network training needs a very large num-
ber of images and corresponding noise realizations, we are
interested in developing a very fast method to generate thou-
sands of noisy images that still produces highly realistic CT
noise, and to share this recipe widely with the community.
Our approach is geared towards patch-based training archi-
tectures and our goal is to generate stationary noise patterns
with realistic texture and realistic three-dimensional (3D)
noise power spectrum (NPS). We propose an analytical fit-
ting formula to depict realistic 3D NPS shapes. Realistic CT
noise patterns can then quickly be computed by generating
white noise and modulating its frequency-response with this
predetermined analytical formula. Hence, our approach is
not intended to replace realistic simulations, which have the
advantage that they produce noise that is spatially-adaptive
based on each specific object and scanner on a macroscopic
scale. But our approach is ideal for patch-based training of
networks that need to deliver robust results under a range of
realistic noise conditions.

2.1.1 Noise Anisotropy
Three aspects of the noise are covered in this study, i.e., type,
level, and anisotropy. Specifically, we considered Gaussian
noise and CT noise as two noise types. A typical range of
noise levels (characterized by the standard deviation) was
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Figure 1: Simulated CT noise from water cylinder phantoms
with same cross-section area but different shapes (illustrated in the
inset figures) demonstrating textures of varying anisotropy with Er
values (from left to right) of 1.0, 1.3, 1.5, and 2.0.

considered. Photon starvation-induced streaks or metal arti-
facts were out of scope of this study. The anisotropy refers to
the dependence of the noise correlation or the noise texture
on the orientation, as illustrated in Fig. 1. Representative
CT noise with different anisotropy was simulated using wa-
ter cylinder phantoms of various shapes in a cone beam CT
geometry and using Feldkamp reconstruction with a ramp
kernel. All phantoms had the same cross-section area but had
different eccentricity ratios (Er), defined by the ratio between
the major axis length and the minor axis length. We use Er
to characterize the anisotropy of the CT noise patterns; e.g.:
the noise pattern from the round shape cylinder phantom
(Er = 1.0) demonstrates isotropic texture while the noise pat-
terns from elliptical shape cylinder phantoms (Er ̸= 1.0) are
more non-isotropic and show more noise streaks as shown
in Fig. 1. For ease of notation, we denote the former as
isotropic noise and the latter as non-isotropic noise, and the
corresponding NPS as isotropic NPS and non-isotropic NPS,
respectively.

2.1.2 3D NPS fitting formula
Our NPS model is based on the following key finding: we
noticed that the dependence of the NPS on radial, azimuthal,
and longitudinal frequencies is approximately separable.
Therefore we factorize our NPS model into a radial compo-
nent, an azimuthal component, and a longitudinal component:

C( fx, fy, fz) = R(l)A(θ)L(s), (1)
where fx, fy and fz are the spatial frequencies, l =

√
f 2
x + f 2

y ,
tanθ = fy/ fx, and s = fz. For fitting the isotropic NPS,
we have A(θ) ≡ 1 due to the azimuthal symmetry. Fitting
was performed on the average NPS of 20 simulated noise
realizations. We empirically found the isotropic NPS is well
modeled by the following expressions:

R(l) = a3
√

l exp [−(l −a1)
2/a2

2] (2)
L(s) = exp(−s2/b2

1), (3)
where a1,a2 and a3 are fitting parameters. For modeling
the non-isotropic 3D NPS C(l,s,θ), we divide the simu-
lated NPS by the isotropic NPS model to fit the azimuthal
modulation function A(θ) to the remainder. A good fit was
empirically found consisting of an exponential function and
a sine function as follows,

A(θ) = c3[c1 exp(−c2 sin2
θ)+1], (4)

where c1,c2 and c3 are fitting parameters.
Combining the above formulas, we have an appropriate gen-
eration function for a general NPS. By selecting c1 = 0, the
model degrades to the isotropic NPS model.

2.1.3 Noise generation recipe
To generate a spatially correlated CT noise volume with real-
istic texture, we follow the steps listed below:
(1) Generate a volume of Gaussian noise with zero mean and
unit variance, e.g., using MATLAB randn function;
(2) Compute the Fourier spectrum of the Gaussian noise
volume above with the fast Fourier transform, e.g., using
MATLAB fftn and fftshift functions;
(3) Calculate the 3D NPS function of the target noise type
based on Eqs. 1–4 following the values in table 1 for the
coefficients;
(4) Modulate the Gaussian noise Fourier spectrum with the
square root of the calculated 3D NPS via element-wise mul-
tiplication;
(5) Transform the modulated noise spectrum back to the im-
age domain through the inverse fast Fourier transform, and
keep the real part of the result as the CT noise volume, e.g.,
using MATLAB ifftn, ifftshift, and real functions;
(6) Scale the image domain CT noise obtained above to the
desired noise level to obtain the final CT noise volume.
The coefficient values in table 1 are provided for the ease
of replicating this study, but they can vary with different CT
scanner geometries, e.g., the detector element size, scanning
geometry and etc., hence, they should be adjusted accordingly
for other settings. One may find the coefficients following
the same procedure as detailed above.

Table 1: Coefficient values used for noise generation in this study
with Eqs. 1–4 .

Anisotropy a1 a2 b1 c1 c2

Er = 1 0.3061 0.4707 0.6128 0 -
Er = 1.3 0.3061 0.4707 0.6128 4.3813 2.6207
Er = 1.5 0.3061 0.4707 0.6128 8.2235 4.3348
Er = 2.0 0.3061 0.4707 0.6128 41.990 13.587
Er = 2.5 0.3061 0.4707 0.6128 213.01 27.878
Er = 3.0 0.3061 0.4707 0.6128 1047.9 59.425

2.2 Deep learning super-resolution
In this work we focus on studying the impact of realistic
noise modeling on deep learning SR performance. Note that
the goal of this study is not to find the best possible deep
learning SR network architecture. To do this, we choose
one popular representative network for image SR, i.e., the
residual channel attention network (RCAN) [8]. RCAN is a
ResNet-type network composed of improved residual blocks
combined with the channel attention mechanism for SR tasks.

2.2.1 Network structure and training
In our study, we used a simplified version of RCAN to speed
up the training. We used one residual group with 15 residual
channel attention blocks and discarded the upscaling module
at the back end since we had input and output images of
the same size. We changed the number of color channels
to one and used 64 feature channels. Each training batch
used 128 LR CT input image patches of size 64×64. The
model parameters were updated with the ADAM optimizer
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(β1 = 0.9,β2 = 0.999,andε = 10−8), and the learning rate
was initiated at 2×10−4 and then exponentially decayed at a
rate of 0.85 per epoch.
The loss function used for network training was defined as
follows:

argmin
θθθ

∥ f (θθθ ;yyy)− xxx∥1 +λ

∥∥∥∥ f (θθθ ;yyy)− xxx
xxx+ γ

∥∥∥∥2

2
, (5)

where f and θθθ denote the network and its trainable parame-
ters respectively, xxx and yyy are the HR ground truth labels and
the LR degraded inputs respectively (image pairs), while λ

and γ are hyper-parameters and are set to 1 and 0.1. The
L1 norm term regulates the absolute error to avoid blurring,
while the L2 norm term is used to measure the relative error
to emphasize the fidelity of fine details with small values [9],
especially the low intensity structures in the lung regions.
In total, 16 cardiac CT exams acquired using a Revolution CT
scanner (GE HealthCare, Waukesha, WI)(images courtesy of
Dr Pontone and the Centro Cardiologico Monzino, University
of Milan, Italy) were used for network training (12 scans)
and testing (4 scans). We bicubically resampled all volumes
to the same voxel size of 0.4mm and normalized the values
between 0 and 1. The resultant images were defined as high-
resolution (HR) ground-truth with a native resolution around
1mm in full width at half maximum. The low-resolution (LR)
input images were obtained by degrading the resolution by a
factor of 2 via convolving a Gaussian smoothing kernel.
A patch-based training strategy was adopted and the LR and
HR patch pairs were randomly extracted within the recon-
struction field-of-view of each scan. Noise was generated
and added on LR patches. A variety of noise levels were used
and a total number of 369k pairs of patches were obtained
for network training and validation.
For final performance evaluation, 100 CT slices were ran-
domly drawn from 4 patient scans to form a testing image
set. The slices were cropped to the same size of 500×500.
The different types of noise or noise with different lev-
els/anisotropy were inserted to form the final testing data,
based on the specific studies, as detailed below.

2.2.2 Experimental design
To investigate the impact of noise model on network per-
formance, we designed three experiments to study three re-
spective aspects of realistic noise modeling: type, level, and
anisotropy.
(1) Impact of noise type: We compared the performance
of two networks trained from data with isotropic CT noise
(Realistic model) and data with zero-mean Gaussian white
noise (Simplistic model), respectively, on test images that
were generated with both types of noise. The noise level was
in the range of [30,40] HU in all training and test cases.
(2) Impact of noise level: We evaluated the impact of train-
ing noise level versus testing noise level. Two models were
trained on data with isotropic CT noise levels uniformly
sampled in the range [30, 100] HU (Wide model) and [30,
40] HU (Narrow model), respectively. Test images were

generated with isotropic CT noise with noise level ranges
[20,30], [30,40], [40,50], [50,60], [60,70], [70,80], [80,90],
and [90,100] HU.
(3) Impact of noise anisotropy: We trained two models: one
with pure isotropic noise (Isotropic model), and the other
with a mixture of isotropic and non-isotropic images (Non-
isotropic model). The non-isotropic noise was generated
using 3 different Ers ([1.5,2.0,2.5]), in equal proportions and
with random orientations. The noise levels were set in the
range [30,40] HU. Noise of 4 different levels of anisotropy
([1.0,1.5,2.0,2.5]) was generated and added to the test im-
ages.
In summary, four models were trained: the baseline model,
also referred as the Reallistic/Narrow/Isotropic model, the
Simplistic model, the Wide model, and the Non-isotropic
model. The peak signal-to-noise-ratio (PSNR) and the struc-
tural similarity index metric (SSIM) were used for quantita-
tive performance evaluation.

3 Results and Discussions

3.1 Results for noise modeling
Due to abstract page limits, we show only a few representa-
tive results. The isotropic 3D NPS fitting results are presented
in Figs. 2 (a) and (b). The fitting result (b) agrees well with
the measured NPS (a) in both shape and value, and the fitting
errors are overall tiny in magnitude. This indicates that our
fitting model (Eqs. 2 and 3) is a good fit for the isotropic 3D
NPS.
We also checked the fitting results for the modulation function
in the case of a non-isotropic NPS with Ers ranging from 1.5
to 2.5. Again, the fitting curves align well with the data points,
suggesting the effectiveness of the chosen function depicted
as Eq. 4. One example of the generated 3D NPSs based
on our proposed model is compared against the reference
calculated from the simulated noise in Fig. 2(c). As seen
from the cross-sections, the shape of the modeled 3D NPS is
almost identical to that of the simulated NPS.

3.2 Results for deep learning SR
Figure 3 shows exemplary SR results from the experiment
studying the impact of noise type, comparing the realistic
model and the simplistic model when applied to inputs with
CT noise. Both models significantly improve the image
quality with cleaner appearance and finer structures. The
realistic model delivers clear and sharp results under all test
conditions (only test with CT noise shown here due to space
limit). The simplistic model performs well on the input
images with Gaussian noise but generates artifacts (grainy
appearance) on the input images with CT noise, such as the
false white dots/dim pores shown in the insets. Especially in
the zoom-in view of the lung region, many grainy structures
are generated while, in contrast, the realistic model presents
a denoised version of the HR reference with a smooth noise
texture.
According to the metric score distributions over the 100 test
images for each experiment (not shown due to space limit),
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Figure 2: Example of a (a) 3D NPS C0(l,s) for isotropic CT noise,
and the corresponding (b) fitting model result; and (c) example of
a simulated 3D non-isotropic NPS (top) C(l,θ ,s) with Er = 1.5
versus the fitted model (bottom).

Figure 3: Impact of noise type on deep learning super-resolution.
The images from top left to bottom right respectively show the
low-resolution inputs (LR) with CT noise (CTn3040), the SR
prediction with the realistic model (CTn-SR), the SR prediction
with the simplistic model (Gn-SR), and the HR ground-truth, with
the insets displaying a zoom-in version of a lung region (blue box)
and three iodine enhanced regions (orange box, blue box, and red
box). The full images, orange insets, and red insets are displayed
in[-350,650] HU; the blue insets are displayed in [-350,800] HU;
the green insets are displayed in [-1350, 150] HU.

the realistic model results in robust performance, whereas
the simplistic model performs well in cases with Gaussian
noise but performance degrades in cases with CT noise, il-
lustrating that good performance with Gaussian noise does
not necessarily imply good performance with real CT im-
ages with CT noise. Though both performance of the wide
model and narrow model drops as the noise level increases,
the wide model is more robust against the noise level change
and always demonstrates comparable or better performance
than the narrow model. Similarly, the non-isotropic model
performs significantly better than the isotropic model in the
conditions with non-isotropic noise. This implies that noise
anisotropy is also a significant factor that impacts the SR

performance.

4 Conclusion

In this paper, we have proposed an efficient framework for
fast and realistic 3D CT noise generation, which is ideally
suited for patch-based network training. A step-by-step
recipe is provided and readily usable in any deep learning
research in need of additive realistic CT noise. Note that our
model is applicable to CT geometries with any voxel size by
adjusting the coefficients. Although our fitting function is
based on the noise obtained with a ramp kernel reconstruc-
tion, it is easy to adapt our result for other reconstruction ker-
nels by multiplying a correction apodization window function
as indicated by the analytical NPS formula derivation [10].
In addition, we have demonstrated the vulnerability of a deep
learning model trained with the widely used Gaussian noise
when testing on images with CT noise. Besides the noise
type, the noise level and noise texture anisotropy also play
a significant role in the final SR performance as revealed by
our experiments. Our quantitative evaluation further suggests
that covering noise with all cases of anisotropy and all pos-
sible noise levels expected in the testing data can improve
the performance and the robustness of a network when ap-
plied to a variety of noise scenarios. Currently we used two
standard data science metrics for quantitative evaluation but
it is important to use criteria that are relevant to the clinical
task performance for medical image evaluation, which will
be part of our future work.
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Abstract Dynamic positron emission tomography (PET) imaging with
high temporal resolution (HTR) presents a challenge for tomographic
reconstruction due to the limited count level in each short frame. The
kernel methods have been demonstrated to be effective in suppressing
noise for low-count dynamic PET data using data-driven spatial or
spatiotemporal kernels. However, the construction of these existing
kernels follows an empirical process. Our recent work has developed
a trainable form for the spatial kernel representation and demonstrated
image quality improvement in the spatial domain. In this paper, we
further extend the concept to the temporal domain and combine it
with the trained spatial kernels. The resulting deep spatiotemporal
kernel method is directly applicable to single subjects in dynamic
PET imaging. Results from computer simulation and patient studies
indicate that the proposed deep kernel method can effectively improve
image quality and surpass the performance of existing kernel methods
for HTR dynamic PET image reconstruction.

1 Introduction

Dynamic positron emission tomography (PET) imaging with
high temporal resolution (HTR) can capture rapid spatiotem-
poral distribution of a radiotracer in human body [1] and may
allow the use of more advanced tracer kinetic models to quan-
tify physiologically important parameters in various diseases,
such as oncology and cardiology [2]. However, HTR image
reconstruction is challenging because of the ill-conditioned
tomographic problem and low counting statistics of dynamic
PET data.
The kernel methods uniquely integrate image prior infor-
mation in the forward model of iterative PET image recon-
struction by using a kernel representation [3]. The resulting
kernelized expectation-maximization (KEM) algorithm is
easy to implement and has been demonstrated to significantly
improve dynamic PET image reconstruction compared to
other methods [3]. For HTR dynamic PET imaging, both
spatial and temporal prior knowledge can be simultaneously
included in the kernel matrix for improving image quality [1].
However, existing kernel representation is commonly built
using an empirical process (e.g., analytically defined feature
vectors), which may lead to unsatisfactory performance.
Our recent work [4] has shown the equivalence between the
kernel representation and a trainable neural-network model in
the spatial domain. A deep kernel model is then derived to en-
able a learned spatial kernel representation from available im-
age prior information, rather than analytically-defined. This
deep kernel method can be applied directly on single subjects
without requiring a large training dataset. Compared to other
unsupervised deep learning-based reconstruction methods
that involve a nonlinear reconstruction problem (e.g., [5, 6]),
the deep spatial-kernel model has the advantage that once

it is trained on the image prior, the unknown kernel coeffi-
cient image remains linear in the tomographic reconstruction,
making it easier to reconstruct from the projection data.
In this paper, we propose to extend the same representation
learning concept from the spatial domain to the temporal
domain by making the temporal kernel representation also
trainable. Different from deep spatial-kernel representation
learning that is performed in the image domain, the deep
temporal-kernel representation learning is pursued using the
dynamic data in the projection domain for computational ef-
ficiency. Combining the learned spatial and temporal kernels
together, the deep spatiotemporal kernel method is expected
to outperform the kernel methods that either employ a deep
spatial-kernel only [4] or an analytically derived spatiotem-
poral kernel [1] to improve HTR dynamic PET imaging.

2 Background

2.1 Dynamic PET image reconstruction

Dynamic PET projection data yyy = {yi,m} can be well mod-
eled as independent Poisson random variables using the log-
likelihood function [7],

L(yyy|xxx) =
Ni

∑
i=1

Nm

∑
m=1

yi,m logyi,m− yi,m− logyi,m!, (1)

where m is the frame index and Nm is the total number of
dynamic frames. i denotes the detector index and Ni is the
total number of detector pairs. The relationship between
the expectation of the projection data yyy and the unknown
dynamic image xxx =

{
x j,m

}
is given by

yyy = PPPxxx+ rrr, (2)

where PPP is the detection probability matrix for PET and
includes the normalization factors for scanner sensitivity,
scan duration, deadtime correction and attenuation correction.
rrr is the expectation of random and scattered events [7].
Maximizing the Poisson log-likelihood, x̂xx = argmax

xxx≥0
L(yyy|xxx)

gives the maximum likelihood (ML) estimate of xxx, for exam-
ple, by the expectation-maximization (EM) algorithm [8].

2.2 Spatiotemporal kernel method

In the spatiotemporal kernel method, the image intensity
x j,m at the pixel j in frame m can be described as a linear
representation of kernels [1],

x j,m = ∑
l∈N j

∑
v∈Nm

αl,vκ( fff j,m, fff l,v) (3)
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Figure 1: The construction of temporal kernel representation as a trainable neural network.

where N j and Nm are neighborhoods of jth pixel and mth

frame, respectively. αl,v is the kernel coefficient at pixel l in
frame v and κ is the spatiotemporal kernel function. The fea-
ture vector fff j,m can be represented as fff j,m = [( fff s

j)
T ,( fff t

m)
T ]T ,

where fff s
j is the spatial feature vector of pixel j and fff t

m is
the temporal feature vector of frame m. The spatiotemporal
kernel function can be defined separably,

κ( fff j,m, fff l,v) = κs( fff s
j, fff s

l )κt( fff t
m, fff t

v) (4)

The equivalent matrix-vector form of (3) is:

xxx = KKKααα, with KKK = KKKt ⊗KKKs (5)

where the spatiotemporal kernel matrix KKK is decoupled into
a spatial kernel matrix KKKs of N j×N j and a temporal kernel
matrix KKKt of Nm×Nm. ⊗ represents the Kronecker product.
The kernel coefficient image ααα is then estimated from the
dynamic projection data yyy by maximizing the log-likelihood
L: α̂αα = argmax

ααα≥0
L(yyy|KKKααα), which can be solved using the

kernelized EM algorithm [3],

ααα
n+1 =

αααn

KKKT PPPT 111N
·
(

KKKT PPPT yyy
PPPKKKαααn + rrr

)
, (6)

where n denotes the iteration number and the superscript
“T ” denotes matrix transpose. 111N is a vector of length N =
Ni×Nm with all elements being 1. Once ααα is estimated, the
final dynamic PET activity image xxx is given by x̂xx = KKKα̂αα.

2.3 Deep spatial-kernel representation learning

In our recent deep spatial-kernel work [4], we describe the
PET image of frame m, xxxm, as xxxm = KKKs(θθθ s;ZZZ)αααm ,where αααm

denotes the kernel coefficient image of frame m. KKKs(θθθ s;ZZZ)
corresponds to the spatial kernel matrix in (5) but is explicitly
expressed as a function of the trainable neural network param-
eters θθθ s and the image prior data ZZZ. The deep spatial-kernel
learning problem can be formulated using:

θ̂θθ s = argmin
θθθ s

Nz

∑
p=1
||zzzp−KKKs(θθθ s;ZZZ)z̃zzp||2, (7)

where ZZZ = {zzzp}Nz
p=1 is the image prior data that consists of

Nz composite images. z̃zzp is a corrupted version of zzzp [4].
Once KKKs is trained, it is then used for frame-by-frame PET
reconstruction.

3 Deep temporal-kernel representation learning
3.1 Trainable temporal-kernel model

In this work, we propose extending the same concept to
the temporal domain to enable a trainable temporal kernel
representation. The construction of a temporal kernel repre-
sentation in [1] is equivalent to a trainable neural network
model as illustrated in Fig. 1. With this model, a temporal
signal ccc of length nm×1 is described by

ccc = KKKt(θθθ t ;UUU)βββ , (8)

where βββ represents the kernel coefficient vector for ccc. UUU de-
notes the available temporal prior data which will be used to
train the temporal kernel matrix KKKt . θθθ t includes any trainable
neural network parameters. One example of UUU is the dynamic
projection data as used in the existing spatiotemporal kernel
method [1].
The trainable network model first extracts features from UUU to
obtain the feature map, fff m = Ψm(UUU). Pairwise similarities
are calculated between frame m and its neighboring frames
using

smv =−
|| fff m− fff v||2

2σ2 ,v ∈Nm. (9)

The similarity measures are then converted to pairwise
weights using the softmax operation,

wmv = so f tmax(smv) =
exp(smv)

∑v′∈Nm exp(s jv′)
, (10)

which can be explained as a pairwise attention mechanism [9].
The final step is to reshape the pairwise weight matrix WWW into
a sparse temporal kernel matrix by using the corresponding
neighborhood indices.
In this work, the feature extraction step Ψ is parameterized
and learned as a 1D modified U-Net model to process time
series data, which shares a similar configuration with [4,
6]. In the existing temporal kernel method [1], Ψ is an
analytically-defined identity mapping that is equivalent to a
1D convolution with the kernel size of 1.

3.2 Single-subject deep temporal kernel learning

Similar to the deep spatial-kernel learning by (7), the tempo-
ral kernel respresentation learning can be also performed on
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single subjects. One straightforward way to train KKKt would
be using a set of reconstructed time activity curves,

θ̂θθ t = argmin
θθθ t

N j

∑
j=1
||ccc j−KKKt(θθθ t ;UUU)c̃cc j||2, (11)

where c̃cc j denotes a corrupted version of ccc for pixel j. How-
ever, this strategy requires a pre-reconstruction of the dy-
namic data and is computationally expensive.
A more practical way is by utilizing the available dynamic
projection data UUU ,

θ̂θθ t = argmin
θθθ t

Ni

∑
i=1
||uuui−KKKt(θθθ t ;UUU)ũuui||2, (12)

where uuui is the ith column of UUU , denoting the time projection
curve acquired by the detector pair i. The corrupted data ũuu
can be obtained by downsampling the projection data using
a count reduction factor d (e.g., d=10 in our work). Once
θθθ t is trained, the temporal kernel matrix KKKt(θθθ t ;UUU) can be
combined with the trained spatial temporal kernel matrix
KKKs(θθθ s;ZZZ) to form a deep spatiotemporal kernel matrix for
dynamic PET reconstruction through (6).

4 Validation

4.1 Computer simulation

We simulated a HTR dynamic PET scan in the same way as
described in [1,4] for a 20-minute 18F-FDG dataset. The scan-
ning schedule consisted of 63 time frames: 30×2s, 12×5s,
6×30s, and 15×60s. The total count level was 20 million
expected events over 20 minutes.
Four types of reconstruction were compared, including (1)
standard ML-EM for frame-by-frame reconstruction; (2) stan-
dard spatiotemporal kernel method (KEM-SATA) [1] with
both the spatial and temporal kernels analytically defined
(denoted by the subscript A); (3) modified spatiotemporal
kernel method with a deep spatial kernel (KEM-SDTA) as
noted by the subscript D; and (4) proposed spatiotemporal
kernel method with deep spatial and deep temporal kernels
(KEM-SDTD).
For the deep temporal kernel learning, a 15-frame length of
sliding window was used to define the temporal neighbor-
hood Nm. One thousand iterations were used for the training
step with the learning rate set to 10−4. All reconstructions
were run for 200 iterations. The mean squared error (MSE)
was used to compare image quality in both spatial and tem-
poral domains.
To demonstrate the effect of temporal kernel learning, Fig.
2 shows the different temporal basis functions for frame 2
and frame 5. Compared to the analytically defined temporal
kernel construction, the deep temporal kernel learning leads
to appropriate weights for each frame, especially for early
frames that commonly have a sharp activity change.
Fig. 3 shows true activity image and reconstructed images
by different algorithms with 100 iterations for the frame 2

(a) (b)

Figure 2: Temporal basis functions by analytically defined tem-
poral kernel and learned temporal kernel. (a) 2th frame and (b) 5th

frame

and frame 5. The image MSE results in dB were included.
Overall, the proposed KEM-SDTD achieved the lowest MSE
with good image visualization.
Fig. 4(a) shows the image MSE plots for frame 5 by varying
the iteration number. The MSE results (best across iterations)
of all time frames are shown in Fig. 4(b). Here the deep
spatial kernel method (KEM-SD) [4] was also included for
comparison. KEM-SD achieved better results than KEM-
SATA in some frames thanks to the learned spatial kernel
matrix, but also exhibited instability in the temporal domain.
When a temporal kernel was included, the performance be-
came more stable. The proposed KEM-SDTD showed further
improvement for the early frames than KEM-SDTA because
of the learned temporal kernel matrix.
Fig. 5 shows the time activity curves (TACs) of a blood
pixel (a) and a tumor pixel (b). The subfigures show the
corresponding TACs of the first 60 seconds. Temporal MSE
results were also included. Comparing to the analytically
defined temporal kernel methods, the TACs reconstructed by
the proposed KEM-SDTD were closer to the ground truth.

4.2 Application on real patient scan

Fig. 6 shows reconstructed images using different algorithms
for one HTR frame (1s/frame) of an early dynamic cardiac
patient scan on a GE DST scanner operated in 2D mode
with a 20 mCi 18F-FDG injection. The traditional ML-EM
reconstruction was extremely noisy. The three spatiotem-
poral kernel methods improved the HTR image reconstruc-
tion. Specially, the proposed KEM-SDTD achieved a lower
background noise and had a clearer visualization of the my-
ocardium region than the other two methods, though there is
no ground truth here. Further, Fig. 7 shows the HTR time
activity curves for one myocardium pixel. In comparison, the
proposed KEM-SDTD demonstrated substantial noise reduc-
tion in late frames without losing details in the early frames.

5 Conclusion

We have developed a deep kernel representation learning
approach in the temporal domain to enable an improved
spatiotemporal kernel method. The learning is performed
on single subjects by utilizing available dynamic projection
data. Computer simulation and real patient studies indicate
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Figure 3: Truth activity and reconstructed images by different algorithms for frame 2 (top row) and frame 5 (bottom row).

(a) (b)

Figure 4: Comparison of image MSE for different reconstruction
methods. (a) Plot of image MSE as a function of iteration number
for frame 5, (b) image MSE of all time frames.

the method can outperform existing kernel methods for HTR
dynamic PET imaging.
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Abstract Fully 3D time-of-flight (TOF) PET scanners with depth-of-
interaction (DOI) offer the potential of previously unachievable image
quality in clinical PET imaging applications. Timing calibration is
critical to achieve the best possible imaging performance, and maxi-
mize the benefit of TOF PET scanners. In this work, we present an
autonomous timing calibration for 3D TOF PET with DOI using intrin-
sic TOF data consistency. The data space for 3D TOF PET data with
DOI is seven-dimensional while the object space is three-dimensional.
First, we derive TOF consistency equations in native coordinates to
characterize the entangled redundancy and rich structure of 3D DOI
TOF data. We then develop an autonomous timing calibration as an
application of the TOF consistency equations. Time offsets on a per-
crystal-DOI basis, can be computed by solving the two linear timing
offset equations involving two TOF moments–the zeroth and first TOF
moments. The proposed autonomous timing calibration can be applied
to 3D DOI TOF data acquired with an arbitrary tracer distribution,
which eliminates the need for a specialized data acquisition. To evalu-
ate the method, we perform numerical simulations of a generic 2D DOI
TOF PET with a brain phantom, and the time offsets were accurately
computed by solving a Fredholm integral equation of the second type.

1 Introduction

Time-of-flight PET makes use of very fast gamma-ray de-
tectors and timing measure system to precisely measure the
difference between the arrival times of the two coincident
gammas. The measurements of arrival signalings have sev-
eral sources of errors that can lead to biases in TOF measure-
ments, which degrades the imaging capability of a TOF PET
scanner. These factors include differences in crystal scintilla-
tion behavior, variations in detector transit times, operating
temperature, electronics delays caused by, e.g., signal trace
length, pulse discrimination, and triggering. Therefore, tim-
ing calibration is critical to achieve the best possible timing
resolution, and maximize the benefit of TOF PET scanners
[1]. The depth of interaction (DOI) can not only reduce par-
allax error and obtain a uniform spatial resolution across the
whole field of view, but help to localize the gamma detec-
tion within a DOI segment and thus in turn improve timing
resolution. In this work, we present an autonomous timing
calibration for 3D TOF PET with DOI.

2 TOF Consistency Equations with DOI

2.1 3D DOI TOF Data Native Parameterization

As shown in Figure 1, we consider a TOF PET scanner
with variable radius, R(φ , l), φ ∈ [0,2π], 0 ≤ l ≤ L. The
two endpoints are a⃗i = [Ri cosφi,Ri sinφi,zi], where φi, li,

x̂

ŷ

O

t

a⃗1

a⃗2

a⃗′1

a⃗′2

a⃗1

a⃗2

a⃗′1

a⃗′2

ẑ

l̂

t

Figure 1: Geometry of a cylindrical TOF PET scanner with DOI
using modular detectors. Each DOI TOF LOR can be represented
by TOF t, azimuthal angles φ1 and φ2, axial coordinates z1 and z2,
DOI layer l1 and l2 in native coordinates. The radius of the TOF
PET scanner is a function of azimuthal angle and DOI. Note that
the transverse view (left) has been rotated for illustration purposes.

and zi are the azimuthal angles, depth of interaction, and
axial coordinates, respectively. Here, we use Ri to represent
R(φi, li), i = 1,2 for concise notations, Ri = R+ li for pure
cylindrical PET scanner. The length of the LOR is given by

L(φ1,φ2,z1,z2, l1, l2) = ∥⃗a2 − a⃗1∥

=

√
R2

1 +R2
2 −2R1R2 cos(φ1 −φ2)+(z1 − z2)

2. (1)

Here φi ∈ [0,2π], i = 1,2, and φ1 ̸= φ2. For a PET scanner
with a fixed transverse FOV, we have a minimum angle differ-
ence. After projecting the LOR length onto a transaxial plane,

we have L0 (φ1,φ2, l1, l2) =
√

R2
1 +R2

2 −2R1R2 cos(φ1 −φ2).
For concise parameterization of TOF data in the native coor-
dinates, we introduce three unit vectors:

û =
n̂× ẑ
∥n̂× ẑ∥

, (2)

n̂ =
a⃗2 − a⃗1

∥⃗a2 − a⃗1∥
, (3)

ẑ = [0,0,1]T. (4)

These three unit vectors are more general than those for a
cylindrical PET scanner, and they are the basis vectors to
form a local biorthogonal system [2].
In the native detector coordinates, the 3D DOI TOF data can
be parameterized as

q(t,φ1,φ2,z1,z2, l1, l2) =
∫ +∞

−∞

dl h(t − l) f
(

a⃗1 + a⃗2

2
+ ln̂

)
,

(5)
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where f ∈C0
(
R3

)
is a 3D tracer distribution and h is a TOF

profile, t is the TOF parameter in a unit of length instead
of time. The TOF profile is usually modeled as a Gaussian
distribution with standard deviation σ ,

h(t) =
1√

2πσ
exp

(
− t2

2σ2

)
. (6)

The TOF data with DOI have the symmetry property,
q(t,φ1,φ2,z1,z2, l1, l2) = q(−t,φ2,φ1,z2,z1, l2, l1), which
means that the same TOF LOR can be obtained by ex-
changing the two endpoints and flipping the TOF t. The
TOF parameter t is related with the time difference T1 −T2
between the two arrival times of the two gammas by t =
(T1 −T2)× c/2 with c denoting the speed of light.

2.2 TOF Consistency Equations with DOI

The DOI TOF data q are seven-dimensional (depends on 7
variables) and the object f is 3D—there are four degrees of
redundancy. Two degrees of redundancy can be expressed
as two TOF consistency equations (CEs)[2, 3]; the other
two can be expressed as two linear depth equations (DEs)
discussed elsewhere [4]. The consistency equations can be
used to explore the rich structure of TOF data. A Gaussian
TOF profile is assumed in the derivation of the consistency
equations; however, the redundancy in TOF-PET data exists
beyond this assumption. We prove (omitted here due to
limited space) that the TOF data q in native coordinates given
by (5) satisfy the following two consistency equations:

Θq =
L
2
S +q+ tS −q− L

4
Γ2

∂q
∂ t

+
t

2L0
Γ1Γ2

∂q
∂ t

+ σ
2S − ∂q

∂ t
− σ2

2L0
Γ1Γ2

∂ 2q
∂ t2 = 0, (7)

Ξq =
L
2
Z −q+ tZ +q+ t

z1 − z2

L
∂q
∂ t

+ σ
2Z + ∂q

∂ t
+σ

2 z1 − z2

L
∂ 2q
∂ t2 = 0. (8)

Here, operators S ± and Z ± are respectively given by

S ± =
∂

∂φ1
± ∂

∂φ2
− Γ1

L0

(
∂

∂φ1
∓ ∂

∂φ2

)
− z1 − z2

2L
Γ2

(
Z ±− Γ1

L0
Z ∓

)
, (9)

Z ± =
∂

∂ z1
± ∂

∂ z2
. (10)

and the two coefficients are given by

Γ1 =
R2

1 −R2
2

L0
, (11)

Γ2 =−2L
L2

0
R1R2 sin(φ1 −φ2). (12)

It is worth noting that the coefficients Γ1 and Γ2, are antisym-
metric, and Γ1 is zero for the same DOI bin combinations,

i.e., (i, i) , i = 0,1, . . . ,nl − 1. We have also derived John’s
equation as a linear combination of the two CEs (omitted
here).

3 Autonomous Timing Calibration for DOI TOF PET

3.1 DOI TOF Data with Timing-Offset Errors

When two gamma rays are emitted from an annihilation and
detected by two crystals at a⃗1 and a⃗2. If the true gamma
arrival times at the two crystals are respectively t1 and t2,
then the true TOF t = t1 − t2. We use τ(φ ,z, l) to denote the
timing offset at crystal-DOI (φ ,z, l). And the crystal timing
corrections are the negative values of τ(φ ,z, l). Then the
measured TOF t ′ is given by

t ′ = (t1 + τ (φ1,z1, l1))− (t2 + τ (φ2,z2, l2))

= t + τ (φ1,z1, l1)− τ (φ2,z2, l2). (13)

The measured TOF data m (after data normalization, attenua-
tion, random and scatter corrections) are related to the ideal
TOF data q by

m
(
t ′,φ1,φ2,z1,z2, l1, l2

)
= q(t,φ1,φ2,z1,z2, l1, l2)

= q
(
t ′− τ (φ1,z1, l1)+ τ (φ2,z2, l2),φ1,φ2,z1,z2, l1, l2

)
.

(14)

3.2 Linear differential timing offset equations

Applying the first and second consistency equations to mea-
sured TOF data m, we obtain following two linear timing
offsets equations (detailed proof is omitted here):

S − [
M0 (τ (φ1,z1, l1)− τ (φ2,z2, l2))

]
=

L
2
S +M0 − 1

2
Γ1Γ2

L0
M0 +S −M1, (15)

Z +
[
M0(τ (φ1,z1, l1)− τ (φ2,z2, l2))

]
=

L
2
Z −M0 − z1 − z2

L
M0 +Z +M1. (16)

Here Mk is the kth moment of TOF data given by

Mk(φ1,φ2,z1,z2, l1, l2) =
∫ +∞

−∞

dt tkm(t,φ1,φ2,z1,z2, l1, l2).

(17)
The zeroth moment is just the non-TOF data. Due to the
symmetric property of q, the moments are symmetric and
antisymmetric for the even and odd orders, respectively. The
timing offset equations (15) and (16) for timing calibration
can be solved using numerical methods [5]. The timing off-
sets τ (φ ,z, l) can be determined up to an additive constant by
the two linear PDEs; however, this global constant does not
affect timing calibration since only differences are utilized
during TOF image reconstruction.
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3.3 Linear integral equation for 2-D TOF PET

For 2D DOI TOF data, z1 = z2 = z, we can rewrite (15) as

S −
0

[
M1 −M0 (τ (φ1, l1)− τ (φ2, l2))

]
+

L0

2
S +

0 M0 − 1
2

Γ1Γ2

L0
M0 = 0, (18)

where

S ±
0 =

(
1− Γ1

L0

)
∂

∂φ1
±
(

1+
Γ1

L0

)
∂

∂φ2
. (19)

In 2-D case, (20) is the generalized version of equation (7) in
[6] and equation (22) in [5]. After integrating (20) over φ2
and summing over l2, we obtain the following linear integral
equation

nl

∑
l2=0

∫ 2π

0
dφ2

(
1− Γ1

L0

)[
M1 −M0 (τ (φ1, l1)− τ (φ2, l2))

+
L0

2
M0

]
= nlC,

(20)

where C is a constant independent of angle φ1. From (20),
we can rewrite the timing offsets τ (φ1, l) as the solution of
the following linear integral equation,

g(φ1, l1)τ (φ1, l1)−∑
l2

∫ 2π

0
dφ2 K (· · ·)τ (φ2, l2) = f (φ1, l1),

(21)
where

K (· · ·) = K (φ1,φ2, l1, l2) =
(

1− Γ1

L0

)
M0, (22)

g(φ1, l1) = ∑
l2

∫ 2π

0
dφ2K (φ1,φ2), (23)

f (φ1, l1) = ∑
l2

∫ 2π

0
dφ2

(
1− Γ1

L0

)(
M1 +

L0

2
M0

)
−nlC.

(24)

Equation (21) can be converted to a Fredholm integral equa-
tion of the second type by dividing g(φ1, l1).

4 Evaluations and Simulated Results

To evaluate the autonomous timing calibration method, we
simulated a generic 2D DOI TOF PET scanner of diameter
52.35 cm. The scanner has 20 detector modules with 12 crys-
tals in each module. The width and length of the crystals are
6 mm and 20 mm, respectively, and each crystal was equally
partitioned into 4 DOI layers. The timing resolution of the
TOF PET scanner is 250 ps FWHM. We used a brain phan-
tom, and the activity and attenuation images with voxel size
of 2 mm are shown in Figure 2. Figure 3 shows the generated
timing offsets for the 20×12 crystals with 4 DOI bins.
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Figure 2: Activity and attenuation images of the simulated brain
phantom. The image size is 200×200 with pixel size of 2 mm.

0 40 80 120 160 200 240
Angle  index

-300

-200

-100

0

100

200

300

400

T
im

e 
of

fs
et

s 
(p

s)

DOI 0
DOI 1
DOI 2
DOI 3

Figure 3: The simulated timing offsets for the 20× 12 crystals
with 4 DOI bins.
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Figure 4: The zeroth (a) and first (b) DOI TOF moments computed
from noise-free DOI TOF data. There are 4×4 DOI combinations.
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Figure 5: The estimated timing offset error for the 480 crystals
with 4 DOI bins from noise-free DOI TOF data.

We implemented DOI TOF projector using a strip-integral
model with a Gaussian TOF kernel weight. The noise-free
DOI TOF projections were generated with a strip width of
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Figure 6: Timing offset error for the 240× 4 crystal-DOIs esti-
mated from noisy DOI TOF data. (a) one sample error from one
noise realization and the mean error from the 60 noise realizations.
(b) Standard deviation estimated from the 60 noise realizations.

3 mm and a Gaussian TOF profile of about 37.5 mm FWHM
(corresponding to 250 ps). Attenuation was included based
on the attenuation image; scatter and random events were
not simulated. Figure 4 shows the two moments computed
from noise-free DOI TOF data with attenuation correction.
Figure 5 shows error between the error of the estimated time
offsets from noise-free DOI TOF data.

We also estimated the timing offsets from noisy DOI TOF
data. Poisson noise was added in the attenuated TOF sino-
grams, and attenuation was applied before estimating the
timing offsets. We used 64M total counts for timing calibra-
tion. We simulated 60 independent noise realizations, and
estimated the mean and variance from the 60 noisy DOI TOF
data sets. Figure 6 shows the timing offset error estimated
from noisy TOF data. The sample RMS error is 2.61 ps for
timing offsets estimated from one noise realization. The
mean RMS error is 2.85 ps from the 60 estimates. The stan-
dard deviation estimated from the 60 noise realizations is also
shown, and the average standard deviation of the estimated
timing offsets of the 240×4 crystal-DOIs is 2.81 ps.

Poisson statistics can affect the accuracy of the estimated
timing offsets. We show in Figure 7 the estimated RMS errors
at different count levels. Based on linear fitting in logarithmic
scales, the RMS errors were proportional to N−0.501, with N
denotes the total number of true events.

We also performed image reconstructions from both noise-
free and noisy DOI TOF data to show how the timing offset
errors impact reconstructed images. The images were recon-
structed in an array of 200×200 with 2 mm pixel size using
full DOI TOF OSEM with 20 iterations and 12 subsets. Fig-
ure 8 shows three types of reconstructions: without timing
offset correction, with the known timing offsets, and with the
estimated timing offsets based on TOF data consistency.
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Figure 7: RMS errors of estimated time offsets at different count
levels.
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Figure 8: Full DOI TOF reconstructions without timing offset
correction (left), with known timing offset (center) and with esti-
mated timing offsets based on TOF data consistency (right). Top
row: noise-free data; bottom row: one of the noisy data sets.

5 Conclusion

We presented an autonomous timing calibration for DOI TOF
PET based on the TOF data consistency in native detector
coordinates. The method can be applied to data acquired with
an arbitrary tracer distribution, which eliminates the need for
a specialized data acquistion. The timing offsets on a per-
crystal-DOI basis can be determined up to a global constant
which does not affect timing calibration. We showed that
the algorithm can accurately estimate timing offsets from 2D
DOI TOF PET simulations.
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Abstract Computed Tomography (CT) has been widely used in indus-
trial high-resolution non-destructive testing, but it is difficult to obtain
high-resolution images for large-scale objects due to its physical limi-
tation. To address this problem, many super-resolution deep learning
networks have been proposed to map the low-resolution image to the
high-resolution counterpart in the image domain. Although those meth-
ods achieve a certain effect on the main body of the image, the small
structures and detail would be inevitably damaged. For restoring small
structures and detail better, we find that high-frequency components
(small structures and detail) are easier to be recovered in the frequency
domain. Therefore, in this study, a deep spectrum complex-valued
neural network has been proposed to take advantage of both global
information in the image domain and high-frequency information in
the frequency domain. In addition, by exploring the symmetrical prop-
erty of the spectrum, we design a novel learning strategy to reduce
weight parameters in the frequency domain. Besides, a novel spectrum
loss has been proposed to constrain both high-frequency components
and global information. The experimental results demonstrate that
the proposed reconstruction method obtains better results over the
state-of-the-art networks.

1 Introduction

Compared with conventional detection methods, super-
resolution computed tomography (CT) equipping with a
micro-focus X-ray source has higher sensitivity and reso-
lution[1]. It has been widely used in many fields, such as
biological, industrial, and medical applications. For example,
it is employed to explore the internal plant shoots[2], the
weld points of integrated circuits[3], and tiny features within
capillaries[4]. It is not difficult to find that CT scanning has
achieved high-resolution detection in small-scale objects.

The theoretical image spatial resolution of a CT system is
determined by the equivalent beam width (BW ). The smaller
the BW , the higher the spatial resolution can be achieved.
However, reducing the BW to improve the spatial resolution
of the reconstructed image has limitations. As shown in
Eq. (1), the BW is determined by three factors: the effective
focus size of the ray source S, the effective pixel size of the
detector P, and the geometric magnification G of the system.
With fixed S and P given in a certain CT system, the spatial
resolution of the reconstructed CT image depends on the G
of the system. The G of a system refers to the ratio of the
source-detector distance (SDD) to the source-object distance
(SOD). Since the detector has an imaging matrix of a certain
size, the smaller the equivalent beam width, the smaller the
detection field of view of the system. Therefore, enlarging the

detection field and improving the resolution is contradictory.

BW =

√
P2 +(G−1)2S2

G
(1)

In order to obtain an image of higher resolution with-
out changing the detection field, we propose a deep spec-
trum complex-valued neural network (DSCNN) to map low-
resolution CT images to high-resolution ones. Most of the
existing super-resolution methods focus on the image domain,
but our DSCNN analyzes and explores the super-resolution
task from a different spectrum perspective.
Our study demonstrates that the spectrum is critical for super-
resolution (SR) reconstruction. Obviously, the low-frequency
component of the image determines the main body of the
image, and the high-frequency component corresponds to
the details. If the high-frequency components can be well re-
covered in the spectrum, the SR reconstruction performance
in the image domain will be better. However, as far as we
know, one common drawback of existing SR methods is that
they are just focusing on the image domain, which leads
the high-frequency components are striking damaged in SR
processing[5][6]. Those methods cannot reconstruct small
structures and detail well, and the spectral shape is signifi-
cantly different from that of the original image. Therefore,
our DSCNN reconstructs the SR images in both frequency
domains and image domains to ensure both the main body
and details recovered well.

2 Methodology

2.1 Problem Statement and Motivation

Reconstructing high-resolution (HR) images from low-
resolution (LR) ones can be treated as an inverse problem.
X and Y are defined as the domains spanned by LR and
HR space. The degradation can be described as X = D(Y ),
where X = {xi}N

i=1 and Y = {yi}N
i=1, x and y are samples,

N is the sample number. SR reconstruction is to learn the
inverse process of the degradation Y = D−1 (X). The gen-
eral residual learning treats the reconstruction process as
Y = D−1 (X)+X .
To address these issues, we propose learning in the frequency
domain to reconstruct high-quality images. Tiny details,
structures, and sharp edges are high-frequency components,
which means they occupy a large spectrum range and are
easy to be focused on by neural networks in the frequency
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Figure 1: (a) shows the overall structure of our DSCNN, consisting of spectrum forward transform, spectrum feature extraction, spectrum
inverse transform and space feature refinement; (b) shows a specific structure of the CCB and CUCB in spectrum feature extraction; (c)
shows the detailed spectrum forward and inverse transforms modules.

domain. Moreover, it is found that the shape of SR image
spectrum generated by our DSCNN is radial, which is similar
to the HR image spectrum. Therefore, our DSCNN syn-
thesizes frequency domain learning and traditional image
domain learning. Both the global information and details are
recovered accurately.

2.2 Complex-valued methods Modeling

A pioneering related work on deep complex-valued networks
is proposed in[7]. Through 2D Fourier transformation, the
input image is transformed into a spectrum, which consists of
real and imaginary components. The spectrum can be repre-
sented as a complex number c = a+bi, where a = Re{c} is
the real component and b = Im{c} is the imaginary compo-
nent. Many common methods regard a and b as independent
parts and work with them separately. However, the amplitude
and phase in the frequency domain are jointly determined
by a and b. Those methods destroy the relevance of a and
b. To solve this problem, the correlation between a and b is
considered in the following modules.

2.2.1 Complex-valued Convolution

Instead of operating a and b separately, the entire complex
number is treated as a whole. Let us define c = a+bi as the

vector to be convoluted. For suiting entire complex number
convolution, the complex filter matrix F = A+Bi is required
to be utilized, where a and b are real vectors, A and B are real
metrics. The convolution product of c and F can be given as
follows:

F∗ c = (A∗a−B∗b)+(B∗a+A∗b) i (2)

It can also be represented by the matrix as follows:[
Re(F∗ c)
Im(F∗ c)

]
=

[
A -B
B A

]
∗
[

a
b

]
(3)

It is evident from Eqs. (2) and (3) that the result of spectrum
convolution is jointly determined by a and b. The correlation
information is efficiently utilized.

2.2.2 Complex-valued Max-pooling

For a complex number supposing a and b are pooled sepa-
rately, the corresponding relationship between the real and
imaginary components will be ignored, and the spectrum
phase will also be not accurate. Therefore, the top priority
of modeling complex-valued max-pooling is to find an ap-
propriate pooling basis. Here, we take the amplitude matrix
z =

√
a2 +b2 as the basis of pooling, which is determined

by the real component matrix a and imaginary component
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matrix b. Through pooling z, the relation between a and b
are preserved. We design the following strategy to get ap and
bp:
A small constant ε is introduced and we further define aε =
a∗ ε satisfied |aε | ≪ |z|. ap and bp are given by:

ap =
Pooling(aε + z)−Pooling(z)

ε

bp =
√

Pooling(z)2 −a2
p

(4)

2.3 DSCNN Network Architecture

As shown in Fig. 1(a), first, the up-sampled input image is
converted into spectrum feature maps consisting of real and
imaginary components. At the same time, the spectrum fea-
ture maps are cropped within this module to reduce computa-
tional consumption. Only half of the feature maps containing
complete information are preserved for the next part. The
preserved feature maps learn deep-level spectral features in
the Fourier domain and restore high-frequency information
through the spectrum feature extraction module. Then the
learned partial spectrum is restored to the complete spec-
trum. The spectrum inverse processing module converts the
spectral feature maps to the image domain through Fourier
inverse transform. The output image is finally processed
through the image feature extraction module, which restores
the low-frequency and comprehensive information within the
image domain. Finally, we can obtain a high-quality, precise,
and clear SR image.

2.4 Spectral Loss

In order to obtain small features and details, we develop a
spectral loss for image SR reconstruction, which is based
on high-frequency spectral components and image fidelity
(i.e, MSE). The proposed spectral loss is beneficial to extract
the high-frequency information of the SR and original HR
image. The image is transformed into a spectrum by a two-
dimensional discrete cosine transform. The low-frequency
components are clustered in the upper left corner of the spec-
trum, and the high-frequency components are scattered in
other regions. We set the upper left corner of the spectrum
matrix to zero to extract the high-frequency details. The im-
age will mainly contain high-frequency information through
the inverse transformation. Our overall loss formula is given
as follows:

ℓ= α ∥IHR − ISR∥+β ∥IHFHR − IHFSR∥ (5)

where α , β are constant, IHR is the HR image, ISR is the SR
image, IHFHR is the high-frequency components within HR
image and IHFSR is the high-frequency components within SR
image. By altering α and β , the weights of high-frequency
information can be adjusted.

3 Experiments and Results

3.1 Datasets and Implementation Details

In this study, the plant vessels of broussonetia papyrifera,
fresh poplar, withered poplar, and begonia are scanned by
a typical micro CT. The content of the datasets consists of
3000 tomographic images. Here they are used to verify the
advantages and universality of our DSCNN in terms of details
recovery and preservation.
In the first experiment, the training datasets consist of the
poplar and begonia vessel images, and test datasets come
from the vessel images of broussonetia papyrifer. The num-
ber of training datasets and testing datasets are 2200 and 800,
respectively. In the next experiment, the poplar and brous-
sonetia papyrifer vessel images are used to train our network,
and the vessel images of begonia are employed to implement
the test task.

Figure 2: The SR reconstruction results from different algorithms
in terms of the broussonetia papyrifera vessel. The results show
that our proposed DSCNN achieves best performance.

Figure 3: Two regions of interests (ROIs) marked in Fig. 2 are
further extracted and magnified to further compare SR reconstruc-
tion performance in small features and textures.

3.2 SR Performance Comparison

As shown in Fig. 2, we compare the tomographic images of
the broussonetia papyrifera vessel reconstructed by different
SR methods. It is easy to see that our DSCNN recovers more
delicate features than that obtained by other methods, and
the details are closer to the original HR images. In particular,
as shown in the enlarged box in Fig. 3, the ROI marked by
the orange rectangle is nicely reconstructed by our DSCNN,
but it almost disappears in images reconstructed by other
methods.
In the next experiment, the test dataset is the vessel of bego-
nia. The structure of the begonia vessel is more complex and
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Figure 4: The SR reconstruction results from different algorithms
in terms of begonia vessel. The SR results show that the DSCNN
provides the best SR reconstruction results.

Figure 5: Two regions of interests (ROIs) marked in Fig. 4 are
further extracted and magnified to compare SR reconstruction
performance in small features and textures.

challenging to be recovered than the structure of broussone-
tia papyrifer in the previous experiments. As shown in Fig.
4, the CNN-based SR methods, such as SRCNN[8], FSR-
CNN[9], and SRResNet[10], have poor performance in terms
of image details recovery. SwinIR[11] with transformer has
comparable results to our DSCNN, but the introduction of
the transformer makes the computation several times of our
DSCNN. As shown in the enlarged box in Fig. 5, the clus-
tered dots are still well reconstructed by our DSCNN, while
the images restored by other methods are relatively blurred.
Expecting to analyze different deep learning networks from
the spectrum perspective, in Fig. 6, we show the spectrum
of SR images obtained by all methods. It can be seen that
the spectrum of the original HR image is a circular spectrum
emanating from the origin as the center. SwinIR, SRResNet,
and our DSCNN are more similar to the HR spectrum struc-
ture. However, the spectral details of the SR images obtained
by different methods are not the same. It can be seen from
Fig. 6 that the spectral artifacts of our DSCNN are less, and
the spectrum structure is closer to the spectrum of HR images
than any others. We believe this is why our DSCNN achieves
excellent results.

4 Discussion and Conclusion

The core idea of our study is to solve the image SR problem
by combining both frequency and image domains. This is a
pioneering work to solve the SR problem from a frequency
learning perspective. Our study found that the high-frequency
component in the frequency domain is positively correlated
with the SR image quality. The recovery of high-frequency
information becomes a key metric for evaluating network
capability. We also find that deep learning based SR methods

Figure 6: Spectrum comparison from different methods. Among
the deep learning methods, the SR image spectrum structure gener-
ated by SRResNet, SwinIR, DSCNN− are better than others, and
the spectrum produced by our DSCNN has fewer artifacts.

have limitations. In respect to the deep learning based SR re-
sults, the spectrum of SR images will be concentrated within
a certain range. The high-frequency components beyond the
region are generally small and cannot reach the original HR
level.
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Abstract X-ray diffraction (XRD) provides material specific XRD 

pattern for material identification. The XRD signal  characterizes light 

materials much better compared with traditional attenuation signal in X-

ray transmission imaging. Recent researches developed various XRD 

tomography (XRDT) methods to acquire pixel-wise XRD patterns  in a 

2D cross-section for an object. The applications of XRD have been 

promoted in biological sample inspections. However, it takes several 

hours for current XRDT systems to gain high-resolution images. In this 

work, we combined the mechanism of coded-aperture with rotational 

scan to form a fast data acquisition solution and propose a system referred 

as a sparse-view coded-aperture XRDT.  This system shortens scan time 

to less than 40 minutes based on our laboratory equipment that is much 

faster compared with several hours of pencil-beam XRDT, while 

maintaining similar spatial resolution. Practical experiments on breast 

sample inspection and kidney stone analysis verified the clinical value of 

the proposed system. 

Key words: Diffraction tomography, Coded-aperture, Biological sample 

inspection. 

1 Introduction 

X-ray diffraction (XRD) measures the Rayleigh scattering 

intensity distirbution of materials to form material specific 

XRD pattern. The XRD pattern provides a “fingerprint” 

property for material identification [1]. The XRD pattern 

refelects material intermolecular distribution law  [2] which 

is a different physical factor compared with  the attentuation 

signal in X-ray transmission imaging refelecting material 

element composition. As a result, XRD pattern provides 

higher material contrast and material identification 

accuracy for different light materials than attenuation signal 

[3]. Over past years, various studies on XRD have been 

done for biological samples, the advantages of XRD in 

medical applications have been acknowledged, especially 

for  breast cancer diagmosis [4] and kidney stone 

component analysis. Considering the detailed structures of 

material distirbution in biological samples, XRD pattern 

acquisition with spatial resolution in a cross-section of an 

object is needed, which is referred as XRD tomography 

(XRDT). XRDT for a single 2D object slice is a problem of 

measuring three-dimensional XRD signals, i.e. two spatial 

dimensions together with another momentum transfer 

dimension.  

Currently, the most mature XRD system is X-ray powder 

diffractometer [5] (single crystal diffraction is not 

considered here). It uses approximate monoenergetic 

incident X-ray from metal anode characteristic spectrum, 

and uses diffraction angle scanning to acquire the XRD 

patterns of powder samples. The XRD signal of 

diffractometer is from the whole sample region with no 

spatial imaging ability. Several spatial-resolved XRDT 

methods have been proposed in the field over the years. The 

XRDT methods can be distinguished into two types on the 

whole. The first type is snap-shot XRDT methods. Snap-

shot type XRDT methods acquire XRD pattern images 

using a single measurement with no mechanical movements 

or scans. The most representative snap-shot XRDT is 

energy-dispersive XRD (EDXRD) [5] which is mostly used 

in security check. EDXRD uses a combination of collimator 

at X-ray source side (front collimator) and long pin-hole 

collimator at detector side (rear collimator) to track XRD 

signals. Each detector pixel is mapped to a specific region 

on object formed by the field intersection of front and rear 

collimators. Thus, it achieves spatial resolved imaging. The 

EDXRD measurements are direct with no need of signal 

decoupling. However, due to small diffraction angle 

geometry, its spatial resolution along X-ray transmission 

path is generally worse than 10 mm [6]. Besides, the rear 

collimator blocks most informative Rayleigh scattering 

photons, thus the detection efficiency is low. In the past 

decade, coded-aperture has been introduced to EDXRD to 

replace long pin-hole rear collimator in EDXRD [7, 8]. 

With a multi-hole thin coded-aperture mask, the XRD 

signal at each spatial location can be detected by multiple 

detector pixels through each aperture of the coded-aperture 

mask, thus the detection efficiency of XRD signal is 

significantly improved [7]. Signal decoupling algorithm is 

adopted to reconstruct XRD images.  Data acquisition of 

this snap-shot coded-aperture XRDT (Snap-CAXRDT) 

takes only tens of seconds, but the spatial resolution along 

transmission direction is still low. 

The second type XRDT methods are rotation-based XRDT 

[3]. These methods follow the scan mode of an X-ray 

transmission CT and use FBP/FDK type analytical 

reconstructions for XRDT projections to achieve high 

spatial resolution. Pencil-beam XRDT is one of the major 

rotation-based XRDT systems similar to a parallel CT scan. 

The spatial resolution can reach 1 mm. There is no rear 

collimator in a pencil-beam XRDT, the Rayleigh scattering 

photon can be fully detected in high efficiency. However, 

as both translation and rotation required, the total scan time 

is generally more than 3 hours. Fan-beam XRDT has also 

been proposed for XRDT [3], it adopts fan-beam 

illumination and adds rear grid collimator in front of 

detector for fan-beam XRDT projection acquisition. 

Although, the fan-beam illumination increases incident X-

ray flux, the rear grid collimator reduces scattering photons. 

Thus, the total scan time cannot be significantly shortened.  
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Scan time is the major bottleneck of rotation-based XRDT 

methods for practical applications. In this work, we 

proposed a sparse-view rotational coded-aperture XRDT 

method (Sparse-CAXRDT) than can take advantages of 

both the fast compressed-sensing acquisition of coded-

aperture and isotropic high-resolution of rotation-scan. 

Sparse-CAXRDT can achieve images of high spatial 

resolution in several minutes. We built a laboratory Sparse-

CAXRDT experimental system that achieved a spatial 

resolution <2 mm similar to a pencil-beam XRDT, while the 

scan time is reduced to <40 minutes based on our existing 

experimental equipment. If a detector of bigger size is 

available, the scan time can be further reduced to less than 

10 minutes. We tested the Sparse-CAXRDT for practical 

breast sample inspection and kidney stone component 

analysis, and obtained some valuable results. 

2 Methods 

A. Amorphous material XRD pattern 

For an amorphous material, the X-ray differential scattering 

cross-section of a molecule from primary Rayleigh 

scattering and primary Compton scattering is: 
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Here, E  denotes the X-ray photon energy, 
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. We further consider the 

linear differential scattering coefficient of a material (the 

probability of an X-ray photon scattered toward a specific 

direction passing a unit thickness of a material) is: 
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Here, 
AN  is the Avogadro constant, M the relative 

molecular mass, and  the material density. We use 

( )2

XRD ( ) ( ) ( )
M

f q F q S q


+ to include material specific 

physical factors and it represents material specific XRD 

patterns. 

B. Sparse-view coded-aperture XRDT 

Similar to other XRDT methods, Sparse-CAXRDT 

measures the spatial distribution of 
XRD( )f q . The targeted 

XRD images in Sparse-CAXRDT is defined as 

XRDT( , , )f x y q , i.e. an XRD pattern
XRD( )f q  is acquired for 

each position ( , )x y  on a 2D cross-section of an object.  

A schematic illustration of the Sparse-CAXRDT system is 

in Fig. 1. An X-ray source is used to generate incident X-

rays of continuous polychromatic spectrum. A slit 

collimator is placed before the X-ray source to form fan-

beam illumination on object. There is a coded-aperture 

mask placed between the object and detector to code the 

scattering signal from the object. An energy-dispersive 

photon counting detector (EDPCD) is adopted to detect 

coded scattering signals. The beam stop in Fig.1 is used to 

absorb straight transmitted X-rays. During the scan, the 

object is rotated circularly to acquire coded scattering signal 

from multi-views. 

For a specific scan angle  , the scattering signal detected 

by EDPCD denoted as ( )XRDT , , ,I u v E   is given by: 

XRDT 0
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S A XRDT

S

( , , , ) ( , ') ( ') ( , , , ', , ) ( , , , , )

'sin( / 2)
( , , , , )N ( , , ) d d d d '

hc

E q x y

S

I u v E R E E I E T x y E u v C x y u v

E
x y u v f x y q q x y q E

  


 



=

  
 − 

  

  
 

(3) 

Here, X-Y-Z denotes the object coordinate system and U-V 

the detector coordinate system as shown in Fig. 1. 

( )XRDT , , ,I u v E  is the detected signal at position ( )
det

,u v on 

detector and at energy channel E . The ( , ')R E E  is the 

detector energy response function for practical detectors, 

which models the effect of X-ray at energy 'E on the 

detector signal at energy channel E , ( , ')R E E  can be pre-

calibrated for each EDPCD. 0 ( ')I E is the incident X-ray 

intensity at energy 'E . ( , , , ', , )T x y E u v is the attenuation 

factor which measures the total attenuation of the incident 

X-ray path and scattering X-ray path. ( , , , , )C x y u v  is the 

coding function of the coded-aperture mask, it measures the 

 
Figure 1: Illustration of the sparse-CAXRDT system. 
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ratio that scattering signal generated at ( )
object

,x y  on the 

object passes the coded-aperture mask and reaches position 

( )
det

,u v on the detector. Ideally, it is a 0/1 binary function. In 

a discrete geometrical model, its value is between [0,1]. 

S( , , , , )x y u v is the scattering solid angle toward a unit area 

on the detector plane around ( )
det

,u v .
S is the scattering 

angle. Based on the geometrical relation, the 
S  and 

S is 

calculated by: 

( ) ( )( )
S 1.5

2 2 2

cos sin

cos sin cos sin

D x y

D x y u y x v

 

   

− +
 =

− + + − − +
 (4) 

( )

( )

S cos sin , cos sin ,0 ,

         cos sin , cos sin ,

S x y y x

D x y u y x v

    

   

= + − +

− + − − 
    (5) 

with  a b, in Eq. (5) denoting the angle between vectors 

a  and b . 

In Sparse-CAXRDT, the scan angle   belongs to a set of 

discrete values  1 2 3 N, , ,...,


     with φN the total 

number of views. 

C. Sparse-CAXRDT image reconstruction 

We reconstruct the 
XRDT( , , )f x y q  from XRDT ( , , , )I u v E   of 

Sparse-CAXRDT based on the physical model given by Eq. 

(3). To simplify the expression, we rearrange the discrete 

detector raw data XRDT ( , , , )I u v E  in a 4D tensor format  

XRDT
I

N N N Nu v E   
R , and also rearrange the discrete XRD 

image 
XRDT( , , )f x y q  in a 3D tensor format 

XRDTf  
N N Nx y q 

R . 

Here, Nu
 is the dimension of discretized variable u , 

similar for Nv
, NE

, Nx
, N y  and N q . The forward physical 

model in Eq. (3) is denoted as a function  , i.e.: 

( )XRDT

XRDT= I f                             (6) 

In practical systems, XRDT
I  contains unignorable noise. 

Based on the physical model and noise model, the 

reconstruction of 
XRDTf  from XRDT

I  can be completed by a 

model-based iterative reconstruction method (MBIR) with 

a total cost function:  

( ) ( ) ( )XRDT XRDT

MBIR XRDT fidelity XRDT prior XRDT; ;= +f I f I f   (7) 

The fidelity  is data fidelity term measuring the negative log-

likelihood between  ( )XRDT f  and XRDT
I . The EDPCD 

detection is independent between pixels with Poisson 

distributed noise. Thus: 

( ) ( ) ( )XRDT XRDT

fidelity XRDT XRDT XRDT

, , ,

; ln
u v Ei i i i

 =  −  f I f I f  (8) 

Here, subscripts , , ,u v Ei i i i  index the elements in a 4D tensor 

XRDT
I . ( )prior XRDTf  is the prior term constraining the 3D 

reconstructions. In spatial dimension, we use an isotropic 

total-variation (iTV) constraint. While in momentum 

transfer dimension, we use a simple smooth constraint. 

Thus, the ( )prior XRDTf  is: 
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(9) 

Here, 
1 and 

2  are hyper-parameters adjusting the strength 

of priors. The  MBIR cost function in Eq. (7) is minimized 

with a Split-Bregman method [9] to reconstruct 
XRDTf . 

3 Experiments and Results 

The laboratory Sparse-CAXRDT system we developed is 

shown in Fig. 2. In this experimental system, the X-ray 

source is with a tungsten anode. The tube voltage is set to 

100 kV and the tube current is set to 3 mA (the maximum 

current of the X-ray source) in our experiment. The slit size 

of the front collimator is 0.5 mm in height and 50.0 mm in 

width. The EDPCD is of  64 16 pixels with pixel size 1.6 

ⅹ 1.6 mm2, the total active detective region is a  

102.4 mm 25.6 mm strip. Each detector pixel can output 

an X-ray spectrum in range [15 keV, 350 keV] by detecting 

photons incident to the pixel. The size of active detective 

region of the EDPCD is a major factor affecting imaging 

speed. The coded-aperture mask is made of 1.5 mm thick 

tungsten with 160 apertures randomly distributed in a 

80.0 mm 16.0 mm region. Each aperture is of size 

1.0 mm 1.0 mm . The coded aperture mask is shown in Fig. 

3. Based on the experimental system geometry, the field of 

view (FOV) is a circular region of 50.0 mm in diameter. 

We conduct experiments for breast sample inspection and 

kidney stone analysis. In the breast sample experiment, a 

normal breast tissue sample and a breast cancer tissue 

sample from a collaborate hospital are imaged under 

research ethic approve. The two samples were both placed 

in test tubes for the Sparse-CAXRDT scan on our platform. 

There were 15 views in our experiment and the exposure 

 
Figure 2:  Laboratory sparse-CAXRDT system. 

 
Figure 3: Sketch map of the coded-aperture mask. 
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time is 150 s for each view. The total exposure time is 37.5 

min. The MBIR reconstruction of XRD image is of  54 54

pixels with pixel size 1.0 mm 1.0 mm . The range of 

reconstructed momentum transfer is 
1 1[0.6 nm ,4.0 nm ]− −

. 

The results of Sparse-CAXRDT reconstruction are 

displayed in Fig. 4 (1) and (2). The normal tissue and cancer 

tissue can be clearly distinguished as shown in Fig.4 (2). 

The samples are also scanned by a fan-beam photon 

counting CT using energy window [21.5 keV,85 keV] and 

attenuation map results are shown in Fig. 4(3). Obviously, 

the fan-beam CT image is of better resolution than the 

Sparse-CAXRDT result, but the difference between normal 

tissue and cancerous tissue is very low. 

We further scanned three kidney stones on the Sparse-

CAXRDT system: a uric acid stone, a stone with uric acid 

kernel and calcium oxalate cladding, and a cystine stone. 

All of them were placed in test tubes as shown in Fig. 5 (1). 

We use the XRDT reconstructions at the peak positions of 

cystine, uric acid and calcium oxalate as RGB channels to 

generate color image. The result is displayed in Fig. 5 (2). 

As we can see in Fig. 5 (2), the three type components of 

the kidney stones can be clearly distinguished from each 

other based on the results from the Sparse-CAXRDT scan.  

4 Conclusion 

In this work, we developed a Sparse-CAXRDT 

experimental system combining the coded-aperture fast 

compressed-sensing data acquisition advantage with the 

high spatial resolution advantage of rotational scan. The 

system achieves a spatial resolution better than 2 mm for 

XRD imaging in much shorter time than traditional pencil-

beam XRDT. Our experimental results on breast sample and 

kidney stone imaging demonstrated the great value of this 

imaging modality in biological tissue inspection and 

analysis. Right now, our laboratory platform is with a strip 

detector to lower cost and the maximum tube current is 

limited to 3mA, thus limit the data-acquisition efficiency. If 

a bigger detective area and a higher X-ray source tube 

current can be applied, it’s expectable to reduce the Sparse-

CAXRDT scan time to less than 10 minutes for detailed 

inspection of biological samples so that make this imaging 

modality fairly practical.  
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Figure 5: (1) Photo of kidney stone samples. (2) Sparse-CAXRDT 

reconstruction taking the peaks of cystine, uric acid and calcium 

oxalate as RGB channels. 

(1) (2)
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Mixture of uric acid 

and calcium oxalate

 
Figure 4: (1) Reconstruction of breast samples at different 

momentum transfers from Sparse-CAXRDT imaging. (2) Color 

image taking the momentum transfer channels in (1) as RGB 

channels. (3) Attenuation map results from Fan-beam photon-

counting CT imaging using energy window [21.5 keV, 85 keV] for 

the breast samples for comparison. 
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Abstract Deformable image registration (DIR) has been widely used
in radiotherapy treatment planning, including proton therapy. However,
quantitative assessment of the 3D DIR accuracy for real patient data is
a challenging problem due to the lack of known ground-truth landmark
correspondences between the source and target data. In this paper, a
3D deep-learning-based multi-modality image registration correction
network (RCN) is proposed to automatically quantify the accuracy per-
formance of a given DIR algorithm result using the target registration
error (TRE) estimation. The proposed network can further refine the
initial result with the dense map (same resolution and size as the input
images) of the TREs acquired from the quality assessment to achieve
higher accuracy and more robustness when applied to other imaging
systems. The proposed convolutional neural network is a supervised
approach trained using a simulated virtual human body phantom called
the XCAT dataset. The proposed RCN method is evaluated using
both the simulated dataset and some real patient clinical data from
different CT imaging systems. The simulated test dataset with known
ground truth shows an approximately 41% decrease in the TRE after
the correction. Despite the fact that the RCN was trained using a digital
anthropomorphic phantom without tissue heterogeneity, the validation
results on real patient data indicate an accurate estimation for the TRE
of our initial iterative DIR method and improvement of registration
results after the correction.

1 Introduction

Proton therapy has the potential to treat tumors with much
more conformal dose distributions compared to competing
modalities, delivering little to no dose to the healthy tissue
distal to the tumor [1]. Accurate CT images are required for
dose planning in proton therapy. Our previous work [2, 3]
introduced a DECT (dual-energy CT) stopping power ratio
estimation method and demonstrated that it could reduce the
uncertainty level in single-energy CT stopping-power ratio
mapping techniques from 2− 3.5% to 1% or less. Dual-
energy sinograms were acquired sequentially on a single-
source and –detector array commercial scanner. However,
this acquisition method is vulnerable to patient motion during
and between scans. Such organ motion and deformation in-
fluence the quantitative accuracy of the result and produce se-
vere artifacts in decomposed images. In previous work[4], we
integrated an iterative deformable image registration (DIR)
method, SyN [5], to eliminate some of these motion artifacts
in real patient data from commercial CT systems.
Registration accuracy of DIR is critical to quantitatively
reconstructing the attenuation coefficients of the patient
anatomy and to the overall success of dose planning. How-
ever, iterative DIR algorithms like SyN require manual ad-
justment of the parameters for the specific scanner and body

site. For example, SyN parameters that are optimal for one
scanner’s data do not achieve the same accuracy level on
another commercial scanner because of the difference in the
imaging system. In addition, our current DIR implementa-
tion lacks tools for quantifying the geometric accuracy of
the registrations. Commonly used validation metrics, DICE
contour coincidence metrics are not useful since expert an-
notations are not available in many applications and often
exhibit delineation uncertainties of comparable magnitude to
DIR errors. Image metrics (e.g., mutual information, mean
squared error) measure the similarity between fixed and de-
formed moving images based on intensity values that are not
generalized and comparable for different tasks. In addition,
the resulting metric value measures the similarity globally
and does not indicate local mismatching. On the other hand,
TREs (target registration errors) are directly defined on the
DVF (displacement vector field) that does not require any in-
tensity value in the image domain but measures the distances
between corresponding landmarks in moving and fixed im-
ages [6]. In clinical practice, the TREs are often acquired by
calculating the distance after registration between annotated
corresponding point sets [7]. The dense TREs map proposed
in this paper performs automatic TREs estimation for all
locations among the image domain with same resolution of
the input images.
This paper presents a novel supervised deep-learning ap-
proach (RCN: registration correction network) to estimate
the registration error for sequential dual-energy CT scans
without knowing the ground truth DVF or expert annota-
tion. This approach gives an assessment of alignment errors
for any given initial registration method such as SyN in our
case, resulting in a dense map (same resolution as the given
image) of TREs that estimate the local mismatching. The
network further refines the previous transformation based
on the registration error and outputs a corrected DVF with
higher accuracy and robustness.

2 Materials and Methods

The DIR process finds an optimal coordinate transformation
T̂M→F : ΩF →ΩF that aligns the moving image IM(xM),xM ∈
ΩM with the fixed image IF(xF),xF ∈ ΩF :

T̂M→F(xF) = xF + ûM→F(xF), (1)

259 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

where ûM→F(xF) is the corresponding DVF. To evaluate the
quality of this estimation T̂ , the dense TREs that measure the
total displacement between all corresponding points x ∈ ΩF

in the moving and the fixed images can be calculated as

Dense TREs : ΩF → R+ : x 7→ ∥u(x)− û(x)∥ , (2)

where û(x) is an initial DVF generated by some other regis-
tration method, i.e SyN, and u(x) is the ground truth DVF.
However, in most clinical practices, the ground truth DVF is
not obtainable. In the proposed method, we introduce a con-
volutional neural network trained using a simulated dataset to
estimate the TREs E(x) for real patient data and later refine
the initial transformation as T ∗(x).

2.1 Network structure

The proposed neural network is inspired by Eppenhof et al.’s
work [6] using a U-net structure [8] to estimate the TREs.
The proposed network estimates the dense TREs for each
voxel for a pair of 3D image stacks extracted from the moving
image IM and the fixed image IF . The stacks have dimensions
of 624× 624× 16 1× 1× 1mm3 voxels in our current im-
plementation. We train this convolutional neural network to
estimate the displacement vector for each voxel in the image
domain. A supervised residual learning set-up is used to
train the network to estimate the TRE E(x) due to distorting
ū(x) to the known ground truth DVF u(x),x ∈ Ω by a ran-
dom vector field, consisting of additive random perturbations.
The trained network outputs both the refined transformation
T ∗(x) (corresponding DVF as ū∗(x)) and E(x). the estimated
TRE E(x). The loss function for the network is shown in
Equation 3 given by:

θ = argminθ ∥E(x;θ)− (u(x)− ū(x))∥L2
, (3)

with trainable hyper-parameters, θ . The moving image is
first warped with the distorted transformation T̄ (x) and then
stacked with the fixed image as well as the distorted DVF
ū(x) before entering the U-net. The detail of the proposed
network structure is shown in Figure 1.
We assume that after the initial registration, the result T̂ (x) is
close to the ground truth T (x). And T̂ (x) is a diffeomorphism
(continuous, invertible, and one-to-one mapping) since we
are using a diffeomorphic algorithm. In the training process,
some random additive perturbation field is applied to the
ground truth DVF u(x) to simulate the difference between
T (x) and T̂ (x). The perturbation should be continuous based
on the physics of the patient’s organ movements and the
initial diffeomorphic transformation. The details will be
described in section 2.2.

2.2 Training set construction

The training set is derived from XCAT [9], a virtual hu-
man phantom. The 4D XCAT phantom realistically models

the complex shapes of human organs and is able to model
time-dependent anatomical deformations due to breathing
motion. A male patient body phantom was chosen to con-
struct our training set from the top of the head down to the
lower lung area. The 4D dual-energy (80 kVp and 140 kVp)
CT images (IM(x, t; 80 kVp), IF(x, t; 140 kVp)) consists of
320 (624×624) slices sampled from the human phantom ev-
ery 0.5 secs for total 6 frames during a breathing cycle. The
whole volume of the moving and the fixed images are further
cropped into twenty 624×624×16 image stacks which are
dictated by the GPU memory limit. The whole dataset is
randomly split into a training and validation set with the ratio
8:2. A corresponding ground truth transformation Ts→t(x)
can also be generated for every pair of images (s, t ∈ [0,3]
secs) for the 4D fixed and moving images.
A 3D perturbation field uN(x),x ∈ Ω (volume with the same
size of the fixed and moving images) consisting of the sum
of randomly constructed 3D gaussian distributions is added
to the ground truth DVF us→t(x) in each iteration of the
training process. The number i ∈ [3,10], center µi (within
the region near the center of the phantom), variance Σi, and
scale Ai of Gaussian distribution N (·) are randomly sampled
from uniform distributions independently for the x, y, and z
dimensions yielding a uN(x) as below:

uNx,y,z(x) = ∑
i

Ai ·N (µi,Σi,x) (4)

An example showing one slice of the additive perturbation
field in every dimension is shown in Figure 2. The proposed
perturbation model randomly generate error field in every
iteration of the training process to represent a complex con-
tinuous noise pattern.

Figure 2: Additive random perturbation field uN(x) as perturba-
tion. Images show the color map of the vector length for a slice
of each dimension in the ground truth DVF u(x) and the pertur-
bation uN(x). It represents a combination of several 3D Gaussian
distributions with randomly sampled center locations, means, and
deviations.

3 Results

Our current implementation is based on 1000 training epochs.
Group normalization was applied to accelerate the training
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Figure 1: Network structure of the proposed RCN.

Figure 3: The orange line shows the norm of perturbation
(∥uN(x)∥) that was randomly added to the ground truth DVF. The
dashed blue line and the solid yellow line indicate the estimated
TREs after the correction in the training and validation sets, respec-
tively.

process. Figure 3 shows the total TRE (∥u∗(x)−u(x)∥) be-
tween the refined DVF u∗(x) with the ground truth u(x) in
both the training and validation sets and the perturbation level
(∥uN(x)∥) for each iteration in the training process. Despite
the norm of the additive random perturbation field fluctuating
around 6e+7, the TREs of our estimation in both the training
and the validation sets gradually reduce to 8e+4, about three
levels of magnitude less than the initial error.
We tested RCN by applying it to another 3D simulated phan-
tom (an XCAT female body phantom) previously unseen by
the RCN during the training process. The result in Figure 4
shows an average of 41.05% decrease in the total TRE value
after the RCN is applied to the initial SyN result. The TRE
values outside the body in both the RCN and the SyN results
have been filtered out by a mask formed by the phantom’s
body contour to focus on the registration accuracy assessment
inside the body.
In addition, two real patient datasets were used to test the
performance of the RCN. Figure 5 and 6 show a lung cancer
patient scanned by a Philips Big Bore scanner and a head-
and-neck patient scanned by a Siemens Confidence scanner,
respectively. Mismatching was visualized by overlaying the

Figure 4: Comparison of the average TRE value between the SyN
and the RCN results across the simulated 3D female body phantom
shown on the right side. Each data point corresponds to a 16-slice
sliding volume stack across the whole 320 slices volume.

fixed and moving images into two different color channels,
and quantification was achieved using mutual information.
The visualization and the image metric shown in both Philips
and Siemens data indicate an increase in registration accuracy.
Despite the fact that the RCN was trained using a digital
anthropomorphic phantom without normal tissue density and
texture heterogeneity, the promising results on real patients
demonstrate its robustness.

Figure 6: Color channel overlay for Siemens Confidence scanner
dual-energy patient data (80 kVp in green and 140 kVp in red).
The first column is the original patient data; the second column
is the registration result using SyN, and the third column is the
corrected result using our proposed RCN method.
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Figure 5: Two slices of the fixed and deformed moving images
from the Philips Big Bore scanner are overlaid together in different
color channels (90 kVp in green and 140 kVp in red) in the first
two columns. Mismatching is highlighted as bright green or red
colors. The white numbers in the upper right corner marked as ’MI’
are the mutual information of the warped moving image and the
fixed image calculated over 16 slice stack. The third column is the
estimated corresponding dense TREs map in mm using heat-map
pattern.

4 Discussion

Our current RCN implementation significantly improves the
registration accuracy in both the sequential dual-energy CT
simulated and real patient datasets. However, we have not yet
tested our proposed RCN on other state-of-art deep-learning-
based registration methods (e.g. VoxelMorph[10]) or some
other medical imaging modality such as MRI. Ongoing work
includes generalizing the RCN application to other medical
imaging modalities and making thorough comparisons with
the state-of-art DIR methods.
In addition, TRE estimation accuracy is compromised be-
cause the training included irrelevant TRE errors outside the
patient’s body contour. Those estimated errors outside the
body will not affect the result in the image domain since
the action is applied purely to the background air region.
However, those values will be counted toward the total TRE
value which brings a large gap between our estimation to the
ground truth value. Inspired by [11, 12], we will add atten-
tion gates to the network that could progressively suppress
feature responses in irrelevant background regions without
the requirement to crop an ROI between networks.

5 Conclusion

To the best of our knowledge, our RCN process is the first
attempt to apply a supervised deep-learning method trained
on a simulated dataset to refine a given registration via dense
TREs estimation for 3D dual-energy CT images. Promising
test results on unseen patient data demonstrate the potential
of RCN to improve DIR accuracy in clinical practice. With
the potential of simulating cone-beam CT and MRI images
from the XCAT dataset, the proposed RCN pipeline may also
improve outcomes in other multi-modality image registration

applications.
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Abstract In cardiac SPECT perfusion imaging deep learning (DL) 
denoising methods have been found to be highly effective for noise 
suppression in reduced-dose studies. However, as with conventional 
image filtering, DL denoising may also cause potential signal loss in the 
reconstructed images as a trade-off to reduced noise level. In this work, 
we investigate for the first time the feasibility of improving the 
preservation of perfusion defect signals in DL denoising by controlling 
the level of post-reconstruction smoothing in reduced-dose SPECT 
studies. In the experiments we demonstrated this approach with quarter-
dose data from a set of 895 clinical acquisitions. The quantitative results 
indicate that use of a higher spatial resolution in the reduced-dose images 
than that of the standard-dose target can achieve both better preservation 
in defect signals and higher detection accuracy of perfusion defects after 
DL processing.  

1  Introduction 

Myocardial perfusion imaging with single-photon emission 
computed tomography (SPECT) can provide an objective 
assessment of the regional blood flow in the myocardium, 
and is widely used for diagnosis of coronary artery diseases 
in nuclear medicine [1]. Owing to concerns over the 
potential radiation risk associated with SPECT imaging 
studies [2,3], there is great clinical interest in reducing the 
dose (administered activity to patients) used for imaging 
[4]. 

With a reduced-dose study, however, the acquired data 
counts are lowered accordingly (unless the imaging time is 
increased). This will unavoidably result in elevated noise in 
the reconstructed images, which can adversely affect the 
diagnostic accuracy. To combat this issue, iterative 
reconstruction algorithms with resolution recovery as well 
as attenuation and scatter corrections have been studied for 
improving the image reconstruction accuracy in SPECT [5-
9]. Most recently, deep learning (DL) denoising methods 
have been demonstrated to be highly effective for noise 
suppression in low-dose CT, digital breast tomosynthesis, 
PET, and SPECT studies [10 14]. In particular, in [13] a 
convolutional autoencoder (CAE) network was 
demonstrated to lead to improved detectability of perfusion 
defects in reduced-dose SPECT images. 

In development of DL denoising methods for reduced-
dose images, a common approach is to employ a DL 
network and optimize it by using a set of example input-
output image pairs collected from the intended imaging 
application.  The input is the images obtained with reduced 
dose and the output is typically set to be the desired (noise-
free) target images. To better accommodate the variability 

 
* This work was supported by NIH/NHLBI Grant R01-HL154687. 

observed in clinical subjects, a DL network is desired to be 
trained and optimized for clinical acquisitions. In the 
absence of the ground truth images with clinical subjects, 
images reconstructed from conventional full-dose 
acquisitions are often used as the learning target [10 14]. 
Conceptually, a DL denoising work plays a similar role to 
that of conventional (linear) filtering in that there can be a 
trade-off between noise level suppression and potential 
signal loss in the reconstructed images. As a consequence, 
a DL denoising network may lead to a loss in image 
resolution (over-smoothing) while suppressing the elevated 
imaging noise in reduced-dose studies. This effect can be 
problematic when the region of clinical interest in an image 
is small in size or has low contrast (e.g. subtle perfusion 
defects in cardiac SPECT).  

In cardiac SPECT, a post-reconstruction filter (e.g., 3D 
Gaussian filter) is typically applied and optimized for the 
diagnostic performance in the resulting images [5]. In this 
study, we investigate whether optimizing the level of the 
post-reconstruction smoothing (which controls the spatial 
resolution) in the reduced-dose input can lead to a better 
preservation of defect signals in the resulting DL processed 
output. That is, we seek to optimize the reconstruction for 
the reduced-dose input images prior to DL processing. In 
particular, we demonstrate this approach by varying the 
smoothing parameter of the post-reconstruction filter 
(including no smoothing) in reduced-dose cardiac SPECT 
studies.  

In the experiments we demonstrated this strategy with 
quarter-dose data obtained from a set of 895 clinical 
acquisitions. We investigated the DL denoising 
performance by measuring: 1) the similarity of perfusion 
defect signals in reduced-dose studies after DL processing 
to their counterpart in the full-dose reference, and 2) the 
detection accuracy of perfusion defects after DL processing.  

2 Materials and Methods 

2.1 Problem statement 
This work is concerned with improving the accuracy of 
reconstructed images for perfusion defect detection by 
suppressing the increased noise in reduced-dose SPECT 
studies. Specifically, let  denote the image reconstructed 
from an acquisition with a reduced dose level. Our goal is 
to employ a denoising network (e.g., CAE) such that 
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the output  can yield an improved detection accuracy 
of perfusion defects in comparison to that of . 
For this purpose, we employ a supervised learning approach 
in which the denoising network is optimized with example 
input-output image pairs. That is, for a given reduced-dose 
study image , we define a learning target  such that the 
network is formulated in the following fashion: 

  (1) 

where  denotes the expectation over the ensemble of 
training pairs.  

To ensure the applicability to clinical studies, we will 
employ example images acquired from clinical acquisitions 
for training the network . Given the lack of ground truth 
images with clinical studies, for a reduced-dose input image 

, the corresponding image reconstructed with a standard 
dose acquisition is used as the learning target . While this 
may appear less accurate than using an ideal noise-free 
target, it can be practically desirable since the resulting 
output  will be optimized to be similar in appearance 
to that of standard dose studies, which would be more 
conducive to interpretations by clinicians.  

2.2 Optimize reconstruction for DL training  
In this study, our approach is to optimize the reconstruction 
for the input reduced-dose image  prior to processing by 
the DL network. Specifically, for cardiac SPECT images, a 
post-reconstruction filter such as a 3D Gaussian filter is 
typically applied for noise suppression and its smoothing 
parameter  is optimized for the diagnostic performance of 
the resulting images [15]. In this study, to demonstrate the 
concept, we investigate whether varying this smoothing 
parameter can lead to improved perfusion defect 
preservation in training the DL network.  

Specifically, we consider reduced-dose images  
obtained with varying degrees of post-reconstruction 
smoothing (i.e., spatial resolution). To be explicit, let  
denote  obtained with smoothing parameter  in the 
Gaussian filter. The optimization problem in (1) is then re-
written as  

  (2) 

As a result, the resulting network depends on the 
choice of the  value used.  Our objective is to optimize the 
network performance over this parameter  for the benefit 
of perfusion defect signal preservation. 

Toward this objective, instead of relying on traditional 
image quality measures such as MSE, we consider the 
following two performance metrics to characterize the 
presence of perfusion defects in the DL output : 
1) preservation of the defect signal, and 2) detectability of 
the defect signal, as described below. 

1) Perfusion defect preservation 
In clinical assessment, a perfusion defect is characterized in 
severity based on its extent and contrast level. Thus, it is 
important that the denoising network preserve such 
aspects of a defect signal while removing the imaging noise.  

To quantify this, we will examine the output of a known 
defect signal after DL processing and compute its similarity 
(as measured by the Pearson correlation coefficient) against 
its standard dose target (as detailed in Sect. 2.6).  

2) Detectability of perfusion defects  
To quantify the presence of a perfusion defect after DL 
denoising, we will adopt the non-prewhitening matched 
filter (NPWMF) as a numerical observer [15]. For this task 
we will make use of images reconstructed from multiple 
noise realizations of reduced-dose data both with and 
without the defect signal present. The numerical observer is 
then employed to determine the presence/absence of the 
defect signal in these images (as detailed in Sect. 2.6). 

2.3 Clinical dataset 
To demonstrate the optimization approach, we used a set of 
clinical acquisitions from 895 cases (453 male, 442 female), 
all obtained with informed consent under IRB approval 
[13]. These studies were acquired with standard dose in list-
mode on a Philips BrightView SPECT/CT system with 64 
projections (3-degree steps) and a 128x128 matrix acquired 
over 180 degrees. The pixel size was 0.467 cm. Among the 
895 cases, 335 were clinically read as normal, 372 as having 
either perfusion or cardiac motion abnormalities, and the 
remaining 188 were read as probably normal.   

From these studies we derived the reduced-dose data 
with 75% reduction in data counts (quarter dose). This was 
achieved by applying a statistical resampling procedure [5] 
to the standard-dose acquisitions above.  

From the set of clinical acquisitions, 35 normal cases 
were set aside to generate 175 hybrid studies with ground 
truth for the optimization task on perfusion defect detection 
(Sect. 2.6), whereas the remaining 860 cases were randomly 
divided into two subsets as follows: 1) 739 cases for DL 
network training, and 2) 121 cases for validation (Sect. 2.5). 
For image reconstruction, the ordered-subsets expectation 
maximization (OSEM) algorithm with post-reconstruction 
Gaussian filtering [5] was used, in which attenuation, 
scatter and resolution corrections were all incorporated. For 
the full dose target,  
set to 1.2 voxel, which was optimized for perfusion-defect 
detection performance studies [5]. 

For the quarter dose data, the parameter 
Gaussian filter was varied with a set of values as  = [0, 0.5, 
0.8, 1.0, 1.2] voxels for the task of optimization. 

2.4 Architecture of DL model 
We employed for the denoising network a three-
dimensional CAE structure, which was previously 
developed for reduced-dose SPECT images [13]. This 
network was demonstrated to achieve similar denoising 
performance to that of a residual CNN model, but with a 
smaller number of parameters [13]. The validation results 
in [13] indicated that the denoising performance was rather 
stable when the number of layers was varied from 4 to 10 in 
this structure. In the experiments the number of layers was 
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set to eight (four encoding layers and four decoding layers). 
This was in consideration of the large variability in noise 
level in the reconstructed reduced images over the range of 
the smoothing parameter . As in [13], for each 
convolutional layer 10 feature-maps with 3×3×3 kernels 
were used with batch normalization and rectified linear 
units employed after each layer.  

2.5 Network training  
From the set of 739 training cases, about 2.2×105 input-
target pairs of 3D image patches (21×21×21 voxels) were 
extracted from random locations within the heart region and 
used to form the training samples. The validation cases were 
used to determine the number of training epochs based on 
the validation error to avoid overfitting.  The adaptive 
moment estimation (Adam) algorithm was used for network 
training with a batch size of 100. The CAE network was 
implemented with Keras on a NVIDIA GeForce GTX 1080 
Ti 12G GPU.  

2.6 Performance evaluation 
To assess the detection performance of perfusion defects by 
the DL denoising network in clinical applications, we 
generated 175 hybrid studies from the set of 35 normal 
cases which was set aside in Sect. 2.3, in which perfusion 
defects were inserted randomly in size among various 
vascular territories according to their clinical distribution 
[5]. Each defect was introduced with four contrast levels 
(65%, 50%, 35%, and 20%) for variable defect 
detectability. These introduced defects were then used as 
the ground truth for quantifying the defect signal response 
in the DL output. In addition, for each of the 175 hybrid 
studies, we generated 50 noise realizations. 
Specifically, we assessed the reconstructed images 
according to the two performance metrics for the 
preservation and detection of perfusion defects (defined 
earlier in Sect. 2.2) as follows: 

1) Perfusion defect preservation:   To assess the 
preservation of the perfusion defect signal in a reduced-dose 
image, we computed the Pearson correlation coefficient  
between the known defect region (in full-dose reference) 
and the corresponding region in the reduced dose image. In 
this assessment, we are mainly interested in characterizing 
the aspects related to the spatial extent and contrast of a 
defect signal. To suppress the effect of noise in reduced-
dose images, we used the average image obtained from 50 
noise realizations of each case to compute the defect signal. 

2) Perfusion defect detection: To quantify the 
detectability of a perfusion defect, we utilized 50 noise 
realizations of the reduced-dose image for each test case 
with and without the defect present. The NPWMF detector 
was then applied to determine the response of the defect 
signal in each realization. The detection performance for the 
defect was summarized by using the detector signal-to-
noise ratio (SNRD) metric as  

 
 (3) 

where  and  denote the mean values of the detector 
output with and without the perfusion defect present, 
respectively, and  and  are the corresponding variances 
in the output.  

3 Results and Discussions 

3.1 Perfusion defect signal preservation 
In Fig. 1 we show the similarity results of perfusion defects 
in DL processed quarter-dose images to that of the full dose 
reference, as measured by the Pearson correlation 
coefficient , obtained with the smoothing parameter  
increased from 0 (no smoothing) to 1.2 (optimal smoothing 
for the full dose reference). For comparison, the results are 
also shown for the OSEM reconstructed images without DL 
processing. These results were obtained from all the 175 
hybrid studies in the test set.  

Interestingly, from Fig. 1 it is observed that DL achieved 
a higher  value at  = 0.8 and 1.0 than at  = 1.2 (p-value 
< 10-6; paired t-test), with the lowest  value obtained at  
= 0 (i.e., no post-reconstruction filtering). The latter is likely 
attributed to the much higher noise level in the input images 
with no smoothing applied. As expected, at  = 1.2 OSEM 
achieved  given that the same reconstruction setting 
was used as in the full-dose reference. However, for OSEM 
the  value is noted to decrease significantly as  deviated 
from 1.2. In contrast, for DL the  value is maintained 
nearly constant as  varied from 0.5 to 1.0. This indicates 
that when the low-dose input is under-smoothed (relative to 
the full dose reference), the DL network is able to 
compensate for the under-smoothing in order to match the 
image resolution of the full dose reference (as to be seen 
later in the images in Fig. 3).  

3.2 Perfusion defect detection 
In Fig. 2 we show the perfusion-defect detection results 
obtained from the DL processed quarter-dose images with 
the reconstructed parameter  varied from 0 to 1.2. For 
comparison, the results are also shown for the OSEM 

to no post-reconstruction filtering. These results were 
obtained from all the 175 hybrid studies in the test set.  
It is observed from Fig. 2 that DL achieved a higher SNRD 
value at  = 0.8 than at  = 1.2 (smoothing level for the full 
dose reference) (p-value = 0.014; paired t-test). 
Interestingly, the results in Fig. 1 demonstrated that DL also 
achieved better defect signal preservation at  = 0.8 than at 

 = 1.2. Finally, it is noted that DL achieved a higher SNRD 

at each  value than OSEM.  

3.3 Example images 
In Fig. 3 we show the reconstructed images for an example 
subject in the test set (female, age=61, BMI=26.5) from the 
different methods. The images are shown both in short-axis 
slices and in polar map. For comparison, the full-dose 
reference is shown in Fig. 3(a); there is a small perfusion 
defect (50% contrast) located in the left anterior descending 
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territories (indicated by arrows). Fig. 3(b) shows the 
quarter-dose OSEM images at different values, whereas 
Fig. 3(c) shows their counterpart after DL processing. As 
can be seen, the left ventricular (LV) wall becomes notably 
more noisy in quarter-dose OSEM. With DL processing, the 
LV wall becomes more uniform and more similar to the 
full-dose reference. It can also be observed that the 
perfusion defect region is better preserved in contrast and 
extent in DL with = 0.8 and 1.0 than with = 1.2.

3 Conclusion

In this study we investigated the feasibility of improving the 
preservation of perfusion defect signals in a DL denoising 
network by optimizing the spatial resolution in the input 
reduced-dose images. In the experiments we demonstrated 
this approach with quarter-dose imaging data from a set of 
895 clinical acquisitions. The results show that using a 
higher resolution level in the reduced-dose reconstruction 
than that in the reference target can achieve a better 
preservation of perfusion defect signals and can lead to 
improved detection accuracy of perfusion defects in the DL 
processed images. Encouraged by these promising results, 
in the future we plan to further validate this approach with 
clinical observers.

Fig. 1. Similarity measure etween quarter-dose 
images (with and without DL processing) and their full-dose reference. 
Error bars indicate standard deviations.

Fig. 2. Perfusion-defect detection results obtained on quarter-dose data 
(with and without DL processing). Error bars indicate standard errors.

Fig. 3. Reconstructed images of an example subject by different methods: 
(a) full-dose reference (arrows indicate a perfusion defect), (b) quarter-
dose OSEM, and (c) quarter-dose DL. 
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Abstract: As an emerging hybrid imaging modality, cone-beam X-ray 

luminescence computed tomography (CB-XLCT) has been proposed 

based on the development of X-ray excitable nanoparticles. Owing to the 

complicated excitation process and high scattering of light propagation 

in biological tissues, the CB-XLCT inverse problem is inherently ill-

conditioned. Here, an end-to-end three-dimensional deep encoder–

decoder network(DeepCB-XLCT) is proposed to improve the quality of 

CB-XLCT reconstruction. It directly establishes the nonlinear mapping 

relationship between the inside X-ray excitable nanoparticles distribution 

and the boundary fluorescent signal distribution. Thus the reconstruction 

inaccuracy caused by the simplified linear model can be effectively 

reduced by the proposed network. Phantom experiments with two targets 

were carried out, and the results demonstrated that the DeepCB-XLCT 

network could improve image quality and significantly reduce 

reconstruction time compared with conventional methods. 

1 Introduction 

With the development of X-ray excitable nanophosphors, 

X-ray luminescence computed tomography (XLCT) has 

attracted more attention for its promising performance [1,2]. 

In XLCT, X-ray excitable nanophosphors are used as 

imaging probes and emit visible or near-infrared (NIR) light 

when irradiated by X-rays, which can be measured by an 

electron-multiplying charge-coupled device (EMCCD) 

camera. Then, the three-dimensional (3-D) distribution of 

nanophosphors in the imaged object can be resolved by 

solving an inverse problem using an appropriate imaging 

model of X-ray and photon transport. Due to the good 

penetrability and collimation of X-ray, XLCT can reach 

deeper imaging depth. In addition, the use of X-ray 

excitation nanoprobe can effectively avoid the interference 

of autofluorescence and background fluorescence, which 

can improve the contrast and resolution of imaging [3]. 

After the first demonstration of XLCT, cone-beam XLCT 

(CB-XLCT) is the primary imaging geometry due to its high 

scanning efficiency and large imaging field suited for in 

vivo imaging [4]. However, due to the complicated 

excitation process and high scattering of light propagation 

in biological tissues, the reconstruction of CB-XLCT is a 

seriously ill-posed inverse problem. To alleviate this 

problem and improve the reconstruction quality of CB-

XLCT, a few regularization algorithm have been proposed 

by incorporating a priori information about the probe 

distribution. Although the regularization algorithm can 

alleviate the ill-conditioned nature of the inverse problem, 

it needs a lot of iterations to obtain relatively satisfactory 

results. In addition, the deviation between the approximate 

linear model of RTE and true nonlinear photon propagation 

cannot be avoided fundamentally based on the 

regularization algorithm. 

In recent years, machine and deep learning have made re-

markable progress in promoting the performance of 

multiple molecular imaging modalities such as 

bioluminescence tomography (BLT), photoacoustic 

imaging and Fluorescence molecular tomography (FMT). 

Some of the most popular neural network architectures used 

for imaging tasks offer some insight as to how these deep 

learning tools can solve the imaging inverse problem. A 

nonlinear model can be constructed, which is more 

consistent with the actual environment, and generally 

performs better than traditional analysis methods. However, 

deep learning technology has not been applied to CB-XLCT 

reconstruction up to now. 

In this paper, 3D-En–Decoder network for CB-XLCT 

reconstruction is proposed, in which large data sets are used 

to learn the unknown solution to the inverse problem. The 

proposed 3D-En–Decoder CB-XLCT network is designed 

to establish a nonlinear mapping from input to output. The 

parameters of nonlinear mapping are studied and adjusted 

continuously in the process of network training. Based on 

this method, the inaccuracy caused by establishing the 

photon propagation model or solving the ill-posed inverse 

problem can be effectively avoided. 

The remainder of this paper is organized as follows. In 

Section 2, the conventional forward model and inverse 

problem of CB-XLCT, Deep Neural Network for CB-

XLCT imaging model, training date and optimization 

training procedure are described in detail. In Section 3, 

phantom experiments design and results are described for 

the performance evaluation of the proposed reconstruction 

approach. Finally, discussions and conclusions are given in 

Section 4 and 5. 

 2 Materials and Methods 

2.1 Conventional Forward Model and Inverse Problem of 

XLCT 

For XLCT imaging, when irradiated by X-rays, 

nanophosphors in the object can emit visible or NIR light. 

Based on the previous studies, the number of optical 

photons emitted is proportional to the intensity distribution 

of the X-rays and the concentration of nanophosphor in the 

object, which can be expressed as[3]: 

( ) ( ) ( )S X n= r r r                                      (1) 
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where S(r) is the light emitted, n(r) is the concentration of 

nanophosphors, Γ is the light yield of the nanophosphors, 

and X(r) is the intensity of X-rays at position r, which can 

be given by the Lambert-Beer law. 

In the visible and NIR spectral window, biological tissues 

have the characteristics of high scattering and low 

absorbing. Therefore, the propagation model of the emitted 

light in biological tissues can be established by the diffusion 

equation (DE): 

( ) ( ) ( ) ( ) ( )aD S−  +  =  r r r r r ( )r        (2) 

where Ω is the image domain, Φ(r) is the photon fluence, 

μa(r) is the absorption coefficient. D(r) represents the 

diffusion coefficient that can be calculated by
'

( ) ( )( ) 1/ (3( ))r rs aD r  = + , in which ( )'

s r is the reduced 

scattering coefficient. 

To solve the diffusion equation (2), the Robin boundary 

conditions are usually applied, as shown below: 

( ) ( ) ( )2 0D +  =  r r ν r ( )r                       (3) 

where  is the boundary of ,  is the boundary 

mismatch parameter and ν  represents the outward unit 

normal vector on the boundary. 

Using the finite element method (FEM)[30], the total 

forward problem can be rewritten as follows: 

 Wx=Φ                                          (4) 

where Ф is the projected optical data on the object surface 

and W is the system matrix, which demonstrates the weight 

of the unknown nanophosphor distribution x to the 

projection data. 

To alleviate the ill-conditioned of the inverse problem, 

various regularization norms  are usually introduced into 

CB-XLCT to constrain the solution space. The objective 

function can be written as, 
2

20
arg min

x
y





− +Wx x                          (5) 

where λ is the regularization parameter used to control the 

tradeoff between the regularity term and fidelity term; 
•  

(0≤β≤2) denotes the norm term. When β is equal to 2, it 

refers to L2 regularization (i.e., Tikhonov regularization). 

Similarly, it refers to L1 regularization when β is equal to 1. 

2.2 Deep Neural Network for CB-XLCT 

Unlike the traditional methods, CB-XLCT reconstruction 

based on deep neural network aims not to explicitly solve 

the forward and inverse problems. Instead, it establishes an 

end-to-end deep neural network (ETE-DNN) mapping 

model to directly reconstruct the distribution of 

fluorescence sources.   

The mapping model between the surface fluorescence 

signals and the interior fluorescent sources is defined as 

follows:  

y ( )Nf x=                                      (6) 

where Nf  represents the ETE-DNN framework, which can 

perform fast-forward inference to reconstruct fluorescent 

sources; y represents the measured surface fluorescence 

signals, which is the input of the deep network; x represents 

the unknown distribution of nanophosphors in the imaging 

object, which is the output of the deep network. Eventually, 

the inverse problem of CB-XLCT is optimized as follows:  

 
2

0 20
arg min ( )N

x
f y x


−                                      (7) 

where ( )Nf y   is the output prediction result of ETE-DNN 

with updated weight vector  ; 0x  donates the true label 

(i.e., ground truth).  

The 3D-En–Decoder model is composed of a 3D-Encoder 

network and a 3D-Decoder network with multiple layers of 

spatial convolution and deconvolution operators. The input 

is the 2D surface measurement images at 24 angles of CB-

XLCT and the output is the  3D distribution of the CB-

XLCT nanophosphor to be reconstructed.  
2D surface measurement images at 

24 angles of CB-XLCT

3D distribution of  CB-XLCT 

nanophosphors

 
Fig. 1. Schematic illustration of the DeepCB-XLCT network 

architecture: the 3D deep encoder–decoder (3D-En–Decoder) 

network has a 3D-Encoder network and a 3D-Decoder 

network. The 3D encoder consists of several convolution 

layers, followed by batch norm, ReLU activation function, and 

pooling. The 3D-Decoder has several unsampling layers 

followed by convolution, batch norm, and ReLU activation 

function. There is a full connection layer between the 3D-

Encoder and the 3D-Decoder. 

2.3 Training date and Optimization Training Procedure 

In order to support network training, a larger number of 

training datasets are needed. In CB-XLCT, because the 

simulation is convenient to control and evaluate, simulation 

is usually carried out before phantom and in vivo 

experiments, which means that a large number of 

simulation training sets can be generated through 

simulation programs. 6,000 simulation samples were used 

for training, and 2000 simulation samples were used as the 

validation set to determine the optimal model. 

In addition, all of the projection images were resized to 128 

×128 before being fed to the network. The output of the 

network is a 3D image. The size of the x − y slice is also 

128× 128, and the reconstruction resolution of the z axis is 

1 mm. In conclusion, the shape of the input and output are, 

respectively, 128 × 128 ×24 and 128 × 128 × 7.  

The loss function of the DeepCB-XLCT network consists 

of two parts:the mean square errors (MSE) and structural 

similarity loss (SSIM) between the reconstructed and true 

results. In addition, the loss of the target regions (ROI) are 
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also considered. Therefore, the loss function of the 

DeepCB-XLCT network could be calculated as: 

loss MSE MSE= （x)+ （ROI)+2*(SSIM（x)+SSIM（ROI))  (8) 

The optimizer employed in this network was the Adam 

algorithm implemented on Tensorflow. It was trained with 

epochs = 50, batch size =64.  

3 Experimental Design and Results 

In order to validate the performance of the proposed 

DeepCB-XLCT network with real luminescence 

measurements, phantom experiments were performed by 

using a custom-developed CB-XLCT system. The 

configuration of the physical phantom used in imaging 

experiments was shown in Fig. 2. The phantom was a 

transparent glass cylinder with a diameter of 3.0 cm and 

height of 7.0 cm, filled with 1% intralipid and water. Two 

small glass tubes (3mm in diameter) filled with Y2O3: Eu3+ 

(50mg/ml) were symmetrically placed in the cylinder to 

simulate two targets. The edge-to-edge distances (EED) 

between the two tubes were 2.3mm and 1.7mm.  

Target 1 Target 2 Target 1 Target 2

2.3mm 1.7mm

 
Fig. 2. The physical phantom used in imaging experiments. 

Transverse view of the two targets containing 50 and 50 mg/ml 

nanophosphors with edge-to-edge distances of 2.3mm, 1.8mm.  

All phantom experiments were performed with a custom-

made CB-XLCT system, which consisted of a microfocus 

X-ray source (Oxford Instrument, U.K.) with a maximum 

power of 80 W; a high precision turntable; an electron-

multiplying charge-coupled device (EMCCD, iXon DU-

897, Andor, U.K.), which was coupled with a 50 mm f/1.8D 

lens (Nikon, Melville, N.Y.) to collect luminescence signals; 

and a CMOS X-ray detector (2923, Dexela, U.K.) to collect 

X-ray signals. In the experiments, the X-ray source was set 

with a tube voltage of 40 kV and a tube current of 1 mA. 

The phantoms were placed in the same position on the 

turntable of the CB-XLCT system and all rotated 360° with 

24 projections collected evenly by the EMCCD. More 

descriptions about the experiment were detailed in our 

published paper[5]. The exposure time, EM gain and 

binning of EMCCD were set to 0.5 s, 260, and 1×1, 

respectively. The Feldkamp-Davis-Kress (FDK) 

algorithmwas used for CT reconstruction. 

To evaluate the performance of the proposed method, four 

traditional widely used methods, adaptive FISTA 

(ADFISTA, L1 norm), MAP, T-FISTA[5], FMLEM [6], 

were implemented for comparison with the proposed 

DeepCB-XLCT network. Their hyperparameters and 

maximum iteration number were set according to the 

references published, ensuring the convergence of the 

reconstruction. 

Fig. 3 shows the reconstruction results of two-targets 

positioned at different distance for phantom experiments. It 

can be seen that for the ADFISTA and MAP algorithms, 

only one target can be reconstructed, which indicate that it 

fail to alleviate the ill-posedness of the inverse problem. 

With the improved algorithms of T-FISTA and FMLEM by 

introducing the sparse regularization strategy, both targets 

could be resolved, as shown in the third and fourth columns 

of Fig. 3. However, the reconstruction accuracy is worse 

when the two targets get closer with an EED of 1.7mm. By 

comparison, both targets could be resolved as expected with 

the proposed the proposed DeepCB-XLCT method (shown 

in the fifth column of Fig. 3) due to the fast-forward end-to-

end direct reconstruction. 
ADFISTA MAP T-FISTA FMLEM Proposed method

2.3mm

1.7mm

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0  
Fig. 3. Reconstruction results of two targets fused with CT (50 

and 50 mg/ml) with EEDs of  2.3 and 1.7 mm. The first row shows 

the tomographic fused XLCT/CT images with the EED of 2.3 mm. 

The second row shows the tomographic fused XLCT/CT images 

with the EED of 1.7 mm. Reconstructions obtained by the 

ADFISTA, MAP, T-FISTA, FMLEM and proposed method are 

shown from first to fifth column, respectively. 

4 Discussion 

As an emerging hybrid imaging modality, the primary 

advantage of CB-XLCT is the use of X-rays, which 

increases the excitation depth, eliminates tissue 

autofluorescence, and achieves dual-mode of X-ray CT and 

optical molecular tomographic imaging. The performance 

of CB-XLCT reconstruction has a remarkably influence on 

the imaging results. However, the deviation between the 

complex imaging process and the approximate photon 

transmission model leads to the high ill-posed of the inverse 

problem, which severely limit the improvement of imaging 

quality.  

Conventionally, researchers have proposed a variety of 

reconstruction methods to constrain the image and improve 

the reconstruction quality, including PCA method [7], 

wavelet theory [8], Bayesian theory [9].and L1 and TV joint 

regularization constraints [10] to alleviate the ill-posed 

nature of the inverse problem. Completely different from 

these traditional methods, this study introduced a DeepCB-

XLCT method, in which the CB-XLCT reconstruction 

process is completed by establishing the end-to-end 

nonlinear mapping model between the internal CB-XLCT 

nanophosphors and the surface measurement signals. Based 
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on the DeepCB-XLCT method, it can greatly eliminate the 

modeling error of the forward problem and effectively 

avoid the artifacts caused by iterative calculation, which 

could greatly alleviate the ill-posed inverse problem. 

Phantom experiments results confirm the superiority of the 

proposed method over the conventional ADFISTA, MAP, 

T-FISTA and FMLEM methods. Two targets could be 

resolved when the EED is 1.8 mm, demonstrating its 

advantage in improving spatial resolution. Besides, owing 

to the utilization of end-to-end reconstruction approach, 

there is no complex iterative calculation process for the 

DeepCB-XLCT method, which could substantially reduce 

the computational burden and time cost compared with 

conventional iterative reconstruction method.  

However, there are still some limitations. Firstly, the 

performance of the proposed DeepCB-XLCT method has 

been verified through the phantom experiments with 

different EED, it is better to verify the performance of the 

proposed method through in vivo experiments in the future 

to fully demonstrate the superior performance of the 

proposed method. Secondly, as the number of 

reconstruction targets increase, the difficulty of network 

construction and training may increase. Besides, although 

the time cost is very low for well-trained model to 

reconstruct the distribution of XLCT nanophosphors, the 

network training takes a long time, up to several hours. 

5 Conclusion 

In summary, we have proposed an DeepCB-XLCT method 

to improve the quality of CB-XLCT reconstruction. It 

directly establishes the nonlinear mapping relationship 

between the inside X-ray excitable nanoparticles 

distribution and the boundary fluorescent signal distribution, 

which could effectively reduce the reconstruction 

inaccuracy caused by the simplified linear model and the 

iterative calculations. Phantom experiments results 

demonstrated that compared with conventional iterative 

method methods, the proposed DeepCB-XLCT method can 

improve the spatial resolution and reconstruction accuracy, 

which can promote the widely use of CB-XLCT in vivo. 
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Abstract Stationary CT systems based on arrangements of multiple 

compact x-ray sources provide a promising platform for imaging of 

hemorrhagic stroke at the point-of-care. However, the reduction in 

mechanical complexity and increased portability comes at the cost of 

extremely limited and sparse volumetric sampling patterns that challenge 

conventional analytical and model-based iterative reconstruction 

methods. In this work we propose the use of learned diffusion models for 

image synthesis as a platform to enable accurate posterior sampling-

based reconstruction, that leverages prior learning while enabling strict 

enforcement of consistency with the measured data. 

The proposed method uses a reverse noise diffusion sampling mechanism 

enabled by a neural network approximation to the diffusion score 

function, and it was trained as a generative model following an 

unsupervised approach with 4000 axial slices extracted from MDCT 

head/brain datasets. The reverse diffusion sampling was modified to 

provide an approximation of the posterior sampling via a conditional 

score matching model that enforces data consistency. The posterior 

sampling approximation avoids strict data consistency iterations, offering 

a suitable reconstruction platform in presence of image noise.  

The resulting method was evaluated for visualization of intracranial 

hemorrhage with a stationary multi-source scanner that features a 

compact configuration with 31 x-ray sources. Stationary and semi-

stationary image acquisition protocols with 31 views (160 deg angular 

span) and 62 views (205 deg angular span), respectively, were 

investigated in simulation studies. Simulations were based on 11 MDCT 

head/brain datasets in which randomly shaped lesions with contrast 

pertinent to blood (60 HU) were included at random locations. Baseline 

performance for comparison was obtained with a conventional penalized 

weighted least squares (PWLS) reconstruction strategy.  

Diffusion posterior sampling provided improved visualization of 

anatomical features and blood-like lesions across the 11 cases. Structural 

similarity (SSIM) measurements with the MDCT ground truth yielded 

median SSIM > 0.87 for the extremely limited sampling of the stationary 

protocol and SSIM > 0.91 for the semi-stationary protocol, and a ~10% 

increase in SSIM compared to PWLS. The increase in SSIM was 

accompanied by more consistent performance across cases, yielding 

~50% reduction in SSIM interquartile range, compared to PWLS, and 

improved accuracy of estimated attenuation in blood regions. 

The diffusion posterior sampling approach poses a new tool for accurate 

image reconstruction in imaging systems providing highly limited, non-

homogeneous, sampling and is a promising advance towards 

implementation of stationary CT systems for PoC imaging of stroke. 

1 Introduction 

Stroke is a potentially life-threatening emergency in which 

prompt treatment drastically reduces the severity of the 

condition, motivating the need to start treatment directly at 

the point-of-care (PoC). However, triage between ischemic 

and hemorrhagic stroke is needed for treatment and 

unattainable without access to neuro-imaging at the PoC.  

Recent improvements in x-ray source technologies 

introduced a new standard in weight and compactness with 

sources based on cold-cathode field emission (e.g., carbon 

nanotubes - CNTs) [1]. The small footprint of CNT sources 

enabled their arrangement into linear or curved multi-

source arrays (MXAs) [2], making them perfect candidates 

for development of stationary CT systems with weight and 

footprint suitable for deployment at the PoC.  

Previous work [3] proposed a mobile stationary CT concept 

for PoC imaging. The scanner (Fig. 1A) featured a curved 

array of CNT sources in combination with a curved-panel 

x-ray detector, yielding a compact semi-stationary system 

with minimal gantry mechanical requirements. However, 

the stationary configuration and non-circular source-

detector arrangement poses challenges in the form of 

limited- and sparse-angular sampling and heterogeneous 

sampling across the field-of-view (FOV). 

 
Figure 1. (A) Schematic representation of the stationary head CT 

system, consisting of 31 CNT sources distributed in a curved arc 

opposing a curved area detector. (B) Image acquisition protocols 

implemented in the scanner include a full stationary protocol spanning 

a 160 deg arc with 31 source positions and no motion of the gantry 

(posing a limited-angle and sparse sampling scenario), and a semi-

stationary protocol with two sequential stationary gantry acquisitions 

with a single 45 deg rotation, spanning a total angular span of 205 deg 

and 62 source positions (posing a sparse sampling scenario).  

Numerous approaches to reconstruction in undersampled 

scenarios have been proposed in the literature, based on 

model-based iterative reconstruction (MBIR) with sparsity-
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promoting, edge-preserving priors [4], or, more recently, on 

combinations of learned prior models with physically-

principled reconstruction methods [5]. However, MBIR 

methods might fall short in heavily undersampled scenarios, 

while current learning-based approaches might not preserve 

fidelity to the measured data. 

Recently introduced diffusion models for image synthesis 

offer a powerful platform for integration of learned features 

while providing a framework suitable for enforcement of 

fidelity to the measured data. In this work we explore the 

integration of diffusion learned models with posterior 

sampling for stationary CT reconstruction.  

2 Materials and Methods 

2.1. Stationary CT for Head Imaging 

The stationary CT configuration is shown in Fig. 1. It 

consists of a MXA of 31 CNT sources arranged along a 

curved array with radius of Rs = 450 mm. The MXA was 

centered at the origin of the scanner FOV and has a length 

of 1240 mm, resulting in total angular coverage of 160o. 

The curved-panel detector has the same curvature radius Rd 

= 450 and was placed at a distance of 200 mm from the 

center of the FOV. The scanner features two acquisition 

protocols [3], shown in Fig. 1B: i) a fully-stationary 

protocol in which 31 views (one per source) are acquired 

with no motion of the gantry, and; ii) a semi-stationary 

protocol that featured two stationary-gantry acquisitions 

with a single-step rotation of 45o in between acquisitions, 

resulting in a total of 62 projection views. The center of 

rotation is placed at the center of the FOV. The stationary 

protocol provides a simpler acquisition with no need of 

gantry rotation but poses a scenario with limited- and sparse 

angular sampling. The semi-stationary protocol was 

designed to alleviate the effects of limited angular sampling 

(angular coverage of ~205o at the center of the FOV), still 

within a sparse sampling regime. 

Volumetric image reconstruction from the sparse, limited 

angular sampling in the stationary scanner can be posed as 

a linear inverse problem: 

𝐲 =  𝑨𝐱 + 𝜖 (1) 

where 𝐲 is the acquired data (log converted projection 

images in stationary CT), 𝑨 is a linear operator representing 

the system forward model, x is the image to reconstruct, and 

𝜖 is a noise term that is assumed to follow a compound 

Poisson distribution in x-ray systems with area detectors. 

Reconstruction can then be achieved by sampling from the 

posterior distribution 𝑝(𝐱|𝐲). This problem is often tackled 

via MBIR methods, with sparsity assumptions on the prior 

distribution 𝑝(𝐱). For example, our previous work in 

stationary CT imaging used a PWLS approach with a 

sparsity-promoting prior acting on 𝐱 [3]. These approaches 

showed limited performance with undercomplete, sparse, 

and non-uniform sampling. 

2.2. Diffusion Models for Posterior Sampling 

Recently, diffusion models were proposed as a new class of 

probabilistic generative models for general image synthesis 

[6]. Diffusion models for image synthesis are based on a 

forward process that progressively corrupts an input image 

𝐱, sampled from an unknown distribution 𝑝(𝐱) via a 

controlled sequence of noise addition stages that perturb the 

image making it indistinguishable from noise.  

The forward noise-injection diffusion process is modeled 

with a stochastic differential equation (SDE) [7], of the 

following form: 

𝑑𝐱𝑡 = 𝑓(𝑡)𝐱𝑡𝑑𝑡 + 𝑔(𝑡)𝑑𝐰𝑡 (2) 

Where 𝑓(𝑡) and 𝑔(𝑡) are the drift and diffusion functions, 

respectively, 𝐰 is a standard Wiener process, and 𝑡 =
 [0, 𝑇] is the stage in the diffusion. By defining the marginal 

probabilities of 𝐱𝑡 as 𝑝𝑡(𝐱), the distributions at the initial 

and final stages are well defined, with 𝑝0(𝐱)  =  𝑝(𝐱), and 

𝑝𝑇(𝐱) approximating an isotropic Gaussian distribution. 

Following [7], in this work we selected a Variance 

Exploding SDE (VESDE) in which the transition density 

function is given by 𝑝0𝑡(𝐱𝑡|𝐱0)  =  𝑁(𝑥𝑡 |𝛼(𝑡)𝐱0, 𝛽2(𝑡)𝑰), 

with 𝛼(𝑡)  =  𝑰, 𝛽(𝑡)  = 𝜎𝑡, and 𝜎𝑡 linearly increasing with 

𝑡.  

The generative model is then obtained via sampling of the 

data distribution 𝑝(𝐱) that is recovered from the tractable 

𝑝𝑇(𝐱) by solving the following reverse SDE: 

𝑑𝐱𝑡 = [𝑓(𝑡)𝐱𝑡𝑑𝑡 + 𝑔(𝑡)2∇xt
log 𝑝𝑡(𝐱𝑡)]d 𝑡 + 𝑔(𝑡)𝑑�̅�𝑡 (3) 

Where �̅�𝑡 is the Wiener process in the reverse direction. 

The term ∇𝑥𝑡
 𝑙𝑜𝑔 (𝑝𝑡(𝐱𝑡)) is the score function of 𝑝𝑡(𝐱𝑡) 

that is intractable and approximated with a neural network 

𝑠𝜃(𝐱𝑡, 𝑡). This score function network is trained in an 

unsupervised fashion with denoising score matching [6].  

To provide a sampling mechanism from the conditional 

score-matching model we can leverage the diffusion model 

as a prior, to derive the following conditional reverse SDE: 

𝑑𝐱𝑡 = [𝑓(𝑡)𝐱𝑡𝑑𝑡 + 𝑔(𝑡)2(∇xt
log 𝑝𝑡(𝐱𝑡)

+ ∇xt
log 𝑝𝑡(𝐲|𝐱𝑡))]d 𝑡 + 𝑔(𝑡)𝑑�̅�𝑡 

(4) 

The added term ∇xt
log 𝑝𝑡(𝐲|𝐱𝑡) results from applying the 

Bayes rule to the posterior distribution. It is difficult to 

obtain a closed-form solution for it due to its dependence 

with t while y and x are only dependent at t = 0. 

A common approach to circumvent this limitation enforces 

data consistency by alternating sampling steps with 

projection into the measurement space [7]. Those 

approaches enforce the data fidelity as a constraint on the 

diffusion and might result in lower performance in presence 

of noise. A more stable approach can be obtained by 

approximating the conditional likelihood 𝑝𝑡(𝐲|𝐱𝑡). We 

followed an approach analogous to [8] to define 𝑝𝑡(𝐲|𝐱𝑡) ≃
𝑝(𝐲|�̂�0), where �̂�0 is the posterior mean, approximated by 

the mean at each step. 

Assuming a Gaussian approximation to Poisson noise 

model in y, we approximate the conditional log-likelihood 

gradient by: 
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∇xt
log 𝑝𝑡(𝒚|𝐱𝑡) = −𝜆∇𝑥𝑡

‖𝐲 − 𝑨(�̂�0(𝐱𝑡))‖
𝑊

2
 (5) 

 Where 𝜆  is a scalar step size and 𝑾 is a diagonal matrix 

containing estimations of the variance in the measurements, 

approximated with 1/𝑦. The gradient in (5) was computed 

via backpropagation across the score-matching network and 

the forward- and back-projection operators. 

2.3. Training Strategy and Validation Experiments 

We modeled the score matching function using the 

NCSNPP model [7]. Training was obtained with 4000 axial 

slices extracted from a collection of 22 brain MDCTs 

acquired as part of a previous IRB-approved study. The 

training set contained no images with conspicuous 

intracranial hemorrhage. The score-matching network was 

trained for 500 epochs using the Adam optimizer. 

 For validation of the reconstruction approach, we used 11 

different MDCTs obtained analogously to the training set. 

To simulate hemorrhagic stroke, synthetic features with 

contrast pertinent to blood (60 HU) were added at random 

locations in the brain parenchyma. The inserts were 

modeled as spheres with random radius (15-25 mm). To 

generate realistic shapes, the spherical inserts were 

deformed with a random smooth, deformable vector field. 

Note that this kind of lesions were not present in the training 

set and, therefore, not included in the learning process.  

Stationary CT datasets were generated by forward 

projection simulating the stationary (31 views) and semi-

stationary (62 views) acquisition protocols. To simplify the 

simulation process, the curved detector was approximated 

as a smaller flat-panel detector (768x512 pixels, 0.5 mm 

pixel size) placed tangent to the intersection of the primary 

ray of each source and the curved detector. Polychromatic 

beam and quantum noise effects were introduced into the 

synthetic projections for an x-ray beam with 107 kV (2 mm 

Al, 0.2 mm Cu added filtration) and 0.5 mAs per projection.  

The performance of diffusion-based posterior sampling was 

compared to conventional MBIR in the form of PWLS with 

a Huber edge-preserving penalty. Axial slices with 256 x 

256 x 1 voxels (1.0 mm voxel size) were reconstructed. 

Note that, while 2D slices were used in this work for 

simplicity and computational efficiency, the 2D score 

matching network is applicable in 3D scenarios performing 

stacked 2D inferences in combination with 3D forward- and 

back-projection operations. 

 Image quality was evaluated quantitatively via structural 

similarity (SSIM), computed using the MDCT model as 

reference. The CT number in hemorrhagic lesions was 

 
Figure 2. Reconstruction results for the two acquisition protocols using the proposed diffusion posterior sampling model and a conventional PWLS 

approach. The ground truth MDCT slices depicted detailed bone anatomy (A), and conspicuous blood-to-brain contrast (F). PWLS results for the 

semi-stationary protocol (B, G) showed good delineation of bone structures and intra-cranial hemorrhage, with mild limited-sampling artifacts and 

with streak-like sparse sampling artifacts. Diffusion posterior sampling results for the semi-stationary geometry (C, H) showed mitigated sampling 

artifacts, compared to PWLS, while preserving anatomical features. PWLS reconstructions for the stationary protocol (D, I) presented severe 

sampling artifacts that affect the visualization of the hemorrhagic lesions, soft-tissue structures and bone features. Diffusion posterior sampling 

reconstructions for the stationary protocol (E, J), provided improved delineation of hemorrhagic lesions, recovery of small intracranial features (see 

blue arrow in J), and improved bone anatomy detail. SSIM maps (K, L, M, N) illustrate the agreement between sampling artifacts and reduced 

similarity with the ground truth, as well as recovery of part of the underlying anatomy in heavily undersampled scenarios. 
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measured as the mean attenuation value on an 8 x 8 mm 

region placed at the center of each simulated hemorrhage. 

3 Results 

Reconstruction results of two representative cases are 

shown in Fig. 2 for PWLS and the proposed diffusion 

posterior sampling model. The ground truth MDCT slices 

depicted detailed bone anatomy (Fig. 2A) and soft-tissue 

contrast (Fig. 2F). PWLS results for the semi-stationary 

protocol (Fig. 2B, 2G) showed good delineation of bone 

structures and intra-cranial hemorrhage, albeit with subtle 

limited-sampling artifacts at the anterior and posterior 

regions (see blue arrow in Fig. 2B), and with noticeable 

streak artifacts, visible in soft-tissue regions, particularly at 

anterior regions. Application of diffusion posterior 

sampling resulted in noticeable reduction of artifacts while 

preserving anatomical details in the ground truth, as 

illustrated in Fig. 2C and Fig. 2H. The better agreement wih 

the ground truth reference was confirmed by the SSIM maps 

(Fig. 2K, 2L) that showed larger SSIM for diffusion 

posterior sampling, especially in regions poised by limited 

sampling (anterior region of the head) and by streak artifacts 

(anterior and posterior regions of the brain parenchyma). In 

the heavy undersampling scenario posed by the stationary 

protocol, PWLS (Fig. 2D, 2I) yielded a noticeable drop in 

performance, with increased conspicuity of streak artifacts 

and worse delineation of the skull in the anterior and 

posterior regions, compared to the semi-stationary protocol. 

That effect is reflected in the SSIM map (Fig. 2M) that 

shows a consistent drop in SSIM, more noticeable in the 

posterior and anterior regions of the head. Application of 

difussion posterior sampling (Fig. 2E, 2J) resulted in a 

noticeable reduction of sampling artifacts and increased 

conspicuity of anatomical features (e.g, blue arrow in Fig. 

2J) that were undistingishable from artifacts with PWLS. 

The SSIM map (Fig. 2N) showed agreement between the 

recovered anatomical features and those in the ground truth 

reference throughout the brain. Largely undersampled 

features challenged the diffusion posterior sampling 

approach yielding lower SSIM in the anterior and posterior 

regions, associated to inaccurate anatomical content.  

Quantitative evaluation of SSIM and CT number accuracy 

for the 11 test anatomies is shown in Fig. 3. Fig. 3A shows 

mean SSIM computed across the complete head/brain for 

the two acquisition protocols and reconstruction strategies. 

Mean SSIM shows consistent improvement with diffussion 

posterior sampling, compared to PWLS, across acqisition 

protocols. For the stationary protocol, we observed an 8% 

increase in median SSIM, as well as a reduction in the SSIM 

interquartile range of ~50%. Similar reduction in SSIM 

interquartile range was obtained with the semi-stationary 

protocol. However, the increased image quality of PWLS 

with quasi-complete angular sampling yielded negligible 

improvement in SSIM with diffusion posterior sampling. 

Fig. 3B shows the accuracy of mean CT number for the 

hemorrhagic lesions, as a function of acquisition protocol 

and reconstruction metod. For both acquisition protocols, 

difussion posterior samplig yielded better agreement and 

lower range across cases, compared to PWLS. Bleed inserts 

in regions with highly degraded image quality resulted in 

outliers with inaccurate blood attenuation when using 

PWLS, even with semi-stationary protocols whereas 

diffusion posterior sampling with semi-stationary protocols 

yielded consistent accurate blood attenuation values.  

 
Figure 3. Quantification studies for the 11 cases in the validation 

dataset. (A) Average SSIM across the head/brain region. (B) 

Accuracy of blood attenuation measured in the bleed inserts vs. the 

nominal value (60HU). 

4 Conclusion 

We propose a diffusion-based posterior sampling model for 

image reconstruction in heavily undersampled scenarios, 

with application to stationary CT systems for PoC imaging 

of stroke. Diffusion posterior sampling provided promising 

results for accurate recovery of anatomical features and 

increased visibility of intracranial hemorrahgue in 

configurations with extreme angular undersampling, 

overperforming conventional MBIR approaches in the 

explored configurations. The results is a promising advance 

for implementation of fully stationary CT systems for PoC 

imaging of stroke. 
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Abstract: United Imaging Healthcare (UIH) molecular imaging provides 

a variety of PET/CT and PET/MR solutions. Among all the systems, the 

total-body uEXPLORER and the world’s first sub 200-ps time-of-flight 

(TOF) PET/CT scanner (uMI Panorama) not only provide a superior 

image quality to help clinicians in disease diagnosis, monitoring and 

treatment, but also yield unique opportunities for researchers to explore 

uncharted territories. To facilitate research activities of the nuclear 

medicine community, we have built a United Imaging PET 

Reconstruction Toolbox (URT). URT consists of five components: 1) 

Configurable iterative reconstruction platform, which provides 

conventional and state-of-art image reconstruction algorithms, as well as 

a configurable iterative reconstruction setup that allows users to 

implement customized algorithms; 2) Kinetic modeling and parametric 

imaging, which supports region of interest (ROI) analysis or parametric 

imaging. Automatic ROI analysis toolkits and parametric image 

reconstructions for multiple compartmental models as well as graphical 

analyses are provided; 3) Patient motion correction (MC). URT provides 

a comprehensive MC solution, including motion detection, estimation as 

well as a motion compensated image reconstruction (MCIR) platform 

that is capable of correcting both rigid- and non-rigid patient motion; 4) 

AI-based image analysis. URT provides task-specific AI models, 

including PET-based organ segmentation, image registration, image 

denoising and synthetic PET-based attenuation map generation; 5) 

Monte-Carlo simulation (MCS). URT provides an ultra-fast MCS tool 

that is capable of simulating dynamic PET with realistic patient motion 

for UIH scanners.  

In summary, a United Imaging PET Reconstruction Toolbox (URT) has 

been developed for researchers to perform user customized 

reconstruction and to explore uncharted territories on UIH scanner.  

 

1 INTRODUCTION 

 

United Imaging Healthcare molecular imaging provides a 

variety of PET/CT and PET/MR solutions. Among all the 

systems, the world’s first 194-cm-long total-body 

uEXPLORER and the first <200-ps time-of-flight (TOF) 

PET/CT scanner (uMI Panorama) not only provide a 

superior image quality to help clinicians in disease 

diagnosis, monitoring and treatment, but also yield unique 

opportunities for researchers to explore uncharted territories. 

To facilitate research activities of the nuclear medicine 

community, we have built a United Imaging PET 

Reconstruction Toolbox (URT) which consists of five 

components as follows: 

URT provides conventional image reconstruction 

algorithms, e.g., OSEM, as well as various other state-of-art 

algorithms. Moreover, URT provides a configurable 

iterative reconstruction setup that allows users to implement 

customized algorithms. Customizable physics corrections, 

e.g., attenuation/scatter correction, are available in URT 

reconstruction. 

For dynamic PET imaging protocols, region of interest 

(ROI) analyses or parametric imaging are used to estimate 

pharmacokinetic parameters, i.e., absolute PET 

quantification. For ROI analyses, kinetic modeling software 

are commercially available but often costly; the 

development of customized parametric reconstruction 

software requires specialized image reconstruction 

expertise. To make absolute quantification tools available 

to more researchers, URT provides automatic ROI analysis 

toolkits and parametric image reconstructions for multiple 

compartmental models as well as graphical analyses.  

Patient motion, including both voluntary and involuntary 

movements, e.g., head, respiratory, limb, torso, cardiac 

rhythm, intestinal peristalsis and bladder filling, are 

commonly encountered in PET imaging and can create 

artifacts as well as inaccurate tracer quantification. URT 

provides a comprehensive motion correction (MC) solution, 

including motion detection, estimation as well as a motion 

compensated image reconstruction (MCIR) platform that is 

capable of correcting both rigid- and non-rigid patient 

motion.  

Artificial intelligence (AI) technologies, especially deep 

learning (DL)-based algorithms, have been proven 

extremely useful in the medical image analysis (MIA) tasks, 

e.g., image denoising, segmentation and synthesis. In the 

foreseen future, we believe DL models will become the 

fundamental tools for many clinical/research applications. 

Unlike the conventional MIA algorithms, DL model 

training typically requires large amount of real clinical data, 

which are often publicly unavailable. To bridge the gap, 

URT provides users ready-to-use DL models for different 

MIA tasks. 

Lack of ground truth using real subject data vs. lack of being 

physically or physiologically realistic using simulation data 

are often the dilemma during reconstruction algorithm 

development. Monte-Carlo simulation (MCS), e.g., GATE, 

is capable of simulating realistic PET physics, but is also 

computationally expensive. There is no publicly available 

MCS software that can simulate dynamic PET imaging with 

realistic patient motion. As part of the URT, an ultra-fast 

MCS tool that can simulate dynamic PET imaging with 

continuous patient motion is available to the URT users. 

 

2 DESIGN OF URT SPECIFICATIONS 

 

A. Configurable iterative reconstruction platform 

URT provides conventional OSEM list-mode iterative 

reconstruction algorithm with customizable parameters, e.g., 

number of iterations, subsets and voxel size. CT-based 
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attenuation correction (AC), Monte-Carlo simulation-based 

scatter correction (SC), randoms correction, normalization 

and dead time correction are available for reconstruction. 

All the intermediate results, e.g., sensitivity map and 

estimated scatter sinogram, are accessible by users. Line-of-

response (LOR)-based spatially-variant point-spread-

function (PSF) is used to model positron range, non-

collinearity, depth of interaction (if applicable) and inter-

crystal scattering. Reconstruction can be performed with 

arbitrarily discarded list-mode data (“gating”).    

Besides OSEM, two advanced reconstruction algorithms 

are also available to the URT users, e.g., Bayesian penalized 

likelihood OSEM (“HYPER Iterative”) [1] and deep-

learning-based reconstruction (“HYPER DPR”) [2]. Figure 

1 shows an uMI Panorama 18F-FDG study using three 

different reconstruction algorithms.  

 
Figure 1. Reconstruction of a 1.5-min uMI Panorama 18F-FDG (9mCi, 60 

min post-injection) study using (a) OSEM, (b) HYPER Iterative and (c) 

HYPER DPR. 

 

In addition to providing established algorithms, URT will 

provide a configurable iterative reconstruction platform, 

which allows users to build their own algorithms using the 

forward- and back-projectors. Together with other 

correction modules, e.g., SC, AC and motion correction, 

URT can be used to perform new reconstruction algorithm 

development.    

 

B. Kinetic modeling and parametric imaging 

ROI analysis and parametric imaging are supported in URT. 

Apart from user-defined arterial input function (IF) and 

whole blood time activity curve (TAC), URT can extract 

image-derived input function (IDIF) automatically from the 

reconstructed images. A tool to generate population-based 

input function (PBIF) template is also available. With AI-

based segmentation, organ TACs can be automatically 

generated and can be analyzed with the specific kinetic 

models. 

URT does not only support graphical analysis methods, e.g., 

Patlak, Logan, and Relative Equilibrium plots, but also 

common compartmental models, e.g., one-tissue, two-tissue, 

and two-tissue irreversible compartmental models, with or 

without time delay estimation. Reference tissue models, 

such as simplified reference tissue model (SRTM), are also 

provided. Indirect voxel-based analysis with above models 

produces the micro and macro parametric images while 

direct Patlak reconstruction is also provided to suppress 

noise in the parametric images. Careful validation of the 

kinetic modeling module has been performed by comparing 

to PMOD (PMOD Technologies LLC, Zürich, Switzerland). 

Figure 2 shows an uMI Panorama 18F-FDG study example 

of the Ki and intercept images generated by URT and 

PMOD respectively.   

 
Figure 2. Comparison of the Ki and intercept images from (a) direct 

Patlak-URT; (b) indirect Patlak-URT and (c) indirect Patlak-PMOD 

using a whole-bed uMI Panorama 18F-FDG study. Static SUV image is 

shown for reference. 

 

C. Patient motion correction 

Organ-specific data-driven motion tracking and detection 

tools, with the aid of AI-based segmentation, are provided 

to extract varies types of patient motion information. GPU-

based image registration modules with different similarity 

metrics are provided for rapid motion estimation.  

Correction solution of specific motion types are provided, 

e.g., for respiratory motion (RM) correction (RMC), 

amplitude- or phase-based gated reconstruction, and 

subsequent RM corrected reconstruction are implemented 

in URT; for head motion correction (HMC), established 

methods are implemented. Figure 3 shows examples of 

HMC and RMC, respectively, for studies performed on an 

uMI Panorama. Users may also build their own motion 

models, which can be used in the URT by following a 

displacement field (DF) definition convention.  

 
Figure 3. (a) Without and with head motion correction of an 3-min 18F-

FDG brain study; (b) without and with respiratory motion correction of a 

2-min single-bed 18F-FDG study on uMI Panorama.  First column shows 

their relative CT images respectively. 
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To simultaneously correct multiple types of motion, e.g., 

non-rigid RM, bulk body motion and rigid head motion, 

URT will provide motion concatenation tool to generate a 

unified DF. In addition to correction, URT also provides 

quality control module to help users evaluate the MC 

information. 

 

D. AI-based image analysis 

Basic neural network-based models, e.g., convolutional 

neural network and generative adversarial network, have 

been pre-trained on the UIH datasets and shared with URT 

users. Specifically, task-specific AI models are provided, 

including PET-based organ segmentation, image 

registration, image denoising and synthetic PET-based 

attenuation map generation. Training data have undergone 

a rigorous data-cleaning and quality-control processes. 

Training and validation conditions, e.g., loss functions and 

training parameters, are released to URT users. Figure 4 

demonstrates an example of AI-based attenuation map 

synthesis from a non-AC OSEM image.  

 
Figure 4. AI-based attenuation map synthesis: (a) non-AC OSEM 

(network input) of a uMI Panorama 18F-FDG study; (b) CT-based 

attenuation map and (c) network predicted attenuation map. 

 

E. Monte-Carlo simulation 

Monte Carlo simulation (MCS) in URT is a GPU-based 

toolkit, which is dedicated for efficient simulation of UIH 

PET systems. The MCS was first developed for scatter 

correction and was further integrated with high-precision 

modeling of PET detectors to perform full PET imaging 

chain simulation. All the PET physical processes, e.g., 

positron range, non-collinearity, prompt gamma, Compton 

scattering and inter-crystal scattering, are included in the 

simulation. It can also simulate UIH-specific detector 

features, e.g., scatter recovery in uMI Panorama. Optimized 

for PET simulation, MCS is ultrafast, i.e., typically three 

orders of magnitude faster than a CPU-based GATE 

simulation. Figure 5 shows an MCS example using an 

XCAT phantom for OSEM reconstruction with 30-min and 

3-min data acquisition respectively. MCS in URT also 

support simulation using 3D or 4D digital phantoms, i.e., 

organ label maps + organ TACs or organ kinetic models, as 

well as rigid- and non-rigid patient motion at arbitrary 

temporal resolution.  Figure 6 shows an MCS example using 

an XCAT phantom for OSEM reconstruction with or 

without simulating the head motion during scan. 

 
Figure 5. Monte-Carlo simulation of an uMI Panorama study. (a) XCAT 

emission phantom; (b) OSEM reconstruction of a 30-min and (c) 3-min 
18F-FDG simulated study (10 mCi, 60-min post-injection). 

 
Figure 6. Monte-Carlo simulation of an uMI Panorama study. (a) XCAT 

emission phantom; (b) OSEM reconstruction without simulating head 

motion (c) OSEM reconstruction with head motion during scan.  

 

3 SUMMARY 

 

In summary, we developed URT for user customized PET 

reconstruction processing to facilitate research activities. 

URT is a platform that integrates simulation, reconstruction, 

AI-based image analysis and kinetic modeling for PET 

studies on UIH scanners. URT currently supports the uMI 

Panorama system, and will gradually support all the UIH 

scanner models in the future. 
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Abstract A new PET scanner design, the walk-through total-body PET, 

has recently been proposed. It consists of two flat, vertically placed, 

74x106 cm2 panels made up of monolithic BGO detectors. This new 

scanner design will offer a lower cost, high patient throughput alternative 

to existing total-body PET scanners. This study investigates the image 

reconstruction of the NEMA image quality phantom in two 

configurations of the scanner: fixed and rotating. In addition, two 

methods for CT-less attenuation correction in the system are explored: 

the use of a transmission source and estimation of the attenuation 

coefficients from the emission data itself. The fixed scanner 

configuration offers higher sensitivity, but streaking artifacts are 

observed due to the limited angle problem, which are solved in the 

rotating configuration. CT-less attenuation correction also proves to be 

feasible, with minimal discrepancies observed compared to ground-truth 

attenuation correction. 

 

1 Introduction 

 

Longer axial field-of-view positron emission tomography 

(PET) systems, advancements in detector technology and 

the use of deep learning for signal processing have enabled 

sub-one minute PET scans at reasonable dose levels and 

scan quality. In such a case, patient throughput is primarily 

constraint by patient preparation and positioning on the bed. 

To address this limitation, a new total-body PET scanner 

design has been proposed: the walk-through PET (WT-

PET) [1].  

It consists of two vertically placed flat detector panels, each 

74 cm wide and 106 cm high. The panels are spaced 50 to 

70 cm apart and adapt their position to the patient height. 

After radiotracer administration and uptake time, the patient 

walks into the scanner and stands still in an upright position 

for a 30 second scan. The scanner design offers 

simultaneous head and torso imaging at a high sensitivity 

for an estimated cost only slightly above a conventional 

(e.g. 25 cm axial field-of-view) PET/CT. This is achieved 

by a lower number of detectors due to the proximity of the 

flat panels to the patient, and the use of low-cost but high-

resolution monolithic BGO detectors.  

 

In this study, we compare the image reconstruction of two 

possible configurations of the WT-PET, see Figure 1.  

The first is a fixed configuration where the two panels are 

placed 50 cm apart. This maximizes sensitivity by placing 

the detectors as close as possible to the patient. The gap 

between the panels, however, results in missing angles for 

image reconstruction.  

In the second configuration, the two panels rotate around 

the central axis at a radial velocity of 180°/30s. This ensures 

that all emission angles are present for the reconstruction of 

a 30s scan. The panels do need to be placed further apart (70 

cm) to make room for the patient’s shoulders, thereby 

reducing overall sensitivity. 

 

In addition, since the first prototype of this scanner is likely 

to be built without a CT, we investigate the feasibility of 

CT-less attenuation correction by means of either a 

simultaneous transmission scan, or by estimation of the 

attenuation coefficients from the emission data itself. The 

results are again compared for both configurations of the 

scanner. 

 
Figure 1: Fixed and rotating configurations for the walk-

through PET. The red lines represent eight optional, 

downwards moving line sources for a transmission scan. 

 

2 Materials and Methods 

 

We use GATE [2] to perform 30s scan simulations of the 

NEMA Image Quality (IQ) phantom, with a hot to 

background activity ratio of 4:1 (background activity = 5.3 

kBq/cc). For both scanner configurations, the geometry 

consists of two flat detector panels, each containing 14x20 

(=280) monolithic BGO detectors. The detectors are 

50x50x16 mm3 in size, leaving a 3 mm gap between each 

other. Detector energy blurring (15%), spatial blurring (1.3 

mm in 2D and 2 mm for the depth of interaction, in full 

width at half maximum) and time blurring (400 ps time-of-

flight, or TOF, resolution) are all included. The value of 400 

ps for monolithic BGO is a conservative system-level TOF 

value based on experimental detector results of 327 ps, 

obtained with a neural network for time estimation in the 

detector [3]. 

 

279 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

Iterative list-mode image reconstruction is performed with 

all images reconstructed to 2 mm voxel sizes using 10 

iterations (no subsets). The activity map is reconstructed 

using the maximum likelihood expectation maximization 

(MLEM) algorithm. We include sensitivity and attenuation 

correction but omit any kind of regularization. Random 

coincidences and phantom scatter are omitted from the list-

mode data prior to reconstruction, as a proper 

implementation of random and scatter correction is still in 

progress. 

 

The attenuation map can be obtained from a scan with a 

transmission source. Here, we opt for 4 horizontal isotropic 

line sources (1 mm diameter) per panel (8 total), each with 

an activity of 3 MBq. This activity was chosen low enough 

so that no appreciable detector saturation would occur due 

to the transmission sources. They stretch the full width of 

the panel and are placed 1 cm in front of it. The line sources 

travel downwards during a 30s scan, so that each one 

sweeps over a quarter of the panel during the scan (see 

Figure 1). 

Reconstruction of the attenuation map is done using the 

maximum likelihood transmission (MLTR) algorithm, 

operating in list-mode [4]. The attenuation image is again 

reconstructed to 2 mm voxel sizes using 10 iterations (no 

subsets).  

Another option for CT-less attenuation correction is by joint 

reconstruction of the activity and attenuation based on 

emission data only, referred to as MLAA (maximum 

likelihood activity and attenuation) [5]. MLAA uses an 

interleaved updating of the activity/attenuation while 

keeping the attenuation/activity fixed. Given the lack of 

TOF for the attenuation update, convergence is slower 

compared to the activity reconstruction. Therefore, we 

perform 5 attenuation updates for each activity update, 

performing in total 10 iterations (no subsets) for the activity 

reconstruction.  

 

3 Results 

 

Figure 2 shows the iterative reconstruction of the IQ 

phantom for different scanner configurations, axial 

positions of the IQ phantom, and a non-TOF reconstruction. 

Note that for the fixed configuration, the panels are located 

at the top and bottom of the reconstructed image. The 

ground-truth attenuation map was used for reconstruction. 

We can see the result of the limited emission angles in the 

fixed scanner configuration, although the effect is greatly 

reduced by using 400 ps TOF in the image reconstruction. 

Placing the IQ phantom at 1/8 of the axial FOV (AFOV), 

the sensitivity drops (resulting in a noise increase), and the 

limited angle artefacts become slightly more pronounced 

due to fewer projection angles along the axial direction. 

We also observe that the smallest contrast sphere (d = 10 

mm) can still be distinguished in a 30s scan for all 

configurations. It is visually more easily distinguished from 

the background noise in the fixed configuration, due to 

increased sensitivity. Roughly 47% more true coincidences 

were detected in the fixed configuration compared to the 

rotating configuration. 

 

 
Figure 2: MLEM reconstructions of the NEMA IQ phantom 

for different configurations of the WT-PET. 

 

Figure 3 shows, for the fixed scanner configuration, the 

attenuation maps obtained with MLTR and MLAA, 

together with the corresponding activity reconstructions. 

These are also compared to reconstructions without 

attenuation and with the ground-truth attenuation map.  

The transmission source does not provide a good estimate 

of the attenuation map due to the limited angle problem. 

Nonetheless, the corresponding activity reconstruction is 

properly attenuation corrected. MLAA on the other hand 

provides a better outline of the attenuation map. 
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Figure 3: Activity reconstructions based on different 

attenuation corrections in the fixed WT-TB-PET 

configuration.  

 

Figure 4 shows the same results but for the rotating scanner 

configuration. Here we observe that the limited angle 

problem is mitigated entirely, and as a result both the 

attenuation maps and the activity distributions are 

reconstructed more accurately, with the trade-off of 

increased noise levels due to decreased sensitivity. 

 

 

 
Figure 4: Activity reconstructions based on different 

attenuation corrections in the rotating WT-TB-PET 

configuration. 

 

Finally, Table 1 shows the contrast recovery coefficients 

(CRCs) of the largest sphere in the IQ phantom for the 

different activity reconstructions shown in Figures 3 and 4. 

The rotating configuration shows better contrast recovery, 

with MLTR and MLAA showing slightly lower results in 

the fixed configuration. 

 

 no 

attenuation 

ground-

truth 

MLTR MLAA 

fixed 0.38 0.85 0.79 0.79 

rotating 0.50 0.88 0.86 0.88 

Table 1: CRCs in different activity reconstructions for the 

largest sphere of the IQ phantom. 
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4 Discussion 

 

Although the rotating scanner configuration shows lower 

sensitivity due to the increased distance between both 

panels, overall image quality is improved by filling the 

missing angular gaps. While for the IQ phantom all hot-

spots are still easily distinguished in the fixed configuration, 

this may no longer be true for more complex phantoms 

where the streaking artifacts could cause hot-spots to blend 

into each other. Note that from a practical perspective 

however, the rotating configuration poses additional 

challenges by increasing system complexity. In addition, 

the rotation may increase the uncertainty of the exact 

detector positions, which could for instance lead to a 

reduction of the system resolution. 

The reconstructed activity images are however not 

regularized or post-processed, and previous studies have 

shown that deep learning could be used to greatly mitigate 

the limited angle problem in e.g. CT or PET [6] [7]. As 

such, it may become preferable to opt for the fixed scanner 

configuration in cases where sensitivity is most important.  

 

Our results also show that reconstruction of the activity map 

is possible using the attenuation map generated by either 

MLTR or MLAA. In the fixed configuration, the 

transmission source does not provide a good estimate of the 

attenuation map, as there is no TOF information in the 

transmission data. However, the attenuation correction 

factors are still properly estimated since the emission LORs 

are along the same directions as the transmission LORs, 

resulting in a good activity reconstruction. 

Note that in this study the GATE simulation of the 

transmission scan was kept separate from the emission scan, 

although in practice these could be done simultaneously in 

order to maintain patient throughput and limit patient 

movement between transmission and emission scan. Events 

could be assigned to the corresponding scan (transmission 

or emission) by TOF separation and knowledge of the 

transmission source positions. 

MLAA on the other hand does have access to TOF 

information from the emission data and can therefore more 

accurately predict the outline of the attenuation map, 

although convergence can be more difficult. One major 

advantage of MLAA is also that no transmission source is 

required, reducing system complexity. 

 

5 Conclusion 

 

We compared image reconstructions for two configurations 

of the WT-PET system, namely a fixed and rotating 

configuration. While the fixed configuration shows higher 

sensitivity, streaking artefacts are observed due to the 

limited angle effect, but these are limited with 400 ps TOF. 

The rotating configuration on the other hand provides full 

angular sampling and generally better image quality.  

The possibility of CT-less attenuation correction was also 

investigated for the system, showing its feasibility using 

either transmission sources or by estimating the attenuation 

from the emission data. 
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Abstract Due to the limited temporal resolution of CBCT scans,
CBCT reconstructions often suffer from motion artifacts. To address
this issue, existing approaches typically estimate a set of displacement
vector fields in image domain that can be used to compensate for the
present motion. However, since reconstruction artifacts may impair
the performance of such approaches, we propose to overcome this
limitation by operating in projection domain. To do so, we make use
of a deep neural network which is trained to map the projections of
a moving patient to projections of a static patient that is frozen in
a fixed motion state. In this work, the mapping is trained using 4D
CBCT simulations to account for respiratory motion. Subsequently,
the network can be applied repeatedly to predict projections for differ-
ent motion states of the respiratory cycle. In our experiments, these
reconstructions show only minor motion artifacts and differ by less
than 15 HU on average from an ideal ground truth.

1 Introduction

Cone-beam computed tomography (CBCT) has become in-
creasingly important in various fields of medical imaging
such as interventional radiology [1], orthopedics [2], den-
tistry [3], or image-guided radiation therapy [4]. However,
the slow gantry rotation speed, which can be 60 s or even
longer, limits the temporal resolution of CBCT scans. There-
fore, anatomical regions affected by organ or patient motion
often appear blurred or distorted in the corresponding CBCT
reconstructions. Since these motion artifacts may severely
impair the quality of the CBCT scan, motion compensation
has become an active field of research.
Here, existing approaches usually distinguish between non-
periodic motion such as involuntary muscle motion, twitch-
ing, or swallowing, and periodic motion such as respiratory
or cardiac motion. The former is typically compensated
by modeling the present motion during CT reconstruction,
i.e. by incorporating some sort of motion-dependent trans-
formation within the backprojection operation. Strategies
to estimate this transformation include the use of fiducial
markers [5], the use of consistency conditions in projection
domain [6], 2D/3D registration of the acquired projection
data to a motion-free prior volume [7, 8], as well the min-
imization of sharpness metrics that are sensitive to motion
artifacts [9].
Applications dealing with periodic motion, on the other hand,
usually rely on phase-correlated reconstructions, i.e. a time-
resolved representation of the motion cycle. Here, each pro-
jection is typically assigned a motion phase based on a sur-
rogate signal such as the displacement of a marker block on
the patient’s thorax (respiratory motion) or an ECG-signal
(cardiac motion). In the most simple case, the projections are

then sorted into bins of similar motion phase which can be
reconstructed independently [10, 11]. However, since each
bin is reconstructed from only a small subset of the acquired
projection data, the corresponding volumes may show strong
streak artifacts that degrade image quality. One option to
address this issue is to use dedicated acquisition protocols,
however, at the cost of longer scan times or higher patient
dose [12]. Therefore, other approaches rather aim to make
use of displacement vector fields (DVFs) that model inter-
phase motion. Given these DVFs, a particular motion phase
can be reconstructed from all available data by applying
the corresponding deformation to any other phase-correlated
reconstruction of the motion cycle. While first approaches es-
timated the DVFs from properly sampled prior CT scans [13,
14], later approaches proposed more sophisticated strategies
to estimate them directly from the phase-correlated recon-
structions [15–20].
However, despite recent advances, current approaches still
fail if the phase-correlated reconstructions have highly irreg-
ular or sparse angular sampling due to, for example, irregular
motion patterns. Other limitations are related to the need of
phase-correlated reconstructions in general. Here, the phase-
binning process can lead to a loss of temporal resolution
as projections with slightly different motion states may be
sorted into the same bin. Furthermore, the need for accu-
rate motion surrogate signals may be time consuming as it
requires additional patient preparation.
Therefore, we propose a novel deep-learning based approach
that does not rely on phase-correlated reconstructions but
operates directly in projection domain to overcome these
limitations.

2 Materials and Methods

2.1 Projection-based Motion Correction

Considering CT imaging, a moving patient can be described
by its time-dependent distribution of the attenuation coeffi-
cient f (rrr, t). During a CBCT scan this distribution is sampled
at a discrete number of time points t ∈ {t1, . . . , tN} by acquir-
ing x-ray projections at view angles θ ∈ {θ(t1), · · · ,θ(tN)}:

q(θ ,u,v) = Xt f (rrr, t), (1)

where u and v denote the detector coordinates and Xt de-
notes the time-dependent X-ray transform. Given q(θ ,u,v),
motion correction aims to reconstruct a 3D representation
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Figure 1: Illustration of the proposed approach. A U-net-like architecture that includes convolutional LSTMs is trained to map CBCT
projections of a moving patient to CBCT projections in which the patient is frozen in the first motion state.

of a certain motion state fτ(rrr) ≡ f (rrr, t)|t=τ or a sequence
S of successive motion states { fτ(rrr)}τ∈S. While existing
approaches operate in image domain to obtain fτ(rrr), we
propose to predict projection images

pτ(θ ,u,v) = X fτ(rrr) (2)

instead. To do so, we use a deep learning-based approach
that is trained to learn the following mapping M:

M : q(θ ,u,v) ·w(θ ,u,v,c)→ pτ(θ ,u,v), (3)

where w(θ ,u,v,c) represents a weighting factor that encodes
additional depth information according to section 2.2, and
τ corresponds to the motion state of the first projection of
q. As illustrated in figure 1, M is approximated by a U-
net-like neural network in which each stage is composed of
a set of three 2D convolutional feature extraction layers, a
layer normalization [21], and a convolutional long short-term
memory (LSTM) unit [22] to learn long-term dependencies
along the θ -axis. Once the mapping M has been learned, an
estimate of fτ(rrr) can be derived as:

f̃τ(rrr) = X−1M(q ·w), (4)

where X−1 is the inverse x-ray transform operator, e.g. FDK
in our case.

2.2 Depth Encoding

Since a 3D motion in image domain is supposed to be com-
pensated by a neural network operating in projection domain,
the performance can be increased by encoding additional
depth information. Here, this information is provided in
terms of a distribution function w(θ ,u,v,c) that represents
the interaction probability on Nc successive line segments
between the x-ray source sss(θ) and the detector element at
ddd(θ ,u,v). Using an initial motion-blurred reconstruction

f̄ (rrr) = X−1q(θ ,u,v) (5)

as an approximation of f (rrr, t), w(θ ,u,v,c) can be calculated
as:

w(θ ,u,v,c) =

∫ 1
0 f̄ (sss(θ)+ 1

Nc
· (c+ l) · (ddd − sss)(θ ,u,v))dl∫ 1

0 f̄ (sss(θ)+ l · (ddd − sss)(θ ,u,v))dl
,

(6)
with c ∈ {0,1, · · · ,Nc −1}.

2.3 Data Generation

Training the proposed approach in a supervised manner re-
quires paired training data, i.e. q’s and the corresponding
pτ ’s. To obtain these data, we rely on CBCT simulations
that are based on 55 respiratory-gated 4D CT scans. Each
of these scans consists of 10 evenly distributed respiratory
phases { f1(rrr), . . . , f10(rrr)} from which arbitrary motion states
are generated as follows:

f (rrr, t) =
10

∑
τ=1

II(a(t)− τ +0.5) · fτ(rrr+b(t) ·uτ(rrr)), (7)

where II(t) is the rectangular function, a : R→ [0,10] and
b : R→ [0,1] are functions to define custom motion patterns,
and uτ(rrr) is a DVF that is calculated in advance such that
fτ(rrr+uτ(rrr)) = fτ+1(rrr).
Projections q of moving patients are then simulated according
to equation (1) by inserting f (rrr, t) as defined above. Sim-
ilarly, the corresponding labels are simulated according to
equation (2) by freezing the patient is a certain motion phase
τ . For our purpose, we simulate 5 CBCT scans per patient
with a scan time of 60 s and a cyclic motion pattern with a
random period between 1.5 s and 5 s. Each scan consists
of 360 projections (1◦ angular sampling) that are acquired
with a centered 384×256 pixel detector with 2×2 mm pixel
spacing.

2.4 Training

Training data to learn the mapping given in equation (3) are
generated as described in section 2.3. Here, the optimization
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is based on simulations of 50 patients (45 for training, 5
for validation), while the remaining 5 patients are reserved
for testing. Using these data, the network is trained in a
supervised manner by minimizing the mean squared error
between the prediction and corresponding ground truth. Due
to memory and time considerations, the gradient calculation
is not performed for the entire sequence of 360 projections
but each scan is divided into chunks of 16 projections which
are processed one after the other. Therefore, the LSTM cells
are operated in stateful mode, such that the last cell state of
each chunk is used as initial state for the succeeding chunk.
In that way the network was trained for 300 epochs on a
NVIDIA GeForce RTX 3090 using an Adam optimizer and
a learning rate of 5 ·10−5. Finally, the network configuration
with the lowest validation loss was used for testing.

3 Results

The performance of the proposed approach was evaluated
for projection images as well as for the corresponding recon-
structions of an independent testing data set (see section 2.4).
Exemplary projections corresponding to a single motion cy-
cle are shown in figure 2. Compared to the ground truth,
which corresponds to a CBCT scan of the patient frozen
in the motion state of the first projection, the input projec-
tions show strong deviations, especially in the area of the
diaphragm. Applying the proposed approach clearly reduces
these deviations not only around the diaphragm but also in
the area of other moving structures such as the heart or the
ribs. A quantitative assessment of the similarity with respect
the to ground truth for all available test projections yields
a mean absolute percent error of 1.9 % without correction,
whereas the error with our approach is reduced to 0.7 %.
A similar evaluation was performed for reconstructions rep-
resenting all motion states of the motion cycle. Since the pro-
posed approach is trained to map all projections to the motion
state of the first projection, this can be achieved by applying
equation (4) N times, each time with the nth ∈ [1, · · · ,N] pro-
jection being the first in the sequence. The corresponding
results of two test patients in end-exhale and end-inhale are
shown in figure 3. In any case the proposed approach is able
to provide time-resolved reconstructions with a very reduced
amount of motion artifacts. Similar trends can be observed
by evaluating the error of the CT values for the entire testing
data set. While reconstructions of all projections without fur-
ther postprocessing show error of about 32 HU, the proposed
approach reduces this error to 15 HU on average.

4 Discussion and Conclusions

Image-based motion compensation requires the underlying
phase-correlated reconstructions to have a certain image qual-
ity. However, in case of a highly irregular or sparse angular
sampling, this image quality may not be achieved, leading to

poor results of the motion compensation algorithm. Here, we
circumvent this problem by accounting for motion directly in
projection domain. In this way the result is not impaired by
reconstruction artifacts and does not need additional motion
surrogate signals, since the motion state can be extracted
directly from the projection image. Our initial experiments
demonstrate a convincing performance in reducing motion
artifacts and suggest that convolutional LSTMs are a promis-
ing architecture for such an approach. However, we realize
that motion compensation is actually a 3D problem. There-
fore, further research will focus on extending the current
implementation to estimate 3D DVFs from 2D projection
images. Finally, it has to be noted that the general concept
of the proposed approach is not restricted to periodic motion
patterns but can be applied in the same way to account for
non-periodic motion.
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Figure 2: Top: sequence of consecutive projections (θ = 0◦−10◦) of a moving patient that are used as input to the network (C = 3,
W = 6 HU) as well as the relative difference to the ground truth (GT) that keeps the patient frozen in the first motion phase (C = 0 %, W =
40 %). Bottom: prediction of the network.
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Figure 3: Reconstruction of two test patients (top and bottom), in two motion states corresponding to end exhale (left) and end inhale
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Abstract Many approaches have been proposed recently for reduction of 

metal artifacts in CT images, especially the deep learning-based metal 

artifact reduction (MAR) method. In this work, we evaluated three metal 

artifact reduction methods, namely an image-based deep learning 

method, a hybrid method combining deep learning and normalized MAR, 

as well as the traditional linear interpolation-based normalized MAR 

method. Each method was evaluated using clinical images with 

commonly encountered metal implants, including joint prosthesis, dental 

fillings, spine screw, and pacemaker. Both the image-based deep learning 

method and the hybrid method show great potential to provide a general 

solution to different types of metal implants. Strength and limitation of 

each method were discussed as well. To our knowledge, this is the first 

paper that comparing these three methods side by side on various metal 

implants.   

1 Introduction 

Reducing metal artifacts has been a challenging problem in 

computed tomography (CT) for decades. Numerous metal 

artifact reduction (MAR) techniques have been proposed, 

which can be classified into three main categories: physics-

based correction, projection-completion, and model-based 

correction methods. Inspired by the great success of deep 

learning in image processing, the deep learning-based 

methods or a combination of deep learning and traditional 

MAR methods attract more and more attention and provide 

new opportunities to mitigate metal artifacts.   

A popular class of deep learning-based MAR methods are 

image domain CNNs [1-3]. Among the traditional MAR 

methods, the normalized metal artifact reduction (NMAR) 

method [4] is considered a state-of-the-art method that has 

an open framework to combine with deep learning-based 

MAR [5-8]. Although studies of these deep learning or 

hybrid methods have been published, they typically only 

evaluate one or two clinical cases for demonstration. 

However, the biggest challenge for MAR is its 

generalization capability for different types of metal 

implants and clinical scenarios. Therefore, an extensive 

evaluation of various metal implants that are highly 

clinically relevant is necessary and valuable.  

This study compares the performance of an image-domain 

deep learning-based MAR, a hybrid MAR method, and the 

NMAR method using four frequently encountered types of 

metal implants, including joint prosthesis, dental filling, 

spine screw, and pacemaker. In the rest of this paper, we 

will briefly describe the three methods in Section 2. The 

comparison of the results are included in Section 3. We 

discuss the strengths and limitations of each method for 

different clinical applications in Section 4 and conclude the 

paper in Section 5. 

2 Materials and Methods 

2.1 Image-Domain Deep Learning-based MAR  

To evaluate the image-domain deep learning MAR method, 

a deep residual U-NET (ResUNet) architecture was 

developed for training. CT-images with and without 

simulated metal artifacts were generated using a method 

based on the work of Zhang, Yanbo, et al. [7], which were 

then used to train the network. Each 512×512 metal-

corrupted image was scaled to 0-1 range using soft tissue 

window (L:40, W:350), bone window (L:400, W:1800) and 

the full dynamic window setting, respectively, which were 

subsequently combined to form a three-channel image. 

Patches of 256×256×3 were extracted from the three-

channel image and used as the input to the network. The 

output is the artifact-free image. The network was trained 

for 25 epochs with a combined loss function of SSIM 

(weight: 0.03), L1 (weight 0.21) and L2 (weight: 0.76). For 

convenience, we refer to this method as AI in the rest of this 

paper. 

2.2 A Hybrid of Deep Learning-based MAR and NMAR 

The hybrid method used in this paper is similar to that 

proposed by [7]. In this hybrid method, the uncorrected 

image was first corrected by the deep learning-based MAR 

method described in Section 2.1. The initial corrected image 

was then used to generate the prior image for NMAR. In the 

rest of this paper, we refer to this method as AI+NMAR. 

2.3 NMAR 

In this paper, we used linear interpolation as the initial 

correction for the traditional NMAR [4], which is referred 

as to LI+NMAR in the rest of this paper. 

Dental filling, joint prosthesis, spine screw, and pacemaker 

are four metal implants that are commonly observed in 

clinical CT images. To evaluate the performance of the 

above three methods, patient data with these four major 

metal implants were collected. Each metal category 

included three data sets with artifacts of varying severity. 

To test the reliability of the three methods, data acquired 

from two different systems were used for test. 
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3 Results 

3.1 Joint Prosthesis 

Figure 1 shows the correction results of hip implant images. 

All three methods provided very promising results. The 

streak artifacts are completely suppressed and the soft tissue 

under dark bands are recovered. Slight under-correction is 

observed in LI+NMAR results of case 2 (red arrow), while 

resolution loss is observed in all AI results. In addition, the 

AI result of case 2 also shows a CT number shift, which is 

not seen in case 1 and 3. The difference between case 1, 2, 

3 is that case 2 was collected from scanner model 1 while 

the other two cases were acquired from scanner model 2. In 

case 3, radiation beads existing in the uncorrected image 

(red arrows) are almost removed in the LI+NMAR image. 

3.2 Dental Filling 

The correction results of dental artifacts are presented in 

Figure 2. Compared with AI and AI+NMAR methods, the 

LI+NMAR method shows a big limitation on dental 

artifacts. Strong streak artifacts and bone shape distortion 

were introduced to the images after LI+NMAR correction. 

These artifacts are much less in the AI and AI+NMAR 

images. When the dental artifacts are not very strong, the 

results of AI and AI+NMAR are comparable, except slight 

resolution loss in the AI images. When the dental artifacts 

get more severe, more dark streaks were left over in the AI 

results. These dark streaks are further suppressed in the 

AI+NMAR results.  

3.3 Spine Screw 

The spine screw results are shown in Figure 3. Due to the 

linear interpolation operation, the bone structure between 

the two spine screws were completely removed in the 

LI+NMAR images, while both AI and AI+NMAR images 

 
Figure 1: The hip implant images. From left to right: the original uncorrected image, the corrected results by AI, AI+NMAR, and LI+NMAR. 

 
Figure 2: The head CT images with dental filling. From left to right: the original uncorrected images, the corrected results by AI, AI+NMAR, 

and LI+NMAR.  
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showed good preservation of bone structure. Compared 

with the AI method, the soft tissue near spine screw (red 

arrows) was smeared in the AI+NMAR images.  

3.4 Pacemaker 

The artifacts from pacemaker are mild, so any introduced 

artifacts will be more visible in the pacemaker case, making 

the correction more challenging. As seen in Figure 4, the AI 

method works well at removing artifacts without 

introducing any additional streaks. In contrast, the 

LI+NMAR results show some additional dark streaks 

introduced, which greatly degrades the overall image 

quality. Slight resolution loss and CT number shift were 

also observed in the AI results of pacemaker cases. These 

problems were removed in the AI+NMAR images. 

4 Discussion 

The LI+NMAR method worked very well in hip implant 

cases, because the background doesn’t have many bone 

structures or air pockets. The slight under-correction in case 

2 of hip implant is due to some bone structure is 

misclassified as soft tissue. When the background is 

uniform, linear interpolation provides a good estimation. In 

contrast, in the dental cases, metals were surrounded by 

many bone structures, so the LI+NMAR results were not as 

good as those from the other two methods. 

The AI method showed big advantages at preserving soft 

tissue details and bone structure, without requiring any 

parameter selection. Resolution loss was observed in all AI 

corrected images, which is not acceptable for diagnostic CT 

images. In this study, CT number shift was observed when 

the AI model was applied to a different scanner model from 

that used for training.  

Training data is the bottleneck of the supervised learning 

approach. It requires structurally matched image pairs with 

and without metal artifacts, which are impossible to get in 

real situations. Therefore, the training data are usually 

generated through simulation. In clinical situations, the 

metal material, shape, size, and location can vary a lot. 

Therefore, a huge training database is required to cover the 

 
Figure 3: The abdomen CT images with spine screws. From left to right: the original uncorrected images, the corrected results by AI, 

AI+NMAR, and LI+NMAR. 

 

 
Figure 4: The abdomen CT images with pacemakers. From left to right: the original uncorrected images, the corrected results by AI, AI+NMAR, 

and LI+NMAR. 
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most clinical scenarios. On the other hand, due to the 

complexity of metal artifacts and variation of CT systems, 

it is hard to mimic the real metal artifacts. Most metal 

artifact simulators only simulate metal beam hardening 

effect and noise, but other physics effects, such as scatter 

and non-linear partial volume effect, may also play an 

important role [9]. It may degrade the performance of AI if 

the simulated metal artifacts do not fully reflect the real 

situation. Take dental artifacts as an example, the 

uncorrected image is impacted by metal beam hardening, 

non-linear partial volume effect, and many other physics 

effects. In Figure 5, AI model 1 and 2 were trained using the 

same network, but different training data. In addition to the 

metal beam hardening effect simulated in the images for 

model 1, the training data for model 2 also include non-

linear partial volume effect. With simulated non-linear 

partial volume effect, the result of model 2 is much better.  

 

Figure 5: Impact of metal artifacts simulation on AI results. AI model 1: 

the metal artifacts are simulated without partial volume effects. AI model 

2: the metal artifacts are simulated with partial volume effects. All other 

settings are the same. 

With the AI image as a prior, the AI+NMAR method shows 

noticeable improvement over the LI+NMAR method. When 

AI results are under corrected, the AI+NMAR method can 

further reduce the metal artifacts. Unlike the AI method, the 

performance of AI+NMAR is more reliable when the 

system or scan parameters change. In some cases, such as 

spine screw case, new artifacts are introduced in the 

AI+NMAR image. This is caused by the soft tissue 

segmentation step in the NMAR framework, which replaces 

the soft tissue region with an average attenuation value of 

soft tissue to generate the prior image [4]. For soft tissue 

near spine screw, most rays are corrupted by metal, so it 

more relies on the information provided by the prior image. 

If the detail information is removed in the prior image, it 

will limit the recovery of details near spine screw. Without 

soft tissue segmentation, the soft tissue around the spine was 

recovered and less streak artifacts were introduced (Figure 

6). To take the full benefit of AI prior, a more sophisticated 

classification should be used instead of the two thresholds-

based classification. 

 

Figure 6: Impact of the segmentation of soft tissue step. Without the 

segmentation of soft tissue (right), more details of soft tissue were 

recovered, compared to with soft tissue segmentation (middle). 

5 Conclusion 

Both the AI and AI+NMAR methods outperformed the 

LI+NMAR method in all four metal categories. Compared 

with the AI+NMAR method, the AI method doesn’t require 

parameter tuning and has a great potential to provide a 

general solution. The computational cost of the AI approach 

is much less than the AI+NMAR method. For interventional 

CT, the AI based MAR may be the only option that can meet 

the reconstruction time requirements. However, the results 

of AI highly rely on the acurracy of metal artifacts 

simulation. Due to loss of spatial resolution and potential 

CT number shift, image quality of the AI method  still does 

not fully meet the requirement of diagnostic CT.  

With AI results as prior, the results of AI+NMAR are 

promising and have less reliance on the scan parameters. 

The drawback of the AI+NMAR method is that new 

artifacts may be introduced when there is an inconsistancy 

in the sinogram. Adjustments to the NMAR framework is 

needed to take full benefit of AI. 

Overall, both the AI and AI+NMAR methods have a great 

potental to provide a general solution for metal artifact 

reduction. Technical developments as well as thorough 

clinical evaluation are needed to allow safe and effective 

application of the AI in clinical practice. At current stage, 

the AI+NMAR appears to achieve the best overall 

performance.  
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Abstract A triangular mesh is a collection of triangles connected
by mutual edges that can be used to represent surfaces and interfaces
between different composites of an object. This representation is po-
tentially more efficient than a voxel grid. Furthermore, a mesh-based
representation can greatly reduce partial volume effects. Manufactured
objects, produced based on a CAD model, do not match this model
perfectly due to production mistakes. This paper introduces two al-
gorithms for fitting meshes to X-ray measurements, thus minimising
partial volume effects. Even though the eventual goal is the extension
to 3D, a 2D proof-of-concept is presented here, where vertices are
placed on interfaces by using their corresponding mesh triangles as
pixels for a polyethylene triangle. Possible applications of this are
greatly reducing partial volume effects and adapting surface meshes to
X-ray projections.

1 Introduction

In X-ray computed tomography (CT), a 3D image of the
internal structure of an object is generated by acquiring a
large number of radiographs under a variety of projection
angles and applying a reconstruction algorithm on this data.
Applications include medical imaging, quality control and
material research [1]. Conventional algorithms distribute
the scanned region into cubic voxels, each of which is
attributed an attenuation value. However, dividing space in a
voxel grid results in a large system of equations, meaning
a large number of projection angles are required to solve
it. Furthermore, when a voxel contains regions of different
attenuation, partial volume effects arise [2][3][4]. The
correct attenuation value can not be filled in simply because
the grid does not match the structure of the sample. This
problem can be partly circumvented by using octrees (in 3D),
or quadtrees (in 2D), in which larger cubes in homogeneous
areas reduce the number of equations that need to be solved,
and smaller cubes around interfaces reduce partial volume
effects [5]. Only limited research on this has been conducted
in X-ray CT [6].

In conventional non-destructive testing, a Computer-aided
design (CAD) model of a manufactured object is fitted to
its voxel reconstruction. This requires a long processing
pipeline including segmentation and surface extraction
[7][8]. Recently, it has been shown that X-ray based quality
control is possible in projection space by directly comparing
a limited number of projections to corresponding CAD
projections [9][10]. These CAD projections are accelerated
X-ray simulations computed with a mesh projector. This
projector requires triangular surface meshes as input and is a
crucial tool in the development of X-ray-based inspection
and quality control methods [11]. However, this CAD

projector can not adapt its surface meshes when the material
does not match the CAD model. Therefore, production
mistakes and small deviations still result in incorrect
simulations. Although some research has been done on
adapting surface meshes to X-ray measurements [12], the
main limitation of these differentiable surface meshes are
their inability to adapt to unexpected smaller structures:
only objects in the topology of the original mesh can be
represented.

An alternative is using a volume mesh where the mesh
elements (tetrahedra) are used as reconstruction elements.
Like octrees, these volume elements can then be updated
to match the exact structure by relocating vertices from
homogeneous regions to interfaces. The advantage of
volume meshes over octrees is that the tetrahedra can be
oriented in more different ways. Fitting of the volume mesh
to X-ray measurements can greatly reduce partial volume
effects for the same memory usage. The final goal is to
get reliable quality control and metrology from adaptable
volume meshes starting from a volume mesh approximately
matching the real object.

In this paper, a 2D adaptive volume mesh was studied as a
testcase. This means triangles rather than tetrahedra were
used as volume elements. Besides this, the adaptive mesh
started from a regular mesh, rather than a starting condition
close to the phantom. Therefore the universal potential
of these adaptable surface meshes could be shown. The
phantom studied was a polyethylene triangle, whose corners
pose a challenge for adaptation. Two mesh refinement
strategies were tested in this paper.

The first strategy replaces vertices from homogeneous regions
to interface regions, changing the topology of the mesh. The
second strategy moves these vertices without changing the
topology, so they move onto the interface. The robustness of
these methods under varying numbers of projection angles
and noise was tested.

2 Materials and Methods

A total of m triangles of a 2D mesh are used as pixels in a
reconstruction. Input data for this reconstruction are inten-
sity measurements on p detector pixels under n projection
angles. The distance covered by incoming rays in each de-
tector measurement through all the triangle pixels is stored
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in a matrix A ∈ R(np)×m. The attenuation value given to the
triangles is stored in a vector µµµ ∈ Rm. The measured inten-
sity on different detector pixels, under different angles, is
stored in a vector b ∈ Rnp. After measuring the sinogram
data b (bi =− log

(
Ii
I0

)
), a system of equations is generated

that can be solved to the attenuation vector µµµ: Aµµµ = b with
an algebraic iterative reconstruction method:

µµµ
k← µµµ

k−1 +λk−1
bi−< ai,µµµ

k−1 >

|ai|2
aT

i . (1)

µµµk refers to the solution µµµ found in the k’th iteration. The
step size is given by a constant λk−1. The vector ai refers
to the i’th row of A [13]. Even though there is not as much
software available for it, solving to µµµ should be equivalent to
solving a reconstruction on square pixels. This solution µµµ is
the input needed for two mesh refinement strategies. The re-
finement goal is generating small triangles around interfaces,
preferably with vertices on the interface. Besides matching
the interface, the refinement methods push for higher quality
(closer to equilateral) triangles.

2.1 Replacement strategy

The first strategy is based on replacing vertices. Each itera-
tion step consists of adding a vertex, computing attenuation
values in each triangle, removing a vertex, and computing
attenuation values again. The addition of a vertex happens in
the triangle t that maximizes

wt =
3

∑
i=1

(
|µt −µi|
|zt − zi|

)2

+β

(
rt

min(lt)

)2

, (2)

where i runs over all triangles neighbouring t. The ratio of
the radius of the circumscribed circle (rt) over shortest edge
(min(lt)) is a measure for the quality of triangle t. The center
of mass of triangle j is denoted by z j. β is a parameter that
controls how important the two terms are in relation to each
other. The vertex is added in triangle t in such a way that the
surrounding triangles become closer to equilateral. This is
possible using Chew’s algorithm[14]:

1. Calculate the center Ct of the circumscribed circle of t.
2. If Ct lies inside t or one of its neighbouring triangles,

add Ct to the triangulation.
3. Else add the center of the first edge between Ct and t.

Remove all vertices in the diametral circle of this edge.

The circumscribed circle, diametral circle, and the vertex
added in the third case, are shown in Fig. 1.
Chew’s algorithm increases triangle quality every iteration
step. On top of Chew’s point, the added vertex can be given
an extra push in such a way that it maximizes the gradient
in reconstructed attenuation. This means the point z that is
added is the point within the inscribed circle of the trian-
gle (starting from Chew’s point as center, see Fig. 2) that

Figure 1: Left: triangle t and surrounding edges. Middle: center
circumscribed circle. Right: Point placed by Chew’s algorithm in
case 3.

Figure 2: Disk that must contain z.

maximizes |∇µ(z)|2 ≈ |∇µ(zchew)+Hµ(zchew)(z− zchew)|2,
which can be computed numerically.
After the addition of a vertex, another vertex is removed.
This is the vertex v that minimizes the weight (2) converted
to vertices.

2.2 Mobility strategy

This strategy optimizes the following objective function:

E =
1
2

n·p

∑
j=1

(
− log

(
I j

I0

)
−

m

∑
k=1

A j,kµk

)2

+
1
2

γ

m

∑
j=1

(
r j

min(lj)

)2

.

(3)
The first term minimizes the difference between the expected
and measured intensity, the second term minimizes triangle
quality. γ is once again a coefficient that sets how important
the two terms are in relation to each other. The gradient of (3)
to vertex position can be calculated analytically in each ver-
tex. After this, the vertices can be moved in gradient descent
steps. After each step of moving all vertices, attenuation
values in each triangle are updated.

2.3 Experiments

Experiments were conducted with a starting mesh generated
from 484 regularly placed vertices, shown in Fig. 3a.
The memory needed to describe this volume mesh is
the sum of the memory needed for vertex coordinates,
connectivity list (the vertices connected to each triangle)
and the attenuation value vector (µµµ). In all experiments, the
mesh was first refined by the replacement strategy. After
convergence of this method, the resulting meshes were
refined again with the mobility strategy. The experiments
finished after convergence of (3). In each experiment, the
parameters β and γ in (2) and (3) were each chosen in
such a way that equal importance was given to placing
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(a) Regular starting mesh. (b) Mesh refined by replacement algorithm.

Figure 3: Close up of attenuating triangle in mesh before and after replacement algorithm.

vertices on the interface and generating high quality triangles.

Firstly, the methods were tested with 200 noiseless projec-
tions. Both the replacement and mobility strategy require
attenuation input values each iteration step. To test the per-
formance of both strategies in an ideal scenario, input attenu-
ation values were fixed to the ground truth values (so each
triangle was attributed a weighted sum of the attenuation
values of its composites).
After this, real reconstruction data, computed from simulated
measurements by (1), were used as input for refinement.
This was tested for several numbers projection angles, both
noiseless and with 3% noise. Only a limited number of
reconstruction steps were performed each iteration.

The refinement strategies were tested on a polyethylene tri-
angle phantom, with attenuation coefficient 1.547dm−1 for
X-ray energies around 100keV. The simulated X-ray set-up
was a parallel beam geometry. A measure for how good the
methods perform in reducing partial volume effects is given

by the partial volume fraction: ∆ =
∑
i

min(si)

sp
. si is a vector

containing the areas of different homogeneous regions cov-
ered by triangle pixel i. The area of the polyethylene triangle
phantom is denoted by sp.

3 Results

With 200 projection angles, no noise, and when triangles are
given ground truth attenuation values each iteration step, the
mesh refined by the replacement strategy is shown a Fig. 3b.
The mobility method refined this mesh further to the result
shown in Fig. 4. The partial volume fraction ∆ was as low
as 0.003. A reconstruction of attenuation values on these
triangle pixels is shown in Fig. 5a. Since this mesh has 882
triangles, a reconstruction on a 30×30 square pixel grid (an
almost equal number of pixels) is shown in Fig. 5b, generated
with the ASTRA toolbox [15]. Finally, a visualisation of how
much partial volume effects remain is shown in Fig. 5c.
The partial volume fraction when the input attenuation values
for the refinement strategies were computed from projec-
tion data by (1) are plotted in function of noise and varying
numbers of projection angles in Fig. 6.

Figure 4: Close up of polyethylene triangle in a mesh refined by
both replacement and mobility methods.

(a) Reconstruction on triangles. (b) Reconstruction voxel grid.

(c) Green: µ > µ0, red: µ < µ0.

Figure 5: Comparison of reconstruction results on adapted trian-
gles to square grid reconstruction and ground truth.

Figure 6: Partial volume fraction ∆ for different numbers of
projection angles with and without noise.
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4 Discussion

Triangles pixels in a 2D reconstruction have the advantage
over squares of allowing more flexibility and adaptability
to interfaces. The mesh presented in Fig. 5a shows how
triangular pixels can greatly reduce partial volume effects
and Fig. 5b shows a comparison with a square grid with the
same number of pixels.
Fig. 6 shows that at 32 projection angles, the partial volume
fraction has not increased compared to 200 projection angles.
With a high amount of noise (3%), the partial volume fraction
increases from 0.018 to 0.025. With a handful projections,
the partial volume fraction increases to 0.03− 0.04, both
with and without noise. This shows the strategies are robust
under noise and work well with a handful of radiographs
(for this phantom). Filling in ideal reconstruction values, a
result of which is shown in Fig. 4, reduces the partial volume
fraction to 0.003, showing the main limitation of the methods
is filling in the right attenuation values.
Even though the phantom studied in this paper is a 2D tri-
angle, the methods can be extended to tetrahedra in 3D. Al-
ternatively, the 3D case can be seen as a combination of 2D
slices.

5 Conclusion

Two methods, one based on vertex replacement, one based
on vertex mobility, for adapting a triangle mesh based on
X-ray measurements, were introduced in this paper. These
require the triangles of the mesh to be given a attenuation
values, like 2D pixels. A comparison with the same number
of square grid pixels showed a great potential in reducing
partial volume effects. A test with different numbers of
projection angles and noise showed robustness under these
circumstances. With 200 projection angles, the calculations
needed for getting the fit in Fig. 4 took around an hour. How-
ever, the computations were executed in sequential MATLAB
code, therefore a lot of time can still be won by parallel exe-
cution. Another way to win time is by having a starting mesh
closer to the real object.
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Abstract End-to-end deep learning PET reconstruction is becoming 

increasingly important. One of its most promising applications is motion 

correction, where deep learning reconstruction could be used for both 

motion vector estimation and final reconstruction. However, several 

issues remain to be resolved, including whether to perform motion 

correction in image space after separate reconstruction of each motion 

gate (imageMC) or in data space prior to reconstruction (dataMC). In this 

study, we propose to compare these two approaches and compare the 

final reconstruction performed by deep learning versus OSEM. We found 

that the deep learning reconstruction was less noisy, at the cost of slightly 

reduced contrast, but had an overall higher signal-to-noise ratio. 

imageMC performed better than dataMC in the high-count case, but this 

was reversed in the low-count case, these results being the same with 

both of the reconstruction techniques used (OSEM and deep learning). 

1 Introduction 

End-to-end deep learning for PET image reconstruction has 

been steadily gaining momentum since the first publication 

on the topic in 2018 [1]. Recent publications [2] have 

achieved even better results using histo-images [3] as the 

network’s input. One of its most promising applications is 

motion correction. Deep learning could improve image 

quality for low-statistics data and fast motion requiring very 

short motion gates, not only because of its ability to process 

low-statistics data but also because it allows high-speed 

processing. 

PET acquisitions typically last several minutes; during this 

time, the patient moves with breathing, heart rate, and 

voluntary movements (such as head and arms). These 

movements blur the image, make the attenuation correction 

inconsistent with the emission data, and can lead to an 

overestimation of the lesion size and an underestimation of 

the uptake. 

Motion correction aims to create a “frozen” image 

corresponding to a particular patient position. However, it 

is preferable to use all acquired data to preserve good image 

quality. Several methods exist to achieve this goal, the 

differences being mainly in how the motion is recorded and 

the activity is combined (image space versus data space 

[4]). The question arises especially if the data are in the 

histo-image format since they can be registered the same 

way as an image. In [4], it was shown that combining 

information from different gates in the data space before 

reconstruction can be more robust for low counts. 

In this work, we study two effects:  

1. We study the performance of our end-to-end 

network compared to OSEM + PSF (Point Spread 

Function). 

2. We compare the motion correction in image space 

after a separate reconstruction of each gate to the 

motion correction in data space (histo-image) 

before reconstruction. 

2 Materials and Methods 

Multi-view Histo-Image 

In this work, we use multi-view histo-images as the data 

format as an alternative to sinograms [3]. Since they are in 

the same format as an image, multi-view histo-images are 

perfectly suitable for the input of a neural network. Contrary 

to the work of [2], we use multiple views in order to 

maintain the angular information present in the raw data, as 

in [5] and [6]. We form the multi-view histo-image (we used 

ten views in this work) according to the Most Likely 

Annihilation Position, where the histogrammer stores the 

events in the image voxels from which they were most 

likely emitted based on the difference in detection time of 

the two coincident photons. The histogrammer increments 

a counter for the corresponding voxel for every prompt 

event and decrements the counter for every delayed event. 

Each event is scaled on the flight during deposition by the 

corresponding normalization factors, including deadtime 

correction. After deposition, each voxel in the histo-image 

is multiplied by a global sensitivity factor indicating the 

number of lines of response ending up in that voxel. There 

are a few voxels located at the edge of the field of view that 

no line of response can reach. For the neural network to 

work correctly, we still assign a value to these voxels by 

interpolating the value of the neighboring voxels. 

 

Reconstruction Pipeline 

Figure 1 shows the general reconstruction pipeline. The 

histo-image is first divided into smaller patches (of size 

63×63×63×10, 10 being the number of views). Each patch 

is passed separately through the neural network, and the 

outputs are concatenated to form the final image volume. 

The patches overlap continuously to prevent the boundary 

between patches from creating a discontinuity in the image. 

 

The U-Net Neural Network 

This work utilizes a U-Net style architecture inspired by the 

work of Whiteley et al. [2], with a contraction, bottleneck, 

and expansion segment. This network uses residual blocks 

(see Figure 2) to help the gradient propagate to the earliest 

layers and increase training efficiency and stability. The 
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network contains a total number of about 15 million 

trainable parameters. Each layer uses 3×3×3 convolutional 

kernels and parametric rectified linear units (PReLU) [7] 

activation functions. Spatial down-sampling is performed 

using 3×3×3 convolutions with a stride of 2 in every 

dimension. The symmetrical transpose convolution 

performs the up-sampling. 

 
Figure 1: Deep learning reconstruction pipeline 

We used the L1 loss function, which was shown to give 

sharper edges than the mean square error loss function [8]. 

We used the Adam optimizer with a learning rate of 10-4. 

The network was implemented with PyTorch. We trained 

three networks independently, as shown in the table below. 

One is trained to reconstruct non-attenuation corrected 

(NAC) images and is used for the estimation of the motion 

vectors in order to avoid the mismatch between PET end 

CT. The two others reconstruct fully corrected images, one 

being trained to reconstruct high-count data, and the other 

to reconstruct low-count data. 

 

Network Count level Attenuation 

correction 

Purpose 

#1 Original 

(high-count) 

No Motion 

estimation 

#2 Original 

(high-count) 

Yes Final 

reconstruction 

#3 Subsampled 

ten times 

(low-count) 

Yes Final 

reconstruction 

 
Figure 2: Details of the residual bloc used 

Patient Dataset 

Data from 23 patient scans were used in this study. Twenty 

were used for network training, and three for validation. All 

data were anonymized 18F-FDG whole-body studies 

acquired at the University Hospital of Bern with the 

Siemens Biograph Vision Quadra long axial field-of-view 

PET/CT scanner. Acquisition time ranged from 27 s to 10 

min (most of the scans being 10 min scans), corresponding 

to 167 million prompts to 4.29 billion prompts (see table 

below). 

The labeling data were reconstructed with MLEM + PSF 

(50 iterations) without post-smoothing. This number of 

iterations is higher than the one usually used in clinical 

settings and leads to noisier but sharper images. This is 

justified by the fact that the network reconstruction tends to 

be smoother than the label used for training (as reported by 

[2] and confirmed in the present study). 

 Minimum Median Maximum 

Acquisition 

time 

27 s 10 min 10 min 

Number of 

prompts 

167 million 2.61 billion 4.29 billion 

Patient mass 55 kg 73.5 kg 105 kg 

For the network trained on low-count data, we subsampled 

each list mode ten times but kept the high-count 

reconstructed images as target. 

 

Motion Correction Pipeline 

Here is our proposed motion correction pipeline: 

Step 1: Data gating. We first compute the centroid of 

distribution in the axial direction over a region containing 

the lungs and the abdomen, based on the histo-image with 

the procedure described in [9]. We then use this 1D signal 

to sort the data into four motion gates based on amplitude 

gating. 

Step 2: Computation of the motion fields. Following the 

proposal of [10], we reconstruct these images using deep 

learning (without attenuation correction) and then compute 

the motion fields between the images using the Lucas-

Kanade optical flow technique [11]. See Figure 3 for an 

illustration. The motion vector fields are 3D images where 

each image voxel contains the displacement in each of the 

three spatial dimensions. They are first computed between 

adjacent gates, because optical flow performs better with 

small motion, and then combined so that the motion will 

always be relative to the reference gate 1. 

 
Figure 3: Motion vector field computation pipeline 
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Possibility A: dataMC Possibility B: imageMC 

Step 3A: Motion 

Correction of the Data. We 

deposit each acquired 

prompt event into the 

motion-corrected reference 

histo-image (dataMC DL) 

or sinogram (dataMC 

OSEM) using the MVF of 

step 2 

 

Step 3B: Separate 

reconstruction of each 

gate. Either by OSEM 

(imageMC OSEM) or deep 

learning (imageMC DL) 

 

Step 4A: Reconstruction 

using deep learning or 

OSEM from motion-

corrected combined data 

 

Step 4B: Motion 

Correction of the images. 

We register each image to 

the reference gate using the 

MVF computed in step 2 

and sum the resulting 

images 

The comparative OSEM + PSF reconstructions were 

performed using the clinical parameters, i.e., four iterations 

and five subsets without post-smoothing. It differs from the 

MLEM + PSF labels used to train the network. 

 

Robust estimation of motion deformation vectors plays a 

crucial role in motion correction applications. For non-rigid 

motion, we need to estimate motion vectors by registering 

reconstructed images of selected frames. This registration 

process is sensitive to image noise, a necessary byproduct 

of data subsampling into gates. The developed deep-

learning reconstruction approach addresses this challenge 

through its ability to reduce image noise. 

 

Figures of Merit 

To evaluate this study, we selected one of three patients 

from the validation dataset with extensive liver disease and 

clear respiration artifacts. The scan time for this study was 

4 minutes (1.19 billion prompts). We considered two 

regions of interest. One is in the uniform heart, with low 

activity and no apparent tumor. This region of interest 

measures the noise level (standard deviation in the region). 

We also study the mean activity in a small tumor subject to 

relatively sizeable respiratory motion (an axial 

displacement of about 12 mm is visible between gates 1 and 

4). The top row of Figure 4 shows the deep-learning 

reconstruction of each gate. A cursor indicates a fixed 

location in the image, and the axial displacement of the 

tumor used for evaluation is visible. Another tumor also 

clearly disappears due to displacement to neighboring 

slices. The bottom row shows the registration of each gate 

to gate 1. The tumor is now at the exact same location for 

each gate. 

3 Results 

Evaluation of the Network Reconstruction 

Figure 5 shows the deep learning reconstruction in the top 

row and the OSEM reconstruction in the bottom row. The 

OSEM reconstruction is noisier than the deep learning 

reconstruction, especially for the single gate reconstruction. 

This is also confirmed by Table 2, which shows that the 

deep learning reconstruction reduces the noise level by 15-

36% for all cases compared to OSEM. This is even more 

dramatic in the low-count case, where the OSEM 

reconstructions are noisier and the deep learning 

reconstructions even smoother than in the high-count case. 

It may seem surprising that the deep learning 

reconstructions are smoother in low-count than in high-

count, but since the noise did not match between the target 

and the network input, the network learned to remove the 

noise. On the other hand, tumor activity is also reduced by 

0-9%. The loss of high-frequency details is even more 

dramatic in the low-count case. Overall, the signal-to-noise 

ratio increases by 8-45% in high-count, and 145-285% in 

low-count. 

 

Evaluation of Motion Correction 

Figure 5 and Table 2 also show that all motion correction 

techniques achieve tumor activity close to the single gate 

case and a noise level close to the reconstruction without 

motion correction (and even typically slightly lower) for a 

given reconstruction modality. In high-count, motion 

correction in image space gave better results than motion 

 Noise (std in the heart) 

 (a.u.) 

Tumor activity (mean activity in 

the tumor) (a.u.) 

Tumor activity/noise 

noMC OSEM 0.63 79 124 

dataMC OSEM 0.64 115 180 

imageMC OSEM 0.61 116 191 

Gate 1 OSEM 1.1 127 115 

noMC DL 0.54 72 133 

dataMC DL 0.52 104 200 

imageMC DL 0.47 116 247 

Gate 1 DL 0.71 118 166 
Table 1: Quantitative performance of the different motion correction techniques studied in the high-count case. The terminologies “dataMC” and 

“imageMC” are explained in the motion correction pipeline. “noMC” means that all data is used, but no motion correction is performed. “Gate 1” 

means that only data belonging to gate 1 is used for reconstruction. OSEM reconstructions are noisier than DL reconstructions. 
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correction in data space, both in terms of tumor activity and 

noise, but those results are reversed in the low-count case. 

4 Discussion and Conclusion 

In this study, the motion vector fields are computed in 

image space and thus may be more consistent with the 

motion correction in image space. On the other hand, data 

pre-correction should give the reconstruction process more 

information that it can consider. This last fact is likely to be 

even more critical in low-count than in high-count. This 

may explain why we observed better results for imageMC 

in high-count, and for dataMC in low-count, these results 

being consistent with the two reconstruction techniques 

used (OSEM and deep learning). This is consistent with the 

results of [4], which showed that the motion correction in 

the data space was more consistent in the low-count case, 

especially concerning the positive bias in low-activity 

regions. 

In our motion correction protocol, we currently use four 

motion gates. We plan to use a larger number in the future, 

especially because deep learning allows a higher signal-to-

noise ratio. 

 

This study’s motion correction evaluation was based on 

only one patient. It would be interesting to see to which 

extent these results generalize to a bigger number of 

patients. 
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 Gate 1 Gate 2 Gate 3 Gate 4 

Gate 

reconstruction 

(deep learning) 

    

Gate 

reconstruction 

(deep learning) 

+ registration 

to gate 1 

    
Figure 4: patient used for evaluation. The cursor is in the same location for each gate, showing that one of the tumors (the one used for evaluation) moves 

about 12 mm between gates 1 and 4 due to breathing. Another tumor (indicated by the arrow) disappears into the neighboring slices. After registration, 

all tumors are in the same location. 

 Noise (std in the heart) 

 (a.u.) 

Tumor activity (mean activity in 

the tumor) (a.u.) 

Tumor activity/noise 

noMC OSEM 1.8 80 43 

dataMC OSEM 1.8 111 62 

imageMC OSEM 1.8 109 60 

Gate 1 OSEM 3.0 124 42 

noMC DL 0.50 77 155 

dataMC DL 0.47 110 237 

imageMC DL 0.69 102 147 

Gate 1 DL 1.1 113 105 
Table 2: Quantitative performance of the different motion correction techniques studied in the low-count case than dataMC DL. 
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Figure 5: Images obtained by different motion correction techniques. The OSEM reconstruction is noisier than the deep learning reconstruction, especially 

for the single gate reconstruction. The motion correction allows obtaining a tumor activity close to the single gate case while keeping a noise level 

comparable to that of the reconstruction without motion correction. 
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Abstract This study aims to improve photon counting CT (PCCT) im-
age resolution using denoising diffusion probabilistic models (DDPM).
Although DDPMs have shown superior performance when applied to
various computer vision tasks, their effectiveness has yet to be trans-
lated to high-dimensional CT super-resolution. To train DDPMs in
a conditional sampling manner, we first leverage CatSim to simulate
realistic lower-resolution PCCT images from high-resolution CT scans.
Since maximizing DDPM performance is time-consuming for both
inference and training, especially on high-dimensional PCCT data, we
explore both 2D and 3D networks for conditional DDPM and apply
methods to accelerate training. In particular, we decompose the 3D
task into efficient 2D DDPMs and design a joint 2D inference in the
reverse diffusion process that synergizes 2D results of all three dimen-
sions to make the final 3D prediction. Experimental results show that
our DDPM achieves improved results versus baseline reference models
in recovering high-frequency structures, suggesting that a framework
based on realistic simulation and DDPM shows promise for improving
PCCT resolution.

1 Introduction
Over the past two decades, CT imaging has rapidly ad-
vanced in terms of spatial, spectral and temporal resolution.
However, for CT scanners based on conventional energy-
integrating detectors (EIDs), further increases in spatial reso-
lution are limited by the trade off that exists between reduced
pixel size and dose-efficiency. This is because contempo-
rary EIDs utilize segmented optical scintillators coupled to
photodiode arrays. When pixel size is reduced, the reflective
septa between pixels that prevent optical crosstalk occupy an
increasingly fraction of the detector area, leading to losses in
geometric- (and therefore dose-) efficiency.
Photon counting detectors (PCDs) are able to largely over-
come this limitation. Photons incident on PCDs are directly
converted into charge clouds in a semiconductor, and this
charge is read out at electrodes. The nearest electrode to
the point of photon interaction typically reads out the most
charge, and so is identified as the pixel of interaction. The
finer the spacing of the readout electrodes, the finer the po-
tential spatial resolution of the detector.
PCDs have indeed demonstrated the combination of higher
spatial resolution and dose-efficiency than EID systems.
However, several physical processes prevent PCDs from
realizing resolution consistent with sampling provided by
electrode spacing. (1) In reality, not all charge deposited
in an interaction is collected by a single electrode, but is
shared among nearby electrodes. (2) In high-Z detectors
(such as CdTe/CZT), detector material K-edges are present
within the energy range of the diagnostic energy X-ray spec-
trum. K-escape fluorescence thus occurs in these detectors,
in which a photon deposits only a portion its energy at the
point of initial interaction, and approximately 30 keV else-
where. (3) In low-Z PCDs, such as edge-on-irradiated Si,

Compton scatter occurs, so that some of the incident photon
energy can leave a pixel [1]. (4) Some common PCD de-
signs utilize a macropixel structure, with dead space between
the macropixels to accommodate circuit elements such as
through-silicon-bias. This leads to non-uniform sampling
of the constituent micropixels, resolution loss, and aliasing
artifact. All of these 4 processes and factors broaden the
detector point-spread function in complex ways that depend
on the incident spectrum, the spatial frequency content of
the imaged object, and the material pathlengths traversed by
each ray. Approaches such as anti-coincidence processing
may be used to recover resolution for (1)–(3), but these tend
to fail when flux is high due to the problem of pulse pileup.
In this paper, our objective is to determine whether DL-based
superresolution image postprocessing can superresolve pho-
ton counting CT images without implementing costly and
potentially noise-enhancing deconvolutional methods based
on physical processes that are too complex to model in prac-
tical imaging systems.
DL-based image superresolution (SR) has been extensively
advanced in the computer vision field, including progress in
terms of both network structure design (such as EDSR [2],
SRGAN [3], RCAN [4]) and restoration frameworks (such
as DPSR [5] and PULSE [6]). Despite the success of these
techniques in the natural image domain, directly applying
these methods to the medical image domain is challenging
due to the lack of good quality low-resolution (LR) and high-
resolution (HR) image pairs for network training. While
downsampling techniques and Gaussian noise models have
been employed to generate synthetic datasets for CT image
SR and achieve promising results [7–9], the metrics used to
assess performance often do not translate to the desirabil-
ity of the images from a clinical perspective. This is likely
due to limitations of the image degradation model, as well
as the quality metrics. For example, our recent study sug-
gests that the insertion of unrealistically-distributed noise can
significantly degrade practical SR performance on images
with real CT noise. Furthermore, the complex physics be-
hind photon counting detection makes the degradation more
challenging to represent realistically with simple analytic
formulas [10]. To address the challenge, this study aims to
leverage advanced contemporary deep learning techniques
and realistic simulation tools to improve PCCT resolution.
Recently, denoising diffusion probabilistic models (DDPM)
[11] have achieved great success in generative and reverse
problems [12–14]. In comparison with adversarial genera-
tive models, DDPM does not suffer from mode-collapse and
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training instabilities, and demonstrates even better perfor-
mance on various tasks. Nevertheless, effectively adapting
the DDPM to improve the resolution of high-dimensional
PCCT images has not yet been studied. A main obstacle
we encountered in our initial application of DDPM to CT
imaging is that directly training a DDPM as a conventional
3D network results in poor convergence and lengthy training
times. To overcome this challenge, we decompose the 3D
task into two 2D models for improving in-plane and through-
plane resolution respectively. However, the 2D model trained
in one dimension usually exhibits degraded performance in
other dimensions. To this end, we design a joint 2D inference
in the reverse diffusion process that synergizes 2D results of
all three dimensions to make the final 3D prediction. We also
design an alternative inference among different 2D models
so that it is as efficient as a single 2D model inference.
Since it is not feasible to collect paired high and low resolu-
tion data that are perfectly registered, realistic simulation of
aligned LR and HR is critical to building deep learning mod-
els. We use CatSim to generate low-resolution counterparts
for CT image phantoms [15, 16]. Degradation is modulated
by altering detector pitch, x-ray focal spot size, as well as
noise and pixel cross-talk effects in silico.

2 Methods
2.1 Data and Simulation

The CatSim PCCT module is to simulate scans of 10 digi-
tal phantoms. Each phantom is a reconstructed clinical CT
head scan, which is converted into a water density voxel
map based on attenuation. For proprietary reasons, absolute
sinogram pixel size is suppressed; we denote the simulated
LR pixel side lengths as xLR and zLR. The LR and HR scans
are simulated for 1000 views, xLR× zLR pixel size and 1 mm
square focal spot; and 1300 views, 0.75xLR×0.85zLR pixel
size, and 0.75 mm focal spot, respectively. To achieve high-
est resolution and noise suppression, Poisson noise and pixel
cross-talk are suppressed in HR scans. Simulating the phan-
toms at their true voxel size (0.293 mm in-plane, 0.625 mm
axial) resulted in negligible difference between the phantom
and LR reconstruction. We consequently reduced the voxel
size by half in each direction to challenge the system.
All scans utilized 120 kVp tube voltage and 400 mA current
for a one second rotation period and were reconstructed with
filtered back projection such that there was a 1:1 voxel corre-
spondence between the phantoms and reconstructions. One
patient phantom (later used for testing) was scanned in paral-
lel (i.e., superimposed in the sinogram domain) with in-plane
and through-plane bar phantoms for quantitative evaluation.

2.2 Conditional DDPM

Following [17], the CT SR task is formulated as a conditional
generation. Given paired LR and HR images, {xi, yi}N

i=1 (xi
and yi denote the LR and HR images, respectively, and N is
the number of image pairs) drawn from the conditional distri-
bution p(yi|xi), we aim to approximate p(yi|xi) by learning
a stochastic iterative process, where each and every itera-
tion step is parameterized with the neural network function
fθ . DDPM involves a forward Markovian process for train-
ing and a reverse Markovian diffusion process for inference.

Specifically, the forward process gradually adds Gaussian
noise into an HR image via a fixed Markov chain, resulting
in a series of images y0→ y1→ ··· → yT , where the noise
level gradually increases with time step t, y0 and yT are the
HR and pure Gaussian noise image respectively, and T is the
number of iteration steps. The forward Markovian diffusion
process is defined by q:

q(y1:T |y0) =
T

∏
t=1

q(yt |yt−1), (1)

q(y1:T |y0) = NNN(yt |
√

αtyt−1,(1−αt) III), (2)

where α1:T are hyper-parameters that determine the variance
of the Gaussian noise. Fortunately, the distribution of yt
conditioned on y0 can be derived as:

q(yt |y0) = NNN(yt |
√

γt y0,(1− γt)III), (3)

where γt = ∏
t
i=1 αi. Thus, any intermediate noisy image yt

can be calculated given y0 as:

yt =
√

γt y0 +(1− γt)ε, ε ∼ NNN(000, III). (4)

The objective function used to training the network fθ to
predict the Gaussian noise added in yt , conditioned on the
LR image and the noise level γ is:

Ex,yEε,γ || fθ (x,
√

γ y0 +
√

1− γ ε,γ)− ε||ll, (5)

where we set l = 1, (x,y) is a paired training sample, γ ∼ p(γ)
is defined as in [17], and ε is normally-distributed noise.
Given pure Gaussian noise yT and LR image x, the re-
verse Markovian process gradually removes noise from in-
termediate noisy images to generate the HR image, i.e.,
yT → yT−1 → ·· · → y0, which is defined by a parameter-
ized distribution pθ :

pθ (y0:T ) = pθ (yT )
T

∏
t=1

pθ (yt−1yt ,x) (6)

p(yT ) = NNN(yT |000, III) (7)

pθ (yt−1|yt ,x) = NNN(yt−1|µθ (x,yt ,γt),σ
2
t III), (8)

where the reverse process p(yt−1|yt ,x) is approximately
Gaussian, assuming the noise variance in the forward steps
is sufficiently small [18]. Based on Bayes’ rule, the posterior
distribution yt conditioned on (y0,yt) is:

q(yt−1|y0,yt) = NNN(yt−1|µµµ,σ2III) (9)

µµµ =

√
γt−1(1−αt)

1− γt
y0 +

√
αt(1− γt−1)

1− γt
yt (10)

σ
2 =

(1− γt−1)(1−αt)

1− γt
. (11)

Using Eqs. (4) and (5), y0 can be approximated with the
trained network as:

ŷ0 =
1
√

γt

[
yt −

√
1− γt fθ (x,yt ,γt)

]
. (12)
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Replacing y0 in Eq. (10) with ŷ0 yields:

µθ (x,yt ,γt) =
1
√

αt

[
yt −

1−αt√
1− γt

fθ (x,yt ,γt)
]
, (13)

where the variance of pθ (yt−1|yt ,x) is (1−αt) following
[11]. Then, each iteration in inference is calculated as:

yt−1←
1
√

αt

[
yt −

1−αt√
1− γt

fθ (x,yt ,γt)
]
+
√

1−αt εt . (14)

Thus, once the network is trained with Eq. (5), the HR image
can be iteratively generated from a pure Gaussian noise image
conditioned on an LR image via Eq. (14).

2.3 3D Super-Resolution with Joint 2D Inference

We found that directly training a 3D version of the 2D net-
work used in [17] on our CT datasets leads to poor conver-
gence. In contrast, the corresponding 2D network can be
easily trained. A common strategy is to process the 3D CT
scan slice-by-slice using a 2D network. However, this usually
leads to degraded z-resolution. To overcome this problem,
we propose to train two 2D networks to improve in-plane and
through-plane resolution respectively, where the coronal and
sagittal planes share the same though-plane network. To im-
prove resolution in three dimensions, we constrain the results
of all dimensions to be consistent in the inference stage. A
simple implementation is to find a consistent 3D sampling at
each time step, i.e., ỹt = argminyt

(λc||yt −yh
t ||22 +λc||yt −

yc
t ||22 + λh||yt − ys

t ||22) = 1
λh+λc+λs

(λhyh
t + λcyc

t + λsys
t ) and

then use ỹt as the input for next iteration, where yh
t , yc

t , and ys
t

are the 2D prediction results for the three dimensions. How-
ever, this implementation increases inference time threefold.
Instead, we propose an efficient strategy for merging 2D re-
sults, which alternately performs a single 2D inference for
one of three dimensions at each step, using each 2D result
as the input for the next iteration. Computational cost is not
increased, as each iteration only requires a single 2D network.
In practice, these two implementations yield comparable re-
sults.

2.4 Implementation Details

We use 9 patient CT scans for training and 1 patient CT
scan for testing. 128 × 128 patches are randomly cropped
for training the 2D networks. We use the same network
architecture as in [17], and the attention is applied to the
layer with the smallest spatial dimension. The batch size
is 4 and the Adam optimizer uses a learning rate of 10−4.
The number of sampling steps for DDPM is set to 2000,
the number of training iterations to 300000, and all other
hyper-parameters are set equal to those employed in [17].
To compare DDPM models with a conventional supervised
learning method, we modify the 2D network to its 3D version
by converting all 2D operations to 3D ones. Since the 3D
network significantly increases the memory cost, we reduce
the number of inner channels to fit GPU devices, e.g., for a
24 GB GPU with a single 128×128×128 sub-volume, the
number of base inner channels is set to 12, and the channel
multipliers are 1, 2, 4, 8, 8 for the five blocks, respectively.

High Low DDPM-XY

DDPM-ZX DDPM-XYZ-ALLDDPM-ZY DDPM-XYZ-LAST

Base

Figure 1: In-plane (XY) results.

All other hyper-parameters are identical to those used for 2D
DDPMs. Our implementation is based on PyTorch, and it is
well-known that automatic mixed precision will significantly
improve the training speed. However, we find this sometimes
makes the training process unstable in our experiments, so
this technique is not used in this study.

3 Experiments and Results
In our pilot experiments, we evaluate different variants of
DDPMs and the baseline 3D model trained with conven-
tional supervised learning on the test patient CT scan with
the inserted line pairs. Note that the line pair patterns are not
included in the training dataset. Here we evaluate two vari-
ants of 2D joint inference: 1) DDPM-XYZ-ALL alternatively
does 2D inference to merge 2D results among all inference
steps; 2) DDPM-XYZ-LAST calculates the weighted sum
of 2D results that are independently computed in the last
step only, increasing the inference time threefold. The in-
plane and through-plane results are shown in Figures 1 and
2 respectively. We observe (1) the 2D DDPM trained with
in-plane slices visibly improves the resolution of in-plane
slices, but its performance on through-plane dimensions is
degraded. Also, some line artifacts are generated around the
high-frequency line pairs. Generally, the 2D network trained
on a specific dimension does not work well on other dimen-
sions. (2) The joint inference that synergizes all-dimension
results can clearly improve all-dimension performance in
certain respects, e.g., artifacts present in the 2D in-plane
results are reduced. (3) DDPMs appear to achieve better
super-resolution results than the baseline models, recovering
more detail. We also evaluated the presented DDPM and
baseline models on anatomical structures. The results in
Figure 3 show that, in comparison with the baseline model,
DDPM achieves sharper results and the image texture bet-
ter resembles that of the high-resolution phantoms for both
in-plane and through-plane slices.
To quantitatively evaluate the resolution results, we calculate
the corresponding modulation transfer function (MTF) of the
line pairs in Figures 1 and 2, and the results are shown in
Figures 4 and 5 correspondingly, where the best two DDPM
results are displayed.

4 Discussion and conclusion
Figure 4 suggests that the in-plane resolution is improved
by the DDPMs; this improvement is superior to that of the
baseline model at higher frequencies, even rivaling the high-
resolution reference. MTF comparison for axial resolution
is slightly more ambiguous, but the select DDPMs still gen-
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High Low DDPM-XY

DDPM-ZX DDPM-ALLDDPM-ZY DDPM-XYZ-LAST

Base

Figure 2: Through-plane (z–x) results.

Phantom Low

DDPM-XYZBase

Phantom Low

DDPM-XYZBase

In-Plane Results Through-Plane Results

Figure 3: Application to CT images of the human temporal bone.

Figure 4: MTF Comparison (In-Plane). The frequency axis has
been suppressed for proprietary reasons.

Figure 5: MTF Comparison (Through-Plane). The frequency axis
has been suppressed for proprietary reasons.

erally outperform the baseline model (Figure 5). It should
be noted that MTF measures resolution by contrast in a si-

nusoidal pattern, which may not comprehensively evaluate
edge sharpness. Nevertheless, these quantitative results, com-
bined with the previous qualitative observations, support the
potential of DDPMs in CT super-resolution.
We have demonstrated the effectiveness of conditional
DDPMs in the PCCT super-resolution task. We have over-
come a major challenge of training high-dimensional DDPMs
by training in-plane and through-plane 2D networks, and then
synergizing the 2D predictions of all dimensions. Experi-
mental results have demonstrated the effectiveness of the
presented method.
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Abstract Intraoperative volumetric imaging with cone beam computed 

tomography (CBCT) is now widely used for vascular, neurosurgical and 

selective internal radiotherapy procedures to guide decision-making and 

for verification. As its utility grows, there is increasing demand for CBCT 

to provide the highest performance in spatial and contrast resolution at 

the lowest possible dose. Tradeoffs in these parameters are principally 

limited by the detective quantum efficiency (DQE) and modulation 

transfer function (MTF) of its active matrix flat panel imager (AMFPI). 

This work investigates these performance metrics for a novel direct-

indirect “hybrid” AMPFI under conditions encountered in CBCT 

imaging. Experimental measurements from a prototype Hybrid AMFPI 

showed DQE(0) approaching 0.90 and 0.75 at RQA5 and RQA9, 

respectively. Temporal performance measurements show minimal 

degradation (lag and ghosting below 2%). To our knowledge, these mark 

the highest combined MTF and DQE for an energy-integrating imager to 

date under CBCT imaging conditions. 

1 Introduction 

 

Cone beam computed tomography (CBCT) is a widely 

applicable imaging modality, utilized in interventional 

radiology, vascular interventions, neurosurgery, and 

radiation therapy imaging on linear accelerations.[1] Clinical 

translation of CBCT was enabled by the development and 

commercialization of active matrix flat panel imagers 

(AMFPIs). Two major detector requirements for CBCT are: 

(1) high quantum efficiency to maximize signal from the 

low-dose levels employed, and (2) good temporal 

performance to minimize image artifacts between frames. 

These requirements have been met by both direct and 

indirect conversion AMFPIs.[2] The most developed direct 

conversion AMFPI consists of an amorphous selenium (a-

Se) photoconductor, which has the advantage of excellent 

spatial resolution, but has limited x-ray quantum efficiency 

(XQE) at general radiographic conditions (≥ 70 kVp) due to 

its low atomic number. Indirect AMFPIs utilize highly 

attenuating scintillator materials, however blur from the 

generated optical photons limits spatial resolution and 

results in increased noise.[3,4] 

Previous works have demonstrated the feasibility of 

direct-indirect “Hybrid” AMFPIs for digital 

radiography/fluoroscopy applications, including CBCT.[5] 

Hybrid AMFPIs comprise an a-Se layer in optical contact 

with a scintillator such that it serves as both an x-ray and 

optical sensor, as shown in Figure 1. The improvement in 

optical quantum efficiency (OQE) enabled by gain 

matching via doping a-Se with tellurium (Te) has enabled  

 

 
Figure 1: Schematic of back-irradiated (BI) Te-doped Hybrid AMFPI. 

Thicknesses are not drawn to scale. 

 

detective quantum efficiency (DQE) performance better 

than state-of-the-art flat panel imagers. With an increase in 

demand for high spatial and contrast resolution for low dose 

CBCT imaging modalities, we evaluate the imaging 

performance of Hybrid AMFPI under typical conditions 

encountered in CBCT. 

 

 
Figure 2: Simulated direct (red) signal pulse height spectrum (PHS) 

using an Am-241 beam, comprising 700 μm of a-Se (WSe = 50 eV) and 

700 μm of substrate glass, and measured indirect (blue) signal 1000 μm 

CsI:Tl using an Am-241 beam PHS scaled to (a) OQE = 2.5% (non-

doped) and (b) OQE = 50% (Te-doped). Dashed lines indicate averages.  

2 Materials and Methods 

 

A 6.5 x 6.5 cm2 prototype (85 µm pixel pitch) Hybrid 

AMFPI was fabricated comprising 700 µm a-Se and a 

removable 1000 µm CsI:Tl scintillator. The x-ray 

sensitivity, modulation transfer function (MTF) and DQE 

were measured in a direct AMFPI configuration (i.e. a-Se 

alone) and Hybrid configuration (i.e. CsI:Tl coupled) under 

RQA5 and RQA9 beam qualities. Measurements were 

compared with representative commercial imagers. 

Temporal performance was investigated via lag and ghost 

measurements under RQA5 beam quality. To quantify lag, 

the detector was irradiated for a single frame, then the 

(a)  (b)  

Swank 

Factor (As) 

= 0.55 

Swank 

Factor (As) 

= 0.95 
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following 20 dark frames were recorded and the 2D mean 

pixel value in the same ROI was computed as a function of 

frame number. To quantify ghosting, a Pb slab was placed 

on the image receptor and an exposure was taken. The Pb 

slab was then removed and 9 additional frames were 

acquired with the same exposure. The mean pixel value of 

an ROI within the location of the attenuator was normalized 

to that of the first frame and plotted as a function of 

exposure number. All experiments were performed in back-

irradiation (BI) geometry. 

3 Results 

 

 
Table 1 Summary of x-ray sensitivity for Direct AMFPI (700 µm a-Se 

only) and Hybrid AMFPI (700 µm a-Se + 1000 µm CsI:Tl). 

 

Table 1 shows the x-ray sensitivity in the direct and Hybrid 

AMFPI configurations determined from measured 

characteristic response curves. The direct AMFPI’s x-ray 

sensitivity increased by 43% (RQA5) and 89% (RQA9) 

upon coupling with CsI:Tl in a Hybrid, owing to a ~10x 

improvement in the OQE with Te-doped a-Se. 

Figure 3 shows the measured presampling MTFs of 

the direct and Hybrid AMFPI configurations at RQA5 and 

RQA9 beam qualities, as well as the MTF of an indirect 

AMFPI using the same CsI:Tl scintillator for comparison. 

The Hybrid MTF was expectedly lower than the direct 

AMFPI but markedly higher than the MTF of its indirect 

component (>4x at fNyquist).  

 

 
Figure 3: Presampling MTFs of the direct and Hybrid AMFPI under (a) 

RQA5 and (b) RQA9 beam conditions. Shown for comparison is the 

presampling MTF of an indirect AMFPI (85 μm pixel pitch) composed 

by the 1000 µm CsI:Tl scintillator.[6]  

 

Figure 4 shows the DQE of both AMFPI configurations, as 

well as the results of the previous Hybrid prototype and a 

state-of-the-art commerical indirect detector (Carestream 

DRX-1C) for both RQA5 and RQA9 beam qualities.[7] The 

Te-doped Hybrid DQE was superior to both non-doped 

Hybrids and current commercial imagers over all spatial 

frequencies, with DQE(0) approaching 0.90 and 0.75 at  

 
Figure 4: DQEs of the direct, new and previous Hybrid AMFPI 

configurations measured at high exposure for (a) RQA5 and (b) RQA9 

beam quality. Also plotted for comparison is the DQE of the Carestream 

DRX-1C indirect detector.[7]  

 

RQA5 and RQA9, respectively. To our knowledge, these 

mark the highest combined MTF and DQE for an energy-

integrating imager to date. 

 

 
Figure 5: (a) Result of lag measurement for 2.81 and 27.8 µGy entrance 

dose. (b) Result of ghost measurement for 2.81 and 27.8 µGy entrance 

dose. 

 

Figure 5 (a) shows the measured lag, where the zeroth frame 

is the irradiated frame. The entrance dose levels selected 

were to replicate conditions during a typical CBCT x-ray 

frame (2.81 µGy) and extreme conditions (27.8 µGy). The 

first frame lag is less than 2% for both entrance doses. 

Figure 5 (b) shows the x-ray sensitivity after repeated flood 

exposures. The observed change in sensitivity, i.e. ghosting, 

is negligible (less than 1%). 

4 Discussion 

 

Our results show improved x-ray sensitivity compared to 

the previous Hybrid prototype after scintillator coupling 

(89% increase over direct AMFPI vs 25% at RQA9).[5] This 

is attributed to the improved OQE provided by the Te-doped 

layer. This OQE improvement also allows for coupling to 

high-performing scintillators such as columnar CsI:Tl 

where the previous Hybrid was limited to blue light (~400 

nm peak luminescence) emitting scintillators for better 

spectral-matching to non-doped a-Se. 

Our results show that Hybrid MTF is reduced 

compared to that of the direct AMFPI, but remains 

substantially higher than the indirect MTF. This result is 

expected, as the MTF is comprised of contributions from 

both the direct AMFPI and the indirect AMFPI signal. In BI 

geometry, x-rays are preferentially absorbed in a-Se and its 

high intrinsic MTF dominates that of the scintillator. For 

higher x-ray energies (e.g., RQA9 beam quality), the MTF 

is degraded further as more signal contribution comes from 

the scintillator. 

(a) RQA5 (b) RQA9 

(a) (b) 

(a) RQA5 (b) RQA9 
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Superior DQE(f) was observed in Hybrid AMFPI 

for three reasons: First, Hybrid AMFPI maintains high 

spatial resolution compared to commercial indirect AMFPIs 

due to BI geometry. Second, the coupled CsI:Tl scintillator 

improves the x-ray quantum efficiency (XQE) compared to 

direct AMFPIs, and results in increased low-frequency 

DQE. Third, the improved OQE of the Te-doped layer 

prevents degradation of the Swank factor by gain matching 

between the direct and indirect layers of the Hybrid AMFPI. 

Prelimary lag and ghost results show minimal 

temporal degradation and shows potential for use in real-

time imaging applications like CBCT. However, the first 

frame lag has a dependence on frame rate,[8] which is limited 

to ~1 Hz with the current prototype. Future work will 

investigate the temporal performance of Hybrid AMFPI at 

higher frame rates in a future panel. 

 

5 Conclusion 

 

The results show that the Hybrid AMFPI is the highest-

performing imager for digital radiography applications as 

quantified by MTF and DQE. Preliminary temporal 

performance measurements show that Hybrid AMFPI has 

the potential to be used in 3D imaging CBCT.  

 

References 

 
[1] R. Orth, et. al., (2009). “C-arm Cone-beam CT: General Principles 

and Technical Considerations for Use in Interventional Radiology.” J 

Vasc Interv Radiol. 20, S538 – S544 

https://doi.org/10.1016/j.jvir.2009.04.026  

 

[2] W. Zhao, (2014). “Tomosynthesis Imaging.” Ch. 4. 

 

[3] R.K. Swank, (1973). “Absorption and noise in x‐ray phosphors.” 

Journal of Applied Physics, 44(9), 4199-4203 

https://doi.org/10.1063/1.1662918  
 

[4] G. Lubberts, (1968). "Random Noise Produced by X-Ray Fluorescent 

Screens*." J. Opt. Soc. Am. 58, 1475-1483 

https://doi.org/10.1364/JOSA.58.001475  

 

[5] A. Howansky, et. al., (2020). “Initial characterization of a hybrid 

direct-indirect active matrix flat panel imager for digital radiography.” 

Proc. SPIE, 11312, https://doi.org/10.1117/12.2549893  

 

[6] A. Howansky, et al., (2019). “Comparison of CsI:Tl and Gd2O2S:Tb 

indirect flat panel detector x-ray imaging performance in front- and back-

irradiation geometries.” Med. Phys. 46(11) 4857-4868, 

https://doi.org/10.1002/mp.13791 

  

[7] E. Samei, et. al., (2013). “DQE of wireless digital detectors: 

Comparative performance with differing filtration schemes.” Med. Phys. 

40(8) 081910, https://doi.org/10.1118/1.4813298  

 

[8] C. A. Tognina, et. al., (2004). “Design and performance of a new a-

Si flat-panel imager for use in cardiovascular and mobile C-arm imaging 

systems.” Proc. SPIE, 5368, 648–656. https://doi.org/10.1117/12.536054  

307 

https://doi.org/10.1016/j.jvir.2009.04.026
https://doi.org/10.1063/1.1662918
https://doi.org/10.1364/JOSA.58.001475
https://doi.org/10.1117/12.2549893
https://doi.org/10.1002/mp.13791
https://doi.org/10.1118/1.4813298
https://doi.org/10.1117/12.536054


17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Unrolled three-operator splitting for parameter-map learning
in Low Dose X-ray CT reconstruction

Andreas Kofler1, Fabian Altekrüger2,3, Fatima Antarou Ba3, Christoph Kolbitsch1, Evangelos Papoutsellis4,*, David Schote1, Clemens
Sirotenko5, Felix Frederik Zimmermann1, and Kostas Papafitsoros6

1Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
2Humboldt-Universität zu Berlin, Department of Mathematics, Berlin, Germany

3Technische Universität Berlin, Institute of Mathematics, Berlin, Germany
4Finden Ltd, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom

5Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
6School of Mathematical Sciences, Queen Mary University of London, United Kingdom

*Corresponding author: epapoutsellis@gmail.com

Abstract We propose a method for fast and automatic estimation
of spatially dependent regularization maps for total variation-based
(TV) tomography reconstruction. The estimation is based on two
distinct sub-networks, with the first sub-network estimating the reg-
ularization parameter-map from the input data while the second one
unrolling T iterations of the Primal-Dual Three-Operator Splitting
(PD3O) algorithm. The latter approximately solves the correspond-
ing TV-minimization problem incorporating the previously estimated
regularization parameter-map. The overall network is then trained end-
to-end in a supervised learning fashion using pairs of clean-corrupted
data but crucially without the need of having access to labels for the
optimal regularization parameter-maps.

1 Introduction

Over recent years, Low Dose X-ray Computed Tomogra-
phy (LDCT) has received a growing interest in the medical
imaging field due to its ability to reduce the radiation dose.
Patients are exposed to low levels of radiation by reducing
the energy of the photons emitted from the X-ray source. Us-
ing traditional and analytic reconstruction methods such as
filtered back projection (FBP), several imaging artifacts are
introduced, compromising the quality of the reconstructed
image and clinical diagnosis.
To overcome this problem, iterative reconstruction meth-
ods have been proposed such as algebraic reconstruction
technique (ART), simultaneous algebraic reconstruction tech-
nique (SART) and projection onto convex sets (POCS). In
addition, such reconstruction procedures often require the
use of regularization methods in order to eliminate noise and
artifacts, such as for instance, the well-known Tikhonov and
Total Variation (TV) regularization [1].
The acquired measured tomography data can be described by
the equation z = Axtrue + e, where xtrue ∈ Rn is the ground
truth image, A : Rn → Rm is a linear operator which models
the data-acquisition process, i.e. the discretized Radon trans-
form, and e ∈ Rm denotes some random noise component.
Regularized iterative methods solve minimization problems
of the form

min
x

D(Ax,z)+R(x), (1)

where D( · , ·) denotes a data-discrepancy measure and R( ·)

a regularization term. A classical example is the TV tomog-
raphy reconstruction problem under Gaussian noise which
can be written as

min
x

1
2
∥Ax− z∥2

2 +λ∥∇x∥1 + I{x>0}(x). (2)

A key factor which impacts the quality of the reconstructed
image is the careful choice of the regularization parameter λ

which balances the strength between the regularization and
the data fidelity term. Underestimating λ yields poor regu-
larization, while overestimating it results in smooth images
with an artificial “cartoon-like” appearance. Particularly in
medical imaging applications, where images are at the basis
of diagnostic decisions and therapy planning, a proper choice
of any regularization parameter is crucial.
Employing a single scalar parameter λ implies that the regu-
larization is enforced with equal strength for each pixel/voxel.
Depending on the application, this might be undesirable due
to different features contained in the image. In this case, one
can replace the scalar parameter with a spatially varying, i.e. a
pixel/voxel dependent one, denoted now by Λ ∈Rqn

+ . Here, q
denotes the number of directions for which the partial deriva-
tives are computed. Implementation-wise, Λ corresponds
to a stack of diagonal operators which contain a different
regularization parameter for every single pixel/voxel in the
respective gradient domain of the image. Then, the resulting
problem has the form

min
x

D(Ax,z)+∥Λ∇x∥1 + I{x>0}(x). (3)

However, this problem requires a precise data-adaptive esti-
mation of the spatially varying parameter-map Λ which is a
highly non-trivial task.

2 Methods

One approach for the automatic estimation of the spatially
varying regularization parameter Λ is employing bilevel opti-
mization techniques. Given M pairs of measured data and the
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Figure 1: Network architecture for the LDCT reconstruction problem. It consists of a sub-network NETΘ that estimates the regularization
parameter-map (blue), and a sub-network that unrolls T iterations of the PD3O algorithm (red).

corresponding ground truth (zi,xi
true)

M
i=1, the general bilevel

formulation is
min

Λ

M

∑
i=1

l(xi(Λ),xi
true) subject to

xi(Λ) = argmin
x

D(Ax,z)+∥Λ∇x∥1 + I{x>0}(x),
(4)

where l is a suitable upper level objective. For instance,
if l(x1,x2) = ∥x1 − x2∥2

2, the bilevel problem (4) seeks to
compute the parameters Λ which are “the best on average”,
i.e. PSNR-maximizing, for the given M data pairs. Hence,
given some new data ztest which has been measured in a
similar way as (zi)

M
i=1, solving (3) with the precomputed Λ

will yield a good reconstruction.
Although this scheme has been extensively studied both for
scalar and spatially varying regularization parameters, it has
been mainly applied in image denoising applications, i.e.
A = In with Gaussian noise, see [2–4]. Further, unsupervised
approaches employing upper level energies that do not de-
pend on the ground truth xtrue, i.e., l := l(x(Λ)), have also
been considered in a series of works [5–8]. Even though
these bilevel optimization methods are typically supported
by rigorous mathematical theories, they are computation-
ally demanding which has limited their use on tomographic
problems.

2.1 An Unrolled Neural Network Framework

Here, inspired by the recent success of unrolled neural net-
works (NNs) [9], we consider an unrolled neural network
approach in order to learn the regularization parameter Λ.
The proposed framework is summarized in Figure 1 and it is
outlined next.
An unrolled NN which corresponds to an implementation of
an iterative scheme of finite length is constructed to approach
the solution of problem (2) assuming a fixed regularization
parameter-map. Within the unrolled NN, the regularization
parameter-map is estimated from the input data via a sub-
network NETΘ and is used throughout the whole reconstruc-
tion scheme. To be more precise, given some initial estimate
x0 we work with an iterative scheme (speficied in the next

section)

xT = ST (x0,z,Λ,A), T = 0,1,2, . . . , (5)

that solves (3) in the limit T → ∞. Then, for some fixed
number of iterations T ∈N, our unrolled NN reads as follows:

ΛΘ = NETΘ(x0),

x1 = S1(x0,z,ΛΘ,A),

...

xT = ST (x0,z,ΛΘ,A).

(6)

Here, NETΘ denotes a U-Net [10] with learnable parameters
Θ. We denote by N T

Θ
the overall resulting network, i.e.

N T
Θ (x0) = ST (x0,z,ΛΘ,A) = ST (x0,z,NETΘ(x0),A).

The unrolled NN can then be end-to-end trained in a super-
vised manner on a set of input-target image-pairs. This re-
sulting network can be identified as a pipeline that combines
in a sequential way 1) the estimation of the regularization
parameter-map which is adapted to the data z (and hence
in medical imaging to the new patient) and 2) the iterative
scheme that solves the image reconstruction problem.

2.2 Primal-Dual Three-Operator Splitting

The iterative scheme selected here for the LDCT reconstruc-
tion problem is the Primal-Dual Three-Operator (PD3O) split-
ting algorithm. The PD3O was introduced in [11] and it is
a generalized version of the Primal-Dual Hybrid Gradient
(PDHG) algorithm [12]. It is used to minimize objectives
that consist of a proximable function g, a composite function
f with the linear operator K and a differentiable function h
with a Lipschitz constant L:

min
x

f (Kx)+g(x)+h(x).

The algorithm is summarized in Algorithm 1 and explained
next. Unlike the standard L2-squared fidelity term that is
commonly used in tomography reconstruction problems with
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Algorithm 1 Unrolled PD3O algorithm

Input: L = Lip(∇h), τ = 2/L, σ = 1/(τ∥KKT∥),
initial guess x̄0

Output: reconstructed image xTV
1: p0 = x̄0
2: q0 = 0
3: for k < T do
4: qk+1 = proxσ f ∗(qk +σKx̄k)

5: pk+1 = proxτg(pk − τ∇h(pk)− τKTqk+1)
6: x̄k+1 = 2pk+1 −pk + τ∇h(pk)− τ∇h(pk+1)
7: end for
8: xTV = xT

Gaussian noise, here we employ the Kullback-Leibler diver-
gence which is more suitable to describe the noise distribution
of the measured tomographic data z. We have that z=Ax+e,
where

e =−Ax− log(Ñ1/N0) , Ñ1 ∼ Pois(N0 exp(−Axµ)).

We denote with µ and N0 the normalization constant and
the mean photon count per detector bin without attenuation,
respectively. The data-discrepancy in (3) can be derived from
a Bayesian viewpoint and is

D(Ax,z) =
m

∑
i=1

e−(Ax)iµN0 − e−ziµN0
(
− (Ax)iµ + log(N0)

)
,

(7)

see [13] for more details. To configure PD3O for (3) we
define the following

f (q) = ∥Λq∥1, g(p) = I{p>0}(p), K = ∇,

h(p) =
m

∑
i=1

e−piµN0 − e−ziµN0
(
−piµ + log(N0)

)
.

Notice that with the standard L2-squared fidelity term, it
is sufficient to use the PDHG algorithm since its convex
conjugate has a closed-form proximal operator, which is
not the case with (7). However, the additional function in
the PD3O algorithm allows to express the data discrepancy
in the differentiable term h. Note that ∇h is not globally
Lipschitz continuous but due to the non-negativity constraint,
we only have to consider ∇h(p) for p with non-negative
entries. Consequently, we can find an upper bound of the
Lipschitz constant of ∇h by Lip(∇h)≤ ∥A∥2µ2N0.

3 Results

To evaluate our proposed unrolled NN, we use the LoDoPaB
dataset [14] for low-dose CT imaging. It is based on scans of
the Lung Image Database Consortium and Image Database
Resource Initiative which serve as ground truth images, while
the measurements are simulated. The dataset contains 35820
training images, 3522 validation images and 3553 test images.

Here the ground truth images have a resolution of 362×362
on a domain of 26cm× 26cm. We only use the first 300
training images and the first 10 validation images. For the
forward operator we consider a normalization constant µ =
81.35858, the mean photon count per detector bin N0 = 4096
as well as 513 equidistant detector bins and 1000 equidistant
angles between 0 and π .
In Figure 2 we compare the FBP reconstruction with the
PD3O reconstructions where we use (i) a scalar parameter
(λ ), chosen to maximize the PSNR “on average”, and (ii)
our computed spatially dependent parameter map (ΛΘ). Us-
ing the latter, we obtain a significant improvement in the
reconstruction both visually and in terms of quality mea-
sures, e.g., PSNR and SSIM. In particular, sharp edges are
retained, while the constant regularizing parameter results
in blurry and blocky-like reconstructions. One can observe
that the network attributes higher regularization parameters
to image content with smooth structures while it yields lower
regularization parameters at the edges to prevent smoothing.

4 Discussion

We have presented a data-driven approach to automatically
estimate spatially dependent parameter-maps for TV regular-
ization for the low dose X-ray CT tomography reconstruction
problem. Although only the TV regularization is consid-
ered in this paper, higher order or combinations of regular-
izers can be used for different CT applications, see [15, 16].
Moreover, our unrolled framework is quite flexible and can
be easily used for other modalities such as qualitative and
quantitative MRI reconstruction, image denoising as well as
their dynamic versions, see [17]. Finally, more sophisticated
network architectures than the U-Net have been proposed
recently, e.g. [18, 19], which could be potentially adopted for
the estimation of the regularization parameter-maps as well.
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Abstract In this work we present an X-ray computed tomography
setup that integrates a seven degree of freedom robotic arm as a sample
holder. The path planning and robot control algorithms are optimized
for seamless execution of spherical trajectories. A precision manu-
factured sample holder part is attached to the robotic arm for the cali-
bration procedure. We present experimental results with the robotic
sample holder where a sample measurement on a spherical trajectory
achieves improved reconstruction quality compared to a conventional
circular trajectory. The proposed system is a step towards higher image
reconstruction quality in flexible X-ray CT systems.

1 Introduction

In recent years, industrial robotic arms have become more
affordable for a broader audience thanks to mass production
of electrical and mechanical components. At the same time,
their control and software integration has become more fea-
sible with the emergence of open source software initiatives
that aim to standardize and simplify the use of such robotic
arms. The lower entry-barrier for robotic arms also offers
new opportunities for X-ray computed tomography systems
which benefit greatly from the improved flexibility. Captur-
ing two-dimensional absorption images from an increased
number of angles can increase reconstruction image quality
and completeness.

In recent work we introduced a flexible robotic arm with
seven degrees of freedom (DoF) as a sample holder within
a laboratory X-ray computed tomography (CT) setup [1].
The arm adds flexibility to the setup as a sample holder by
enabling arbitrary rotations and placement of the sample and
hence allows non-standard trajectories that are not restricted
in their sequence, in contrast to conventional circular or he-
lical trajectories. We also introduced a suitable calibration
mechanism in order to determine the exact positioning of the
sample from the image. The calibration mechanism requires
a sample holder part that is attached to the robotic arm, which
was also introduced in [1].

In the following we present our work on the optimization
of various aspects of the robotic sample holder for seamless
execution of spherical trajectories. The sample holder part
that is attached to the robotic arm is modified for improved
coverage of spherical trajectories. We present experimental
results that demonstrate improved reconstruction quality of
spherical trajectories which can be executed by our system.

2 Methods

In this section the methods for executing spherical trajectories
with the robotic arm as a sample holder in a laboratory X-
ray CT setup are discussed in detail. After introducing the
hardware components of the system, more specific aspects
like path planning, sphere sampling, and reconstruction are
described.

2.1 Hardware setup

The hardware components of the system are displayed in Fig.
1. The main difference to a conventional X-ray CT setup
is the seven DoF robotic arm Panda from the manufacturer
FRANKA EMIKA [2]. It has a maximum reach of 855
mm and a repeatability of 0.1 mm when repeatedly moved
from a specific starting position to a goal position on a fixed
trajectory. It has two fingers that can move on a linear axis
and grasp objects. The maximum allowed payload is 3 kg.
Two Intel Realsense D435 depth cameras capture the move-
ments of the robot and provide 3d information about the
surroundings as a point cloud. The cameras are connected
directly to the workstation with the control software and are
used for the collision detection mechanism described in [1].
The robotic arm is mounted on an optical table inside a
radiation shielding enclosure for X-ray CT which houses the
X-ray source and the detector (see Fig. 1a). The detector
(Varex XRD 4343) has a maximum resolution of 2880x2880
and is connected to a different workstation on the network
that exposes the raw 16-bit grayscale images. The robotic
arm can be turned off in case of emergency from outside of
the safety hutch with a power switch.

2.2 Sample holder part

The sample holder part is a critical component of the system
as it allows the robotic arm to grasp samples of arbitrary
shape and is a fundamental part of the calibration process
where the position and orientation of the sample is identified.
The sample holder part consists of two parts. The gripper
part is where the robot’s fingers can grasp the holder steadily.
The cylinder part fulfills the purpose of placing a helix of
fiducial markers on a cylinder next to the sample. The lower
part is called gripper part throughout this paper and it can
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(a) Lab photo (b) Cylinder part with calibration structure (helix)

Figure 1: Hardware setup. In a the robotic arm is mounted on a table with the source and the detector inside a safety hutch. The source to robot
distance is 136 cm and robot to detector distance is 79 cm. b depicts the cylinder part which houses the geometric structure for calibration.

also be directly mounted to the last link of the robotic arm
when the hand is unmounted from the arm as in Fig. 1a.
Prior to attaching the sample holder part to the robotic arm,
the sample needs to be glued to the mounting plate which is
inserted into the cylinder from the top at the intended position
(see Fig. 1b).
The cylinder is 118 mm tall and 50 mm in diameter inside.
The reference structure embedded in the sample holder is a
helix which is made up of 50 embedded aluminium spheres
of 2 mm diameter. These spheres were fixed manually in
notches that were included in the design process of the holder.
The spheres appear as circles on the detector images that are
segmented during calibration.
Compared to our previous work, we modified the sample
holder part by introducing a gripper part that connects the last
link of the robotic arm with the cylindrical part of the holder.
This enables the use of different gripper shapes (straight,
curved) in varying lengths which enables the robotic arm
to reach different areas of more specific trajectories, e.g.
spherical trajectories. The gripper part can be mounted to the
cylinder with a screwing mechanism.

2.3 Path planning and robot control

With the path planning procedure, our system exposes an
abstract interface to the user for planning and executing ad-
vanced trajectories. A trajectory consists of a series of way-
points that are approached by the robotic arm in the given
order. At each way-point, the arm stops and the detector is
triggered for capturing a detector image. After successful
image acquisition, the robotic arm continues trajectory exe-
cution. The user specifies the parameters for sampling the
way-points on the trajectory from the user interface. Given
these parameters, the system first samples the way-points de-
pending on the trajectory type. Subsequently, the underlying
motion planning pipeline plans a path from each way-point
to its successor. If way-point i+1 cannot be reached from

way-point i, e.g. because there is no collision-free path, then
a path from i to way-point i+2 is planned and i+1 is marked
as not reachable. This means that we know that no detector
image will be captured for way-point i+1 before executing
the trajectory. Finally, these paths are connected to each other
and the output is a trajectory that starts at the robotic arm’s
current position and passes all way-points in the given order.

2.4 Sphere sampling

In order to generate a spherical trajectory we need to sample
points covering the surface of a sphere. Each point represents
a rotation of the sample.
Sampling a fixed number n of points on the sphere is a well
studied problem [3–6]. The goal is to distribute the points
uniformly on the sphere’s surface. Trivial approaches like
sampling on each of the two polar axis independently and
combining the samples to get 3d coordinates does not lead to
a uniform sampling on the sphere surface. In this work we
utilized HEALPix for this purpose [7].
With HEALPix, the surface of the sphere is partitioned into
a fixed number of areas of equal size. The centers of these
areas are the sampled points on the sphere. The discretization
number Npix determines the resulting number of points on
the sphere. For our experiments we chose Nside = 10, which
results in Npix = 12 ·102 = 1200 pixels on the grid and hence
1200 potential way-points on the spherical trajectory.

2.5 Calibration

The calibration procedure tackles the issue that the robotic
arm does not sufficiently accurately place the sample at the
desired position due to inaccurate path planning and inaccu-
rate electrical motors at its joints. Reading the sensors of the
robotic arm and deducing the sample’s current position is
also insufficient to determine the correct position as inaccu-
rate values are reported. However, the exact position of the
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sample at each view is required for the reconstruction. With
the calibration procedure we are able to identify the actual
positions and orientations of the sample from the detector
images. For the calibration, a sample holder part with an em-
bedded geometric reference structure that can be identified
on the detector images is necessary and was introduced in
section 2.2.

2.6 Reconstruction

The tomographic reconstruction we used around 900 equidis-
tant X-ray projections along a circular or spherical trajectory
sized 720× 720 pixels with a spacing of 600 µm. For the
spherical trajectory the number of projections varied by ±8%.
The reconstruction volume consisted of 720 × 720 × 720
isotropic voxels with a spacing of 38 µm. Using our C++
reconstruction framework elsa [8], reconstruction was per-
formed using an iterative conjugate gradient solver run for 30
iterations on a Tikhonov regularized weighted least squares
problem, with the Josephs method for X-ray transform dis-
cretization and cone beam geometry. Further iterations
showed no improvement on the cost function.

2.7 Software stack

The central part of our software stack is the Robot Operating
System (ROS) [9] which is a middleware for the communi-
cation of independent processes across a network. Robot
manipulation is accomplished with the MoveIt! framework
[10, 11] and the franka_ros configuration package [12]. For
image processing tasks and the circle segmentation we use
OpenCV [13], for multithreading on the CPU OpenMP [14]
and on the GPU OpenCL [15] and for the tomographic re-
construction elsa [8]. The sphere discretization in section
2.4 was implemented with the HEALPix C++ and Python
interfaces [7, 16].

2.8 CT measurements

We conducted two experiments where the sample in Fig. 2 is
measured on two different trajectories (circular and spherical)
using the robotic arm. It consists of two separate parts: a
bunny toy brick (Fig. 2b, left) and a solid piece of polyvinyl
chloride (PVC) with a thickness of 4 mm (Fig. 2b, right).
We chose this composition because these two parts differ
significantly in their absorption rate, which is helpful for
comparing circular and spherical trajectories in their recon-
struction performance with respect to image quality. We have
cut the absorber plate in a non-orthogonal shape relative to
the mounting plate and arranged it next to the toy brick in or-
der to cause beam-hardening artifacts in the reconstructions
of our experiments with this sample.
For each CT measurement, the images were acquired with
a source voltage of 45 kV, source power of 1445µA, and
exposure time of 1s. In Fig. 3 the reconstruction of our

(a) Sample side (b) Sample front

Figure 2: Sample. The sample consists of the object of interest (a toy
brick) and an absorber (polyvinyl chloride plate) which were both glued
to a Plexiglass mounting plate by hand. The toy brick has dimensions
31 x 21 x 31 mm and the absorber has a thickness of 4 mm. The
absorber plate has a significantly higher X-ray contrast absorption rate
than the toy brick. We aim to introduce beam hardening artifacts with
this property in the reconstructions and evaluate the performance of
different trajectory types in tackling this issue.

sample is shown from three different perspectives (YX, YZ
and ZX) for the two trajectory types and the straight gripper
part. All volumes are registered with each other with the
calibration process, as the center of the helix structure serves
as the coordinate system’s origin.
We can see in Fig. 3 that the slices depicted in the top row
(spherical trajectory, straight gripper) are sharper overall
when compared to the slices in the bottom row (circular
trajectory, straight gripper). When examining the region
between the absorber at the top and the toy brick in the
middle for the images in the left column, we can see that the
slice of the experiment with the spherical trajectory does not
cause artifacts, hence this area is truly black when compared
to the slice on the bottom where we can spot white traces. We
can also spot great differences for the slices in the center and
right columns of Fig. 3, e.g. on the right column the inner
structure of the toy brick is much sharper for the spherical
trajectory (top right) when compared to the circular (lower
right).
Another critical observation is that the absorber causes ar-
tifacts in two orthogonal directions with the two different
trajectory types. In case of the circular trajectory the artifacts
are parallel to x-ray beams. For the spherical trajectory the
artifacts are parallel to absorber and orthogonal to the x-ray
beams.

2.9 Future work

We plan to improve the proposed system in the future in
several ways.
New gripper types could be designed that maximize the cov-
erage of the sphere surface. The cylinder part of the sample
holder with the mounting plate could also be improved for
mounting bigger and heavier samples. Currently, the sample
is glued to the mounting plate which could cause issues for
heavier samples.
Moreover, experiments with base-scans for optimized trajec-
tories are subject of future work. The system is expected
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Figure 3: Experimental Results. A sample was measured and recon-
structed with the robotic arm with the straight gripper part in order to
compare the circular trajectory (conventional) with the spherical tra-
jectory (advanced). The reconstruction volumes are registered and
aligned with our calibration algorithm (see section 2.5). The detector
images were binned with 4∗4 and the reconstruction volume has di-
mensions 7203. A zoom factor of 5x was applied to the slices to crop
the region of interest. Our observation is that the reconstruction of
the measurements with the spherical trajectory (top row) are superior
compared to the reconstruction of the circular trajectory (bottom row).
Qualitatively, there are less artifacts and the image is sharper.

to fully benefit from the flexibility of the robotic sample
holder once it is able to determine highly-absorbing parts
of the spherical trajectory. We will enable this with a scan-
ning procedure that takes place before the actual experiment
(base-scan) which is also subject of future work.

3 Conclusion

In this work we have demonstrated the use of a seven DoF
robot as a sample holder for the acquisition of spherical
X-ray computed tomography trajectories using our unified
software package with path planning, collision detection
and calibration. We have stated at the beginning that the
image quality of 3d reconstructions would benefit greatly
from spherical trajectories when the sample contains highly
absorbing parts. Our findings have confirmed that with a
spherical trajectory the image quality is superior qualitatively
when compared to a conventional circular trajectory.
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Abstract
Mulitplexing (mux) can increase sensitivity in SPECT imaging, but
comes at the cost of increased ambiguity and can lead to image-degrading
artefacts during reconstruction. Here, an algorithm was used to correct
for mux in projection images. A model of the brain-dedicated multi-
pinhole AdaptiSPECT-C system was modified to increase mux and used
to test the performance of the de-multiplexing algorithm with digital
phantoms. AdaptiSPECT-C can independently shutter each of its 120
pinholes, so the de-multiplexing algorithm was tested for acquisitions
with and without a mux-free projection frame. The de-multiplexing
algorithm was shown to improve the uniformity in reconstructed images
of a uniform sphere of activity and uniformity was improved further with
the inclusion of a multiplexing-free projection frame. In addition, the
de-multiplexing algorithm improved the structural similarity and activity
recovery in a brain perfusion phantom.

1 Introduction

Pinhole collimation can provide high spatial resolution in
Single-Photon Emission Computed Tomography (SPECT)
but can lead to low sensitivity, especially when small pinholes
are used for high-resolution imaging. Multiplexing (mux)
can be used to improve sensitivity, by permitting overlapping
projection images to be acquired through multiple pinholes
simultaneously. However, mux leads to ambiguity in the
origin of counts and can cause artefacts to appear during
image reconstruction.

Figure 1: A cross-sectional diagram of the AdaptiSPECT-C sys-
tem (left) with a diagram of one of the 24 aperture plates showing
the shutters and motors (right), adapted from Figure 1 of [1].

Pinhole SPECT has previously been applied to brain
imaging [2, 3]. AdaptiSPECT-C is a brain-dedicated SPECT
system with 24 modular detectors each fitted with an aperture
plate with five apertures - one central and four oblique. Adap-
tive shutters permit each pinhole to be set to one of three
sizes or shuttered independently [4–6]. A cross-sectional

diagram of the system is shown in Figure 1. Opening all
five apertures on all 24 detectors simultaneously gives the
highest sensitivity but leads to significant levels of mux in
the projection images. Previous work proposed an algorithm
for the de-multiplexing (de-mux) of projection images [7].
Additional work demonstrated that temporal shuttering of
apertures to provide mux-free acquisition frames reduces
mux-induced artefacts in projection images and modified
the de-mux algorithm to account for temporal shuttering [4,
8]. Here, an increased-mux model of the AdaptiSPECT-C
system is considered to test the algorithm and quantify its
impact on reconstruction artefacts and image quantification.

2 Materials and methods

In-house analytic simulation and MLEM reconstruction soft-
ware [9] was used to investigate de-mux in AdaptiSPECT-
C. To test the robustness of the de-mux procedure in a
more extreme case, the detectors were moved from the base
AdaptiSPECT-C model to increase the magnification and
hence the multiplexing. Two acquisition modes were com-
pared: opening all pinholes for 100 % of the acquisition
(referred to as All100), and using temporal shuttering to ac-
quire a mux-free frame with only the central pinholes open
for 20 % of the acquisition followed by a mux frame with
all pinholes open for the remaining 80 % of the acquisition
(referred to as Central20All80). Both modes used the same
acquisition time and 2.5 mm apertures for all 120 pinholes.

A uniform spherical activity map with diameter of 21 cm
to match the field-of-view of the system was used, with an
attenuation map set to water for a photon of 159 keV (to
mimic 123I). For a more realistic clinical image, a digital
XCAT phantom [10] of a male with head size in the 99th

percentile was also generated. A realistic activity distribution
for a 123I-IMP brain perfusion scan was used, as stated in
other work [11]. Both phantoms used 1 mm voxels for activ-
ity and attenuation maps. Figure 2 shows sample projection
frames for both phantoms in this increased-mux model of the
AdaptiSPECT-C system.

The disadvantage of acquiring a mux-free projection frame
is a loss in sensitivity. Therefore both noise-free projec-
tions and ones with Poisson noise were considered to see if
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the increased noise in the Central20All80 acquisitions de-
graded the images. The Central20All80 projection images
of the sphere and perfusion phantoms contained 56.7 and
21.7 million counts respectively. All projection images were
reconstructed with MLEM with 2 mm voxels and attenuation
correction. The noise-free images were reconstructed with
100 iterations. The iterations were stopped for the images
with Poisson noise once the minimum NRMSE was reached.
Five noise realisations were performed for each acquisition.

(a) 21 cm sphere (b) Perfusion phantom

Figure 2: Projection images acquired in the increased-mux
AdaptiSPECT-C model for a 21 cm spherical source and a per-
fusion XCAT phantom. Each subfigure shows left: a mux-free
frame with only central pinholes (pmux− f ree), and right: a mux
frame with all pinholes (pmux). Each image has been normalised to
the same brightness so do not reflect the relative acquisition times.

A de-mux equation was created based on previous work [7,
8]. The five pinholes on each aperture plate were numbered
from the central pinhole (1) to oblique pinholes (2-5). A de-
mux projection image was then estimated for the ith pinhole
on all detectors through

pdemux
i =

tmux
i ∑k ak,i fk

∑
5
i=1 tmux

i ∑k ak,i fk
× pmux (1)

where tmux
i is the relative acquisition time of the mux pro-

jection frame for the ith pinhole (here tmux
i = 0.8 for Cen-

tral20All80 and 1 for All100), ak,i are the system matrix
elements corresponding to only the ith pinhole being open
for k voxels, fk are the reconstructed image voxels, and pmux

is the mux projection image. In the two-frame acquisition
mode, Central20All80, the mux-free projection frame was
reconstructed separately and used for the initial activity es-
timation fk in Equation 1. For All100, the original mux
projection reconstruction was used for the initial reconstruc-
tion. Equation 1 was applied iteratively for several rounds of
de-mux.

2.1 Quantification metrics

Several image quality metrics were considered to quantify
the differences made by the de-mux algorithm. One was the
normalised root-mean-square error,

NRMSE =

√
∑k(Ik −Rk)2

∑k(Rk)2 (2)

where I is the test image and R is the ground truth image,
each with k voxels. The Matlab Structural Similarity Image
Metric (SSIM) was also used to quantify the similarity of the

images to the ground truth [12]. This metric varies between
0 and 1, where 1 indicates identical images. The global non-
uniformity of the reconstructed images was calculated for the
spherical phantom according to

non-uniformity =
max−min
max+min

×100% (3)

where max and min are the maximum and minimum pixel val-
ues in the image respectively. The differential non-uniformity
was also determined by calculating the non-uniformity for
groups of five adjacent pixels iteratively across the image.
Horizontal and vertical differential uniformity are referred to
as Diffh and Diffv respectively. Only a 19-cm-diameter vol-
ume of interest (VOI) centred on the sphere was considered
in order to avoid edge effects such as Gibbs ringing.

For the perfusion brain model, VOIs were generated from
the XCAT model of the true activity distribution and the
percentage activity recovery (AR) was calculated with

AR =
IVOI

RVOI
×100% (4)

where IVOI and RVOI are the total VOI counts in the test and
reference images respectively. To consider only the effects
of multiplexing and not other artefacts due to the finite reso-
lution of the reconstruction (such as partial volume effects),
an ideal mux-free reconstruction was used as the reference
image. This reconstruction used the same total projection
counts, but reconstructed them as though each pinhole was
acquired consecutively (this would not be possible physically
without significantly increasing scan time or activity).

3 Results and Discussion

3.1 Uniform sphere

(a) Acquisition without mux-free frame (All100)

(b) Acquisition with mux-free frame (Central20All80)

Figure 3: The central trans-axial slice of reconstructions of the
noise-free uniform sphere, using the two different acquisition
schemes with and without a mux-free frame. The reconstruction of
the original mux projection image is shown on the left, followed by
the reconstruction following four de-mux iterations. 100 iterations
of MLEM were used in each reconstruction and all images have
been normalised to the same brightness.

Figure 3 shows the reconstructed images for four de-mux iter-
ations for the uniform sphere, compared to the reconstruction
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from the original multiplexed projection image for both ac-
quisition modes (this is pmux− f ree+ pmux for Central20All80).
The noise-free images are shown as the mux-induced arte-
facts are more visible in the absence of noise. The recon-
struction of the original projection for both acquisitions has
clear artefacts due to the high level of multiplexing and trun-
cation in the projection images. These artefacts decrease
with de-mux iterations, but some artefacts are still present
after four iterations. The Central20All80 acquisition leads to
visually-smoother images. A linear profile was taken through
the centre of the reconstructed images of the original mux
projection and the projection after the fourth iteration of de-
mux. Figure 4 shows these profiles for the noise-free data;
the de-mux image from the Central20All80 acquisition gives
the profile closest to the true count distribution.

Figure 4: The linear profile through the centre of the noise-free
reconstructed images. The inset shows the profile drawn on one of
the reconstructions. All profiles have been normalised to the same
average value to account for their different count levels.

The NRMSE, SSIM and global and differential non-
uniformities were calculated for both acquisitions of the
uniform sphere phantom with and without noise. Table 1
gives these values for the mux reconstruction and the first
and fourth de-mux iterations. Regardless of noise, the Cen-
tral20All80 acquisition leads to improved NRMSE, SSIM
and uniformity even without any de-mux. When de-mux is
applied the metrics generally improve further.

3.2 Perfusion phantom

Since the results for the uniform sphere showed superior
performance Central20All80, this acquisition mode was con-
sidered for the perfusion phantom. Figure 5 shows the ideal
(mux-free) reconstruction of the brain perfusion phantom,
compared to the reconstruction of the original projection im-
age and the reconstruction of de-mux projection image after
three de-mux iterations, both with and without Poisson noise.
The absolute percentage difference between the mux and
de-mux reconstruction is shown on the far right; this image
indicates that most of the difference is in the background
region of the head rather than the brain. This is especially
clear in the noise-free case where the low activity uptake
in the skull bone marrow is better resolved in the de-mux
image.

(a) Noise-free

(b) Poisson noise

Figure 5: Reconstructed images of the brain perfusion phantom
using the Central20All80 acquisition mode. The ideal mux-free
reconstruction is shown with the mux reconstruction and the re-
construction following three de-mux iterations. The absolute per-
centage difference between the mux and de-mux reconstructions is
given on the right with a colour bar.

A linear profile was taken through the noise-free images
for the trans-axial slice shown in Figure 5 and is shown in
Figure 6. The de-mux image shows a closer agreement to
the ideal image than the original mux reconstruction. Table 2
gives the NRMSE and SSIM for the original and de-mux
reconstructions. SSIM is improved with de-mux both with
and without noise. The NRMSE is equivalent for the original
mux and de-mux images within the uncertainty of the 5 noise
realisations, and slightly worse after de-mux is applied in the
noise-free case.

Figure 6: The linear profile through the centre of the recon-
structed noise-free images of the perfusion phantom acquired in
Central20All80. The inset shows the profile drawn on one of the
reconstructions.

The percentage activity recovery was calculated for several
regions of grey and white matter in the images with Poisson
noise. These are shown in Figure 7. The activity recovery
improves with de-mux iterations in the majority of cases but
it appears that further improvement is needed for some lobes.

4 Future work

This work has focused on a fixed aperture shuttering scheme:
20 % mux-free followed by 80 % mux. Different acquisi-
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Noise free Poisson noise
All100 Central20All80 All100 Central20All80

De-mux De-mux De-mux De-mux
Metric Mux itr1 itr4 Mux itr1 itr4 Mux itr1 itr4 Mux itr1 itr4

NRMSE 0.275 0.169 0.155 0.146 0.086 0.091 0.3262(2) 0.1553(1) 0.1706(1) 0.2419(4) 0.1257(5) 0.1388(4)
SSIM 0.486 0.669 0.661 0.538 0.694 0.667 0.4684(1) 0.5263(1) 0.5349(2) 0.4984(2) 0.5653(2) 0.5777(2)
G(%) 93.6 75.2 71.5 71.8 39.4 32.0 96.0(4) 58.2(6) 55.4(4) 87.3(8) 48(2) 52.7(4)

Diffh (%) 72.2 47.8 42.5 44.0 25.1 26.3 78(2) 31(1) 28(2) 65(1) 24(1) 27(2)
Diffv(%) 69.6 45.5 39.5 42.3 24.0 26.8 76(1) 30(2) 27(2) 65(2) 24(2) 26(2)

Table 1: Image metrics for the reconstructions of the uniform sphere phantom. Both the noise-free images and those with Poisson
noise are included. The NRMSE, SSIM, percentage global non-uniformity (G(%)) and percentage horizontal and vertical differential
uniformities (Diffh(%), Diffv(%)) are given for the original mux reconstruction and de-mux iterations 1 and 4. The average of 5 noise
realisations is given for noisy data, with the uncertainty on the last digit(s) in brackets, e.g. 96.0(4) = 96.0 ± 0.4.

Noise free Poisson noise
Metric Mux De-mux itr3 Mux De-mux itr3

NRMSE 0.259 0.263 0.3240(4) 0.3212(16)
SSIM 0.770 0.817 0.7075(2) 0.7224(44)

Table 2: Imaging metrics for the original reconstruction and the
reconstruction following one iteration of de-mux for the brain
perfusion phantom. Average of 5 noise realisations is given for
noisy data. The uncertainty on last digit(s) is given in brackets.

Figure 7: Percentage activity recovery in different regions com-
pared to the ideal (mux-free) case for the perfusion phantom. Error
bars show standard deviation of 5 Poisson noise realisations. Per-
fect activity recovery of 100 % is shown as a black line.

tion schemes will be investigated. Additional brain activ-
ity distributions will be considered to determine if different
applications benefit from different acquisition and de-mux
schemes. The convergence of the algorithm will also be inves-
tigated for different acquisition modes, as well as the impact
of truncated data from the oblique pinholes. This work has
focused on an increased-mux model of the AdaptiSPECT-C
system; future work will verify that these findings translate
to different levels of multiplexing.

5 Conclusion

This work suggests that a de-mux algorithm can improve both
the quality of a reconstructed image and the quantification
of activity recovery in images acquired with an increased-
multiplexing model of the AdaptiSPECT-C system. The
images were improved further with the inclusion of a short
multiplexing-free projection frame in the initial acquisition.

Further investigation is needed to determine if this de-mux
algorithm would mean acquisitions with multiplexing could
be clinically beneficial with AdaptiSPECT-C.
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Abstract We propose in this work a framework for synergistic positron
emission tomography (PET)/computed tomography (CT) reconstruc-
tion using a joint generative model as a penalty. We use a synergistic
penalty function that promotes PET/CT pairs that are likely to occur to-
gether. The synergistic penalty function is based on a generative model,
namely beta-variational autoencoder (β -VAE). The model generates a
PET/CT image pair from the same latent variable which contains the
information that is shared between the two modalities.
This sharing of inter-modal information can help reduce noise during
reconstruction. Our result shows that our method was able to utilize
the information between two modalities. The proposed method was
able to outperform individually reconstructed images of PET (i.e., by
maximum likelihood expectation maximization (MLEM)) and CT (i.e.,
by weighted least squares (WLS)) in terms of peak signal-to-noise
ratio (PSNR). Future work will focus on optimizing the parameters
of the β -VAE network and further exploration of other generative
network models.

1 Introduction

PET/CT hybrid imaging systems have been used since the
2000’s. On one hand, PET is an imaging modality used to
observe and quantify molecular-level activities inside tissue
through radioactive tracers, while on the other hand CT is an
imaging technique that uses X-rays to produce detailed struc-
tural images of the body. In order to get clearer images, both
modalities use high dose of ionizing radiation which is detri-
mental to the health of certain patients especially children.
Therefore reducing the dosage of used ionizing radiation is
crucial, but it will affect the signal-to-noise ratio (SNR) of
the reconstructed images.
Current multi-modal imaging reconstruction techniques pro-
cess each modality separately. However, it is possible to
exploit inter-modality information which could help reduce
noise during reconstruction by combining functional PET and
structural CT images. This approach could ultimately lead
to reduction of dosage in patient imaging. The use of deep-
learning in an unrolled model-based iterative reconstruction
(MBIR) algorithm for synergistic PET/magnetic resonance
(MR) reconstruction [1] has shown improved performance
compared to independent conventional reconstruction meth-
ods. Although this approach is promising, the training is
computationally expensive and the architecture depends on
the scanners system projectors/back-projectors.
In this work, we propose a synergistic penalty function which
uses generated PET and CT from the same latent variable

which is trained on a β -VAE. As the shared information is
contained in the penalty term, the proposed approach does
not depend on the system (i.e. projector/back-projectors are
not part of the training).
Section 2 describes our methodology and generative model,
Section 3 shows that out method performs better than tradi-
tional reconstruction techniques in terms of PSNR, and in
Section 4 we discuss in what ways we can still improve the
results.

2 Method

2.1 Conventional PET/CT Reconstruction

The linear X-ray attenuation and activity image are re-
spectively denoted µµµ = [µ1, . . . ,µJ]

⊤ ∈ RJ
+ and λλλ =

[λ1, . . . ,λJ]
⊤ ∈ RJ

+, J being be the number of pixels (or vox-
els) in the image. In the following we briefly introduce the
MBIR settings for CT and PET.
We use a standard and monochromatic model for CT. The
transmission measurement are collected along I rays and
stored in a vector yyy = [y1, . . . ,yI]

⊤ ∈ NI . Given the attenua-
tion µµµ and ignoring background events, the expected number
of detected X-ray photons along each ray i = 1, . . . , I is given
by the Beer-Lambert law as

ȳi(µµµ) = h · e−[AAAµµµ]i (1)

where AAA ∈ RI×J is a discrete line integral operator such that
[AAA]i, j denotes the contribution of pixel j to ray i, and h is the
X-ray intensity. Assuming that the I measurements {yi} are
independent and follow a Poisson distribution centered on
{ȳi(µ)}, MBIR of the attenuation image µµµ can be achieved
by solving the following optimization problem with an itera-
tive algorithm [2]:

µ̂µµ ∈ argmin
µµµ≥000

LCT(µµµ)+αRCT(µµµ) (2)

where the loss function LCT is defined ad LCT(µµµ) =
1
2∥AAAµµµ−

bbb∥2
WWW with bbb = − logyyy/h ∈ RI being the vector of approxi-

mated line integrals and WWW = diag{yyy} ∈ NI×I being a diago-
nal matrix of statistical weights, RCT is a penalty function or
regularizer, generally convex, that promotes desired image
properties (in general piece-wise smoothness) while control-
ling the noise, and α > 0 is a weight.
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The PET data are collected along K lines of response (LoRs)
defined by K pairs of detectors. The emission data are stored
in a vector ggg ∈ NK . Given the activity image λλλ and again
ignoring background events, the expected number of detected
γ-photon pairs along LoR K is

ḡk(λλλ ) = τ[PPPλλλ ]k (3)

where PPP ∈ RK×J is the PET system matrix, i.e., [PPP]k, j is the
probability that a emission at pixel j is detected along LoR
k (accounting for attenuation), and τ is the acquisition time.
Assuming that the K measurements {gk} are independent and
follow a Poisson distribution centered on {ḡk(λλλ )}, MBIR of
the activity image can be achieved by solving the following
penalized maximum likelihood (PML) problem iteratively:

λ̂λλ ∈ argmin
λλλ≥000

LPET(λλλ )+δRPET(λλλ ) (4)

where the loss function LPET is the negative Poisson log-
likelihood defined as LPET(λλλ ) = ∑

K
k=1−gk log ḡk(λλλ )+ ḡk(λλλ )

and RPET and δ are same as RCT and α in (2).

2.2 Synergistic PET/CT Reconstruction Using a Joint
Generative Model

µµµ and λλλ can be simultaneously reconstructed by solving the
following joint estimation problem:

(µ̂µµ, λ̂λλ ) ∈ argmin
µµµ,λλλ≥000

LCT(µµµ)+LPET(λλλ )+ γRsyn(µµµ,λλλ ) (5)

where γ > 0 and Rsyn is a synergistic penalty function that
promotes structural and/or functional correlations between
the multiple images, such as parallel levelsets [3] and total
nuclear variation [4].
Instead of using a handcrafted synergistic penalty function,
Rsyn may be trained such that Rsyn(µµµ,λλλ ) ≈ 0 if µµµ and λλλ

are images that are plausible not only individually, but also
together. In this work we propose the following penalty in-
spired by previous work from Duff, Campbell, and Ehrhardt
[5]:

Rsyn(λλλ ,µµµ) = min
zzz∈RP

η
1
2
∥ fff PET(zzz)−λλλ∥2

+(1−η)
1
2
∥ fff CT(zzz)−µµµ∥2 (6)

where fff CT and fff PET are the decoders of the trained gen-
erative model that generate CT and PET images from the
same latent variable zzz ∈ RP and η ∈ [0,1]. To summarize
(6), Rsyn(µµµ,λλλ )≈ 0 if µµµ and λλλ are approximately generated
from the same latent variable zzz. This approach is somehow a
generalization of coupled dictionary learning for multi-modal
imaging (see for example [6]) where we replaced the dictio-
naries by generative models. Note that a penalty can be added
in (6) to control the noise. In this work we used β -VAEs for
fff CT and fff PET.

The overall reconstruction method is described in Algo-
rithm 1. The activity and attenuation images were initialized
using standard MBIR methods (MLEM and WLS). The al-
gorithm then alternates between minimization in zzz (L-BFGS
[7]) , λλλ (modified MLEM [8]) and µµµ (penalized weighted
least squares (PWLS) [2]).

Algorithm 1 Synergistic reconstruction of PET/CT images
Input: Maximum iteration number MaxIter, sub-iteration
numbers SubIter1 and SubIter2, penalty parameter γ ,
modal parameter η

1: Inputs:
γ , η , ggg, yyy

2: Initialize:
λλλ

0 = λλλ
init, µµµ0 = µµµ init, zzz0 = 000; ppp = PPP⊤111;

bbb =− logyyy/h ∈ RI

3: for n = 1 to MaxIter do
4: zzzn = argminzzz∈RP η

1
2∥ fff PET(zzz) − λλλ

n−1∥2 + (1 −
η)1

2∥ fff CT(zzz)−µµµn−1∥2 ▷ using LBFGS
5: λ̃λλ ← λλλ

n−1

6: for l = 1 to SubIter1 do
7: λ̃λλ

em← λ̃λλ
1
ppp PPP⊤

[
ggg

PPPλ̃λλ

]
8: ccc← γη fff PET(zzz

n)− ppp

9: λ̃λλ ← ccc+
√

ccc2+4γη pppλλλ
em

2γη

10: end for
11: λλλ

n = λ̃λλ

12: µ̃µµ ← µµµn−1

13: for m = 1 to SubIter2 do
14: µ̃µµ

rec← µ̃µµ−DDD−1AAA⊤WWW (AAAµ̃µµ−bbb)
15: µ̃µµ ←

[
DDDµ̃µµ

rec+γ(1−η) fff CT(zzz
n)

DDD+γ(1−η)

]
+

16: end for
17: µµµn = µ̃µµ

18: end for
19: return (λλλ MaxIter,µµµMaxIter)

2.3 Generative Model Network Architecture

For combining functional PET and structural CT images, we
created a multi-branch β -VAE (Figure 1) architecture. The
network features separate encoders and decoders for PET and
CT. The encoders and decoders consist 5-layer networks with
ReLU activation. We train the networks using the following
loss function as described in [9]:

loss = Eqφ (zzz|λλλ ,µµµ)[log pθ (λλλ ,µµµ | zzz)]
−βDKL(qφ (zzz|λλλ ,µµµ) ∥ p(zzz)) (7)

where β is the regularization coefficient that constrains the
capacity of the latent information channel zzz. The first term
is the log-likelihood of the observed data pθ (λλλ ,µµµ|zzz) aver-
aged over the latent variable zzz with distribution qφ (zzz|λλλ ,µµµ),
also referred to as the cross-entropy. The second term is

321 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

the Kullback-Leibler divergence between the posterior vari-
ational approximation qφ (zzz|λλλ ,µµµ) and the prior distribution
p(zzz), which is selected to be a standard Gaussian distribution.

Figure 1: Multi-branch β -VAE architecture

2.4 Network Training and Implementation

The models were trained using a collection of PET/CT
lung image pair (λλλ ,µµµ) of 117 patients from CHU Poitiers,
Poitiers, France. The images are 256× 256× 128, each
of the 128 slice pairs taken independently, resulting in
117×128 = 14,976 PET/CT image pairs for training. The
PET images were clipped at 105 Bq/mL in order to remove
outlier. Both PET and CT images were scaled between 0
and 1 for training. During the final reconstruction, the PET
and CT images are returned to their original domain values.
A fixed value of β at 100 of the loss function (7) was used
for this study. We used Tensorflow v2.4 and Keras for the
network implementation and training. The Adam Algorithm
[10] was used with a learning rate of 0.0001 for 300 epochs
and a batch size of 128 on a NVIDIA RTX A6000 GPU. The
gradients were computed using the GradientTape function
from Tensorflow for the L-BFGS optimization [7] used in the
minimization over zzz in (6), which uses “automatic differenti-
ation”, breaking complex gradient calculation into simpler
gradient calculations through chain rules.

2.5 Raw Data Generation

For the quantitative analysis of the reconstruction algorithm,
we generated low-count PET/CT raw data as

gk ∼ Poisson(ḡk(λλλ
⋆)) (8)

yi ∼ Poisson(ȳi(µµµ
⋆)) (9)

where λλλ
⋆ and µµµ⋆ are respectively PET and CT images that

we used as a ground truth (GT). Attenuation was ignored for
the PET data. We used SciPy [11] for the PET projectors
(Radon transform) and Astra Toolbox [12] for CT projectors
(for both data generation and reconstruction).

3 Results

3.1 Network-based Penalty Effect

The parameter γ in Equation (5) determines the penalty func-
tion contribution. Higher γ values pushes the algorithm to

Ground truth MLEM
(PSNR= 25.06)

Our Method
(PSNR= 27.96)

Ground truth WLS
(PSNR= 19.78)

Our Method
(PSNR= 30.53)

Figure 2: Comparison of independent PET and CT reconstructions
with synergistic PET/CT reconstruction using our method at γ =
5×105 and η = 0.5.

favor the generated image from the neural network than the
data fidelity term. In order to quantitatively assess the effi-
cacy of inter-modality information sharing in the synergistic
reconstruction of PET and CT, we reconstructed the PET and
CT images with different values of γ (cf. Equation (5)), start-
ing from γ = 0 which corresponds to standard independent
reconstructions, i.e., MLEM for PET and WLS for CT.
Figure 2 shows the reconstruction of PET (MLEM) and CT
(WLS) independently (no penalties) and the synergistic re-
construction of the PET/CT image pair (our method).
The final reconstructed images by our method show that
the synergistic reconstruction of PET and CT with the help
of generative models as a penalty term performs better in
terms of PSNR than individually reconstructed PET and CT
images. We can infer from this result that both PET and CT
are benefiting from the inter-modality information from each
other. Figure 3 shows the graph of PSNR with respect to γ for
both PET and CT. We can see from the graph that an increase
in the parameter γ corresponds to an increase in PSNR for
CT. For PET, the PSNR reaches a maximum and then starts
to decline to a stable value. We observe that the optimum
was not reached for the same γ . A solution is proposed on
the next section.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 3: PSNR values of reconstructed PET/CT images with
respect to γ at η = 0.5.
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Figure 4: PSNR values of reconstructed PET image with respect
to η at γ = 5×105.

3.2 Inter-modality Information Effect

Figure 4 shows the effect of η from Equation (6). The vari-
able η is a weight that represents the contribution of PET and
CT generated image into the final reconstruction. A value
of η = 0 corresponds to full contribution from CT generated
image and no contribution from PET in the prior, and vice
versa. As shown in the graph (Figure 4), both curves have
a maximum somewhere between η = 0 and η = 1. This
shows that the reconstructed PET and CT images were able
to exploit the inter-modal information. However, we observe
that the optimum was not reached for the same values of η ,
the same as the previous section with γ . We conjecture that
this could be fixed by weighting the data fidelity terms LCT
and LPET differently as seen in Equation 10,

(µ̂µµ, λ̂λλ ) ∈ argmin
µµµ,λλλ≥000

ρLCT(µµµ)+(1−ρ)LPET(λλλ )

+ γRsyn(µµµ,λλλ ) . (10)

4 Discussion

In this paper, we proposed a synergistic PET/CT reconstruc-
tion which utilizes a deep penalty method using a gener-
ative neural network β -VAE. The results showed that the
technique outperforms traditional PET-only and CT-only
reconstruction methods for both modalities. We have also
demonstrated that the PET and CT images were able to ex-
ploit the inter-modality information between each other. The
use of β -VAE generators were effective, but fine tuning the
hyperparameters are needed in order to produce clearer im-
ages. Other suggestions include the tuning of the β variable
in Equation (7) and the use of attention modules in the la-
tent space. The possibility of using other generative models
such as generative adversarial network (GAN)-based models
and diffusion-based models is also open. Furthermore, the
addition of weights in the first two terms of Equation 5 may
improve the results by optimizing the contribution of each
term to the final output. Finally, we ignored attenuation fac-
tors in the PET reconstruction. In principle they should be
computed from a first reconstruction of the attenuation (non
synergistic). Since they correspond to line integrals, they do
not suffer from noise amplification.

5 Conclusion

We proposed in this work a framework for synergistic
PET/CT reconstruction using a generative neural network as
penalty. The decoders of the trained beta-variational autoen-
coder (VAE) were able to effectively promote correlations
between the two modalities. Evaluations using real patient
dataset indicated that the proposed framework was able to ex-
ploit the inter-modal information between the two modalities
which ultimately led to improved image quality.
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Abstract
This paper presents an original approach to image reconstruction based
on flying focal spot (FFS) technology where the X-ray source is con-
figured to have a focal spot that is variable in position. The geometry
of spiral CT scanners presents difficulties for traditional (in particular
FDK type) reconstruction methods due to the non-equiangular distribu-
tion of X-rays in a given cone beam. By implementing FFS technology,
we propose reducing the geometric scheme of the system to perceive
X-rays in a lower level of abstraction to increase the number of projec-
tions. Improved z-sampling can increase the spatial resolution within
the physical limits of a given CT scanner. This method is based on
principles of statistical model-based iterative reconstruction (MBIR)
where the reconstruction problem is formulated as a shift-invariant
system (a continuous-to-continuous data model). Due to its unique
design, it can systematically deliver selected reconstructive slices with-
out repeating previously reconstructed sections which is advantageous
during emergency CT examinations.

1 Introduction

Developed in the early 2000s, the progress in longitudinal
spatial resolution from 4-slice to 64-slice CT has enhanced
the spiral scanner to allow the use of a flying focal spot (FFS)
[1], [2], [3]. The FFS feature doubles the sampling density
in the channel direction and in the longitudinal direction
[3]. Whereas most scanners increase the number of acquired
slices by increasing the number of the detector rows, many
new scanners use additional refined z-sampling techniques
with a periodic motion of the focal spot in the z-direction
(z-FFS) [4]. This so-called double z-sampling technique can
further enhance longitudinal resolution and image quality in
clinical routines [5]. Realized in cooperation with multide-
tector row CT (MDCT) scanners, this new technique aims
at increasing the density of simultaneously acquired views
in the longitudinal direction and the sampling density of the
integral lines in the reconstruction planes. This is imple-
mented with view-by-view deflections of the focal spot in
the rotational α-direction (αFFS) and in the longitudinal z-
direction (zFFS). Using this technique, the resolution of the
reconstructed images may be improved, mainly by decreas-
ing the influence of the aliasing artifacts in the reconstruction
plane (αFFS) and by reducing the windmill artifacts in the
z-direction (zFFS). Due to its geometric scheme, the FFS
implementation is not capable of traditional reconstruction
methods. Therefore, manufacturers have primarily modified
the adaptive multiple plane reconstruction (AMPR) methods
for this purpose (for details see [5]).

Figure 1: Scheme of densification of X-rays in the plane recon-
struction (αFFS).

2 Geometry of the Spiral CT Scanner with Flying
Focal Spot

The analysis of the method, contained in this work, is based
on the basic design and physical conditions that apply to
the operation of a CT scanner with a multifocal X-ray tube.
Illustrating these conditions is necessary to understand the
subsequent reconstruction methods dedicated to this type of
construction of the tomograph. The FFS technique makes use
of a special construction of an X-ray tube by deflecting the
electron beam (using an electric field) before it interacts with
the anode of the tube. This mechanism allows for view-by-
view deflections of the focal spot for X-rays emitted from that
anode. As a result of the implementation of FFS, it is possible
to obtain a greater density of X-rays used in the reconstruc-
tion process, both in the plane of the reconstructed image and
along the z-axis around which the projection system rotates
(depicted in Fig. 1 and 2).

3 Reconstruction Algorithm

Our proposed reconstruction method, using the FFS tech-
nique, is based on the maximum-likelihood (ML) estimation
[6], [7]. Commonly, the objective of this approach to the
reconstruction problem is formulated according to a discrete-
to-discrete (D-D) data model, but we propose an optimization
formula that is consistent with the continuous-to-continuous
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Figure 2: Schematic of the X-ray density along the z axis (zFFS).

(C-C) data model [8], as follows:

µmin = argmin
µ

∫
x

∫
y

∫
x̄

∫
ȳ

µ (x̄, ȳ) ·

h∆x,∆ydx̄dȳ− µ̃ (x,y))2 dxdy
)
, (1)

where the coefficients h∆x,∆y can be determined according to
the following formula:

h∆x,∆y =

2π∫
0

int (∆xcosα +∆ysinα)dα, (2)

and int (∆s) is an interpolation function with two significant
parts. In this work, we implement the linear interpolation
function where we begin by organizing and rebinning the
raw cone beam X-ray data from the CT scanner into a par-
allel geometry (described in subsection 3.1). Secondly, we
implement a patented (US 9.508.164 B2) statistical iterative
method for the 2D reconstruction view (see subsection 3.2).
Finally, the set of 2D views can be successfully used to re-
construct the 3D image from a projection. As a result of this
method, we have a fully reconstructed image of the patient
in 3D.

3.1 Rebinning part of algorithm

During the rebinning operation we decompose the X-ray
into elementary parts: focus, semi-isocenter, and detector
[9]. The equiangular geometry of the X-ray is then defined
from a straight line value to a set of three points in 3D. Next,
we compute all necessary calculations based on only those
elementary components. It can be described as:

xray(FA
x ,FA

y ,FA
z ,FB

x ,FB
y ,FB

z ,

Qx,Qy,Qz,Dx,Dy,Dz, p,sm,αψ), (3)

where F points determine focus, Q points determine semi-
isocenter, D points determine detector (all points are rep-
resented in 3D (x,y,z)), p is a value of projection, sm and

αψ describe the same X-ray but as parallel projections. The
parameters are depicted in Fig. 3.

Figure 3: Schematic of the determined X-ray points.

After calculation, the virtual X-ray is chosen in comparison
with the ideal real X-ray. First, we determine the ideal focus
point with the following equations:

fx =−(r f +∆rT
f ) · sin(α +∆α

T ); (4)

fy = (r f +∆rT
f ) · cos(α +∆α

T ); (5)

fz = z0 +∆zT , (6)

where the T is one of two focuses, r f is a distance between a
focus and the centrum. The comparison is based on calculat-
ing of the ζ angle between real focus and virtual focus with
relation to the semi-isocenter.

ζ = arccos

 ŵx · v̂x + ŵy · v̂y√
ŵ2

x + ŵ2
y ·
√

v̂2
x + v̂2

y

 , (7)

where:
v̂x = f T

x −Qx; v̂y = f T
y −Qy;

ŵx = FT
x −Qx; ŵy = FT

y −Qy.
(8)

After selecting the two nearest real focuses, we must select
the ideal detectors. An issue arises as we can not use the
square function formula because the definition is not resolved
for the line parallel to the y-axis. For this reason, a more com-
plicated formula is required for the collinearity assessment
of three points in 3D space. As a result of this formula, we
can calculate the real detector position where we are defining
for (Dx,Dy):{

(Dx − fx0)
2 +(Dy − fy0)

2 = r2
f d

(Qx − fx)(Dy − fy)− (Qy − fy)(Dx − fx) = 0
. (9)

After finding this detector, we can calculate the value of
the virtual detector by using the three-linear interpolation
function. Finally, the calculated, virtually parallel X-ray can
be used for back-projection to create an image for iterative
procedure (described in the next subsection). We used a FBP
method to obtain a starting image for this iterative procedure.
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3.2 Iterative part of algorithm

The iterative reconstruction procedure is schematically illus-
trated in the form of a diagram in Fig. 4. It is worth noting
that in this diagram the block responsible for preparing the
convolution kernel matrix (h) has been excluded from the
iterative area because it is invariant through all iterations,
hence it can be determined before starting the iterative recon-
struction procedure. Assuming a constant image resolution,
the matrix h can be kept in the file to speed up the calcu-
lations. Furthermore, this diagram also excludes the block
responsible for preparing the starting image outside the area
of the iterative method, which is described in the previous
subsection.

Figure 4: Diagram of the iterative method.

As a result of moving all calculations to the frequency do-
main, it is possible to reduce the computational complexity to
8log24I2 where I is the dimension of the final reconstruction
image (Mi j).

Table 1: Comparison of the computation times for the realizations
of the rebinning and iterative reconstruction procedure on GPU.

Iterations GTX1080Ti TitanV RTX2080 RTX3080
2 500 3.813 s 1.800 s 2.904 s 1.513 s
5 000 7.554 s 3.573 s 5.422 s 2.874 s
7 500 11.092 s 5.325 s 8.040 s 4.239 s

4 Results

In this work, we used measurements obtained from a medical
scanner SOMATOM manufactured by Siemens AG, Forch-
heim, Germany. All projections were obtained using the heli-
cal mode, with a tube potential 120kVp and a tube current
200mAs. We carried out the calculations necessary to realize
the iterative reconstruction using hardware implementations
based on the NVIDIA GPU. The result of computation time
of all parts of the algorithm are presented in Table 1. We
also present the reconstruction images (Fig. 5, 6) of a real pa-
tient which were scanned at quarter dose. The reconstructed
images were done in 5 000 iterations to recognize all of the
details in comparison to the image quality of reconstructed
images using the ASSR method.

Figure 5: Reconstruction view of the real patient. Z 109; Iterations
5000; Dose 1/4; Proposed method.

Figure 6: Reconstruction view of the real patient. Z 109; Dose
1/4; ASSR method.

Assessed by a radiologist, the number of iterations sufficient
for an acceptable image from a diagnostic point of view
is 7 000 iterations [10]. Due to the optimization and
more accurate determination of the speed indicator of the
iterative method, it was possible to obtain the same image
quality with 5 000 iterations. This case is performed with
the purpose of improving the diagnosis of liver cancer.
Additionally, Fig. 7 shows the RMSE plot of the proposed
method in this work in comparison to the ASSR method.
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Figure 7: RMSE plot for the method proposed in this
work & the ASSR method based on the mathematical
Shepp-Logan data model, z: 0, Noise: Medium.

5 Conclusion

In this paper, we have presented a complete statistical iter-
ative reconstruction method using FFS technology with an
original rebinning method that can be used in CT scanners.
Our results demonstrate improved reconstruction speeds
(about 5s for all operations using a mid-range GPU) with ad-
equate resolution to allow diagnosis of liver lesions scanned
at a quarter dose. The improvement in reconstruction speed
was mainly due to the use of an FFT algorithm during the
most demanding calculations in the iterative reconstruction
procedure as well as efficient programming techniques. For
future implementation, we are interested in implementing
our FFS image reconstruction approach in the context of us-
ing CT to distinguish hepatic lesions and identify metastases
[11], [12]. Based on previous work [13], [14], [15], we are in-
terested in improving the early detection of hepatic diseases,
especially before patients become symptomatic, reducing
mortality associated with chronic liver disease.
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Abstract Beam-hardening (BH) artifacts are ubiquitous in X-ray CT
scans of additively manufactured (AM) metal components. While
linearization approaches are useful for correcting beam-hardened data
from single material objects, they either require a calibration scan or
detailed system and material composition information. In this paper,
we introduce a neural network-based, material-agnostic method to
correct beam-hardening artifacts. We train a neural network to map
the acquired beam-hardened projection values and the corresponding
estimated thickness of the object based on an initial segmentation to
beam-hardening related parameters, which can be used to compute
the coefficients of a linearizing correction polynomial. A key strength
of our approach is that, once the network is trained, it can be used
for correcting beam hardening from a variety of materials without
any calibration scans or detailed system and material composition
information. Furthermore, our method is robust to errors in the esti-
mated thickness due to the typical challenge of obtaining an accurate
initial segmentation from reconstructions impacted by BH artifacts.
We demonstrate the utility of our method to obtain high-quality CT
reconstructions from a collection of AM components – suppressing
cupping and streaking artifacts.

1 Introduction

X-ray CT reconstruction of AM components provides insight
on defects [1, 2] introduced by the manufacturing process,
allowing manufacturers to understand the impact of process
parameters on part performance and, in turn, design consis-
tent and reliable components. However, the complex atten-
uation of poly-chromatic X-rays as they propagate through
dense metals results in beam-hardening (BH) artifacts, such
as cupping and streaks, which make it challenging to detect
microstructurally relevant features (e.g., cracks, porosity)
in typical reconstructions. Methods to address BH can be
broadly classified into hardware and algorithmic approaches
[3, 4]. Hardware approaches involve filtering the X-ray beam
to suppress higher energies, but this method reduces the flux,
leading to poor reconstruction quality when the measurement
times are kept the same. This method also requires an expert
user to select the appropriate filter depending on the sample
to be scanned. In contrast, software approaches include the
use of a heuristic polynomial to linearize the normalized data

Corresponding author’s email address: rahmano@ornl.gov. Re-
search sponsored by the US Department of Energy, Office of Energy
Efficiency and Renewable Energy, Advanced Manufacturing Office, under
contract DE-AC05-00OR22725 with UT-Battelle, LLC. The US govern-
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irrevocable, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for US government
purposes. DOE will provide public access to these results of feder-
ally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

[5] prior to the reconstruction, and more computationally
expensive methods that attempt to model the non-linearities
of the image formation process [6].
For industrial X-ray CT systems, linearization approaches are
preferred due to their low computational complexity. These
methods involve applying a polynomial correction to the nor-
malized measurement data so that the projection vs thickness
curve (p vs d) for the material is a straight line instead of
the typical curve seen particularly at higher thickness values.
In order to obtain this p vs d curve, one has to manufacture
and measure a calibration wedge sample [3] corresponding
to the same material as the component to be measured. For
single material components, the linearization polynomial can
be computed in theory even without a calibration sample, but
this requires knowledge of source spectrum, filtering hard-
ware specifications, and detailed knowledge of the detector
spectral response to obtain the p vs d curve which is often
impractical.
In this paper, we propose a new linearization approach based
on the use of a neural network (NN). We first train a NN to
map between the projected value and corresponding thick-
ness to the parameters of a Van de Casteel attenuation model
[7] by synthetically generating several test (p, d) data points.
During inference time, the thickness values corresponding to
each measurement are obtained by projecting an initial binary
segmentation of the reconstruction obtained using the FDK
algorithm [8]. Thus, we effectively obtain the parameters of
a Van de Casteel model from the neural network, which can
then be used to compute the linearization polynomial. The
main advantage of our method is that it once it is trained for
a collection of (p, d) data points, it can be used to correct for
BH due to a range of materials. We demonstrate the value of
our method by suppressing BH artifacts for numerous AM
components made of different materials without any manual
tuning of the algorithm - enabling a fully automated work-
flow for X-ray CT of metal AM components that produces
high quality reconstructions. Furthermore, our method is
robust against imperfect p vs d values due to an imprecise
segmentation - a common occurrence for dense parts with
complex geometries.

2 Method

Our method to correct for BH from single material scans
consists of three steps: 1) use a NN to map each projection
and estimated thickness value to the parameters of a BH
model, 2) average the model parameters estimated by the
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NN for all the (p,d) values and 3) use the averaged model
parameters to compute an 8th order linearization polynomial.
We train the proposed network solely on synthetically gener-
ated data using the bimodal energy model for BH from [7]. It
was demonstrated in [7] that BH can be simplified using two
dominant X-ray energies, E1 and E2, where µ1 and µ2 are the
corresponding linear attenuation coefficients (LAC) of the
material. The material’s non-linear projection vs thickness
can be obtained using

pbh = µ2d + ln
1+α

1+αe−(µ1−µ2)d
(1)

where the left hand side is the BH-affected projection, α

represents the ratio of the source-detector efficiency at said
x-ray energies, and d is the distance the x-ray beam has to
traverse within the material. The ideal (BH-free) projection,
which varies linearly with distance, is given by

pbhc =
αµ1 +µ2

1+α
d (2)

2.1 Training
We used a NN, consisting of 16 fully connected layers with
512 neurons with biases and a ReLU activation, which we call
beam-hardening correction network (BHCN). The input layer
consists of 2 nodes for the projection value and associated
thickness and the output layer consists of 3 nodes for the
parameters of the model in (1). To get training data, we
randomly generate vectors of dtr, α tr,µ tr

1 , and µ tr
2 , each

uniformly drawn from its realistic range.

dtr
i ∼U(0 mm, 20 mm)

α
tr
i ∼U(4, 8)

µ
tr
1,i ∼U(0.3 mm−1, 0.6 mm−1)

µ
tr
2,i ∼U(0.03 mm−1, 0.15 mm−1)

ptr
i = µ

tr
2,id

tr
i + ln

1+α tr
i

1+α tr
i exp{−(µ tr

1,i−µ tr
2,i)d

tr
i }

Our claim is that the network will not need to know the
material and should be able to estimate BHC parameters only
from projection and distance data. Therefore we feed BHCN
the pair (ptr, dtr) as input and train it by minimizing the
weighted mean absolute error,

1
N

N

∑
i=1
|α tr

i −α
out
i |+2|µ tr

1,i−µ
out
1,i |+5|µ tr

2,i−µ
out
2,i |

The weight were empirically chosen so the losses from indi-
vidual parameters are somewhat comparable, and one does
not overwhelm the other.

2.2 Inference
In order to obtain parameters of the Van de Casteel model
from the BHCN, we first reconstruct the measured data using
the FDK algorithm. Next, we obtain a binary segmentation
of this reconstruction using Otsu’s algorithm [9] and forward

project it to obtain the distance traversed corresponding to
each measured projection. Then, BH-affected projection and
distance vectors are fed into the BHCN to get estimates of
vectors α , µ1 and µ2. For each input data point the BHCN
outputs a set of parameters. Since the input is “noisy” be-
cause of the erroneous segmentation, the output (BHC param-
eters) is expected to be “noisy” too. Taking respective means
of the output vector estimates yields a “noise-free”/reliable
version of the BHC parameters. Then, BH correction in
projection using those parameters is followed by FDK recon-
struction. The overall inference is outlined in Algorithm 1.

Algorithm 1: BHCN inference

dmax← largest expected object thickness;
εd ← distance step size for polynomial fit, n← 8;
p← BH-affected projection, ImBH ← FDK(p);
ImBH [metal]← 1, ImBH [background]← 0;
d← Forward project(ImBH);
for each i do

[αest
i ,µest

1,i ,µ
est
2,i ]← BHCN([pi,di]);

end
α ← 1

N ∑
N
i=1 αest

i , µ1← 1
N ∑

N
i=1 µest

1,i , µ2← 1
N ∑

N
i=1 µest

2,i ;
dvec← [0, εd , 2εd , . . . ,dmax];
pro jbh← µ2dvec + ln 1+α

1+αe−(µ1−µ2)dvec ;

pro jbhc← αµ1+µ2
1+α

dvec;
fpoly f it ← poly. fit(pro jbh, pro jbhc,n,dvec);
pcorrect ← fpoly f it(p), ImBHC← FDK(pcorrect);

3 Results

In Sec. 3.1, we compare our method with a baseline curve-fit
method and demonstrate that the baseline method can fail in
practical conditions. In Sec. 3.2, we compare our method to
a more robust, CAD- and physics–based, method.

3.1 Comparison with a curve-fit (trivial BHC) method
One method to estimate BH model parameters from BH-
affected projections is by minimizing the difference between
the model, i.e. Eq. (1), and the actual projection i.e. simple
curve fitting (CF) using

(αCF ,µCF
1 ,µCF

2 ) = argmin
αCF ,µCF

1 ,µCF
2

{| p− pmodel |2} (3)

where pmodel is computed from Eq. (1) using the distance and
current iteration (αCF ,µCF

1 ,µCF
2 ).

3.1.1 Simulation data
We start with simulation data to compare the BHCN and the
curve-fit methods by creating a synthetic metal component
with BH parameters (αGT ,µGT

1 ,µGT
2 )). Forward-projecting

the metal mask provides dGT , which, together with the BH
parameters, is used to obtain pbh using Eq. (1) and pbhc
using Eq. (2). We feed the vector pair (pbh,d) to BHCN and
curve-fit methods. The estimated (αBHCN ,µBHCN

1 ,µBHCN
2 )

and (αCF ,µCF
1 ,µCF

2 ) will be used to get the BHC projections
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pBHCN and pCF , respectively. In the first case, which is ideal,
d is exactly known, i.e. d = dGT . This corresponds to the
top left subfigure in Fig. 1. The rest of the subfigures, in
clockwise direction, correspond to increasingly erroneous d
supplied to the two competing algorithms. d is the result of
incorrect segmentation (either metal declared as background,
or background declared as metal) of the uncorrected FDK
reconstruction using different threshold values for each of
the 5 remaining scenarios. Such challenges are common
when segmenting XCT scans of dense metal components
with complex shapes.
It can be seen that in the ideal case, they both perform quite
well, and the BHC projection vs distance from both algo-
rithms coincide with the ground truth projection. As the
segmentation starts to deteriorate, the curve-fit algorithm
performance degrades more than BHCN, as seen in the depar-
ture of its curve from that of GT. After analysing the p vs d

Figure 1: p vs d curve for increasingly worsening segmentation
starting with top left in clockwise direction. Curve-fit degrades
more than BHCN as segmentation becomes more inaccurate.

curves, we perform FDK reconstruction for each method and
for each segmentation case. Fig. 2 corresponds to the recon-
structions from the bottom left scenario from Fig. 1. This is
the worst segmentation case among the six. The three slices
shown demonstrate the robustness of BHCN over CF in case
of incorrect segmentation, a common issue with complex
component geometry, scattering, noise, etc.

3.1.2 Experimental data
Fig. 3 demonstrates the performance of BHCN and curve-fit
algorithms on an experimental data set - a scan of a steel
turbine blade. Due to severe beam hardening, the binary
segmentation has large errors. We observe that the proposed
BHCN helps suppress cupping artifacts compared to the un-
corrected image, while CF has made beam hardening worse
and introduced artifacts.

3.2 Comparison with CAD- and physics–based BHC
method

The CAD- and physics–based model proposed in [10, 11]
was used to estimate the BHC parameters for alloys in our
case studies and to generate a baseline reference to compare
BHCN against. We refer to this method for BH artifact
reduction as reference. When new alloys are developed,
the elemental composition also changes, so the reference
model would require re-estimation of the beam-hardening

Figure 2: Example of incorrect segmentation of uncorrected FDK
from simulated data from Fig. 1 bottom left p vs d curve. The top
row of the 3 subfigures indicate different slices of the reconstruc-
tion image. (left to right): Uncorrected FDK, incorrect metal mask,
ground truth, BHCN, CF. Bottom row of the subfigures: Profile
plots. Curve-fit has introduced artifacts and incorrect intensities,
and its profile plot, compared to BHCN’s, deviates more from that
of GT.

parameters. However, our universal BHC method is robust
for different alloys without any need for re-calibration.

3.2.1 Robustness across materials
To compare BHCN images with reference images, AM com-
ponents with complex geometries, including cylinders, poles,
fins, and inclines, were constructed from aluminium-cerium
(AlCe), stainless steel (316L), and nickel-cobalt (NiCo). In
Fig. 4, the reconstruction without any BHC, displays a high
degree of beam hardening. Both BHCN and the reference
method have similar reduction in BH, as highlighted by the
profile plots. The inset shows an expanded view of the ROI
marked in each image, highlighting the better contrast of the
BH corrected images near flaws in both BH corrected images.

Figure 3: 2 slices from the reconstruction of a real turbine blade
scan (left to right) Uncorrected, estimated metal mask, BHCN
corrected, curve-fit corrected. BHCN makes the metal component
of the image more uniform, but curve-fit seems to introduce strange
intensities and distort the shape.
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(a) AlCe

(b) NiCo

Figure 4: (left to right) No correction, reference, BHCN; Profile
plot. BHCN reduces beam hardening artifact as much as the ref-
erence method as evident from the reduction in cupping artifact.
Both reference and BHCN have better defect contrast in the RoI.

3.2.2 Robustness across various geometries
AM allows for printing of complex geometries, which in
turn complicate beam hardening correction for XCT scans
of those components. Despite that, our results suggest that
the BHCN extends very well to complicated geometries. In
Fig. 5 BHCN reduces BH in the top and bottom subfigures
(pentagon and flower vase), and has more uniform-looking
image than the reference subfigure (blade).

4 Conclusion

We developed a BHC network (BHCN) that is more robust
than a baseline curve-fit method and compares well against
the recently proposed CAD- and physics–based reference
method that needs to be calibrated for each alloy. Our ex-
periments show that the BHCN reduces BH for most alloys
currently used in AM, and for different geometries. It also
furnishes better defect contrast that should lead to more accu-
rate defect characterization. Further, BHCN performs BHC
by reducing cupping artifacts and producing uniform-looking
images for all the alloys we tested for. We have also demon-
strated that BHCN works well with simulation and real data
despite the absence of accurate segmentation for the distance
data needed for BHCN input. This supports the claim that
in practical scenarios where perfect segmentation is not pos-
sible, BHCN can still perform beam-hardening reduction
robustly without any retraining, calibration, or knowledge of
the component material.

Figure 5: Different geometries and AM processes: (Top to bot-
tom) Pentagon, blade and flower vase; (left to right) No correction,
reference, BHCN. Both correction methods have similar reduction
in BH for pentagon and vase, but BHCN blade metal part looks
more uniform than that of the reference.
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Abstract Dual panel PET systems, such as Breast-PET (B-PET)
scanner developed at University of Pennsylvania, exhibit asymmetric
and anisotropic spatially-variant deformations in the reconstructed
images due to the limited-angle data and strong depth of interaction
effects for the oblique LORs inherent in such systems. In our previous
work, we studied TOF effects and image-based spatially-variant PSF
resolution models within dual-panel PET reconstruction to reduce
these deformations. Although the application of such models led to
better and more uniform quantification of small lesions across the field
of view, the efficacy of such an approach is limited to small objects,
such as point sources and small lesions. On the other hand, large object
deformations caused by the limited-angle reconstruction cannot be
corrected with the PSF modeling alone. In this work, we investigate the
ability of the deep-learning networks to recover such strong spatially-
variant image deformations of dual-panel systems using analytically
simulated data from a dual-panel system.

1 Introduction

Dual panel PET systems offer certain advantages compared
to the whole body PET systems, including higher sensitivity
because of the detectors being placed closer to the scanned
object, easier access to the object (such as for biopsy and
monitoring response to therapy), and a simpler, potentially
cheaper, design [1–4]. On the other hand, limited angular
coverage, truncated angular data, and strong depth of
interaction effects due to the steepness of LORs given by
the closeness of the detectors can lead to severe artifacts
and point spread function (PSF) deformations, which are
strongly asymmetric and spatially variant [5].

Time-of-flight (TOF) provides additional information which
reduces the limited angle artifacts; however, the problem is
still quite challenging and cannot be eliminated even if a
timing resolution of 200 ps or better is achieved [6, 7].
In our previous work, we investigated the application of TOF
modeling [6] and image-based resolution models within sta-
tistical image reconstruction modeling the limited angle and
Depth-of-Interaction (DOI) effects on the PSF deformation
in the reconstructed image space [5, 7]. Although reconstruc-
tions with the optimized TOF kernel widths and with the
spatially-variant PSF models led to better and more uniform
quantification of small lesions across the field-of-view (FOV),
the efficacy of the image-based resolution models is limited
to small objects, such as point-sources and small lesions.
Even though the reconstruction with PSF models showed
more uniform contrast recovery of small lesions, the deforma-

tions could not be fully corrected with the PSF image-based
resolution modeling alone. In [8] we proposed to use a Deep-
Learning (DL) based post-reconstruction approach to reduce
or eliminate the limited-angle artifacts and deformations in
the images reconstructed from a dual-panel system. The po-
tential of the DL approach lies in the fact that the topology
of neural networks, defining a hypothesis functional space,
can be trained to provide a mapping from the data or de-
formed image to expected image with an ability to reduce the
limited-angle artifacts (and reject any unrealistic null-space
structures).

Figure 1: Center slice of 3D images; Spatially-variant PSF behav-
ior of a dual-panel system, represented on the grid of point-sources
placed within one quadrant of the system (horizontal detectors are
placed at the top and bottom edges of illustrated images). Left:
simulated point-sources, middle: deformed image affected by the
spatially-variant PSF deformations (in a direction orthogonal to
the detector panels), right: predicted output images of the trained
network for a simplified case of the point-sources, illustrating the
overall goal of the investigations in this work (but with more real-
istic objects).

In this study we continued with that work by further
studying the ability of the DL based post-reconstruction
approaches to capture and correct for the strong spatially
variant deformations, as seen from the dual panel systems.
It has been observed before that the neural networks with
variable resolution levels (of latent feature spaces), such as
U-Net [9], have the ability to capture the spatially variant
image properties. However, to our best knowledge, nobody
investigated so far, such a strong asymmetric (including
shifts) and spatially variant deformation effects recovered on
U-Net from those demonstrated in the dual panel systems.

Therefore, in this work we applied and tested DL approaches
on simulated data from a dual-panel PET system with de-
tectors placed close to the scanned object. Our future work
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Figure 2: Illustration of two resolution models considered in this work to generate training and testing data sets. The left panel shows the
realistic spatially-variant model (the core of this work) based on the PSF measurements in the reconstructed image space using point
sources placed throughout the FOV in the XY axes. The blurring in the Z-direction is the same as in the X-direction. Each PSF kernel
was parameterized in this work using a Gaussian mixture model composed of two weighted Gaussians with varying widths and shifts.
The right panel shows the model using only a simple 3D Gaussian blur of constant width but with a spatial-variant shift. The point PSFs
are illustrated only in one quadrant (negative Y-Axis) because the spatially variant behavior is mirrored in the positive Y-axis.

will involve expanding the DL based post-reconstruction tool
with measured data from the B-PET, a dedicated breast im-
ager. Thereafter, the insights of this study will be applied to
a direct DL reconstruction using histo-images.

2 PSF Deformations

As mentioned earlier, the design of a dual panel PET system
poses increased DOI effects due to the small separation
between the detector heads and consequently steep incident
angles for the annihilation photons with respect to the
detector panel surfaces, and limited angle coverage due to
the finite size of the detector panels; combination of both
these effects leads to significant point spread function (PSF)
deformations in the reconstructed image as shown in
Figure 1. The reconstructed image in Figure 1 (center)
also shows that the PSF deformations are progressively
asymmetric and strongly spatially variant. The extent of
this asymmetric spatial variance was employed in these
simulation based on the image based resolution models that
accurately capture the asymmetric PSF shape in images
reconstructed from data acquired with the dual-panel scanner
geometry [5].

The left panel of Figure 2 is a representation of the PSF de-
formations characterized in the reconstructed image space
using point sources placed throughout the dual-panel FOV.
The deformed PSFs become strongly anisotropic (elongated
about 4-times) and asymmetric (for out of the center loca-

tions) as we progress along the Y-axis. Each PSF kernel was
parameterized using a Gaussian mixture model composed
of two weighted Gaussians with varying widths and shifts.
The point source grid is depicted only in one quadrant (Y-
Axis) because the spatially variant behavior is observed to be
mirrored in the positive Y-axis.

3 Deformation Recovery via 3D U-Net

3.1 Network Architecture

As the first step we adopted a 3D U-Net architecture as
shown in Figure 3. The network comprises down-sampling
path, bottleneck, and an up-sampling path. Along the path,
the number of convolution channels is doubled and spatial
resolution is halved in the contracting path, and the reversal
operations are applied during the expanding path. The total
number of learnable parameters is 5×106 with input image
size of 221 x 221 x 101. Each layer is configured with
3 x 3 x 3 convolution layer followed by a rectified linear
unit (ReLU) as the activation functions. A kernel stride of 2
was used in spatial down- and up-sampling.

3.2 Network Training

Three separate data sets were generated as shown in Figure 4,
i.e., point sources, spherical sources, and complex lesion-like
structures (merging of three ellipsoids with random sizes and
orientations) at random locations in the FOV with varying
intensities. 50 training pairs and 5 validation pairs were
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generated and used for each of the three separate trainings
and validations, respectively. The training was performed
using the L1-loss function with the Adam Optimizer with the
learning rate 10-4 and a batch size of 1 for 5000 epochs.

Figure 3: The 3D U-Net architecture adopted in this work. Each
layer in the architecture is configured with 3 x 3 x 3 convolution
kernels followed by a rectified linear unit (ReLU) as the activation
function shown as red arrows. 3D MaxPooling function (yellow
arrow) was used in the down-sampling path. The Up-Transpose is
depicted as blue arrows in the up-sampling path. Skip connections
are denoted as green arrows. The input and output image size is
221 x 221 x 101 with only 1 channel.

3.3 Test Results

The top panel of Figure 4 shows the comparison of the gen-
erated phantoms, deformed images, and the 3D U-Net pre-
dicted images. The corresponding vertical profiles of re-
constructed small lesions at two extreme locations (close to
the detector panels) are shown at the bottom. We addition-
ally used the trained network on complex lesions and tested
the trained network on realistic lesion shapes we obtained
from a conventional whole-body PET patient scan as shown
in (Figure 5). Our results demonstrate the ability of the 3D
U-Net network to substantially reduce the strongly asymmet-
ric spatially-variant deformations and recover accurate lesion
locations in dual-panel PET images.
Having these very encouraging results, one important ques-
tion arose: since our training data set contained only a modest
number of relatively simple objects, did the network truly
learn the location-dependent behavior of the dual-panel sys-
tem, or did it just learn a set of particular shapes (or shape
classes) and the corresponding shifts for each particular shape.
We have thus designed a simple test to explore this question
in the next section.

4 Test of Location vs. Shape Depended Recovery

4.1 Network Training

For this test we performed a small study using the previously
described 3D U-Net. To reject the possibility that the network

Figure 4: (Top Panel) Center slice of 3D label images of the
randomly generated (since the network training requires learning
behaviors from random locations) point sources, spherical sources,
and complex lesions (given by a combination of 3 randomized
ellipsoids) are shown in the first column. The corresponding de-
formed images and the network (3D U-Net as shown in Figure 3)
predicted output is shown in the second and third columns, respec-
tively. (Bottom Panel) Vertical line profile (along the Y-axis) of
small spherical sources at different vertical positions.

Figure 5: Comparison of the center slice of simulated label, de-
formed and 3D U-Net predicted image of a segmented lesion
extracted from a conventional whole-body PET scan of a patient.

learned particular shapes instead of the location-dependent
behaviour, we simulated a system in which the PSF shape did
not change throughout the FOV - using a single 3D Gaussian
with a fixed elongation in the y direction and the only change
was the y-dependent shift of the 3D Gaussian, as illustrated
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in Figure 2-right. Using this resolution model, we generated
data set composed of small spherical lesions at random loca-
tions in the FOV with varying intensities. We generated 50
training pairs and 5 validation pairs. The training was per-
formed using the L1-loss function with the Adam Optimizer
with learning rate 10-4 and a batch size of 1 for 5000 epochs.

Figure 6: (Top Panel) Center slice of 3D label images of the
randomly generated spherical sources is shown in the first column.
The corresponding deformed images, and the network predicted
output is shown in the second and third column, respectively. (Bot-
tom Panel) Vertical line profiles (along Y-axis) of a circular sources
at different positions.

4.2 Test Results

Figure 6 (top) shows the comparison of the example of the
generated phantom, deformed image, and the U-Net output
image. The corresponding vertical profiles of a reconstructed
spherical sources at two different locations are shown in
the bottom panel of the figure. These tests confirm ability
of the U-Net to recover the accurate location (and shape)
of the deformed lesions even if the PSF deformation shape
is identical, i.e., space invariant and thus not carrying any
information/indication about the lesion location.

5 Test for Complex Lesions in Warm Background in
Noiseless Images and Noisy Images

So far, the experiments shown in the previous sections con-
firmed the ability of the U-Net to learn spatially variant de-
formations in small objects placed in the FOV without any
warm background. The following test was performed with
more realistic data sets where the lesion-like objects were
placed in a warm background of noiseless and noisy images.

5.1 Network Training

Two separate data sets were generated as shown in Figure 7,
i.e., complex lesion-like structures (merging of three ellip-

soids with random sizes and orientations) at random locations
in the FOV with varying intensities placed in a warm back-
ground with varying contrast ratio (2:1 to 10:1) and a total
effective diameter of 6 mm to 30 mm. In the first dataset (Top
Panel of Figure 7), the deformed images were generated with
asymmetric PSF deformations as shown in the left panel of
Figure 2 with no induced noise. Whereas, in the second
dataset (Middle Panel of Figure 7) the deformed images were
generated with asymmetric PSF deformations as shown in
the left panel of Figure 2 with poisson noise. 50 training pairs
and 5 validation pairs were generated and used for each of
the two separate trainings and validations, respectively. The
training was performed using the same hyperparameters as
before.

Figure 7: Center slice of 3D label images from the randomly
generated complex lesions (given by a combination of 3 random-
ized ellipsoids) are shown in the first column. The corresponding
deformed images without (Top panel) and with (Middle panel)
induced noise and the network (3D U-Net as shown in Figure 3)
predicted outputis shown in the second and third columns, re-
spectively. (Bottom Panel) Vertical line profile (along the Y-axis)
through the three images for both noiseless and noisy cases.

5.2 Test Results

Figure 7 (top and middle) shows the comparison of the gen-
erated phantom (with and without noise for lesions placed in
a warm background), deformed image, and the U-Net output
image. The corresponding vertical profiles through the label,
deformed and network predicted images are shown in the
bottom panel of the figure.
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These results were further evaluated using the quantitative
measures shown in Table 1 for the noiseless case and Ta-
ble 2 for the test using noisy images. The evaluated metrics
were: the average absolute lesion bias over all lesions in
the testing image (with the bias in each lesion based on the
mean value in the lesion VOI), the lesion Contrast Recovery
Coefficient (CRC) and its average over all lesions, and the
Image Roughness (IR) based on the voxel-vise standard de-
viation in the background regions away from the deformed
lesions (i.e., background regions not affected by the blur-
ring/deformations). These results confirm the ability and
robustness of the U-Net to recover the accurate location (and
shape) of the deformed lesions also in more realistic cases,
with the lesions in warm background and noisy images.

Image Average Lesion | Bias % | CRC
Label 0. 1.0

Blurred 18.5 0.78
Network Output 1.5 0.98

Table 1: Average Absolute Lesion Bias and Average Contrast
Recovery Coefficient (CRC) for noiseless images shown in the top
panel of Figure 7.

Image Average Lesion | Bias % | CRC IR%
Label 0.0 1.0 0.

Blurred 18.5 0.78 28.5
Network Output 3.85 0.95 0.23

Table 2: Average Absolute Lesion Bias, Average Contrast Recov-
ery Coefficient (CRC) and Image Roughness (IR) percentage for
noisy images shown in the middle panel of Figure 7.

6 Conclusion

In this work we have investigated the performance of convo-
lution neural networks in capturing strong asymmetric and
spatially variant deformation effects as those demonstrated
in the dual panel systems. We constructed, trained and tested
3-dimensional U-Nets on versatile data sets with increasing
complexities. We demonstrated that deep learning techniques
can be used to recover strong asymmetric, anisotropic, and
spatially variant deformations, as seen on the dual panel sys-
tems. In our tests we simulated PSF deformation effects
for a dual-panel PET system and the results were insightful
and optimistic to recover depth-of-interaction and limited
angle effects. In this study we employed a relatively simple
3D U-Net with only 3 resolution layers, sufficient to repre-
sent relatively simple objects used in the presented studies.
Even such a relatively shallow network was able to properly
capture the spatially dependent behavior of the dual-panel
system. Our future work will involve expanded studies us-
ing realistic objects simulated from B-PET and later on real
B-PET data, employing potentially deeper U-Net structures.

We would also like to probe the extent to which DL can cor-
rect for deformation effects with dual panel systems that may
capture a smaller fraction of the data, or systems with poorer
TOF resolution.
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Abstract In this work, we study the simultaneous reconstruction
of the activity and attenuation maps using only time-of-flight (TOF)
positron emission tomography (PET). We model data in emission with
a Poisson distribution, and obtain estimates of both maps via the total
variation (TV)-constrained maximum likelihood estimator (MLE). We
propose using the alternating direction method of multipliers (ADMM)
algorithm to solve the resulting nonconvex optimization problem;
the performance of our proposed estimator is demonstrated in a two-
dimensional TOF-PET simulation and compared with the maximum
likelihood activity and attenuation (MLAA) algorithm.

1 Introduction

Positron emission tomography (PET) imaging has been
widely used clinically in recent years. In order to obtain
a quantitatively accurate reconstruction of the activity map,
it is necessary to account for the attenuation factors. While
it is feasible to obtain the attenuation map with additional
computed tomography (CT) scans, it is desired to simultane-
ously reconstruct the two maps with only the PET emission
data since the additional CT scan could introduce additional
ionizing radiation into the scan protocol, complicate work
flow, and be subject to misalignment error.
The problem of simultaneous reconstruction with only the
emission data is challenging since the problem is often un-
derdetermined. [1] shows however, that with the TOF infor-
mation, the problem of simultaneous reconstruction is nearly
identifiable — the attenuation map can be determined up
to a constant offset. Subsequently, [2] introduces the maxi-
mum likelihood activity and attenuation estimation (MLAA)
algorithm for simultaneous reconstruction with TOF-PET
data.
While the MLAA algorithm has shown to be effective in
reducing crosstalk between the attenuation and activity maps
for sufficiently narrow TOF windows, it is not clear how
MLAA applies exact regularization to the images; rather,
MLAA enforces regularization implicitly via early stopping
of the optimization algorithm. In this work, we introduce
explicit regularization to both the activity and attenuation
maps by solving a total variation (TV)-constrained maximum
likelihood estimation problem. To solve the resulting non-
convex optimization problem, we leverage the alternating
direction method of multiplies (ADMM) algorithm following
the framework in [3].
The remaining paper is organized as follows. Section 2
provides details of the model, and the optimization algorithm;
in Section 3, we show numerical results of our proposed

method applied to a two-dimensional TOF-PET simulation
and compare its performance with MLAA. We end the paper
with a discussion in Section 4.

2 Methods

2.1 The TOF-PET model

We discretize a two-dimensional image into nk pixels; for
each k ∈ [nk] := {1,2, . . . ,nk}, λk and µk correspond to the
activity and attenuation level, respectively. Suppose there
are n` lines of responses (LORs) and nt TOF windows.
We denote by P ∈ Rn`×nk and T ∈ Rnt×n`×nk the projection
matrix and the TOF projection matrix respective, where
P̀ k is the projection matrix element for LOR ` and pixel
k and Ti`k is the sensitivity matrix element for TOF win-
dow i, LOR ` and pixel k. The TOF window sensitivity
along the LOR is given by wi(t) = exp

[
−(t− ti)2/(2σTOF)

]
,

where the sampling along the LOR is half of the full-
width- half-maximum (FWHM) of this Gaussian distribution
∆t = ti+1−ti = FWHM/2=

√
2log2 ·σTOF. For each i∈ [nt ]

and ` ∈ [n`], we observe a measurement Ci` following the
Poisson distribution:

Ci` ∼ Poisson
(

exp(−P>` µ) ·T>i` λ
)
. (1)

2.2 TV-constrained MLE

The negative log likelihood function under the above model
is

l(λ ,µ) = ∑
i`

{
exp(−P>i µ) ·T>i` λ +Ci` ·

(
P>i µ− log(T>i` λ )

)}
.

Letting Ncount denote the total count of the ground-truth ac-
tivity map, MLAA obtains estimated maps via minimizing
l(λ ,µ) over (λ ,µ) with the constraint that ∑

nk
k=1 λk = Ncount.

In our framework, we introduce additional constraints on the
images as explicit regularization. To be specific, we require
that Pµ ≥ 0 and that the total variation of both maps to be
bounded by pre-specified constants: ‖λ‖TV ≤ ηλ ,‖µ‖TV ≤
ηµ , where ‖ · ‖TV denotes the isotropic TV seminorm. Col-
lectively, our estimator is

(λ̂ , µ̂) = argmin
λ ,µ

l(λ ,µ)

s.t.
nk

∑
k=1

λk = Ncount, Pµ ≥ 0 (2)

‖λ‖TV ≤ ηλ ,‖µ‖TV ≤ ηµ .
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2.3 The ADMM implementation

We start by noting that l(·, ·) depends on (λ ,µ) through
(T λ ,Pµ), so we can write

l(λ ,µ) = f (T λ ,Pµ),

where f (u,v) = ∑i` ui` · e−vi −Ci`(−vi + log(ui`)). In order
to implement ADMM, we shall introduce auxiliary variables
(xλ ,xµ) with the constraints xλ = T λ and xµ = Pµ , (yλ ,yµ)
such that yλ = Dλ and yµ = Dµ; here D is the finite dif-
ference approximation to the spatial gradient operator. The
corresponding augmented Lagrangian function is

L (xλ ,xµ ,yλ ,yµ ,λ ,µ,wλ ,wµ) = f (xλ ,xµ) (3)

+δ (λ>1 = Ncount,xµ ≥ 0,‖yλ‖1 ≤ ηλ ,‖yµ‖1 ≤ ηµ) (4)

+(xλ −T λ )>wλ +(xµ −Pµ)>wµ +(yλ −Dλ )>zλ

+(yµ −Dµ)>zµ +
σλ

2
‖xλ −T λ‖2

2 +
σµ

2
‖xµ −Pµ‖2

2

+
ρλ

2
‖yλ −Dλ‖2

2 +
ρµ

2
‖yµ −Dµ‖2

2,

where δ (·) is the delta function; σλ , σµ , ρλ , and ρµ are
step-size parameters. ADMM then proceeds by iteratively
updating (xλ ,xµ ,yλ ,yµ), (λ ,µ) and (wλ ,wµ ,zλ ,zµ).

(xλ ,xµ ,yλ ,yµ)-update At step t, ADMM updates
(xλ ,xµ ,yλ ,yµ) via optimizing the augmented Lagrangian
function; the problem can be separated into sub optimization
problems over (xλ ,xµ), yλ and yµ , respectively. The
optimization problem with respect to (xλ ,xµ) is nonconvex;
it is however convex if we fix either xλ or xµ and optimize
over the other variable (this is also called a biconvex
optimization problem). For the update of (xλ ,xµ), we take
an alternating approach: we first update xλ while keeping xµ

fixed, and vice versa.

x(t+1)
λ

= argmin
xλ

∑
i`

{
exp(−x(t)

µ,i) · xλ ,i`−Ci` · log(xλ ,i`)
}

+(xλ −T λ )>wλ +
σλ

2
‖xλ −T λ‖2

2.

The above optimization problem can be analytically solved:

x(t+1)
λ ,i` = (−bi`+

√
b2

i`+4σλCi`)
/
(2σλ ),

where bi` = exp(−x(t)
µ,i)+wλ ,i`−σλ · (T λ )i`. Next, we up-

date xµ with xλ fixed:

x(t+1)
µ = argmin

xµ

∑
i`

{
exp(−xµ,i) · x(t)λ ,i`+Ci`xµ,i

}
+(xµ −Pµ)>wµ +

σµ

2
‖xµ −Pµ‖2

2.

The above optimization problem is convex with a strictly pos-
itive second derivative, and is separable over the components
of xµ . We shall use Newton’s method to obtain the optimizer,

and threshold the negative values in the optimizer to zero
in order to satisfy the non-negativity constraint xµ ≥ 0. The
update of yλ and yµ can be analytically written as follows:

y(t+1)
λ

= sgn
(
Dλ

(t)− z(t)
λ
/ρλ

)
·max

(
|Dλ

(t)− z(t)
λ
|−κλ/ρλ ,0

)
,

y(t+1)
µ = sgn

(
Dµ

(t)− z(t)µ /ρµ

)
·max

(
|Dµ

(t)− z(t)µ |−κµ/ρµ ,0
)
.

Above, sgn(x) denotes the sign of x; for a vector a, max(a,0)
means taking the maximum between each entry of a and 0;
the constants κλ and κµ are determined as follows:

κλ = inf{κ : ‖max
(
|Dλ

(t)− z(t)
λ
|−κ/ρλ ,0

)
‖1 ≤ ηλ},

κµ = inf{κ : ‖max
(
|Dµ

(t)− z(t)µ |−κ/ρµ ,0
)
‖1 ≤ ηµ}.

(λ ,µ)-update The update of λ and µ is obtained via opti-
mizing (3) with additional step-size regularization terms:

for λ : 1
2(

1
τλ
−σλ T>T −ρλ D>D) · ‖λ −λ

(t)‖2
2,

for µ : 1
2(

1
τµ
−σµP>P−ρµD>D) · ‖µ−µ

(t)‖2
2.

The constrained optimization problem with respect to (λ ,µ)
can be solved analytically, and the update rule for λ is

λ
(t+1) = λ̄ +

Ncount− λ̄>1
nk

1,

where λ̄ = λ
(t)+ τλ ·

{
T>
(
wλ +σλ (xλ −T λ

(t))
)

+D>
(
zλ +ρλ (yλ −Dλ

(t))
)}

,

and 1 ∈ Rnk is a vector with all the elements being 1. For µ ,

µ
(t+1) = µ

(t)+ τµ ·
{

P>
(
wµ +σµ(xµ −Pµ)

)
+D>

(
zµ +ρµ(yµ −Dµ

(t))
)}

.

(wλ ,wµ ,zλ ,zµ)-update Finally, we update the set of vari-
ables (wλ ,wµ ,zλ ,zµ):

w(t+1)
λ

= w(t)
λ
+σλ ·

(
x(t+1)

λ
−T λ

(t+1)),
w(t+1)

µ = w(t)
µ +σµ ·

(
x(t+1)

µ −Pµ
(t+1)),

z(t+1)
λ

= z(t)
λ
+ρλ ·

(
y(t+1)

λ
−Dλ

(t+1)),
z(t+1)

µ = z(t)µ +ρµ ·
(
y(t+1)

µ −Dµ
(t+1)).

3 Results

We evaluate the performance of our proposed method on a
simulated TOF-PET dataset, where the ground-truth activity
map and attenuation map are shown in Figure 1. The data
is generated from (1), and the total number of counts is
approximately 106.
In this numerical example, both the activity map and the
attenuation map are of the size 30 cm × 30 cm, and the
resolution of both maps is nk = 128. The LORs are placed in
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Figure 1: The ground-truth activity map (left) and attenuation
map (right). The attenuation map contains the gray matter and the
white matter, with a 5:1 activity ratio; the attenuation map includes
a skull enclosing uniform water attenuation.

a parallel-ray fashion, where for each LOR, the two detectors
are 200 cm apart; in total, there are n` = 128 LORs. The
FWHM is taken to be 9 cm.
We run our proposed method for 200 iterations, where the
parameters are chosen through a grid search. For comparison,
we also implement MLAA for 200 iterations. Figure 2-5 vi-
sualize the root mean squared error (RMSE) of data, activity
map, attenuation map, and the attenuation factor for the two
methods, respectively.
Figure 2 shows the RMSE of the data, where we can see that
both methods are able to bring down the error within a few
iterations. As the number of iteration increases, both error
curves converge to zero. Figure 3 concerns the RMSE of
the activity map. As the number of iteration increases, the
error curve of MLAA exhibits a “U” shape — it achieves the
minimum RMSE at iteration 37 — while that of our method
keeps decreasing as the number of iteration increases; the
figure also shows that our method is able to achieve lower
activity RMSE by comparing the minimum of the two curves.
Figure 4 and 5 demonstrate the RMSE of the attenuation
map and the attenuation factor, respectively. Similar to
the case of the activity map, by introducing the TV con-
straints our method is able to achieve lower attenuation map
RMSE (MLAA however still has reasonable attenuation fac-
tor RMSE even though the attenuation RMSE is large).
To further compare the reconstructed maps of MLAA and
our method, we present in Figure 6 the reconstructed activity
map with the lowest RMSE by our method and MLAA (for
our method, it is the estimate at iteration 200 and for MLAA
the estimate at iteration 37). Figure 7 similarly shows the
reconstructed attenuation map with the lowest RMSE for
both methods (iteration 51 for MLAA and iteration 200 for
our method).
In Figure 8, we also show the activity maps recovered by our
method and MLAA at iteration 10, 50, and 100, respectively.
As we can see again, as the number of iteration increases, the

Figure 2: Data RMSE versus iteration numbers. The plot is on a
log-log scale.

Figure 3: RMSE of the activity map versus iteration numbers.
The plot is on a log-log scale.

Figure 4: RMSE of the attenuation map versus iteration numbers.
The plot is on a log-log scale.

estimated map by MLAA gets noisier, while that given by
our method does not suffer from overfitting.

4 Discussion

This paper studies the simultaneous reconstruction of the
activity and attenuation map with TOF-PET data. The pro-
posed method improves upon MLAA by introducing explicit
regularization terms, i.e., the TV constraints. The ADMM
procedure is then applied to solving the resulting nonconvex
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Figure 5: RMSE of the attenuation factor versus iteration numbers.
The plot is on a log-log scale.

Figure 6: Recovered activity map with the lowest RMSE. Left:
the estimated activity map of our method at iteration 200; right:
the estimated activity map of MLAA at iteration 37.

optimization problem, and the proposed method is evalu-
ated on a simulated two-dimensional dataset, demonstrating
improved performance when compared with the MLAA.
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Abstract Exponential data consistency conditions (eDCCs) are equa-
tions that express the redundancy of information between exponential
projections. Exponential projections can be derived from parallel
SPECT projections and be used to detect and correct for patient mo-
tion during the acquisition. However, other physical effects such as
collimator resolution, scatter or noise could also introduce inconsis-
tencies in the projections. The purpose of this work was to evaluate
the impact of these effects on the eDCCs. We used ray-tracing and
Monte Carlo simulations to generate different sets of projections and
compared their consistency with two metrics based on eDCCs: the
absolute relative difference and a noise-aware metric that takes into
account the acquisition noise. The collimator resolution, the scatter
and the movement increase significantly the error in the eDCCs. The
noise-aware metric was more sensitive to patient motion than other
effects.

1 Introduction

Single photon emission computed tomography (SPECT) is
a key tool for diagnostic imaging which is also used for
treatment planning and monitoring of radionuclide therapies.
The long acquisition time makes SPECT imaging subject to
blur and artifacts due to patient motion. This motion also
induces a mismatch between the emission and attenuation
maps that may impact the quality of the SPECT images [1].

Data consistency conditions (DCCs) are equations that ex-
press the redundancy of information between projections.
DCCs have been used in PET to correct for patient motion
and to align the emission and attenuation maps [2]. In SPECT,
DCCs have also been used to estimate the attenuation map
from the emission projections [3]. More recently, Wells et
al [4] used exponential data consistency conditions (eDCCs)
to align the attenuation map to cardiac SPECT data after
rebinning pinhole data to parallel projections. eDCCs are
less restrictive than SPECT DCCs in that they do not require
projections taken over 360◦. Wells et al [4] used simulated
projections to evaluate eDCCs but they did not take into ac-
count the scatter or the collimator resolution, which we refer
to as the point spread function (PSF) in the following. More-
over, in parallel SPECT systems, projections are acquired
sequentially and may be affected by patient motion.

The purpose of this work was to assess the impact of physical
effects and motion on the eDCCs. To that end, ray tracing and
Monte Carlo simulations were used to generate several sets
of projections and to evaluate two metrics based on eDCCs.

2 Materials and Methods

2.1 Exponential data consistency condition

In parallel SPECT, measurements can be modeled by the
attenuated Radon transform. Let f (~x),~x∈R2, be the radioac-
tivity distribution of a mono-energetic emitter and µ(~x) be a
known spatially varying attenuation medium. The attenuated
Radon transform of f is

g(θ ,s) =
∫ +∞

−∞

f (s~uθ +t~vθ )exp
(
−
∫

∞

t
µ(s~uθ + t ′~vθ )dt ′

)
dt

(1)
with θ ∈ [0,2π) the angle of the projection, ~uθ =
(cosθ ,sinθ)T , ~vθ = (−sinθ ,cosθ)T . We assume that we
know a convex sub-region K in which the attenuation is con-
stant (µ(~x) = µ0, ∀~x ∈ K) and out of which the activity is
zero ( f (~x) = 0, ∀~x /∈ K). Under these two assumptions, the
exponential Radon transform can be computed from the atten-
uated Radon transform by a simple pointwise conversion [5]:

p(θ ,s) =
∫ +∞

−∞

f (s~uθ + t~vθ )eµ0tdt =C(θ ,s)g(θ ,s) (2)

with

C(θ ,s) = exp
(

τθ ,sµ0 +
∫

∞

τθ ,s

µ(s~uθ + t ′~vθ )dt ′
)

(3)

where τθ ,s is the location where the photons leave the region
K on their way to the detector along the lines defined by the
coordinates (θ ,s). With this model, any pair of exponential
projections p(θi, .) and p(θ j, .) are consistent with each other
if and only if [6]

P(θi,σi, j) = P(θ j,σ j,i) for σi, j = µ0 tan(
θi−θ j

2
) (4)

where P(θ ,σ) =
∫

∞

−∞
p(θ ,s)eσsds is the two-sided Laplace

transform of p(θ , .). There is no eDCC for opposite projec-
tions, when θi−θ j = π (mod2π).
This result can be applied independently to each line of 2D
parallel projections. We define Pi j as the average value of
P(θi,σi, j) over the N lines of the projections

Pi j =
1
N

N

∑
l=1

Pl(θi,σi, j) (5)

where Pl is the two-sided Laplace transform of the l-th line
of the projections.
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2.2 Data

A CT image of a thoracic patient was used as attenuation
map. The emission map was a spherical tumor of 20 mm
radius positioned approximately at the center of the liver
(Figure 1). Another pair of attenuation and emission maps
was defined by applying a 20 mm translation in the cranio-
caudal direction to simulate a rigid motion occurring during
the acquisition (the second emission map is shown in Fig-
ure 1). We used ray tracing with RTK [7] and Monte Carlo
with Gate [8] to create several sets of attenuated projections.
In RTK, one projector only models the attenuation effect
(Equation 1) and another one models the attenuation and the
PSF with parameters corresponding to a clinical dual-head
SPECT system (General Electric Discovery NM/CT 670).
The same system was modeled in the Monte Carlo simulation
and a total of 51×108 140 keV emission photons of 99mTc
were simulated. Several levels of scattered photons in the
output projections were considered: only primary photons
(no scatter), scatter correction using the double energy win-
dow [9] and no scatter correction. The projections generated
with RTK were normalized against the ones obtained with
Gate and Poisson noise was added. Each set of projections
had 60 angles regularly sampled over 360◦, each with 100
× 100 pixels and 4 mm isotropic spacing. In each case, one
set of projections with no motion was generated and used
as reference. A second set of projections was computed in
which the first thirty projections correspond to the first patient
position and the last thirty to the second one.

Figure 1: The two emission maps (in red and green) used to
simulate SPECT projections overlaid over the attenuation map
used with the green emission map. The white line corresponds to
the region K used for the conversion of the attenuated projections
to exponential projections.

2.3 Analysis

For each set of projections, the exponential projections were
computed by choosing an elliptic region K such that it en-
compassed the two emission spheres while being in the liver
in the two positions (Figure 1). The first attenuation map was
always used for the computation of the exponential projec-
tions to mimick the clinical scenario where the CT image is
acquired before the SPECT image.

Only a subset of the projection pairs was analyzed for finer
analysis, those with vertical and horizontal directions, i.e.
such that θ1 + θ2 = π (mod2π) and θ1 + θ ′2 = 0(mod2π)
respectively (blue and red segments in Figure 2). For a
pair of projections, we define the signed distance ρ = R~vθ1 ·
(sin(θ1+θ2

2 ),cos(θ1+θ2
2 ))T with R = 380 mm the detector-to-

isocenter distance (Figure 2). This selection allows the evalu-
ation of the impact of the motion on the eDCCs as the 20 mm
motion occurs after the first half of the acquisition (sec-
tion 2.2) so the two subsets of projections taken between 0◦

and 174◦ and between 180◦ and 354◦ are consistent. There-
fore, all pairs of projections with a vertical direction are not
impacted by motion whereas all the ones with a horizontal
direction are. Only 28 pairs in each direction were analyzed
out of the 60×58 = 3480 eDCCs.

x

z

~vθ1

~vθ2

~vθ ′2

~uθ1

~uθ2

~uθ ′2θ1

θ2 θ ′2

ρ

ρ

Figure 2: Selection of the pairs of projections for analyzing the
eDCCs. The grey rectangles represent three detector positions and
the white dots their centers. The blue and red segments symbolize
two pairs of projections, vertical and horizontal respectively.

For each pair of projections, the eDCCs were computed and
assessed with two metrics. The first one, was simply the
average value of the absolute relative error:

Eij = 2∗ 1
N

N

∑
l=1

|Pl(θi,σi, j)−Pl(θ j,σ j,i)|
Pl(θi,σi, j)+Pl(θ j,σ j,i)

. (6)

Following the work of Mouchet [10], we also define a noise-
aware metric which corresponds to the mean absolute differ-
ence divided by the standard deviation of the mean difference:

NEij =
1
N

∑
N
l=1 |Pl(θi,σi, j)−Pl(θ j,σ j,i)|
√

N
√

Var(Pi j)+Var(Pji)
. (7)

Using the properties of the variance of the weighted sum of
random uncorrelated variables, we have

Var(Pi j) =
1

N2

N

∑
l=1

Var(Pl(θi,σi, j)). (8)
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After discretization and by applying the definition of the
Laplace transform combined with the relation of equation 2
we can write

Var(Pl(θi,σi, j)) = ∆s2
M

∑
k=1

C2
l (θi,sk)Var(gl(θi,sk))e2σi jsk

(9)
with ∆s the pixel spacing, M the number of pixels per line and
Cl(θ ,sk) and gl(θ ,sk) the k-th pixel of the l-th line of C(θ ,s)
and g(θ ,s). The photon noise follows a Poisson distribution
so Var(gl(θi,sk)) = gl(θi,sk) and

Var(Pi j) =
∆s2

N2

N

∑
l=1

M

∑
k=1

C2
l (θi,sk)gl(θi,sk)e2σi jsk . (10)

3 Results

The evolution of the metrics with the signed distance ρ char-
acterizing a pair of projections is shown in Figure 3 for the
ray tracing simulations. In the ideal case (no noise, no PSF
and no motion), the relative error Eij had an average value
of 0.2% in the vertical and horizontal directions which indi-
cates that the projections are consistent. With motion, the
relative error in the horizontal direction became much higher
(108.0% on average) and a slight increase of 2.2% in the
vertical direction was observed. When modeling the PSF,
the relative error of eDCCs increased even without motion
between the projections. In that case, the Eij value was on
average 16.3% and 54.0% in the vertical and horizontal di-
rections, respectively. With motion, the relative error also
increased in the horizontal direction compared to the case
without PSF. In all cases, the increase was higher when the
signed distance got close to 0 mm. Additional Poisson noise
in the projections produced similar results.
When assessing the eDCCs with the noise-aware metric, the
inconsistency due to the PSF seemed to be mitigated. Indeed,
without motion, the value of the noise-aware metric with PSF
remained close to the one without PSF. In the case of motion
and PSF, the value of NEij in the horizontal direction was
always above the one in the vertical direction but got closer
when the signed distance approached 0 mm.
Similar plots are shown in Figure 4 for the eDCCs computed
from the projections obtained with Monte Carlo simulations.
The main difference with the ray tracing projections with
PSF and noise was the addition of scattered photons. The
plot with circle markers corresponds to the simulation with
primary photons only, the triangles markers to the one with
DEW scatter correction and the squares to the one without
scatter correction. Without motion, the relative error Eij
decreased with better scatter correction for pairs in the hori-
zontal direction but the opposite was observed in the vertical
direction. In the two directions, the absolute relative error
was higher when the signed distance was close to 0 mm. For
all levels of scattered photons, the relative error in the hori-
zontal direction increased with the addition of the motion but
the error increased with better scatter correction.
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Figure 3: Relative error and noise-aware metric computed from
the projections obtained with ray tracing. The blue and red lines
correspond to the eDCCs computed in the vertical and horizontal
directions, respectively (Figure 2). Each point is the metric of one
pair of projections.

As for ray tracing simulations, the noise-aware metric seemed
to reduce the error of the eDCCs. Without motion, it de-
creased with better scatter correction in both the horizontal
and vertical directions. With motion, the value of the noise-
aware metric in the horizontal direction increased and was
similar for the three levels of scatter. The error was signifi-
cantly higher in the horizontal direction than in the vertical
direction except for the four pairs of projections where the
signed distance was close to 0 mm.
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Figure 4: Relative error and noise-aware metric computed from
the projections obtained with Monte Carlo simulations. The blue
and red lines correspond to the eDCCs computed in the vertical
and horizontal directions, respectively (Figure 2). Each point is the
metric of one pair of projections.

4 Discussion

Ray-tracing and Monte Carlo simulations were used to assess
the effect of noise, PSF, scatter and motion on eDCCs. They
were evaluated with two metrics: the mean absolute relative
error (equation 6) and a noise-aware metric (equation 7).
In the closest simulations to the model of Equation 1 (ray-
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tracing without modelling any physical effect), the relative
error of the eDCCs was close to 0% for all the pairs of
projections and therefore the projections were consistent. As
noticed by Wells et al [4], the addition of Poisson noise
slightly impacts the eDCCs.
On the other hand, the PSF appeared to have a much more
detrimental effect on the eDCCs. This is due to the depth-
dependence of the PSF in SPECT as the source to detector
distance was not the same for the two projections in our pairs.
The error increases with increasing source to detector dis-
tance difference between the projections of the pair. This
is why we observed a larger inconsistency in the horizontal
direction than in the vertical direction in our results. If the
PSF were the same for all projections, one would expect the
eDCCs to be verified. This was verified with ray tracing sim-
ulations of a centered spheroid source for which the relative
error of the eDCCs was close to 0% (data not shown).
The scatter also introduced inconsistencies in the projections.
At first glance, it was surprising that the relative error was
not always related to the level of scatter correction. This is
a side effect of the normalization as the non-normalized ab-
solute difference 1

N ∑
N
l=1 |Pl(θi,σi, j)−Pl(θ j,σ j,i)| led to the

expected result, i.e., decreasing inconsistency with increas-
ing scatter correction (data not shown). The inconsistency is
mostly due to measuring photons outside the projection of
the K-region. To overcome this issue, one could mask out
the SPECT projections with the forward projections of the
K-region [4]. Using this approach on our data significantly
mitigates the impact of scattered photons (data not shown).
The motion was the effect that introduced the largest incon-
sistencies. In all cases, an important increase of the error was
observed in the horizontal direction when there was motion
between the projections. In the vertical direction, a slight in-
crease was noticed for the pairs of projections with a positive
signed distance. These pairs correspond to the projections
obtained with the shifted emission map in both projections
but the non-shifted attenuation map was used for the com-
putation of the exponential projections (Equation 2) which
introduced small inconsistencies. The error of most pairs
of projections was still much higher in the horizontal direc-
tion than in the vertical one making the eDCCs a promising
solution to detect patient motion during SPECT acquisitions.
In all cases, the absolute relative error was higher when the
signed distance got close to 0 mm i.e. when the projections
of the pair were close to be 180◦ apart. When taking the
Laplace transform, the exponential projections are multiplied
by exp(σi js) and lim

θi−θ j→π
σi j =+∞ so for projections close to

be 180◦ apart, small inconsistencies could be highly magni-
fied. By using the noise-aware metric that takes into account
the variance of the measurement, we managed to reduce this
effect. This metric is also more robust to the inconsistencies
introduced by the PSF and the scatter and therefore more
suitable for motion detection or for applying the method to
real acquisitions.

5 Conclusion

eDCCs were evaluated on simulated datasets with increasing
levels of realism. The PSF, the scatter and the movement were
source of inconsistencies in the projections. We introduced
a noise-aware metric which seems to be more robust to the
PSF and scatter effects and which might be a promising way
to detect patient motion.
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Abstract In contrast to conventional computed tomography (CT), 
spectral CT provides additional information through the quantification of 
iodine-based contrast material for tissue perfusion. Various spectral CT 
designs have been introduced over the last decade with each undergoing 
significant improvement since initial implementation. Although current 
designs work for both adult and pediatric imaging, there is still room for 
customization to improve spectral performance and dose for pediatric 
imaging. It is our goal to investigate the impact of a theoretical spectral 
CT system using the combination of individual technologies, on 
improving sensitivity and decreasing noise when estimating iodinated 
contrast agents in pediatric imaging. To accomplish this task, we 
combine dedicated K-edge filter designs with a dual-layer spectral CT to 
estimate the spectral performance of this hybrid combination. Results 
show up to 17.3% decreased iodine estimation noise and increased iodine 
SNR by 120% with holmium prefiltration. This study provides 
preliminary insights into the application of combining CT technologies 
for improving quantification in pediatric spectral CT. 

1 Introduction 

    In contrast to conventional CT, spectral CT allows 
enhanced tissue and material analysis through the collection 
of two or more measurements with distinct photon energy 
spectra. This quantitative ability is used for evaluation of 
iodinated contrast agents yielding perfusion metrics with 
functional information used for lesion differentiation, tumor 
staging, and assessment of treatment response [1].  
    Instrumentation of spectral CT can be achieved through 
spectral detectors (dual-layer, photon counting), use of 
multi-energy x-ray tubes (rapid kVp-switching, dual 
source), or use of specialized filters to produce a split 
spectral beam [2]. Though current spectral CT systems 
work for both adult and pediatric patients, there have been 
a limited number of studies on the optimization of spectral 
CT for the pediatric population [3-4]. Achieving low 
radiation dose is a priority for pediatric imaging. More 
generally, across all spectral CT applications, there is a need 
to improve quantification sensitivity and accuracy for low 
concentration of iodine. In oncologic imaging, a high 
sensitivity of low concentration iodine contrast is required 
and additional visibility can significantly increase 
confidence in tumor identification [5-6]. Thus, there is an 
opportunity to introduce spectral CT designs specifically for 
pediatic imaging to address current challenges.  
    One potential solution is to investigate implementation of 
“hybrid” models which combine existing techniques to 
enable spectral CT. There is evidence that hybrid spectral 

CT may rectify imperfections in quantification and increase 
contrast visibility at equivalent or lower doses [7]. 

    We hypothesize that a configuration utilizing a clinical 
dual-layer detector and single K-edge filter, as depicted in 
Figure 1, may outperform non-combined systems. Spectral 
detectors have high dose efficiency but suffer from overlap 
of photon energy spectra due to hardware limitations. 
Implementing multiple K-edge filters to generate a number 
of spectral beamlets has been validated as a cost-effective 
technique [8-9], but it has suboptimal sampling or requires 
advanced reconstruction techniques [10]. Combining 
spectral detectors with a K-edge filter has the potential to 
improve the accuracy of low concentration iodine 
quantification in pediatric scans while also keeping 
radiation doses low. 
    In this study, we investigate whether the addition of a 
low-cost K-edge filter to dual-layer CT improves spectral 
performance for pediatric imaging. Our theoretical hybrid 
model utilizes the characteristics of a dual-layer spectral CT 
system, which includes polychromatic spectrum, detector 
responses, and a K-edge material filter, to determine the 
optimal material and thickness for pediatric imaging to 
increase spectral sensitivity of iodine detection. 

2 Materials and Methods 

2.1 Phantom design 
    To model patient habitus and low concentrations of 
iodine, phantoms were designed with varying path lengths 
of water and iodine as defined in Eqn. 1. For simplicity, 

Figure 1: Schematic of proposed design combining dual-
layer spectral CT detectors and K-edge filtration for 
optimal spectral performance. 
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each phantom consisted of a mixture of water [1 g/mL] and 
iodine with a concentration of 1 mg/mL. The water path 
lengths, or patient diameter, varied from 10 to 20 cm. Iodine 
path lengths were set to 0.5 cm and 2.5 cm, equivalent to 
1 cm of 0.5 mg/mL iodine and 1 cm of 2.5 mg/mL iodine. 
 
2.2 Polychromatic forward projection 
    Polychromatic x-ray spectra photons of a single pencil 
beam were simulated using the energy spectra of a clinical 
dual-layer detector CT (IQon Spectral CT, Philips 
Healthcare) at 120kVp and 200mAs. The projection value 
𝐼 , for layer i, is given by the following expression: 
 

𝐼 = ∫ 𝑠 (𝐸) ∙ exp − ∑ 𝜇 (𝐸) ∙ 𝜌 ∙ 𝑙 𝑑𝐸,          (1) 
𝑖 = 1, 2;  𝛼 = 𝑤𝑎𝑡𝑒𝑟, 𝑖𝑜𝑑𝑖𝑛𝑒 

 

where 𝑠 (𝐸) is the combined x-ray source spectra (in keV) 
and detector response (including the energy weighting) for 
the low and high energy layers, and 𝜇 (𝐸) is the mass 
attenuation coefficient [cm2/g] at the energy E of material 
α, with density 𝜌  [g/cm3], with a given path length 𝑙  [cm], 
in the phantom containing water and iodine. The central 
detector responses represent 𝑠 (𝐸). 𝐼  changes with addition 
of a K-edge filter as follows: 
 

𝐼 = ∫ 𝑠 (𝐸) ∙ exp −𝜇 ∙ 𝜌 ∙ 𝑙 ∙

                           exp − ∑ 𝜇 (𝐸) ∙ 𝜌 ∙ 𝑙  𝑑𝐸,               (2) 
𝑖 = 1, 2;  𝛼 = 𝑤𝑎𝑡𝑒𝑟, 𝑖𝑜𝑑𝑖𝑛𝑒 

 
where 𝜇 (𝐸) is the mass attenuation coefficient [cm2/g] at 
the energy E for filter material f with thickness lf [cm] and 
density 𝜌  [g/cm3].  
    We assume Gaussian distributed quantum noise for the 
energy integrating detectors. An additional assumption is no 
x-ray crosstalk between the two energy-integrating dual-
layer detectors. Under this condition, the two signals are 
statistically independent theoretically and in practice [11]. 
 
2.3 Filter selection & dose modulation 
    Filter materials were selected if their respective K-edge 
were within the photon energy range containing the most 
overlap of dual-layer detectors’ responses, and they were 
available to purchase as a thin film/sheet. Mass attenuation 
coefficients for each of the materials in Table 1 were 
collected from XCOM NIST database [12]. Filter 
thicknesses ranging from 0.01 to 0.2 mm were selected 
based on purchase availability. 
    The amount of patient exposure in each simulation was 
set by multiplying the initial 𝑠 (𝐸) spectra by a computed 
factor to yield a pre-determined number of total photons 
(10, 20, 100) detected by low and high energy layers after 
patient attenuation. We defined a single computed factor for 
each combination of patient size and iodine concentration. 
To ensure dose neutrality for simulations with pre-filtration, 

we scaled the sum of spectrum energy before patient 
attenuation, or air kerma, in filtered simulations to be equal 
to the air kerma of the non-filtered spectra. This is 
analogous to the scaling of tube current in a clinical 
experiment.  
 
Table 1: Relevant filter materials and their properties. 

Material 
Atomic 

number (Z) 
K-edge 
(keV)  

Physical 
density 
[g/cm3] 

Holmium 67 55.6 8.80 
Erbium 68 57.5 9.05 
Ytterbium 70 61.3 6.98 
Tantalum 73 67.4 16.60 

 
2.4 Performance metric calculation 
    The negative log-likelihood L for the observation of the 
set of projection values 𝐼 , with Gaussian quantum noise 
distribution with mean μi and variance σi

2, is defined in Eqn. 
3. We assume μi and σi

2 depend on the line integrals for 
water and iodine which allows us to compute the Fisher 
information matrix Fαα for each material α for each spectral 
CT configuration. A full derivation of these steps is outlined 
by Roessl and Herrmann [13].  
 

𝐿 =  −𝑙𝑛 ∏
( ) / exp (−

( )
)             (3) 

𝐹 = ∑ + ∑
( )

           (4) 

𝜎 ≥ 𝐹                                (5) 

𝑆𝑁𝑅 = ,                                 (6) 

𝑖 = 1, 2;  𝛼 = 𝑤𝑎𝑡𝑒𝑟, 𝑖𝑜𝑑𝑖𝑛𝑒 
 

The Cramer-Rao lower bound (CRLB) of variance, σα
2, 

determines the minimum noise in the predicted line integral 
for water and iodine, respectively. The signal-to-noise ratio 
(SNR) was assessed using the CRLB variance estimate of 
noise in the basis decomposed projections to compare 
system performance of water/iodine across simulations. 
    Lastly, spectral separation was estimated as the 
difference between the weighted average photon energy 
(keV) of the high energy and low energy detector layers.  

3 Results 

3.1 Quantification noise & SNR results 
    Hybrid combination spectral CT with holmium, erbium, 
and ytterbium K-edge filters, for all filter thicknesses, 
patient sizes, and iodine concentrations, showed reduction 
in estimation noise of iodine path length and increased 
iodine and water SNR compared to dual-layer alone. In 
contrast, tantalum filtration demonstrated moderate 
improvement in iodine SNR and decreased estimated iodine 
noise in the largest phantom (20 cm) only. 
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     Figure 2 shows absolute improvement in iodine and 
water material path length noise estimation with addition of 
one of holmium, erbium, and ytterbium filters at all tested 
thicknesses, patient sizes, iodine at 2.5 cm, with the lowest 
estimated detector dose level (10 photons). Holmium, the 
K-edge filter with the largest improvement in iodine noise 
estimation, had relative error differences of -0.013 cm 
to -0.147 cm in the 10 cm sized patient. These values 
represent improved estimation statistics from 1.4% to 
16.7% compared to non-filtered performance. Erbium and 
holmium were comparable for all water/iodine results 
across varying patient sizes and filter lengths. Ytterbium 
had a maximum decreased iodine noise by 11.8%. Tantalum 
increased iodine noise by up to 15% in the smaller patients 
but showed improved material estimation up to 2.8% in the 
20 cm pediatric diameter. As patient sizes increased, the 
iodine quantification noise increased for non-filtered, 
holmium, erbium, and ytterbium filtered cases. Water 
estimation noise remained relatively constant with 
changing patient size in the configuration with no filter. 
    Filters which reduced the CRLB variance estimate also 
increased relative iodine SNR by up to 120% in the 10 cm 

phantom with 2.5 cm iodine, as seen in Figure 3 with 
holmium filtration, lf = 0.02 cm. Ytterbium increased 
relative SNR in water and iodine, and tantalum showed 
improved water/iodine results in the largest phantom.  
    Though absolute CRLB noise estimates decreased with 
increased exposure, the relative SNR changes seen in 
Figure 3 are the same across all dose levels (10, 20, 100 
photons).  
    With 0.5 cm of iodine, filter performance estimation 
noise trends were the same as for 2.5 cm of iodine. The 
smallest iodine noise using the lowest detector dose was 
0.87 cm in the 10 cm patient. Compare this to an estimated 
iodine noise of 0.73 cm using holmium at 0.2 mm, a 17.3% 
reduction. The average decrease in iodine noise in all 
phantoms was 0.1 cm for holmium with filter sizes between 
0.05 to 0.2 mm. For patient sizes 10 and 15 cm, and filter 
thicknesses of 0.2 mm, holmium and erbium increased 
relative iodine SNR by 120% on average. Non-filtered 
simulations showed a maximum ideal iodine SNR of 0.57 
for the lowest estimated dose in all patient sizes whereas 
holmium prefiltration increased iodine SNR up to 0.69. 

Figure 2: Comparison of estimated quantification error to baseline error in patient width of 10, 15, and 20 cm with 2.5 cm 
of iodine contrast at the lowest estimated dose level (10 total photons). The dashed black line represents quantification error 
in dual-layer alone. 

Figure 3: Relative changes in material domain SNR of hybrid spectral CT to dual-layer alone in patient sizes 10, 15, and 
20 cm with 2.5 cm of iodine at the lowest estimated dose level (10 total photons). The dashed black line represents no 
change in SNR compared to the non-filtered dual-layer simulation. 
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3.2 Spectral separation 

    Figure 4 shows results of estimated spectral separation 
for each K-edge prefilter configuration. Holmium and 
erbium have spectral separation up to 20.2 keV with 0.2 mm 
filter length compared to dual-layer CT with separation of 
16.2 keV after attenuation through a 10 cm phantom with 
0.5 cm of iodine. As patient sizes increase, ytterbium and 
tantalum increase less than 1 keV in separation for each 
filter thickness whereas erbium and holmium decrease 
separation by less than 1 keV. Tantalum prefiltration results 
in a wider spectral separation compared to dual-layer CT 
only in the 20 cm patient. 

4 Discussion & Conclusion 

    In this work, we utilized our simulation framework to 
demonstrate that a dedicated K-edge filter design in 
combination with a clinical dual-layer spectral CT improves 
water/iodine quantification and spectral separation for 
pediatric imaging. Throughout this paper, it is important to 
note that all results are derived without the use of advanced 
processing techniques [14]. Filter materials holmium, 
erbium, and ytterbium at thicknesses of 0.01 to 0.2 mm 
decrease quantification noise and improve relative SNR for 
iodine and water in the projection domain using low 
concentrations (0.5 and 2.5 mg/mL) of 1 cm iodine. 
Holmium and erbium materials at 0.2 mm filter length 
showed optimal spectral performance with iodine noise 
reduction by 17.3% and increased iodine SNR by 120% 
compared to the non-filtered configuration with the lowest 
iodine concentration. 
    Spectral separation was increased for K-edge materials 
holmium, erbium, and ytterbium for all patient sizes. This 
indicates that the two detector responses benefit from 
additional filtration at these K-edges (55-61 keV). Though 
maximizing spectral separation is not a direct measure of 
system performance, reducing overlap is an important 
factor in improving material decomposition for accurate 
quantification [14]. An ideal dual-layer detector has a 
spectral separation of greater than 30 keV [14], while we 
were able to achieve separation around 20 keV after patient 
attenuation with combining technologies. 

    Feasibility studies will need to be conducted to determine 
the patient size limit where available x-ray flux becomes 
insufficient. In our simulations, the best performing filter 
materials, holmium and erbium, reduced flux by 70% at 
0.2mm filter thickness. Further, use of advanced material 
decomposition and noise reduction methods will be applied 
to estimate additional improvement compared to current 
implementation. Lastly, simulation and measurement of 
scans for pediatric spectral imaging, specifically from 80 to 
100kVp, will be necessary to demonstrate clinical 
translation. 
    One limitation of this study design is the dependence on 
a given input spectra and detector response for optimizing 
K-edge filter design. However, this process could be 
generalized and repeated for other configurations, including 
photon counting detectors, to identify K-edge filter designs 
best situated to minimize quantification error of iodine in 
varying patient sizes. Preliminary studies have been 
presented to simulate the potential for overcoming 
shortcomings of photon counting detector designs [15]. 
    Given the high concern of patient delivered dose in 
pediatric imaging, one additional benefit of K-edge 
filtration may be the reduction of low energy photons that 
contribute to skin dose. Spectral CT may also provide 
advanced perfusion metrics which could mitigate the risk-
benefit ratio in pediatric imaging. 
    Our study demonstrates the possibility of improving 
quantification performance by incorporating the spectral 
diversity of individual implementation technologies into 
hybrid designs. Experimental studies are necessary to 
translate our findings into clinical practice. While limited x-
ray flux remains a concern when adding additional 
filtration, an opportunity arises in pediatric imaging to 
improve spectral performance and dose utilization due to 
the smaller transverse body diameter in children.  
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Figure 4: Energy separation between two detector 
responses after attenuation through 10 cm of water and 
0.5 cm of iodine at the lowest exposure dose. 
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Abstract We present a method for selecting valuable projections
in computed tomography (CT) scans to enhance image reconstruc-
tion and diagnosis. The approach integrates two important factors,
projection-based detectability and data completeness, into a single
feed-forward neural network. The network evaluates the value of
projections, processes them through a differentiable ranking function
and makes the final selection using a straight-through estimator. Data
completeness is ensured through the label provided during training.
The approach eliminates the need for heuristically enforcing data com-
pleteness, which may excludes valuable projections. In addition, the
calculation of the projection-based metric can be significantly acceler-
ated by using a neural network. The method is evaluated on simulated
data in a non-destructive testing scenario, where the aim is to maximize
the reconstruction quality within a specified region of interest. We
achieve comparable results to previous methods, laying the foundation
for using reconstruction-based loss functions to learn the selection of
projections.

1 Introduction

In the field of computed tomography (CT), a series of projec-
tions are obtained to produce a three-dimensional represen-
tation of the object of interest. However, not all projections
are equally essential for image reconstruction and diagnos-
tic purposes [2]. A projection is considered more valuable
when the amount of information gain in the chosen set of
projections for reconstruction is higher. Selecting the most
valuable projections can enhance the detection of anomalies
or defects, improve imaging efficiency, and minimize noise
and artefacts in the final reconstruction. In order to determine
an optimized CT trajectory, it is necessary to balance the
individual value of each projection with the overall value of
the set of projections used for reconstruction.
One approach to selecting valuable projections is through
task-based image quality metrics. These metrics quantify
the performance of a given projection with respect to a spe-
cific imaging task, such as detecting small structures or pre-
serving low contrast details. By evaluating each projection
using a task-based image quality metric, the most valuable
projections can be selected for inclusion in the image recon-
struction process. As a secondary criterion, data complete-
ness should be satisfied. Simultaneously optimizing both
projection-based metrics and set-based metrics is essential
for improving the quality of the reconstruction. However,
being effective in projection-based metrics does not neces-
sarily result in being valuable in the context of the set-based
metrics.

In our recent work [1], we investigated the trainability of the
projection-dependent detectability index (PDI) for a specific
class of objects and its usability for CT trajectory optimiza-
tion. Because this does not ensure data variability if com-
puted per projection, we additionally introduced a haversine
distance constraint in the optimization. The aim is to opti-
mize the quality of the reconstruction in a predefined region
of interest. The optimization problem is formulated to maxi-
mize the detectability index predicted by a neural network,
while ensuring that the haversine distance constraint is met.
However, this approach may excluded valuable projections
that enhance resolution in the region of interest.
In this work, we present an approach to address the issue of
manually incorporating data completeness into the data anal-
ysis process. Our solution involves integrating this constraint
into the neural network architecture. The network output
directly indicates an optimized set of projections, which can
be used to reconstruct the volume with high accuracy in the
region of interest. To achieve this, we propose an adaptation
of the ResNet-18 architecture. This outputs a hidden repre-
sentation for each projection, which are processed through
a differentiable ranking function to rank the projections. A
straight-through estimator is used to make the final selection
of projections. To connect this output to a set of projections,
the integer program introduced in [1] is used to generate a la-
bel during training. Our approach is unique in that it directly
balances individual projection value and overall set value,
ensuring that the final selection of projections maximizes
reconstruction quality in the region of interest. Furthermore,
the time-consuming analytical computation of the detectabil-
ity index is integrated into the neural network, resulting in
a significant speedup for the computation of an optimized
trajectory for the trained domain. We demonstrate the utility
of our method in a non-destructive testing scenario by maxi-
mizing the reconstruction quality within a specified region of
interest using a limited number of projections.
To summarize, this paper makes the following contributions:

• We introduce a network architecture that integrates both
projection-based and set-based evaluation metrics for
selecting a pre-defined number of projections.

• Our approach demonstrates the capability of learning a
heuristic that is not limited to single projections, thereby
establishing the basis for using reconstruction-based
loss functions to guide the selection of projections.
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2 Methods

We propose a combination of projection-based and set-based
evaluation metrics using a three-step neural network ap-
proach. The first step involves reducing each projection to a
single value using a modified ResNet-18 architecture. The
regressed values are then collected in a single vector, which
represents the value of each projection. The second step in-
volves applying a differentiable ranking function (see Section
2.2) to this vector, resulting in a ranking of the projections.
Lastly, the threshold function of the Straight-Through Esti-
mator (see Section 2.3) is applied to convert the ranking into
a binary vector that represents the selection of projections.
An overview can be seen in Figure 1.

2.1 Projection-Dependent Detectability Index

The projection-dependent detectability index is a measure of
the quality of a single projection and its ability to contribute
to the observability of a signal in a reconstructed image. It is
used to evaluate the performance of different CT projection
angles. The PDI is calculated using the non-prewhitening
matched filter observer model (NPWM) described in Stay-
man et al. [2–4]. The NPWM model defines the modulation
transfer function (MTF) and noise power spectrum (NPS) as
functions of the position of the target voxels in the volume,
denoted by (x,y,z). The analytical equations for both the
MTF and NPS in the context of iterative penalized-likelihood
reconstruction were developed by Gang et al. [5]. The PDI
is given by the equation

d2(x,y,z) =
[
∫∫∫

|MT F(x,y,z)|2|Wt |2d fxd fyd fz]
2∫∫∫

|NPS(x,y,z)MT F(x,y,z)|2|Wt |2d fxd fyd fz
(1)

where Wt is the Fourier transform of the region of interest
to be imaged with the highest quality. A high detectability
index indicates that the required signal is effectively detected
in the respective projection according to the task function Wt .

2.2 Differentiable Ranking

The ranking operator is a discontinuous function, lacking
differentiability, making it unsuitable for use as a component
in the training of neural networks, as the gradients necessary
for optimization are not defined. To address this issue, differ-
entiable soft ranking, a technique proposed by Blondel et al.
[6] allows neural networks to learn a ranking function that
can be used to order elements in a set, such as images in a
dataset, based on some criterion. The algorithm, a variation
of sorting networks, is more efficient in terms of computation
time and memory requirements compared to other differen-
tiable sorting algorithms.
The basic idea of the technique is to reformulate the de-
scending ranking operation as a linear program over the per-
mutahedron. A permutahedron P(w), where w ∈ Rn, is a
polytope that represents the symmetries of a permutation w,
with vertices corresponding to all possible permutations of a

set of elements and edges corresponding to transpositions of
adjacent elements. The linear program can be written as

r(θ) = argmax
µ∈P(ϕ)

⟨µ,−θ⟩ (2)

where θ ∈ Rn is the vector of scores produced by the neural
network and ϕ = (n,n− 1, . . . ,1). An optimal solution is
mostly achieved at a vertex of the permutahedron according
to the fundamental theorem of linear programming [7].
To ensure differentiability, the authors introduce strongly
convex regularization Ψ to the linear program PΨ(−θ ,ϕ).
The regularization strength is controlled through a parameter
ε > 0, which is multiplied by Ψ. The resulting Ψ-regularized
soft ranking can be formulated as

rεΨ(θ) = PΨ(−θ/ε,ϕ) (3)

In this context, we use a quadratic regularization term
Q(µ) = 1

2∥µ∥2. Using Ψ = Q, the linear program for the
soft ranking over the permutahedron results in

rεQ(θ) = PQ(−θ/ε,ϕ) = argmax
µ∈P(ϕ)

⟨µ, −θ/ε⟩−Q(µ) (4)

Ascending-order soft ranking can be obtained by negating
the input.

2.3 Straight-Through Estimator

After obtaining a ranking for the projections, the next step is
to convert it into a selection of the projections. To accomplish
this task, it is necessary to find a function that assigns values
of 0 and 1 to the projections based on the ranking. The
threshold function, as shown in Equation (5) , is one way to
implement this.

thresh(x) =

{
1 x ≤ k
0 x > k

(5)

Here, it is assumed that the ranking is in descending order
and the goal is to select k projections. Thresholding, how-
ever, often causes issues during backpropagation because its
derivative is zero. To address this issue, the Straight-Through
Estimator (STE) is used in the backward pass as introduced
in [8]. The STE allows the network to learn from the chosen
projections during training by backpropagating through ap-
plying the derivative of the identity function. This allows for
the gradients to be computed and updated correctly.

3 Experiments

3.1 Data

In this work, we conducted simulation experiments within
the domain of non-destructive testing. The aim was to iden-
tify defects in a pre-specified region of interest. To achieve
this, three test specimens of dimensions 10cm×8cm×8cm,
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Figure 1: Overview of the proposed approach. First, each projection is regressed to a single value. This value is used as a basis for the
ranking. To generate a selection out of the ranking, we utilize a straight trough estimator.

made of aluminium with a density of 2.7g/cm3, were se-
lected. Six different representations of each test specimen
were generated, each with the same size and density, but with
variations in the placement of the spherical-shaped defect,
with a radius of 1mm. As a result, 18 distinct test specimens
were obtained.
We defined a geometry for the CT imaging setup by fixing the
detector-isocentre distance and the source-detector distance
to 3m and 4m, respectively. The detector and source were
positioned to face each other, which results in restricting the
scan positions to a sphere. We parametrized the problem
using azimuth angle ϕ and elevation angle θ using spher-
ical coordinates. Each CT trajectory consisted of a set of
pairs (ϕt ,θt) for t ∈ 0, . . . ,N, where N is the total number
of projection images. Initially, we sampled N = 1000 scan
positions on a sphere using a Fibonacci-based sampling for
uniform surface coverage [9].
The projection data was simulated using the Fraunhofer
EZRT simulation software XSimulation with a 225 keV poly-
chromatic spectrum. The test specimens were placed at the
centre of the world coordinate system. The detector was
chosen to have a size of 375×375 pixels and a pixel pitch
of 400 µm× 400 µm. The PDI was calculated analytically
using Equation (1). This allowed us to determine a set of
projections through the integer optimization problem includ-
ing the haversine distance constraint introduced in [1], which
resulted in a binary vector y ∈ {0,1}N where 1 indicates a
chosen projection. In this work, this used as a label for train-
ing. In this study, we set the number of possible projections
in the optimized CT trajectory to k = 100.

3.2 Neural Network Architecture

The network was trained on 1000 projections of 15 distinct
test specimens, such that 3 test specimens, one for each type
of test specimen, remained to test the network performance.
To predict the optimal set of projections for a specific task, we
employed a Convolutional Neural Network (CNN) approach.
The ResNet-18 architecture was adapted for regression by
adding a single fully connected layer to perform the regres-

sion towards a scalar value. The network was trained using a
Binary Cross Entropy loss function with the Adam optimizer
and a learning rate of 3e−5. The pre-trained ResNet-18 was
initialized with weights from the ImageNet dataset and the
fully connected regression layer was initialized randomly.
The final selection of projections was determined using the
straight-through estimator as described in Section 2.3, yield-
ing a binary representation of the ranking where a value of
1 indicates the projection belongs to the k highest-ranked
projections. The training process utilized a batch size of 1
corresponding to a complete CT scan of a test specimen and
was performed for a maximum of 600 epochs.

4 Results

To assess the performance of the proposed method, a com-
parison was conducted between the reconstructed volume
obtained from the predicted optimal set of projections and
the optimal set of projections according to the integer pro-
gram in [1]. The reconstruction was performed using the
Algebraic Reconstruction Technique (ART) with 3 iterations.
The evaluation of the reconstructed images was based on
two standard image quality metrics,the Structural Similarity
Index (SSIM) and the Root Mean Squared Error (RMSE).
The results of this comparison are presented in Table 1. Our
analysis showed a positive correlation between a decrease in
RMSE and an improvement in SSIM. Moreover, the location
of the defect was crucial for both the reference method and
the proposed method to perform effectively. Our proposed
method was able to achieve results that were comparable to
the projection set indicated by the label, especially in terms of
reconstruction quality. This is shown Figure 2, where the grey
values of a specific slice of our heartgear test specimen were
examined.It was found that the areas of the defect between
the prediction and the label are very similar. In addition, it
can be seen that the structure of the defect in particular could
be clearly depicted, but the same resolution could not be
achieved as with the reference reconstruction. Even though
there were more reconstruction artefacts in our proposed
method, this did not affect the reconstruction quality in the
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Figure 2: Comparison of the reconstruction quality for the heart gear between the proposed method and the method used to generate the
label. Additionally, we show the reference reconstruction generated from the full projection set. One can see, that the proposed method
and the labelling method do not show any significant differences, especially in the region around the error. The images are normalized.

RMSE SSIM
label prediction label prediction

Heartgear 0.16 0.13 0.73 0.79
Round Heartgear 0.21 0.21 0.45 0.48
Dent Gear 0.33 0.32 0.36 0.35

Table 1: Comparison of reconstruction quality by measuring the
SSIM and RMSE between the reconstruction of the full projection
set and the projections chosen by our approach or the approach in
[1] at the specific region of interest Wt .

region of interest, as shown in Table 1.

5 Discussion and Conclusion

This paper presents a new approach for selecting valuable
projections in computed tomography scans, with the aim
of improving reconstruction quality in a region of interest.
The proposed solution uses a neural network architecture
that integrates the projection-based detectability index and
data completeness into a single model. The network, based
on a modified ResNet-18 architecture, evaluates the value
of projections, passes them through a differentiable ranking
function, and the final selection is made using a straight-
through estimator.
The results suggest that our proposed method is capable of
selecting projections for a predefined task and a known object
structure. It was found that the performance of the proposed
solution is comparable to the baseline method, which is used
for labelling. The fact that the performance is comparable to
the baseline method demonstrates that the selection of projec-
tions can be learned by the neural network. This finding sug-
gests that other set-based metrics, such as a reconstruction-
based loss, can also be learned with our presented approach.
By using the neural network to optimise the trajectory, the
task can be significantly accelerated since the behaviour of
the intensive analytical calculation of the detectability index
is included in our proposed network.
One drawback of the proposed solution is that it is object-
specific, meaning that it is trained on a specific object struc-
ture and does not generalize to structures not seen during

training. Despite this, the approach is still suitable for non-
destructive testing, as it is often necessary to examine similar
or identical objects.
For future work, we want to add the embedding of posi-
tions, which may be useful for improvement. This can help
to further guide the neural network in the direction of data
completeness.
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Abstract In this work, we present a new open source framework,
called parallelproj, for fast parallel calculation of projections in to-
mography using multiple CPUs or GPUs. This framework implements
forward and back projection functions in sinogram and listmode using
Joseph’s method, which is also extended for time-of-flight PET pro-
jections. In a series of tests related to PET image reconstruction using
data from a state-of-the-art clinical PET/CT system, we benchmark
the performance of the projectors in non-TOF and TOF, sinogram
and listmode. We find that the GPU mode offers acceleration factors
between 20 and 60 compared to the multi CPU mode and that OSEM
listmode reconstruction of real world PET data sets is possible within
a couple of seconds using a single state-of-the-art consumer GPU.

1 Introduction

For tomographic imaging techniques used in medicine such
as X-ray computed tomography (CT), positron emission to-
mography (PET) and single photon emission tomography
(SPECT), image reconstruction results are usually expected
within seconds or minutes after data acquisition, creating
a severe computational challenge when reconstructing data
from state-of-the-art systems. With new scanner generations,
the problem size of this challenge is steadily growing, since
(i) the data size is increasing due to higher resolution detec-
tors and scanners with bigger field of view [1], and (ii) more
advanced (iterative) reconstruction algorithms are being used
that try to exploit more information from the acquired data,
which usually necessitates the calculation of a huge amount
of projections. An example of the latter is data-driven mo-
tion correction in PET [2] where instead of reconstructing
a single “static frame ”, many very short time frames are
reconstructed and subsequently used for motion estimation
and correction. Another example for (ii) is the combination
of deep learning and tomographic image reconstruction [3],
using, e.g. unrolled networks, where during training also a
tremendous number of projections have to be calculated to
evaluate the gradient of the data fidelity during training.
For most tomographic image reconstruction algorithms, the
evaluation of a linear forward model that describes the
physics of the data acquisition process. is the bottleneck
in terms of computation time. In CT, PET, and SPECT, the
forward model includes the computation of many (weighted)
line or volume integrals through an image volume, commonly
called “projections” - which can be slow when executed on
a single processor. Fortunately, for most reconstruction al-
gorithms, the computation of projections can be executed in
parallel on multiple processors, e.g. using multiple CPUs
or one or more graphics processing units (GPUs). Note that
the evaluation of the adjoint of the forward model - com-
monly called “back projection“‘ - is computationally more
demanding, since race conditions usually occur. In recent
decades, the use of GPUs for faster calculation of projections
in tomographic imaging has been studied extensively; see,

e.g. [4, 5]. All of these articles conclude that the time needed
to calculate forward and back projections on state-of-the-art
GPUs is usually much shorter compared to using multiple
CPUs.
Motivated by these findings and the recent availability of
very powerful low- and high-level GPU programming frame-
works such as CUDA and cupy, we developed a new open
source research framework, called parallelproj, for fast
calculations of projections in tomography.
The objectives of the parallelproj framework are as fol-
lows:

• To provide an open source framework for fast parallel
calculation of projections in tomographic imaging using
multiple CPUs or GPUs.

• To provide an accessible framework that can be easily
installed without the need for compilation of source
code on all major operating systems (Linux, Windows,
and macOS).

• To provide a framework that can be efficiently used
in conjunction with pytorch GPU arrays to facilitate
research on tomographic imaging methods, including
deep learning.

2 Materials and Methods

2.1 Design principles and implementation details
The application programming interface to the
parallelproj framework was designed such that:

• The input to the low level projector functions are as
generic as possible. In practice, that means that these
functions take a list of coordinates representing the start
and end point of the rays to be projected as input, mak-
ing the low-level functions agnostic to specific scanner
geometries (or symmetries). Thus, any scanner geome-
try can be modeled.

• Projections can be performed in non-TOF or TOF mode.
• In the TOF mode, optimized projections for sinogram

and listmode are available. In the former, the contri-
butions to all available TOF bins along a ray are com-
puted while traversing the image volume plane by plane,
whereas in the latter only the contribution to one spe-
cific TOF bin (the TOF bin of a given listmode event) is
evaluated.

• The back projections are the exact adjoint of the forward
projections (matched forward and back projections).

Parallelization across multiple processors was implemented
in two different ways. To enable parallelization across multi-
ple CPUs, a first version of the parallelproj library was
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implemented using C and OpenMP (libparalleproj_c).
Furthermore, the exact same projector functions were imple-
mented in CUDA to enable parallelization on one or multiple
GPUs (libparalleproj_cuda).

2.2 parallelproj computation modes
Using the two aforementioned projection libraries, as well as
the CUDA projections kernels, projections can be performed
in the following three different computation modes:

1. CPU mode: Forward and back projections of image
volumes (arrays) stored on the host (CPU) can be per-
formed using libparallelproj_c where paralleliza-
tion across all available processors is performed using
OpenMP.

2. hybrid CPU/GPU mode: Forward and back projec-
tions of image volumes (arrays) stored on the host canbe
performed using libparallelproj_cuda involving
data transfer from the host to all available GPUs, execu-
tion of projection kernels on the GPUs, and transfer of
the results back to the host.

3. direct GPU mode: Forward and back projections of
image volumes (arrays) stored on a GPU can be per-
formed by direct execution of the projection kernels
using a framework that supports just-in-time compila-
tion of CUDA kernels, such as cupy. In contrast to the
hybrid CPU/GPU mode, memory transfer between host
and GPU is avoided.

2.3 Benchmark tests
To evaluate the performance of the parallelproj projec-
tors using the three computation modes described above, we
implemented a series of benchmarking tests. All tests are
related to a PET image reconstruction task and used the ge-
ometry and properties of a state-of-the-art GE Discovery MI
TOF PET/CT scanner [6] with 20 cm axial FOV. This scan-
ner consists of 36 detector “rings”, where each “ring” has a
radius of 380 mm and consists of 34 modules containing 16
detectors each such that there are 19584 detectors in total. A
non-TOF emission sinogram for this scanner in span 1 has
415 radial elements, 272 views, and 1292 planes, meaning
that for a full non-TOF sinogram projection, 146 million
line integrals have to be evaluated. For TOF data, each line
of response (LOR) is subdivided into 29 TOF bins using
a TOF bin width of 169 ps. The reported TOF resolution
of the scanner is 375 ps FWHM [6]. In the TOF projectors
of parallelproj, the Gaussian TOF kernel is truncated
beyond ±3 standard deviations.
To evaluate the performance of parallelproj for projec-
tions in sinogram mode, we measured the time needed for a
forward and back projection of a span 1 subset sinogram con-
taining 8 equally spaced views in non-TOF and TOF mode.
Since it is known that the in-memory data order severely
affects the computation time, especially on CUDA devices, we
varied the order of the spatial axis of the sinogram, as well
as the orientation of the image relative to the symmetry axis
of the scanner. E.g. in the sinogram order mode “PVR”, the
radial direction increased the fastest and the plane direction
increased the slowest in memory.
In addition to the sinogram projection tests, we also evalu-
ated the performance of parallelproj for non-TOF and

TOF projections in listmode as a function of the number of
acquired listmode events. All benchmarks were repeated 10
times and the mean and standard deviation of the results were
calculated and visualized.
Finally, we also measured the time needed for a complete
listmode OSEM iteration using 34 subsets as a function of
the number of listmode events in the NEMA acquisition.
All tests used an image of size (215,215,71), an isotropic
voxel size of 2.78 mm, and were performed on a workstation
including an AMD Ryzen Threadripper PRO 3955WX 16
core 32 thread CPU with 256 GB RAM, and an NVIDIA
GeForce RTX 3090 GPU with 24 GB RAM on Ubuntu 20.04
LTS using CUDA v11.2 and parallelproj v1.2.9.

3 Results

Figure 1 summarizes the results of the sinogram and list-
mode projections benchmarks in non-TOF and TOF mode
in direct GPU mode. For sinogram projections, the best re-
sults in terms of the summed time needed for the forward
and back projection of one subset sinogram were 0.025 s
(non-TOF) and 0.189 s (TOF). In both cases, the best results
were obtained when using sinogram order mode RVP and
image orientation where the scanner symmetry axis corre-
sponded to fastest increasing axis of the 3D image array
(green bars). Compared to the results in CPU mode (not
shown here because of the page limit), projection times in
GPU mode were approximately 48-60 times faster. In list-
mode, the best summed projection times were 3.91 s (non-
TOF) and 0.58 s (TOF) when projecting 40 million events
using the GPU mode. For 1.25 million events, the corre-
sponding times were 0.1 s, 0.018 s demonstrating an almost
perfect linear relation between the number of events and the
projection times. Compared to the CPU mode, TOF listmode
projections were approximately 20x faster in GPU mode.
Figure 2 shows the results for the timing of a complete TOF
listmode OSEM iteration, including 34 subset updates, as
well as a reconstruction of the NEMA image quality phantom
data. In GPU mode, the best results for 40 million and 1.25
million events were 0.63 s and 0.065 s), respectively, which
was approximately 29 times faster compared to the CPU
mode. For a more detailed evaluation and comparison against
the hybrid CPU/GPU mode, please see our preprint [7].

4 Discussion

All results shown in this work demonstrate once more that
parallel computation of forward and back projections using a
state-of-the-art GPU is substantially faster compared to paral-
lelization using OpenMP on a state-of-the-art multicore CPU
system. Certainly, the achievable GPU acceleration factor
strongly depends on the computational problem itself (e.g.
sinogram or listmode reconstruction) and the problem size.
In our non-TOF and TOF sinogram and listmode benchmark
tests, we observed GPU acceleration factors between 20 and
60.
One important aspect that emerged from our sinogram bench-
mark tests - where the projection data and memory access is
ordered - is the fact that the projection times varied substan-
tially when using different memory layouts (up to a factor of
8 in the GPU mode). This can be understood by taking into
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(a) Results for non-TOF sinogram projections.
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(b) Results for TOF sinogram projections.
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(c) Results for non-TOF sinogram listmode projections.
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(d) Results for TOF sinogram listmode projections.

Figure 1: Results of the parallelproj benchmark tests for non-TOF/TOF sinogram/listmode projections in GPU mode. The non-TOF subset sinogram
contained 415 radial elements, 8 views and 1292 planes (1 out of 34 subsets). The image used in these tests contained (215,215,71) voxels with an
isotropic voxel size of 2.78 mm. The mean and the standard deviation estimated from 10 runs are represented by the colored bars and the black error
bars, respectively. Note the different limits on the y axes. The colors represent different orientation of the scanner symmetry axis. (blue) image axis
corresponding to the symmetry axis of the scanner increases the slowest. (green) image axis corresponding to the symmetry axis of the scanner increases
the fastest. (orange) image axis corresponding to the symmetry axis is the “central” axis.
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Figure 2: (left) Results for the timing of a complete LM OSEM iteration including 34 subset updates for the NEMA image quality phantom acquisition.
The image used in these tests contained (215,215,71) voxels with an isotropic voxel size of 2.78 mm. The mean and the standard deviation estimated
from 6 iterations are represented by the colored bars and the black error bars, respectively. (right) Transaxial and coronal slice of a listmode OSEM
reconstruction of the NEMA image quality phantom with 40 million events after 6 iterations with 34 subsets using a standard Gaussian post filter
of 4 mm FWHM. Note that for better visibility, the reconstructed image was cropped to the center portion of the transaxial FOV. See Fig. 1 for the
explanations of the bar colors.

account that the amount of race conditions that are created
during the back projection within a thread block heavily de-
pends on the order and possible intersections of rays to be
projected within that block. Note that in pure GPU mode,
the time needed for sinogram forward projections also var-
ied substantially across the different memory layouts, which
is probably due to the way image memory is accessed and
cached on CUDA GPUs.

Another interesting observation is the fact that the time
needed to calculate TOF sinogram projections was much
longer than the times needed to calculate non-TOF sinogram
projections, whereas the situation was reversed in listmode.
For TOF sinogram projections, more floating point opera-
tions have to be computed compared to non-TOF sinogram
projections due to the evaluations of the TOF kernels be-
tween the contributing voxels and a number of TOF bins.
In listmode, however, the computational work needed to
project a TOF event is much lower compared to projecting
a non-TOF event. This is the case because a TOF listmode
event detected in a specific TOF bin is only affected by a
few voxels along the complete LOR in the image, where the
number of affected voxels is inversely proportional to the
TOF resolution of the scanner. That in turn means that with
scanner TOF resolutions becoming better and better, the gap
between the TOF projection times in sinogram and listmode
will become bigger and bigger, strongly favoring listmode
processing. Extrapolating the timing results of one complete
OSEM listmode iteration of an acquisition with 40 million
counts in Figure 2, clinical listmode OSEM reconstructions
of a single bed position of a standard static FDG whole-body
acquisition using a PET scanner with 20-25 cm axial FOV
seem to be possible in a couple of seconds and could even be
faster than the acquisition time.

An important limitation of our work is the fact that we
only implemented and benchmarked Joseph’s projection
method. Compared to other methods such as the distance-
driven method, multiray models, or tube-of-response models,
Joseph’s method is inherently faster. Consequently, projec-
tion times are expected to be somewhat slower for more
advanced projectors, but a detailed investigation of more
advanced projectors is beyond the scope of this work and

left for future research. 1 Note, however, that according to
our experience, combining Joseph’s method with an image-
based and / or sinogram-based resolution model produces
high-quality PET reconstructions.
Without a doubt, it is possible to further optimize the im-
plementation of the parallelproj projectors, especially
the CUDA implementation. As an example, we have decided
not to use CUDA’s texture memory, which could substantially
accelerate the image interpolations needed in the Joseph for-
ward projections, or be also used to interpolate TOF kernel
values based on a 1D lookup table. The main reason for
not using texture memory is the fact that it would only ac-
celerate the forward projections since writing into texture
memory is not possible and because reconstruction times are
usually dominated by the back projections. Another way to
further improve the listmode projection times is to pre-sort
the listmode events to minimize race conditions during back
projection, as e.g. shown in [8].
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Abstract  

Dual-energy CBCT C-arm imaging is a new imaging modality, which 

may provide a variety of different spectral results in the interventional 

suite. We analyze model observers, i.e. the detectability index, of 

different infarct models, to get insight into which spectral reconstruction 

may be best suited for identifying infarcts prior to an intervention treating 

acute stroke patients. MTF and NPS measurements have been performed 

on a clinical dual-layer (DL) CBCT prototype system and used for model 

observer analysis. Infarct models with reconstruction dependent contrast 

amplitude are investigated using a variety of standard and spectral 

reconstructions. Clinical examples of subjects with small and large 

infarcts imaged on the same DL-CBCT system are compared visually and 

be means of CNR analysis of the infarcts to the results of the model 

observers. The model observer representing most closely a human reader 

prefers VMI images at higher keV values, and the same trend is obtained 

with simple CNR analysis. This result is partially substantiated by the 

CNR analysis of the clinical patient data. 

1 Introduction 

Spectral dual-layer C-arm CBCT is a new imaging modality 

and may be used during stroke treatment workflow to 

improve visualization of infarct regions in the beginning of 

a procedure and support blood-iodine separation for 

hemorrhage identification at the end of the procedure. 

Presenting the most relevant information to the 

interventionalist is a challenging task. We aim to get insight 

into which spectral reconstruction is best suited to support 

a neuroradiologist in the task of identifying infarcts in 

CBCT reconstructions in acute stroke treatment. Reader 

studies based on dual-layer, dual-energy CT have shown 

optimal visualization of infarcts for Virtual Monoenergetic 

Image (VMI) reconstructions around 70 keV [1]. 

Availability of clinical data for dual-energy CBCT of acute 

stroke patients is limited, therefore we investigate the 

possibility to use model observers or measures such as CNR 

to support the choice of most suited spectral reconstructions 

for the infarct identification task.  

2 Materials and Methods 

Measurements in this study were made with a non-

commercial dual-layer CBCT prototype system [2]. The 

spectral DL-CBCT system is a modification of a 

commercial interventional C-arm X-ray system with CBCT 

imaging capability (Allura Xper FD20/15, Philips 

Healthcare, The Netherlands), equipped with a dual-layer 

20 inch (379.4 mm x 293.2 mm) detector prototype. The 

detector prototype consists of two detector layers stacked 

on top of each other.  

The prototype DL-CBCT system scans were conducted 

with 120 kV tube voltage, 2.5 mm aluminum-equivalent 

inherent tube filtering as well as 1 mm aluminum and 0.4 

mm added copper filtering. A fixed 310 mA tube current 

was used for 622 projections (200◦ rotational scan). 
 

Both, standard and spectral images were generated from the 

DL-CBCT scans. The reconstruction of the front-layer 

(front) corresponds to the standard reconstruction of single 

layer C-arm system. The addition of front- and back-layer 

data yields the combined reconstruction (comb). The 

following spectral results were derived from material-

decomposed Compton scatter and photoelectric base 

functions [3]: Virtual monoenergetic image (VMI) and 

virtual non-contrast VNC images. Noise suppression in 

spectral images was realized by exploiting the anti-

correlated noise behavior after material decomposition [4]. 

The denoising strength was selected by a clinical reader 

pilot study to yield best visualization of brain tissues for 

assessment of ischemic changes in stroke patients [5]. 
 

The modulation transfer function (MTF) was calculated 

from six scans of the head module of the multi-energy CT 

phantom model 662 (CIRS, Norfolk, VA, USA) using an 

established methodology [6], utilizing different inserts 

equivalent to various tissues, blood and iodine 

concentrations. Examples of the radially averaged MTFs for 

iodine blood inserts are shown in Fig. 1. Since they do not 

deviate appreciably, the low-contrast spatial resolution was 

assumed constant for a given reconstruction and the MTF 

curves for the 2 mg/ml I in blood was used subsequently. 
 

 
Figure 1. Radially averaged task-related modulation transfer 

functions (MTF) for Iodine blood inserts for VMI 75 keV. 
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The 3D noise power spectrum (NPS) was calculated from 

six consecutive scans made of the homogenous water 

phantom for all reconstructions investigated in this study, 

using well-established techniques [7]. The 2D NPS was 

then calculated. A 2D NPS of the 75keV VMI 

reconstructions is shown in Fig. 2. 

 

 
Figure 2. A 2D noise power spectrum corresponding to the 

trans-axial plane for VMI 75 keV. 

 

The model observers are evaluated on 2D trans-axial slices, 

corresponding to the clinical practice of reviewing 

reconstructions in acute stroke treatment. The trans-axial 

NPS is radially averaged, as shown in Fig. 3 for selected 

reconstructions, and used as NPS(𝑢, 𝑣) on a resampled 

cartesian grid in the following.  

 

 
Figure 3. Radially averaged trans-axial 2D noise power 

spectrum for selected reconstructions 

 

A general expression for the detectability index (d’) in terms 

of the squared signal-to-noise ratio of a matched-filter 

model observer is given by [8]:  
 

𝑑′2 =
[∫ 𝑆𝑂(𝑢,𝑣)𝑀(𝑢,𝑣)𝑑𝑢𝑑𝑣]2

∫ NPSO(𝑢,𝑣)𝑀(𝑢,𝑣)2𝑑𝑢𝑑𝑣
, 

 

where 𝑆𝑂(𝑢, 𝑣) is the expected two-dimensional (2D) signal 

as perceived by the observer and NPSO(𝑢, 𝑣) is the 

perceived noise power spectrum. The quantity 𝑀(𝑢, 𝑣) is 

the “matched filter”. Representations are in frequency space 

and assumed to be real functions. 

The signal can be represented as [9]: 
 

𝑆𝑂(𝑢, 𝑣) = 𝑇(𝑢, 𝑣)MTF(𝑢, 𝑣)VTF(𝑢, 𝑣), 
 

where 𝑇(𝑢, 𝑣) is the 2D Fourier transform of the contrast 

profile C(𝑥, 𝑦) of the feature of interest, the MTF is the 

spatial resolution for the low-contrast task, and VTF is an 

assumed the visual transfer function (VTF) for a human 

observer, otherwise known as an “eye filter”. 

Different modelled contrast profiles C(𝑥, 𝑦) have been 

investigated representing infarct regions of different size (5, 

10 and 15 mm).  The contrast amplitude was estimated 

based on different assumed percentages of water content 

mixed with gray matter brain tissue. Calculations of 

contrast were based on observed average CT numbers for 

water and gray matter substitutes for the different 

reconstructions. The resulting contrast and CNR values for 

standard and spectral reconstructions are shown for an 

infarct of 5 mm diameter with 5% water content in Fig 4. 

 

 
Figure 4. Modeled contrast, noise derived from NPS and 

resulting CNR used for model observers. 
 

In this study, the VTF due to Eckstein [10] is used with a 

peak sensitivity at approximately 4 cycles/degree: 
 

VTF(𝑢, 𝑣) = [𝜌1.5exp(−0.98𝜌0.68)]2 

with 

𝜌(𝑢, 𝑣) = √𝑢2 + 𝑣2 𝐹𝑂𝑉 𝑅

𝐷

𝜋

180
, 

 

where is the reconstruction field-of-view, R is the viewing 

distance (assumed to be 50 cm) and D is the display size of 

the FOV at a viewing station (assumed to be 25 cm). 

The (observed) noise power spectrum can be represented as, 
 

NPSO(𝑢, 𝑣) = NPS(𝑢, 𝑣)VTF2(𝑢, 𝑣). 
 

In this study, the matched filter will either be prewhitening 

or non-prewhitening [11]: 
 

𝑀(𝑢, 𝑣) = 𝑆𝑂(𝑢, 𝑣)/NPSO(𝑢, 𝑣) 
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or  

𝑀(𝑢, 𝑣) = 𝑆𝑂(𝑢, 𝑣), 
 

respectively. Note, that in the first case, the observer is able 

to decorrelate the perceived noise. This leads to 

simplifications of the d’ formula, with the eye filter 

cancelling and the numerator being equal to the square of 

the denominator. 

Three model observers will be explored: 

1. PW: prewhitening matched filter. This 

corresponds to an ideal linear observer. 

2. NPW: non-prewhitening filter. This corresponds to 

an observer unable to undo noise correlations. 

3. NPWE: non-prewhitening filter with an eye filter. 

This corresponds to the NPW observer with the 

sensitivity of the human eye incorporated. 

Moreover, visibility of infarct regions in clinical examples 

of spectral DL-CBCT is assessed visually and by means of 

CNR analysis. The patient data has been acquired in a 

prospective single center clinical trial (NCT04571099), 

which enrolled consecutive patients, 50 years or older, with 

ischemic or hemorrhagic stroke on initial CT [5]. 

 

3 Results 

The detectability index d’ for the modelled infarct with 

5 mm diameter and 5% water content is shown for the 

standard and spectral reconstructions in Fig 5. The pre-

whitening (pw) model observer has slightly higher d’-

values compared to the non-pw (npw) observer, but the 

relative trend is very similar with a maximum around 

VMI70. The d’ results of the npw observer with eye filter 

(npwe) are sgnificantly reduced and the trend for different 

VMI is more flat with the maximum of shifted towards 

higher VMI. The d’ results for a 5 mm infarct with water 

content of 10% and 15% simply scale up by a factor of 2 

and 3, respectively (not shown). The results for 5% water 

content with lesion diameter of 10 mm and 15 mm are 

generally higher by a factor of approximately 2.5 and 4, 

respectively (not shown), but similar in trend with more 

pronounced maxima at VMI70 for pw and npw observer 

and similar flat npwe–results slighlty increasing to higher 

energy levels of the VMI. 
 

 

Figure 5. Results of different model observers for lesion size of 

5 mm and water content of 5%. 
 

Clinical examples of a small and a large infarct are shown 

in Fig.6. The ROIs used to quantify the CNR of the infarct 

region with respect to gray matter brain tissue are indicated 

on the front layer reconstruction. The CNR values for both 

infarcts are plotted in Fig. 7. 
 

 

 

 
 
Fig. 6. Example of subject with a hyperacute, small infarct region (top row) and an acute large infarct region (bottom row). ROIs for 

measuring CNR are indicated in the front-layer reconstructions (left) and values reported in Fig. 7. All reconstructions are displayed 

with level / window of 25 / 70 HU and slice thickness of 5 mm.   
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Fig. 7. CNR of the infarct/GM ROIs shown in Fig. 6 

4 Discussion 

There is a general observation that VMI and VNC 

reconstructions provide better CNR and detectability index 

for the task of infarct visualization compared to front-layer 

and combined reconstructions (see Figs. 4, 5). The CNR 

values of the clinical example (Fig. 7) show a similar 

behavior for energy levels > 50 keV. This is partly caused 

by the additional denoising involved in the spectral 

reconstructions and proper separation of these effects is not 

trivial and beyond the scope of this paper.  

Interestingly, the optimal energy level of the VMI 

reconstruction for this task depends on the model observer.  

The non-prewhitening filter with an eye filter (npwe) is 

expected to match best to the performance of a human 

observer. The Npwe observer (Fig.5) and CNR (Fig.4) 

indicate higher mono-energy levels as optimal.  

Optimal CNR values for the clinical example with large 

infarct are also obtained for higher energy levels of the 

VMI, whereas the small infarct shows relatively flat 

dependence. The different CNR trends for the different 

clinical cases indicate that the composition of infarcts 

merits further attention as well as any other potential 

confounding factors.  

These investigations aim to identify the optimal spectral 

reconstruction to be presented for the task of infarct 

detection, which shall be cross checked in future work with 

reader studies on clinical data. The detectability index can 

be related to the area-under-the-curve (AUC) from receiver 

operating characteristics (ROC) studies or the percentage 

correct (PC) responses in multiple alternative forced choice 

(AFC) studies: AUC = PC(2-AFC) = 𝛷(𝑑′/√2), where 

𝛷(𝑧) is the standard cumulative normal distribution. The 

inclusion of so-called internal noise of the observer into the 

model may be necessary to quantitatively predict human 

performance [12]. 

Potential limitations of the approach include the assumption 

of quasi-linearity (permitting image analysis in the Fourier 

domain) and the assumption that the clinical task can be 

approximated as a signal known exactly/background known 

exactly scenario. 

5 Conclusion 

This study presents the use of model observers to 

investigate different spectral reconstructions for infarct 

visualization in spectral DL-CBCT. The model observer 

representing most closely a human reader prefers VMI 

images at higher keV values, and the same trend is obtained 

with simple CNR analysis. This result is substantiated by 

the CNR analysis of a large infarct, while the clinical 

example of a small infarct showed less dependence on the 

energy level of the VMI reconstruction. These results have 

to be verified by clinical reader studies, but this framework 

may help to investigate and optimize system performance 

for different tasks with limited availability of clinical data. 
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Abstract The success of radiotherapy critically relies on the knowledge 

of tumor location for accurate dose delivery. However, intra-treatment 

motion, especially respiratory motion, introduces tumor localization 

uncertainties and decrease treatment accuracy. In image-guided 

radiotherapy, real-time imaging can capture patients’ anatomy and 

motion for online target localization and treatment adaptation. However, 

real-time imaging is challenged by the short allowable imaging time 

(<500 milliseconds) to meet the temporal constraint posted by rapid 

patient breathing, resulting in extreme under-sampling for desired 3D 

imaging. In the case of livers, the diminished tumor/normal-liver-tissue 

x-ray imaging contrast adds another layer of difficulty to accurately 

localize the tumors. We addressed both challenges by developing a deep 

learning (DL)-based, deformable registration-driven framework to track 

the volumetric motion of livers and localize the tumors in real-time, by 

combining the information from optical body surface imaging and an x-

ray projection acquired at an arbitrary gantry angle (angle-agnostic). The 

liver tumor localization was achieved via two steps. First, the liver 

boundary motion was estimated through a patient-specific surface 

imaging model (Surf), and fine-tuned using a cascaded, angle-agnostic x-

ray imaging model (X360). Second, the volumetric motion within the 

liver was solved to localize the tumor via a population-based 

biomechanical model (Bio), using the liver boundary motion solved in 

step 1 as the boundary condition. The results show that the cascaded 

framework, Surf-X360-Bio, can achieve fast (<250 ms inference time), 

accurate (mean error < 2.1 mm), and robust liver tumor localizations at 

arbitrary x-ray angles for real-time, markerless motion tracking. 

1. Introduction 

    The efficacy and safety of radiotherapy are heavily 

dependent on the accuracy of tumor localization to deliver 

conformal radiation doses and spare surrounding healthy 

tissues. Intra-treatment motion, particularly the respiratory 

motion, introduces tumor localization uncertainties for sites 

including the liver [1], and reduces the accuracy of 

radiotherapy. To deliver planned dose accurately, real-time 

imaging is needed for intra-treatment motion management, 

to provide instantaneous knowledge of the tumor motion 

such that the radiation beam can be adjusted simultaneously 

to follow the tumor [2]. However, a major challenge to real-

time imaging is the time constraint. To address respiratory 

motion, the overall latency of real-time image guidance and 

simultaneous delivery adjustment should be < 500 

milliseconds (ms) [3]. In such a short frame, only a single 

or a few onboard 2D x-ray projections can be acquired, 

which makes it almost impossible to use conventional 

image reconstruction/registration methods to track the 3D 

volumetric motion and deformation of livers and to localize 

the tumors within the liver. Furthermore, the low x-ray 

imaging contrast of liver tumors against their surrounding 

normal tissues renders 3D tumor localization even more 

challenging. 

    With recent advances in deep learning (DL)-based 

medical image processing, DL methods were developed to 

localize tumors in 3D from a single or a few onboard x-ray 

projections, via two general approaches: (1) image 

reconstruction; and (2) image registration. The 

reconstruction approach aims to directly reconstruct 

volumetric images or 3D organ shapes from one or two 

orthogonal x-ray projections [4, 5], which is very ill-

conditioned and susceptible to multiple challenges 

including model robustness and generalizability. In 

addition, the reconstruction-based methods require further 

segmentation/registration to localize the tumor, which is 

time-consuming and error-prone for a low-contrast site like 

the liver. Alternatively, the registration-based approach 

registers previously-acquired CTs/CBCTs to new 2D x-ray 

projections (2D-3D registration), by correlating 3D 

deformable motion to image features extracted from a 

limited number of 2D projections. By propagating tumors 

contoured on prior CTs/CBCTs, the registration-based 

methods can directly localize the onboard tumors via solved 

motion fields [6, 7]. Using prior information, the 

registration-based methods are better conditioned and 

potentially more robust. Our recent study has successfully 

registered and localized the liver tumor to a mean error of 

1.2 (±1.2) mm via a single x-ray projection, by using a graph 

neural network-driven approach [7]. However, one 

remaining challenge of the registration-based models, 

including our model, is that each model only works for a 

specific, fixed x-ray projection angle. Training separate 

models for all potential scan angles can be extremely time-

consuming and challenging for practical applications [8], 

especially for rotational radiotherapy delivery techniques 

where the imaging gantry is continuously sweeping. 

Training an angle-agnostic model, however, is quite 

difficult due to the complex, angle-varying cone-beam 

projection geometry. The limited field-of-view (FOV) of 

the x-ray imaging systems, and the in-and-out motion of 

anatomies with respect to the FOV (due to gantry rotation 

and anatomical motion), also make it quite challenging to 

derive a robust, angle-agnostic model.  

    To address these challenges, we proposed a DL-based, 

deformable registration-driven framework to localize liver 

tumors at arbitrary x-ray projection angles. On the 

foundation of our previous study, we introduced two new 

ingredients to help train a robust, angle-agnostic model: (1). 

we introduced optical body surface imaging, which is 

widely available in radiotherapy, to continuously monitor 

patient surfaces under a high frame rate (10-24 Hz) with a 

large FOV (up to 110×140×240 cm3) [9]. Optical imaging 

provides a stable view of the patient and offers 

complementary information to x-ray imaging, helping to 

pre-condition the x-ray model under varying x-ray angles 

and a limited FOV; (2). We developed a geometry-informed 

scheme for the x-ray model, by introducing network-

inherent and angle-aware projection geometries during both 

training and testing stages to extract the most relevant x-ray 

projection features to solve the liver motion. In general, the 
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motion of the liver and the liver tumor was solved via two 

steps: a) the liver boundary motion was solved by cascading 

a surface imaging model (Surf) and an angle-agnostic x-ray 

imaging model (X360), based on the input of a surface 

image and an x-ray projection acquired at an arbitrary scan 

angle (0°-360°); b) Using the liver boundary motion solved 

in (a), a DL-based liver biomechanical model (Bio) was 

applied to solve the intra-liver deformation for tumor 

localization. Combining both surface and x-ray imaging 

modalities helps to maximize the utilization of real-time 

signals to solve the liver boundary motion. Using the liver 

boundary motion as the boundary condition, the DL-based 

biomechanical model uses domain knowledge of tissue 

biomechanics and finite element analysis (FEA) to solve the 

motion of low-contrast intra-liver regions with much faster 

speed than conventional FEA methods to meet the real-time 

constraint (<250 ms inference time for the Surf-X360-Bio 

framework).  

2. Materials and Methods 

2.1 Overview of the Surf-X360-Bio framework 

 
Figure 1. Workflow of the Surf-X360-Bio framework for real-time 

liver tumor localization. Liver tumors were localized via a deformable 

registration-driven approach. In sub-steps (a-1) and (a-2), liver 

boundary deformation vector fields (DVFs) were estimated and fine-

tuned by cascaded registration networks using a surface image and an 

x-ray projection as inputs. Afterward, step (b) uses a DL-based 

biomechanical model to propagate the liver boundary DVFs into the 

liver to localize the liver tumors volumetrically. 
    Figure 1 illustrates the workflow of the Surf-X360-Bio 

framework. The 3D liver tumor was localized in real-time 

by three cascaded, DL-based models. The liver was 

converted to a mesh based on segmentations from prior 

CTs/CBCTs, and its deformable motion (including that of 

the tumor) was represented via deformation vector fields 

(DVFs) of the mesh nodes. The first model (Surf) estimated 

the DVFs of the liver boundary nodes using a thoracic-

abdominal body surface image. However, since the internal-

external motion correlation can be imperfect, the estimated 

liver boundary DVFs may need further correction. 

Therefore, the second model (X360) used an onboard x-ray 

projection acquired at an arbitrary projection angle to 

further fine-tune the solved DVFs of the liver surface nodes. 

Finally, intra-liver DVFs were solved by an efficient DL-

based liver biomechanical model to propagate the boundary 

DVFs into the liver to localize the tumor volumetrically.  

2.2 Surf model 

 
Figure 2. Overview of the Surf model. The Surf model estimated liver 

boundary DVFs from a body surface image by learning the 

correlations between the respiratory-induced external body surface 

motion and internal liver boundary motion. The network architecture 

was based on residual learning to predict liver boundary DVFs. 

    Figure 2 presents an overview of the Surf model. The 

measured 3D body surface was gridded into a Cartesian 2D 

image which represents the anterior-posterior patient 

surface coordinates. The model architecture was based on 

residual learning that contains repetitions of a 2D 

convolution layer, a batch normalization layer, and a 

rectified linear unit (ReLU). The feature maps from the last 

residual learning module were flattened and further 

processed by three parallel linear layers, each of which 

yielded a Cartesian component (x, y, z) of the liver 

boundary DVFs for the liver surface nodes. 

2.3 Angle-agnostic X360 model 

    The X360 model deformed the prior liver surface mesh to 

match with the image features encoded in an x-ray 

projection, using the Surf model output as initialization 

(2.2). Figure 3 presents X360, which was adapted from Ref. 

[7] and generalized to an angle-agnostic model by 

incorporating geometry-informed perceptual feature 

pooling layers. In general, X360 consists of a feature 

extraction network and a graph neural network. The feature 

extraction network uses ResNet-50 as the backbone to 

extract image features from an x-ray projection, and then 

the extracted feature maps were fed into the subsequent 

graph neural network for motion estimation. The graph 

neural network contains two deformation modules, each of 

which contains a geometry-informed perceptual pooling 

layer, a graph convolutional network, and a spatial 

transform layer. The extracted feature maps were first 

pooled by the geometry-informed perceptual pooling layer. 

As shown in Fig. 3(b), the geometry awareness was 

accomplished by incorporating the scan angle and the 

corresponding projection system matrix of each x-ray 

projection in the feature pooling layer, by which the model 

learned to adapt to angle-dependent features for 

corresponding motion estimation. Based on the pooled 

features, the following graph neural network estimates the 

3D motion of the liver boundary nodes, and the spatial 

transform layer deforms the liver surface nodes according 

to the predicted motion. The two deformation modules 

sequentially deform the liver mesh through a rigid 

registration module followed by a free-form, deformable 

registration module. The sequential design is to improve the 

registration accuracy and model robustness, as an initial 

362 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

rigid registration allows more accurate/relevant feature 

pooling in the consecutive deformable registration step, 

especially under scenarios of large motions. The X360 

model was trained by cascading with the trained Surf model 

(Surf-X360) for each patient case. By randomizing the 

projection angle on-the-fly, an angle-agnostic model can be 

trained to extract only features relevant to the specific scan 

angle of each input x-ray projection to solve the 

corresponding liver surface motion. 

 
Figure 3. Overview of the (a) angle-agnostic X360 model and (b) 

geometry-informed perceptual pooling layer. X360 deformed a prior 

liver surface mesh to match the image features encoded in an onboard 

x-ray projection. The model architecture contains a feature extraction 

network and a graph neural network, which respectively extracts 

image features from the x-ray projection and estimates the liver 

boundary DVFs. The model angle awareness was achieved by the 

geometry-informed perceptual pooling layer that projects liver surface 

nodes onto the feature maps extracted from an onboard projection, 

according to the gantry angle and the cone-beam geometry. The liver 

boundary registration was sequentially solved by two modules: the 

first for rigid motion, and the second for free-form, deformable 

motion. 
2.4 Bio model 

    The Bio model used the liver boundary DVFs solved 

from the cascaded Surf-X360 models to derive the intra-

liver DVFs (Fig. 4). By Bio, the liver boundary DVFs were 

decomposed into a spatially uniform component (i.e., DC 

component) and a residual oscillating component (i.e., AC 

component). This decoupling can improve model 

robustness/efficiency, as the DC component corresponds to 

a rigid translation, while the AC component reflects the 

residual deformation. Only the AC component needs to be 

propagated into the liver to generate spatially variant 

deformation fields. The U-Net for AC component 

propagation was trained in a supervised fashion, by using 

the Mooney-Rivlin material model and the conventional 

FEA to generate ‘ground-truth’ intra-liver DVFs for a 

cohort of training liver cases. 

 
Figure 4. Overview of the Bio model. The input liver boundary DVFs 

were decomposed into a spatially homogeneous (DC) component 

(rigid) and a residual (AC) component (deformable). The network was 

trained to predict intra-liver DVFs from the AC component. The 

network-predicted intra-liver DVFs were re-combined with the DC 

component afterward to yield the overall intra-liver DVFs. 

2.5 Data curation, augmentation, and analysis 

    A dataset of 4D-CTs from 34 patients with liver cancer 

was used to train and evaluate the proposed framework. The 

patients were partitioned into two subsets. The 1st subset 

contains 24 patients and was used to train the population-

based Bio model, while the remaining 10 patients (2nd 

subset) were used to train the patient-specific Surf-X360 

models and test the overall Surf-X360-Bio framework.   

    The 4D-CTs in the 2nd subset have 10 respiratory phases 

(0% ‒ 90%) each, which were insufficient to train a DL 

model to represent onboard motion and its variations. Thus, 

we applied a principal component analysis (PCA)-based 

statistical motion model to augment the 4D-CT motion. The 

details were published in Ref. [7] and are not repeated here 

due to length constraints. Besides the PCA-based 

deformable augmentations, random rigid motion 

augmentations were also included. The augmented dataset 

was partitioned into a training/validation subset and a 

testing subset. To prevent data leakage, the testing data were 

selected to correspond to the extrema of a respiratory cycle 

that were not seen in the training/validation subset. In 

addition, we amplified the PCA scaling coefficients of the 

testing subset to enlarge the deformable motion, and further 

coupled it with a larger, random rigid motion (up to 10 mm 

in magnitude) as compared to the training/validation subset 

(up to 6 mm). In total, we generated 768/384 cases for 

training/validation, and 174 cases for testing for each 

patient. For each case, the surface image was simulated, 

along with x-ray projections generated at random scan 

angles during training/validation, and 19 x-ray projections 

generated uniformly (across 360°) during testing.  

    The ‘ground-truth’ liver and liver tumor meshes were 

generated using the known augmentation DVFs for 

training/validation/testing. Liver boundary registration 

accuracy was evaluated by the root-mean-square error 

(RMSE) and 95-percentile Hausdorff distance (HD95). 

Liver tumor localization accuracy was evaluated by liver 

tumor center-of-mass error (COME), Dice similarity 

coefficient (DSC), and HD95.  
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2.6 Ablation studies  

    Ablation studies were performed to assess the importance 

of individual components in the proposed framework. The 

first study investigated the advantages of combining surface 

imaging and x-ray imaging. Two variations of the Surf-

X360-Bio framework were generated. The first ablated the 

x-ray imaging (Surf-Bio) and the second ablated the surface 

imaging (X360-Bio). Another ablation study assessed the 

sequential registration modules of X360. The rigid 

registration module was ablated to form a new model, Surf-

X360-Bio-nrr, for which the suffix ‘nrr’ represents ‘no rigid 

registration’. We also compared Surf-X360-Bio to its 

variant without the angle-agnostic design (Surf-X0-Bio), for 

which the x-ray model was only trained for 0° projections. 

3. Results 

3.1 Liver boundary registration accuracy 

    Figure 5 compares pre- and post-registration liver surface 

meshes at three projection angles. The overlays between the 

prior and ‘ground-truth’ meshes (1st column) reflect the 

degree of motion, and Surf-X360-Bio deformed the meshes 

to match well with the ‘ground-truth’ (2nd column). As 

shown in Table 1, Surf-X360-Bio model outperformed the 

other ablated models in terms of both RMSE and HD95. 

 
Figure 5. (a) Liver surface mesh overlays and (b) liver surface node 

projections (onto x-ray projections) at three projection angles. The 

prior, deformed, and ‘ground-truth’ liver surface meshes are in colors 

red, green, and yellow, respectively.  

Table 1. Liver boundary registration accuracy (Mean±SD) in terms of 

root-mean-square error (RMSE) and 95-percentile Hausdorff distance 

(HD95) between the predicted and ‘ground-truth’ liver surface meshes. 

Metric Prior Surf-Bio 
X360-

Bio 

Surf-
X360-

Bio-nrr 

Surf-

X360-Bio 

RMSE (mm) 8.0±3.7 2.1±1.6 4.2±2.0 1.9±1.4 1.6±1.2 

HD95 (mm) 9.9±4.6 3.1±2.1 5.1±1.9 2.8±1.7 2.4±1.5 

 

3.2 Liver tumor localization accuracy 

    Table 2 presents the liver tumor localization accuracy of 

different models, where Surf-X360-Bio performs the best.  

Table 2. Liver tumor localization accuracy (Mean±SD). 

Metric Prior Surf-Bio X360-Bio 

Surf-

X360-
Bio-nrr 

Surf-

X360-Bio 

COME 

(mm) 
8.5±5.2 2.7±2.4 3.7±2.5 2.4±2.1 2.1±1.8 

DSC 0.42±0.29 0.76±0.19 0.68±0.21 0.78±0.18 0.81±0.16 
HD95 

(mm) 
8.1±5.2 3.0±2.3 3.7±2.3 2.8±2.0 2.5±1.7 

 

3.3 Angular dependence 

    Figure 6 compares the angle-specific and angle-agnostic 

models as a function of testing projection angles. Surf-

X360-Bio showed a stable performance at arbitrary 

projection angles, while Surf-X0-Bio degraded rapidly as 

the angle deviates from 0°. 

 
Figure 6. Comparison of (a) liver boundary and (b) tumor localization 

accuracy of angle-specific (Surf-X0-Bio) and angle-agnostic (Surf-

X360-Bio) models as a function of the testing x-ray angles. 

4. Conclusion 

    We presented a DL-based, deformable registration-

driven approach to localize liver tumors in real-time, using 

a body surface image and a single x-ray projection acquired 

at an arbitrary scan angle. The results showed Surf-X360-

Bio can estimate liver boundary deformation accurately, 

which translates to accurate liver tumor localization. The 

mean latency of the Surf-X360-Bio framework is 232 ms, 

which fulfills the temporal constraint of real-time imaging. 
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Abstract 3D object reconstruction from medical images is essential in 
clinical medicine, such as orthopedics surgery and cardiovascular disease 
diagnosis. Conventional approaches to reconstruct a 3D object contains 
two main steps: 1) segment a target in a medical image and generate its 
mask by the marching cubes algorithm, 2) extract a 3D mesh from the 
mask. Due to the discretization error of reconstruction algorithms and the 
uncertainty of the segmentation, the resulting 3D objects are often 
inconsistent with reality. To alleviate this issue, an alternative is to 
reconstruct the 3D objects represented by a parametric model or 
geometric primitives directly from projection data. Differentiable 
rendering has recently been adopted in tomographic reconstruction 
problems and achieves superior results. In this work, we investigated the 
feasibility of triangle mesh object reconstruction and refinement via 
differentiable rendering and our preliminary results demonstrated its 
potential value for applications in clinical CT imaging.  
 

1 Introduction 
3D object reconstruction from CT images is widely used in 
many clinical diagnoses and treatments. For instance,  
coronary stenosis is regularly evaluated through the 3D 
reconstruction of the CT angiography images in cardiology, 
3D printed orthopedic prosthesis in the joint replacement 
surgery is obtained from 3D models reconstructed from the 
CT images in orthopedics. In these scenarios, the targets in 
the CT images are firstly segmented manually or by some 
automatic segmentation algorithms. Then, the 3D masks are 
converted to triangle meshes by the algorithm of marching 
cubes and with post-processing afterwards. The quality and 
precision of the generated meshes depend on the spatial 
resolution and noise level in the reconstructed images 
relying on various factors including the hyper-parameters of 
the reconstruction algorithms, such as the filtering kernel in 
the analytical algorithms, the regularization strength in the 
iterative algorithms and the voxel size. The segmentation 
error and uncertainty also bring additional deviation in the 
target masks. Moreover, the marching cubes algorithm 
usually yields a staircase surface so that the smoothing is 
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needed. Instead of this multi-pass procedure, direct 
reconstruction of 3D objects has attracted attention for a 
long time and many geometric modeling approaches have 
been proposed to solve this problem. For example, Fessler 
et al. proposed the single-valued generalized cylinder 
model to represent arterial trees by a collection of parallel 
ellipses and reconstructed the parametric model from two 
magnetic resonance angiography images[1]. Faby et al. 
proposed a parameterized bottle shape model and 
reconstructed bottle and liquid material densities from two 
dual-energy projections[2]. Jin et al. proposed a metal 
artifact and partial volume effect correction method for 
liquid CT scan by the projection of a hybrid of pixelized 
image and parameterized metallic container[3]. Besides, 
some non-parametric representations are also helpful in 3D 
object reconstruction. Among them, the polyhedral surface 
is a general explicit representation of homogeneous objects, 
and its forward projection and reconstruction in CT have 
been well studied[4]. In computer graphics, as a particular 
case of polyhedral surface, the triangle mesh is 
computationally efficient in ray intersection calculation and 
is widely adopted in ray-tracing rendering. Sawall et al. 
proposed a spatial subdivision structure to accelerate the 
triangle-ray intersection calculation and reconstruction of 
the triangle vertices from CT projections[5]. Apart from 
ray-tracing rendering, rasterization-based rendering is also 
a classical and efficient method in 3D object display, and 
can also be utilized for 3D surface reconstruction. Recently, 
differentiable rendering becomes an active research area in 
the computer graphics community. Many differentiable 
rendering methods have been developed to solve 3D 
reconstruction problems[6-8] and CT reconstruction 
problems[9]. In this work, we investigate 3D surface 
reconstruction from CT projection data using the 
differentiable mesh renderer in the PyTorch3D library[10].  

2 Materials and Methods 
Generally, we consider a 3D object consists of Nm triangle 
meshes with the ith mesh represented by 

 
Fig. 1. Illustration of triangle mesh rendering. (a) Rendering a scene 
consists of a light, camera and a triangle mesh. (b) Ray-tracing based 
rendering via ray-triangle intersection. (c) Rasterization based 
rendering via discretization of the projected triangles.  
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Here, Mi contains Vi
N  vertices, Fi

N  faces and Ei
N edges. 

We assume Mi is a closed mesh and the linear attenuation 
coefficient inside it equals μi homogeneously. Denoting the 
projection operator for a mesh as P(·), we have the 
projection data of an object  

  ( )
1

ˆ M
mN

i i
i

Pµ
=

=∑g  (2) 

Intersection and inclusion between two meshes are allowed 
according to the addictive rule.  

2.1 3D mesh projection via differentiable 
rendering  
The multi-view geometrical convention can describe the 
cone beam CT with a flat-panel detector. The x-ray source 
position is determined by the camera translation matrix T 
and rotation matrix R. The focal length defines source-to-
detector distance and the principal point defines the detector 
offsets in column and row directions, which can be 
expressed by the camera intrinsic matrix K. The forward 
projector P(·) consists of the following steps: 
1. Project the mesh vertices from the world coordinate to 
the camera coordinate by the composition of T, R and K. 
Then the x and y coordinates are normalized to [-1, 1] while 
the z coordinate keeps in the camera coordinate and 
represents the depth between the vertex and the camera (X-
ray source) along the z-axis.  
2. Rasterize the projected 2D triangle mesh. This step is 
similar to the fragments generation in the graphics. A 
fragment is the data structure that stores all the primitives 
overlapped with a certain pixel. For each pixel, traverse all 
the triangles and record those lying on the pixel center in a 
fragment, which stores all triangles contributing to the final 
line integral and their depths.  
3. Render the Fragments and generate the projection image. 
The line integral of the jth detector bin is calculated as 
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where tn is the normal vector of the tth triangle in the 
Fragment, jd is the ray direction and zt is the depth, jd  is 

the principle point direction and prcp j⋅d d  is the cone angle 
weight in cone-beam CT.  
The first two steps are processed by the PyTorch3D 
functionality, while a customized renderer realizes the last 
step.  

2.2 Objective formulation and optimization 
Because the triangle mesh maintains its topology during the 
deformation, a proper initialization with the correct 
topology of the target is sufficient. Similar to an iterative 
CT reconstruction algorithm, the 3D object reconstruction 
can be formulated as a regularized least-squares problem. 
Given an initialization of μi and Mi, we seek vertices 
displacement ΔVi and μi as a solution to the objective 
function 
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g is the measured projection data and R is a group of 
regularization terms implemented in PyTorch3D. For 
example, we can use the mesh Laplace smoothing 
regularization with the cotangent weighting scheme[11]:  
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As shown in Fig.2, Nit is the 1-ring neighborhood vertices, 
α and β are the angles opposite to the connecting edge of vit 
and vj. The Laplace regularization helps to suppress the 
speckle noise on the surface. Another regularization to the 
edges is 
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This regularization suppresses the deformation to narrow 
triangles. Combining (4) - (6), the objective function is 
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We can solve the two-block optimization problem by the 
alternating minimization (AM) method:  
1. Fixing μi, update the vertices displacement ΔVi using 

the Adam optimizer. To accelerate the convergence, the 
projection data are divided into ordered subsets, each 
containing a fixed number of projection views. We set 
4 views per subset in this study. The other 
regularization parameters are selected empirically.  

2. Fixing ΔVi, update μi by the least-squares inversion.  

 
Fig. 2. Illustration of the one-ring neighborhood vertices of vit.  
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3 Results 
For simplification, we assume the projection data only 
contains line integrals of a finite number of homogeneous 
regions which can be expressed by closed meshes. The K-
edge imaging of iodine contrast agent based on spectral CT 
satisfies this assumption. We demonstrate the differentiable 
rendering reconstruction method by the simulation and the 
real experiment of spectral CT. The iodine component is 
obtained by projection-domain basis material 
decomposition of the multi-energy data. The initialization 
of the meshes comes from the segmentation of the K-edge 
reconstruction result by thresholding, while the linear 
attenuation is initialized by the average of the segmented 
regions.  

3.1 Simulation result 
 In the simulation study, we constructed a heart phantom 
consisting of the heart wall represented by a convex 
polyhedron and the left and right coronary arteries 
represented by two triangle meshes. The heart wall is 
assigned as soft tissue while the coronary arteries are filled 
as Iodixanol solution. As shown in Fig. 3, we simulated 
three distinct spectra of an ideal photon counting detector. 
The multi-energy cone-beam CT projection data were 
simulated by the ray-tracing approach at 20 views 
uniformly sampled in 360°. The number of incident photons 
for a detector bin is 2.5×105. We decompose original 
projection data into the projection of water and iodine 
density maps. The iodine image was reconstructed by 
iterative reconstruction with total-variation (TV) 
regularization. Then, the coronary arteries were segmented 
with a threshold of 20 mg/mL. Triangle meshes are 
extracted by the algorithm of marching cubes and served as 
initialization to (7). The average iodine density of the 
segmented region is 220 mg/mL while the reference value 
is 335 mg/mL.  
Fig. 4 displays the 3D reconstruction result of the proposed 
method. The volume rendering image in Fig. 4 (b) indicates 
that the CT reconstruction yields satisfactory coronary 
arterie image for the few-view scan though the distal 
branches are almost invisible. In Fig. 4 (b), with a small 
threshold for segmentation, most of the arterial trees are 
successfully obtained from the CT images. However, the 

distal diameter is eroded due to the edge blur in the CT 
reconstruction. Besides, the surfaces suffer from the 
staircase artifact resulted from the segmentation. Fig. 4 (d) 
shows the 3D reconstruction result of the differentiable 
rendering method. The surfaces are as smooth as the ground 
truth with distal branches of accurate diameter. We also 
evaluated the quantitative reconstruction errors of the 
surfaces. Fig. 5 displays the point-to-mesh distances of the 
results in Fig. 4. The mean point-to-mesh distance of the 
segmented meshes is 0.19 mm while that of the 
reconstructed meshes is -0.064 mm. The iodine density 
estimated by the proposed method is 350 mg/mL. However, 
some fine vascular structures are missing in the CT 
reconstruction, and thus not recovered by the triangle mesh 
deformation.  

3.2 Real experiment result 
The real experiment was conducted on a laboratory photon 
counting spectral CT system. We made a test phantom 
consisting of a water cylinder and four silicone tubes filled 
in 3% Iohexol solution. A metallic stent is inserted into one 
tube to verify the inclusion in 3D object reconstruction. In 
order to gain enough height of the FOV, we took three scans 
with the detector placed in different heights, and merged the 

 
Fig. 3. Spectral CT projection simulation for a heart phantom. The 
heart is represented by a convex polyhedron while the coronary 
arteries are represented by two triangle meshes.  

 
Fig. 4. 3D surfaces reconstruction of the simulation. (a) The ground 
truth of the coronary arteries meshes. (b) Volume rendering of the 
iterative reconstruction result with surface lighting. (c) Triangle 
meshes extracted from (b) by the marching cubes algorithm. (d 3D 
reconstruction result of the differentiable rendering method.  

 
Fig. 5. Point-to-mesh distance of the surface reconstruction results. 
(a) Distance between Fig. 4(c) and the ground truth. (b) Distance 
between Fig. 4(d) and the ground truth.  
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data according to the detector positions. We set three energy 
thresholds and acquired 360 views of projection data over 
2π. The projection data were decomposed into the 
photoelectric effect, Compton effect and iodine component. 
Due to the material cross-talk and inaccurate spectra, the 
decomposed projection of iodine contains part of the stent. 
We focused on the iodine density reconstruction. The CT 
image was obtained by TV regularized iterative 
reconstruction. Since the stent density on the iodine map is 
about ten times of the iodine solution, we set two thresholds 
10 mg/mL and 50 mg/mL for segmentation to obtain the 
initial triangle meshes. Then, the proposed method solved 
the five triangle meshes and two densities.  

Fig. 6 shows the 3D object reconstruction results of the 
experimental data. Fig. 6 (a) is one slice of the CT 
reconstruction and Fig. 5 (b) is the volume rendering image 
with lighting. The discontinuity of the second tube from the 
left is caused by the error in geometrical alignment of the 
three scans. Fig. 6 (c) is the 3D surfaces reconstructed from 
the segmentation results while Fig. 6 (d) is the 3D 
reconstruction results of the differentiable rendering 
method. The advantage in meshes quality of the proposed 
method is similar to the simulation study. We also show 
clipped surfaces of the stent in Fig. 6 (e) and Fig. 6 (f), 
which confirms the proposed method can adequately handle 
object inclusion.  

4 Discussion 
Though the results of the differentiable rendering 
reconstruction method achieved in the simulation and 
experiment are promising, we would like to address some 

concerns about two issues. Firstly, this method needs prior 
information about the 3D objects, including but not limited 
to their quantity, topological structures, densities or 
attenuation coefficients. The presented results still depend 
on the conventional CT reconstruction and segmentation 
procedure, which may be suboptimal for some cases. In 
future work, we will validate 3D object reconstruction 
starting from homeomorphic primitives. Secondly, the 
strong hypothesis about the constant density in the object is 
not always tenable and restricts the density estimation 
accuracy for general objects. Finally, the reconstruction of 
CT images is necessary for most applications. It is 
reasonable to combine CT image reconstruction with 3D 
object reconstruction.  

5 Conclusion 
In this work, we investigated the feasibility of 3D object 
reconstruction from CT projection via the differentiable 
rendering method. The 3D object reconstruction is 
formulated as a triangle mesh deformation problem with 
constraints on vertices and edges and is accomplished by 
optimizing a regularized least-squares objective function. 
The simulation and experiment demonstrate the 
differentiable rendering 3D object reconstruction method is 
effective in detailed structure restoration.  
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Abstract Deep learning techniques are widely used in the medical
imaging field; for example, low-dose CT denoising. However, all these
methods usually require a large number of data samples, which are at
risk of privacy leaking, expensive, and time-consuming. Because
privacy and other concerns create challenges to data sharing, publicly
available CT datasets are up to only a few thousand cases. Generating
synthetic data provides a promising alternative to complement or
replace training datasets without patient-specific information. Recently,
diffusion models have gained popularity in the computer vision
community with a solid theoretical foundation. In this paper, we employ
latent diffusion models to generate synthetic images from a publicly
available CT dataset – the Mayo Low-dose CT Challenge dataset. Then,
an equivalent synthetic dataset was created. Furthermore, we use both
the original Mayo CT dataset and the synthetic dataset to train the RED-
CNN model respectively. The results show that the RED-CNN model
achieved similar performance in the two cases, which suggests the
feasibility of using synthetic data to conduct the low-dose CT research.
Additionally, we use the latent diffusion model to augment the Mayo
dataset. The results on the augmented dataset demonstrate an improved
denoising performance.

1 Introduction
X-ray CT is a commonly used clinical diagnostic imaging
modality for clinical tasks. However, X-ray exposure has
been a public concern since ionizing radiation increases
the risk of cancer and genetic diseases. Hence, low-dose
CT (LDCT) has been actively studied over the past few
decades. Recently, deep learning techniques have
demonstrated state-of-the-art LDCT denoising
performance. These deep learning-based denoising
methods can be grouped into the following categories.
First, projection domain preprocessing methods directly
denoise the projection data using a neural network before
filtered backprojection (FBP) is applied. Also, FBP
unrolling methods utilize a neural network to model the
FBP pipeline. Furthermore, dual domain methods conduct
deep learning in the projection and image domains
synergistically. Of dual domain methods, model-based
iterative reconstruction methods introduce prior enforced
by a neural network to reconstruct LDCT images, and
model-based unrolling methods utilize a neural network to
model the iteration pipeline. Finally, image post-
processing methods are most convenient since it does not
require access to projection data. A common limitation of
all the aforementioned deep learning methods is the need
of a large dataset. Although public CT datasets are
available online mainly from grand challenges such as,
most datasets are still limited in size and only applicable to
specific medical problems.

Collecting medical data is a complex and expensive
procedure. Especially, privacy and security concerns
constantly challenge data sharing. As a result, publicly
available CT datasets are only up to a few thousand scans.
Hence, researchers are motivated to overcome this
challenge using data augmentation schemes, commonly
including simple modifications of images such as
translation, rotation, flip and scale. Using such data
augmentation to improve the training process has become
a standard procedure in LDCT tasks. However, the gain in
diversity is relatively small from such simple
modifications of images. Thus, the deep learning-based
augmentation methods are used to automatically learn the
representations of images and generate plausible and
realistic samples, which dramatically increase the diversity
of generated images. Among them, the generative
adversarial network (GAN) is one of the widely used
models in the field of medical image augmentation.
However, GANs suffer from inherent architectural
problems such as diversity mismatch, mode collapse, and
unstable training behavior. Therefore, it is highly desirable
to develop new data augmentation methods for high-
quality synthetic medical data.
Recently, denoising diffusion probabilistic model (DDPM)
[1] and latent DDPM [2] demonstrated a superior
performance over GANs in synthesis of natural images.
Diffusion models were then introduced for biomedical
image synthesis in various areas such as brain MRI,
histopathology, chest radiographs, and eye funds.
However, the diffusion model in CT image synthesis has
not been performed yet, and nor has the feasibility of using
synthetic data for LDCT denoising been evaluated.
In this paper, we adapt the latent diffusion model [3] to
synthesize realistic CT images from an original clinical CT
dataset. To demonstrate the capability of synthetic data in
the LDCT denoising application, we train the residual
encoder-decoder convolutional neural network (RED-
CNN) [4] model using the publicly available CT dataset
and the synthetic dataset respectively. The results show
that the RED-CNN model has similar performance in the
two cases, supporting the feasibility of using synthetic data
to conduct the LDCT denoising research. Also, we use the
latent diffusion model to augment the original dataset,
boosting the LDCT denoising performance further.

370 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

2 Materials and Methods
2.1 Variational Autoencoder

To reduce the computational demand of training diffusion
models, The variational Autoencoder (VAE) [5] is
employed to compress the image space of size 512×512
into a latent space of size 64×64. The training process of
VAE involves two parts: encoding and decoding. In the
encoding process, a distribution of real CT images � is
mapped to a posterior distribution through the
identification model ℰ(�|�) that obeys the normal
distribution of mean � and standard deviation � where z is
the latent variable. In the decoding process, VAE
generates a new CT image �� from a latent variable �
though the generation model �(�|�). The goal of the VAE
training is to reconstruct the image �� close to the original
image �. The VAE loss consists of an embedding loss and
a reconstruction loss. The Kullback-Leiber (KL)
divergence measures the embedding loss between the
embedding space and white Gaussian noise. The mean
squared error (MSE) captures the reconstruction loss
between the input and output images. Therefore, the loss
function can be defined as

ℒ��� = ���( ℰ(�|�)| � � − � − � � � 2
2 (1)

where ���( ∙ ) is the KL divergence. � � is a standard
Gaussian distribution.
After VAE is trained, the encoder ℰ encodes a CT image �
into a latent representation � = ℰ(�) , and the decoder �
reconstructs the image from the latent �� = � � =
�(ℰ(�)).

2.2 Latent Diffusion Model

After CT images are compressed with VAE, the latent
diffusion model can be used to generate a synthetic dataset.
The architecture of the latent diffusion model is shown in
Figure 2. It consists of the two parts: VAE and DDPM.
These parts are trained subsequently. In the first training
phase, VAE is trained to encode the image space into a
latent space. During the VAE training phase, the latent
space is directly decoded back into image space. In the
second training phase, DDPM is trained in the latent space
constructed using the pre-trained VAE. The weights of
VAE are frozen in the DDPM training phase. DDPM is
probabilistic and designed to learn a latent data
distribution by gradually denoising a normally distribution
variable, which corresponds to learning the reverse process
of a fixed Markov Chain in length � . DDPM can be
represented as a sequence of denoising autoencoders
�� ��, � ; � = 1,⋯, � , which are trained to predict a
denoised variant of their input �� , where �� is a noisy
version of the latent variable � . The objective can be
simplified to

ℒ��� = �ℰ � , �~� 0, 1 ,�[ � − ��(��, �) 2
2] (2)

with � uniformly sampled from 1,⋯, � . In this study, the
latent space is diffused into Gaussian noise using � =
1000 steps. A U-Net model is used to denoise in the latent
space. Samples are then generated with a denoising
diffusion implicit model (DDIM) and t=150 steps.

Figure 1. Architecture of the latent diffusion model
coupled with the VAE.

2.3 Low-dose CT Denoising Network

The RED-CNN network in [4] was employed to evaluate
the LDCT denoising performance using original and
synthetic datasets respectively. This network consists of 10
layers, including 5 convolutional and 5 deconvolutional
layers symmetrically arranged. Shortcuts are made to
connect matching convolutional and deconvolutional
layers. Each layer is followed by its rectified linear units
(ReLU). RED-CNN is an end-to-end mapping from a
LDCT image to the full-dose CT (FDCT) counterpart.
MSE is utilized as the loss function.

2.4 Dataset

A real clinical dataset prepared and authorized by Mayo
Clinics for “the 2016 NIH-AAPM-Mayo Clinic Low Dose
CT Grand Challenge” was used to train the latent
diffusion model and validate the clinical performance of
RED-CNN. The dataset contains 2,588 3mm 512 × 512
FDCT images from 10 patients, which is our real dataset.
In the VAE training phase, all the FDCT images were used
to train the network. Then, the FDCT images were
compressed into a latent space to train the DDPM model.
With the trained latent diffusion model, we randomly
generated 2,377 synthetic FDCT images as our synthetic
dataset. The number of synthetic images is the same as
that of the real data training set. For both the real and
synthetic datasets, the corresponding LDCT images were
produced by adding Poisson noise into the sinograms
simulated from the FDCT images. With the assumed use
of a monochromatic source, the projection measurements
from a CT scan follow the Poisson distribution, which can
be expressed as

��~������� ���−�� + �� , � = 1,⋯, � (3)

where �� is the measurement along the i-th ray path. �� is
the air scan photons, �� denotes read-out noise. In Eq. (3),
the noise level can be controlled by �� , which was
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uniformly set to 104 photons. The FBP algorithm was
employed for image reconstruction.

To train the RED-CNN network, the images from the first
9 patients including 2,377 slices in the real dataset were
selected, while the images from the remaining patient
including 211 slices were used as the testing set. We also
trained the RED-CNN network in the augmented dataset
consisting of both the original and synthetic images to
boost the performance of RED-CNN. To evaluate the
feasibility of using the synthetic dataset for deep learning-
based LDCT denoising, the RED-CNN networks were
trained on real and synthetic datasets respectively, and
then tested on the same testing set.

3 Results
3.1 Evaluation of data synthesis

Since a high quality of the images reconstructed by VAE
is the prerequisite for success of the whole latent diffusion
generation model, we first evaluated image quality losses
due to VAE. In this phase, the FDCT images were
directly encoded and decoded by VAE. The reconstructed
image samples were shown in Figure 2. It can be seen that
the reconstructed images have almost the same visual
quality as the original FDCT images. In the FDCT images,
there is still subtle noise. The noise is suppressed in the
VAE images. However, the reconstructed images preserve
all structural information, even tiny details. Subsequently,
the RMSE, PSNR and SSIM measures between the input
and reconstructed images were calculated as 0.0033,
49.6248 and 0.9931 respectively. Both our visual
inspection and quantitative assessment demonstrated that
the VAE architecture does not compromise image quality
significantly.

Figure 2. Images reconstructed with VAE. The top row are
the input images. The bottom row are the reconstructed
images.

Figure 3 shows four represented synthetic images
generated using the latent diffusion model as compared to
the real images. It can be observed that the latent diffusion
model sampled high-quality images with sharp details and
realistic textures. The synthetic and real images are visual
indistinguishable in these samples.

Figure 3. Images synthesized using the latent diffusion
model. While the top row are the real images, the bottom
row are the synthetic images.

3.2 Evaluation of RED-CNN

Four representative images from the testing dataset were
used to demonstrate the performance of RED-CNN trained
on the synthetic dataset. Figure 4 shows the LDCT
denoising results using different methods. There are high
image noise and streaking artifacts in LDCT images. Both
the RED-CNN trained on original and synthetic dataset
effectively suppressed image noise and artifacts but some
details were blurred. However, the difference is visually
indistinguishable between the two sets of denoised images.

For quantitative evaluation, the RED-CNN achieved high
PSNR/SSIM and low RMSE compared with LDCT results
in Table 1. The quantitative metrics of RED-CNN trained
on the real and synthetic datasets are very close, and the
denoising performance appears slightly better with
synthetic data then real images.

Figure 4. Four representative images from the testing
dataset. From top to bottom are the reference FDCT,
LDCT and VAE results trained on the original and
synthetic datasets respectively.
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Table 1. Quantitative results of RED-CNN using different
training datasets.
Methods RMSE PSNR SSIM
Low-Dose 0.0178 35.1721 0.8221
Real 0.0056 45.0165 0.9782
Synthetic 0.0054 45.3221 0.9790

Figure 5 shows the results of RED-CNN using different
numbers of synthetic training images. With the increase of
training data, the image quality can be gradually improved.
Table 2 is the corresponding quantitative results. More
training data led to better quantitative metrics.

Figure 5. Four representative images reconstructed by
VAE using different numbers of training images. From top
to bottom are the results using the real training data, 2378,
2588, and 4000 synthetic training images respectively.

Table 2. Quantitative results of RED-CNN using different
numbers of training images.

Methods RMSE PSNR SSIM
Original Data 0.0056 45.0165 0.9782
Synthetic 2378 0.0054 45.3221 0.9790
Synthetic 2588 0.0053 45.5661 0.9785
Synthetic 4000 0.0052 45.8011 0.9805

4 Discussion
In the synthetic dataset, there are some images that could
be identified because they have nonideal features. Figure 6
shows four represent synthetic images with unnatural
appearances. The first three images show blurred edges.
The last image suppressed edge blurring but structural
distributions are not consistent with real
anatomy/pathology. It should be noted that although the
problematic images are not globally consistent with the
real situation, the local structures are the same as the real
image and seem sufficient for training LDCT denoising

networks. The deep learning-based LDCT denoising
methods usually extract features in a limited field of view
(FOV). We believe that the impact of the global nonideal
distribution in Figure 6 on these LDCT reconstruction
methods is quite limited. Hence, we did not exclude these
suboptimal images from the training dataset.

Figure 6. Examples of suboptimal samples in the synthetic
image dataset.

5 Conclusion
In this study, we have combined the variational
autoencoder and the latent diffusion model to generate a
synthetic dataset in the context of deep learning-based
LDCT denoising. Our experiments have demonstrated
encouraging results in CT image synthesis and denoising.
It seems that we can use either original or synthetic LDCT
images in training deep networks for LDCT denoising
without any significant difference in the denoising
performance. The most important point we would like to
make is that theoretically speaking, the statistical
distribution of original data is the same as that of synthetic
data but the latter completely blocks privacy leaking,
successfully addressing the privacy/security challenge in
the era of data science. With the latent diffusion model, the
synthetic dataset can be infinitely large, which breaks the
limitation of CT images acquisition difficulty. Our
experiments have also demonstrated that when we train
RED-CNN on both synthetic and real datasets, the
resultant performance can be even better. In the future
work, we plan to train more advanced large networks and
further evaluate the equivalence between original and
synthetic data and the superiority of augmented datasets.
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Abstract A variety of supervised learning methods are available for
low-dose CT denoising in the sinogram domain. Traditional model
observers are widely employed to evaluate these methods. However, the
sinogram domain evaluation remains an open problem for deep
learning-based low-dose CT denoising and other tasks. Since each
lesion in medical CT images corresponds to a narrow sinusoidal strip in
the sinogram domain, here we propose a transformer-based model
observer to evaluate sinogram-domain-based supervised learning
methods. The numerical results indicate that our transformer-based
model well-approximates the Laguerre-Gauss channelized Hotelling
observer (LG-CHO) for a signal-known-exactly (SKE) and
background-known-statistically (BKS) task. The proposed model
observer is employed to assess two classic CNN-based sinogram
denoising methods. This transformer-based observer model has
potential to be further developed as a guidance for deep analysis in the
sinogram domain.

1 Introduction
Low-dose CT reconstruction is a hot topic in the CT

field. One natural way is to preprocess sinogram data
before image reconstruction, given the merit that the
quantum noise is element-wise independent, and then the
processed data can be fed to a reconstruction algorithm.
Recently, convolutional neural networks (CNNs) were
developed for supervised learning-based sinogram
denoising [1, 2]. These networks are trained by
minimizing the error between low-dose and full-dose
sinograms, achieving high performance in terms of image
quality metrics such as root mean square error (RMSE).
However, it is well-known that such metrics may not
consider the noise correlation well, which always present
in CT images. To take the noise correlation in CT images
into account, the modulation transfer function (MTF) and
noise power spectrum (NPS) are used to evaluate image
quality. However, MTF and NPS would not be proper to
evaluate image quality obtained using non-linear image
reconstruction methods, such as CNN-based networks.

To assess image quality from CNN-based CT
reconstruction, channelized Hotelling observer (CHO) is
an appropriate choice for optimizing the parameters of a
CNN for signal detection tasks (e.g., detection of a lesion),
where the CHO with Laguerre-Gauss channels (LG-CHO)
is common in scenarios where the signal is known exactly
and rotationally symmetric [3]. However, the CHO models
are still linear observers, which is suboptimal compared to
the ideal observer (IO) performance for detection tasks
with CT images. Recent efforts have been primarily
focused on training network-based model observes [4],
which provide an alternative approach to CT image quality
assessment. Theoretically, an ideal observer achieves the
upper bound of the image quality assessment performance

on the detection task. In this regard, an ideal observer that
evaluates a sinogram denoise algorithm should be
designed to assess the best signal detectability directly
from sinogram data. By doing so, the dedicated observer
would not be influenced by an image reconstruction
algorithm and its parameters. Indeed, the variation in the
reconstruction algorithm may affect partial volume, beam
hardening, directional noise artifacts, motion artifacts, and
so on. Developing a sinogram-based ideal observer
involves numerous steps that bring all above-mentioned
factors together. Could such a sinogram-based observer
model be well established? Although existing studies
suggested that it would be possible to detect a specific
object from sinogram data, the observer model must be
well designed to accurately simulate the human observer
performance, which is rather complicated.

Our observer model focuses on the object detection
task in a local region, which discriminates a local signal
from its background in reference to the recognizing
capability of the human vision system. The main challenge
of building the model observer is that in the sinogram
domain a local image structure corresponds to a narrow
sinusoidal strip and all the trips of structures are
overlapped to form the entire sinogram. This property of
the sinogram does not match the convolutional nature of
CNNs, since they specifically extract local structural
information. In recent years, the transformer architecture
has been applied in the field of computer vision, including
image quality assessment [5]. The transformer architecture
is applicable in the sinogram domain [2], since transformer
designs a self-attentional mechanism to capture global
interactions.

In this paper, we propose a transformer-based model
observer in the sinogram domain for SKE/BKS detection,
where the background is known statistically due to random
background artifacts. Note that our motivation is to
evaluate the influence of artifacts and noise in the
supervised learning mode, where the full-dose sinogram is
known exactly. Hence, the background artifacts can be
obtained by subtracting the full-dose sinogram from the
corresponding low-dose sinogram. We implement the
transformer-based model observer in these background
artifacts. The proposed transformer-based model observer
is then employed to assess modern supervised CNN-based
sinogram denoising methods. The canonical CNN-based
denoising methods are identified for analysis, including
DnCNN [1] and RED-CNN [6].
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2 Materials and Methods
2.1 Laguerre-Gauss Channelized Hotelling Observer

To evaluate detectability, we conduct the two
alternative forced choice (2-AFC) detection task. The
hypotheses for signal-absent (�0) and signal-present (�1)
are given by:

�0 : g =�� + �� (1)

�1 : g =�� + �� (2)

where g is a column vector of a given image, �� is a
signal-present background, �� is a signal-absent
background, �� is noise. Our goal is to assess the quality
of CT images in the SKE/BKS detection task, where the
background is known statistically, which is defined by
random background artifacts.

For assessment of CT image quality, the HO provides
the upper bound of the detection performance among all
linear model observers. To avoid estimating a large
covariance matrix needed in the HO, the CHO
approximates the HO performance with efficient channels
of much-reduced dimensionality. In the CHO, an image g
is transformed to � by

� = �g (3)

where � is the channel matrix. LG-CHO uses a LG
function for the channel matrix and can approximate the
CHO performance well for a rotationally symmetric signal
in a known location. The CHO template estimated from
training images is computed by:

� = ∆����
−1 (4)

where ∆� is the mean difference between the signal-
present and signal-absent transformed images, and ��

−1 is
the image covariance matrix, � denotes the transpose. The
CHO decision variable can be computed by

� = ��� (5)

2.2 Low-dose CT data preparation

We used the full-dose CT slice of 3 mm thickness
from Mayo clinical dataset. Figure 1 shows the flowchart
for generating a signal-present image in liver region.
Specifically, we inserted a circularly shaped signal near
the center of each region of interest (ROI) with an elevated
CT value by 20 Hounsfield Unit (HU) to present a
challenge of low contrast lesion detection. After forward
projection, we obtained the full-dose signal-present
sinogram, where the signal is a narrow sinusoidal strip in
the sinogram domain. Poisson noise was superimposed to
the sinogram to produce the low-dose signal-present
sinogram. The filtered backprojection (FBP) algorithm
was then employed for image reconstruction. The
background artifacts were obtained by subtracting the full-
dose signal-absent sinogram/image from the low-dose
signal-present sinogram/image. After then, ROIs of 64

pixels × 64 pixels were extracted from the image to
evaluate the LG-CHO method. In the sinogram domain,
sinusoidal strips of 64 bins × 1160 views were extracted
and reshaped to a matrix as the signal-present data for
analysis by the transformer-based model observer.

Figure 1. The flowchart for data generation.

2.3 Transformer-based model observer

The transformer architecture is featured by a global
attention mechanism, and thus can be used to extract
sinogram features from different view angles,
outperforming the CNN-based approach. In traditional
vision transformer, image is cut into patches as input
tokens to capture their spatial relationship in nature images.
Since each sinogram view represents one measurement of
an imaging target, modeling relations between these views
can help the network learn correlation among different
views. Thus, we split each sinogram view as an input
token. Figure 2 shows the top-level structure of the
proposed transformer-based model observer. We modeled
the detection task as a classification problem. For the 2-
AFC detection task, the randomly selected signal-present
and signal-absent sinogram pair serve as the input to the
transformer. Note that �� '∈ℝ�×� / �'∈ℝ�×� randomly
represents the signal-present/signal-absent or signal-
absent/signal-present sinogram pairs, where � and � are
the number of detector bins and views respectively. As
often used in the vision transformer, an extra embedding
�0 is appended to the beginning of the input sinogram. we
add the learnable position encodings �∈ℝ(�+1)×� to the
corresponding �∈ℝ(�+1)×� to keep the position
information. The output of the encoder has the same size
to the input. The decoder takes another sinogram with an
extra embedding as the input. The output of the encoder is
used as an input of the decoder in the second MHA layer.
The output of the decoder is finally obtained to feed into
the following MLP head. The MLP head consists of two
fully-connected (FC) layers, and the first FC layer is
followed by the ReLU activation. The second FC layer is
followed by the Sigmoid activation to predict the labels of
the sinogram pair.

During network training, the initial learning rate was
0.00005, with the cosine learning rate decay. The entropy
cross loss was used for training. The number of epochs
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was set to 200. To train our network, we used 5,000
signal-present sinograms and 5,000 signal-absent
sinograms for the 2-AFC task. We divided the generated
datasets by a 19:1 ratio for training and validation datasets.

Figure 2. The architecture of the proposed transformer-based
model observer.

2.5 Evaluation of the detection performance

To evaluate the proposed model observer applied to
deep learning-based low-dose CT algorithms, the two
classical networks were employed for projection domain
denoising: RED-CNN and DnCNN. We used the percent
correct (�� ) as a detection performance measure for the
model observer, which is defined as

�� =
1
�� �=1

�� ��� (6)

where �� is the number of test trails and �� is binary
decision variables, where �� can only be 1 or 0,
corresponding to correct or incorrect detection results. To
obtain ��, we compare the correct answer with the logit of
the network output. In the case of LG-CHO, we select the
image which has the largest decision variable between 2
input images and compare it with the correct answer. We
use 1,000 sinogram or image pairs as the test dataset to
evaluate the performance of our proposed transformer-
based model observer or LG-CHO, respectively.

3 Results
3.1 Detectability in different noise levels

Figure 3 shows some samples in the training dataset.
The circular signal was inserted in the center of each ROI
in the artifact images to simulate a challenge of low
contrast lesion detection. The signal in sinogram
corresponds a narrow strip, and is difficult to distinguish
visually in both artifact images and sinograms because of
strong noise.

Figure 4 shows the performance curves of the signal
detectability versus the dose level. It can be seen from the
curves that the performance trends among the LG-CHO
and transformer-based model observer are similar. This
simiarity shows that our proposed transformer-based
model observer can be used to evaluate the signal
detection task in the sinogram domain.

Figure 3. Representative samples in the training dataset. From
(a)-(c) are the images/sinograms with 100, 50, 25 thousand
incident photons per detector element. In each group of (a)-(c),
the top is the signal-present images/sinograms, bottom is the
signal-absent images/sinograms. The left is the ROIs from the
images in a display window [-0.005, 0.005], while the right is
the ROIs from the sinograms in a display window [-0.5, 0.5].

Figure 4. The lesion detectability with respect to the dose level.

3.2 Evaluation of the Denoising networks

Figure 5 shows the sinograms/images with 25
thousand incident photons, using RED-CNN and DnCNN
respectively. The noise was suppressed by the denoising
networks. Table I shows the quantitative results using
different denoising networks on the whole testing set. It
can be seen that the RED-CNN method produced the
images with the highest peak signal-to-noise ratio (PSNR),
root-mean-square error (RMSE) and structure similarity
index (SSIM). DnCNN also improved on these
quantitative metrics. However, some fine details were
blurred. For example, the dots indicated by the red arrow
can be seen in the original low-dose CT image but were
blurred by the denoising networks. This is because both
RED-CNN and DnCNN employ the MES loss to train the
network, which does not guarantee the task-specific
optimality; e. g., lesion detection. Especially for DnCNN,
the introduced secondary artifacts clearly degraded the
image quality.

Figure 6 shows typical samples in the training dataset.
After processed by either RED-CNN or DnCNN, the noise
was suppressed. However, some features were somehow
distorted or blurred in the residual sinogram. Both blurred
details in the image domain and stretched structures in the
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residual projection domain compromised the performance
of the numerical observer models.

Figure 7 shows the performance curves of the signal
detectability associated with different methods. It can be
seen that the performance trends for the LG-CHO and
transformer-based model observer are in excellent
agreement. Interestingly, the proposed transformer-based
model observer performed better than LG-CHO. However,
the detectablitity decreased after the image was prepossed
by the denoising networks, which is consistent to the
visual inspection. The fine details were removed by the
denosing networks, which reduced the detectability. Hence,
it is desireable to propose a method that can improve the
metrics of RMSE/PNSR/SSIM and the LG-
CHO/Transformer-based observer simultaneously.

Figure 5. From left to right are the sinograms/images with 25
thousand incident photons using RED-CNN and DnCNN
respectively.

Table I. Quantitative results from different denoising networks.
Methods Low dose RED-CNN Dn-CNN
RMSE 0.0069 0.0025 0.0038
PNSR 43.4594 52.0860 48.3616
SSIM 0.9608 0.9981 0.9879

Figure 6. Typical samples in the training dataset. (a)-(c) The
images/sinograms with 25 thousand incident photons per
detector element, with RED-CNN and DnCNN respectively. For
each group of (a)-(c), the top is the signal-present
images/sinograms, while the bottom is the signal-absent
images/sinograms. The left shows the ROIs from the images in a
display window [-0.005, 0.005], while the right is the ROIs from
the sinograms in a display window [-0.5, 0.5].

Figure 7. The lesion detectability with respect to the dose level.

4 Discussion and Conclusion
In this study, we have demonstrated that the

transformer-based model observer yields a performance
similar to the LG-CHO regarding a residual background.
Hence, the reference images are required to calculate the
residual background. However, in practice the reference
images are usually difficult to obtain. Furthermore, the
proposed transformer-based method targets the ideal
observer, which is still not the same as the human observer.
Implementing an anthropomorphic model observer using a
transformer-based model is another interesting topic,
which will not rely on reference images and bring the
results closer to what the human observer achieves.

In conclusion, we have proposed a transformer-based
model observer to evaluate low-dose CT sinogram
denoising methods. With the transformer, the proposed
observer model has yielded a performance similar to that
of the LG-CHO model. However, LG-CHO has a strict
assumption (i.e., a rotationally symmetric signal, a known
location, and a stationary background) to approximate the
ideal linear observer performance. In contrast, the
transformer-based model is less restrictive. Additionally,
the evaluation in the sinogram domain can avoid the image
reconstruction process. As a follow-up study, we can build
an ideal observer model based on sinogram data so that we
could approach the upper bound evaluation of the
performance of deep sinogram denoising methods.
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Abstract: Deep Image Prior (DIP) is an unsupervised deep learning

technique that does not require ground truth images. For the first time, 3D

PET reconstruction with DIP is cast as a single optimisation via penalised

maximum likelihood estimation, with a log-likelihood data-fit and an

optional Relative Difference Prior term. Experimental results show that

although unpenalised DIP optimisation trajectory performs well in high

count data, it can fail to adequately resolve lesions in lower count settings.

Introducing the Relative Difference Prior into the objective function the

DIP trajectory can yield notable improvements.

1 Introduction
Deep Image Prior (DIP) [1] is a state-of-the-art unsupervised
deep learning method for image reconstruction. It leverages
the inductive bias of Convolutional Neural Networks (CNNs)
to fit to natural signals faster than to noise, allowing regulari-
sation via early stopping along the optimisation trajectory.

Gong et al. [2] were the first to apply DIP to PET re-
construction by splitting the reconstruction into Expectation
Maximisation (EM) and DIP denoising. Splitting the opti-
misation was necessary as the PET forward model was not
integrated into a deep learning framework. This was subse-
quently done by Hashimoto et al. [3] and DIP was imple-
mented as a single optimisation problem, thus reducing the
number of hyperparameters and the computational overhead,
and simplifying implementation. But, the forward model
was stored as a sparse matrix which had an excessive GPU
memory overhead. Furthermore, mean-squared-error was
used as the data-fidelity. Their work was recently extended to
3D PET [4] through slicing the forward operator and solving
with a subset-based block iterative approach.

In this work we implement DIP for 3D PET as a single
optimisation problem with log-likelihood data-fit and an op-
tional penalisation term. Our implementation uses the wrap-
per developed in [5]. Projectors utilised are implicit, thus
alleviating the large GPU overhead associated with explicit
projection and allowing full gradient updates for 3D PET
data. The implementation is tested on realistic simulated data
with two count levels. Results are compared to solutions
from the provably convergent Block-Sequential Regularised
Expectation Maximisation (BSREM) algorithm.

2 Preliminaries
2.1 Penalised Maximum Likelihood

Penalised maximum likelihood methods for PET image re-
construction aim to solve the following optimisation problem:

argminx≥0
{

Φ(x) =−L(y|x)+βR(x)
}
, (1)

where L(y|x) is the Poisson log-likelihood describing the
goodness of fit of the reconstructed image x ∈ RN

≥0 to the
measurements y ∈ RM

≥0; M and N denote the number of
projection bins and image voxels, respectively; R(x) is
the penalty, and β > 0 balances the data-fit and penalty.
Up to an additive constant, the Poisson log-likelihood is
given by: L(y|x) = ∑

M
i=1 yi log(ȳi(x))− ȳi(x). The mean

of the measurements ȳ is obtained by projecting the recon-
structed image with an affine PET forward model, defined by
ȳ(x) = E[y] = Ax+ b̄. The system matrix A models the PET
scanner characteristics as well as physical phenomena, e.g.,
attenuation and positron range. The expected background
events b̄ include both scatter and randoms.

In this work we consider the Relative Difference Prior
(RDP) [6], defined by: R(x) = ∑

N
i=1 ∑ j∈Ni wi j

(xi−x j)
2

xi+x j+γ|xi−x j| ,
where Ni is a 3×3×3 neighbourhood of the i-th image voxel,
wi j are the neighbourhood weights. The edge preservation
parameter is set as γ = 2, as is standard in a clinical setting.
2.2 Block-Sequential Regularised Expectation

Maximisation
BSREM [7] is a provably convergent subset algorithm for
PET image reconstruction, with an iterative update given by:

xk+1 = Px≥0 [xk −αk,nD(xk,n)∇Φmk(xk)] , k ≥ 0. (2)

Here Φmk is a subset gradient and mk ∈ {1, . . . ,nsubsets} is
the index of a subset chosen at image update k, out of
nsubsets subsets. The epoch number n≥ 0 is incremented af-
ter every nsubsets image updates. The step-size is given by
αn, preconditioner by D(·), and Px≥0[·] is a non-negativity
projection. The EM preconditioner is used; D(xk,n) =
diag

{
(xk,n +δ )/A⊤1

}
, where δ = 1e-9 ensures positive def-

initeness, A⊤1 is the sensitivity image, and xk,n is the re-
construction at epoch n. The step-size is computed with
αk,n = α0/(ηn+1), where α0 = 1 is the initial step size and
η is a relaxation coefficient.
2.3 Deep Image Prior
DIP [1] represents x through learnable parameters θ ∈ Rp of
a CNN f(z;θ) with a fixed random input z. The optimisation
problem (1) is then recast as: θ

⋆ ∈ argminθ∈RpΦ(f(z;θ)),
where the reconstructed image is obtained from x⋆ = f(z;θ

⋆).
In the original DIP work [1, 2] the objective function Φ con-
sists solely of the likelihood term where the regularisation
is imparted through network architecture and stopping cri-
teria. A penalisation can be included to alleviate the lack
of robust stopping criteria, which is critical to prevent over-
fitting to noise. The utility of additional penalisation was
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first investigated for CT [8] and was included for PET in
[4], although the latter did not compare against traditional
penalised maximum likelihood solutions.

3 Methods
3.1 Wrapping the SIRF-Objective
SIRF is a multi-modality synergistic reconstruction frame-
work providing access to several well-established reconstruc-
tion engines. For advanced PET and SPECT reconstruction
the Software for Tomographic Image Reconstruction (STIR)
engine is used [9]. In this work we utilise various features
of STIR through SIRF such as the parallelised C++ backend,
access to 3D GPU-based projectors, and access to clinically
relevant PET penalties (e.g. RDP).

The wrapper integrates SIRF into PyTorch, via ex-
posure of sirf.STIR.ObjectiveFunction.value and
sirf.STIR.ObjectiveFunction.get_gradient meth-
ods in a custom autograd function that subclasses
torch.autograd.Function.
3.2 Synthetic Data Generation and System Modelling
A Monte-Carlo photon emission simulation of a voxelised
XCAT torso [10] with GE Discovery 690 scanner modelled
acquisition was performed using OpenGATE [11], STIR [9]
and STIR-GATE-Connection [12]. The distribution of back-
to-back 511 keV photon emissions is representative of activ-
ity concentrations from a 18F-FDG tracer study. Cylindrical
hot lesions of dimensions 1cm diameter by 1cm length were
inserted into the abdominal wall (1.6:1), liver (1.3:1), lung
(2:1), and spine (1.6:1). The lesion to associated background
ratio is indicated by (lesion:background).

Projection data sets containing 250 ("lower") and 1200
("higher") million coincidence events were acquired. A true-
to-background ratio of 0.93:1 was maintained for the datasets.
The resulting list-mode data were re-binned into sinograms
with 288 projection angles; all ring differences were used
as is typical in clinical practice. The reconstruction volume
had dimensions of 47× 128× 128 with voxel-size 3.27×
4.0 × 4.0 mm. Normalisation, randoms and scatter were
estimated from the Monte-Carlo data and incorporated within
the forward model, see [12] for details.
3.3 BSREM and DIP Implementation
For BSREM the objective Φ(x) was split into 32 ordered
subsets, accessed in accordance to the Herman-Meyer or-
der [13]. The initial image was set as a reconstruction with
ordered subset EM with 24 subsets after 1 epoch. The maxi-
mum epoch nepochs and relaxation coefficient η were found
through a grid search for both datasets: for higher count data
η = 0.02 and nepochs = 1000, for lower count η = 0.04 and
nepochs = 500. The grid search was assessed to ensure fast
convergence and small step-sizes at nepochs.

For DIP a three-scale 3D U-Net [14] was implemented in
PyTorch (1.13.0), in-line with previous work [2, 4]. Trilinear
upsampling and strided convolutions were used to change
scale, with the number of features compensating for the in-
crease/decrease of spatial dimensionality. Batch normalisa-

tion and Leaky ReLU were included after each convolution.
Skip connections were also present between encoding and de-
coding paths of the network. ReLU was used on the network
output as a non-negativity constraint. An ADAM optimiser
was used for training, with initial learning rate of 1.0 and
cosine annealing tending to 0 over 20,000 iterations. Two
configurations of DIP were implemented; DIP with only Pois-
son negative log-likelihood objective (referred to as"DIP"),
and with RDP in the objective ("DIP+RDP").
3.4 Quality Metrics
Standard metrics for quantification and detectability of le-
sions are used to assess image quality. Contrast Recovery
Coefficient (CRC) values are calculated between the lesions
and associated background Regions of Interest (ROIs) by:
CRC=( ā

b̄ −1)/(at
bt
−1), where ā and b̄ are average emissions

over lesion and associated background ROIs, respectively.
The subscript t denotes ground truth emission values. Stan-
dard Deviation (STDEV) was calculated on each of the back-
ground ROIs according to: STDEV =

(
N−1

ROI ∑(bi − b̄)2
)1/2

.
4 Results and Discussion

For BSREM results, a set of eleven regularisation val-
ues β were used for each count level. For higher count
β ∈ [3.125,31.25] · e-3; for lower count β ∈ [1.5,15] · e-2.
The largest and smallest values in the range represent over-
penalised and under-penalised solutions respectively. DIP
results are shown at different epochs. For DIP+RDP, four
regularisation values β were used for each count level: higher
count β ∈ {3.125,12.5,21.875,31.25} · e-3; lower count
β ∈ {1.5,6.0,10.5,15.0} · e-2. DIP+RDP worked best when
β was lowest (but non-zero), results are shown in Figs. 1c
and 1d. Qualitative visual comparisons of the lower count
reconstructions are given in Fig. 2.

In the higher count regime, see Fig. 1a, unpenalised DIP is
able to considerably out-perform BSREM across all ROIs. In
the lower count data this is not the case, see Fig. 1b. Through
the inclusion of RDP in the objective function, the trajectory
of DIP is improved significantly such that improved image
quality metrics are observed in both lower and higher count
data. However, the improvement is not consistent across all
lesions. From Figs. 1a and 1c, the CRC of the abdominal
wall lesion decreased markedly with the inclusion of RDP
for high count data. This could be due to the abdominal wall
lesions’ location at the edge of the axial field-of-view, where
noise is higher as sensitivity is lower. These issues of lesion
dependence on local sensitivity, contrast and surrounding
activity have been observed and investigated with non-DIP
reconstruction [15]. Extension of such work to DIP remains
for the future.

A single NVIDIA RTX 3090 with 24GB of dedicated
memory (VRAM) was used in this study. PARALLELPROJ
[16] was used for the projection operator, both the forward
and adjoint are implemented in CUDA (GPU-specific lan-
guage). One full gradient 3D PET DIP iteration took ≈ 2.4s,
therefore 13.3 hours for the 20,000 iterations. This included
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(c) Higher count data, DIP+RDP (β = 3.125e-3), marker indicates the
same β BSREM solution
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(d) Lower count data, DIP+RDP (β = 1.5e-2), marker indicates the
same β BSREM solution, comparison BSREM solution (β = 4.5e-2)
used for qualitative assessment in Fig. 2.

Figure 1: Contrast Recovery Coefficient between lesion and background regions of interest against the standard deviation of the
background. Results closer to the top left are best. Solid lines correspond to the BSREM solution with relative difference prior with
different penalty strengths. Cross markers represent the minimum-loss DIP solution (at fixed penalty strength) taken every 100 epochs
after an initial 10,000 epochs up to 20,000 epochs.

Table 1: GPU memory requirements on tested data for explicit
vs. our implicit projector; estimated from sinogram/image sizes as
well as 8-byte sparse element-size, and observing GPU memory
usage respectively. Memory requirements for the 3D U-Net (see
Sect. 3.3) used in forward and backward modes, and maximum
image volume allowable on a 24 GB GPU.

Projector 3D U-Net

Explicit
matrix

Implicit
(ours)

Forward Backward Maximum
Volume

> 100 GB < 1 GB 0.65 GB 0.88 GB 3003

costly copying to-and-from the GPU which is currently nec-
essary for integration with SIRF. The wrapper could be de-
veloped further by interfacing directly with the projector
through a CUDA-based PyTorch wrapper which would keep
operations on the GPU and arrays saved in VRAM; speeding
up computation. Run-time could also be reduced by the use
of subsets in DIP+RDP. This will be pursued in the future
as it would be an important step in developing efficient deep
learning techniques for PET reconstruction.

5 Conclusion

This is the first single optimisation implementation of 3D
PET reconstruction via penalised maximum likelihood with
DIP. The implementation utilises a wrapper integrating a
well-established reconstruction framework (SIRF) with Py-
Torch. The application of DIP on high count data was able
to significantly increase quality metrics, whereas on lower
count data this was not observed. Introducing RDP into the
objective function significantly improved the DIP trajectory
for lower count data. Results indicate that further investiga-
tion is needed as conclusive and consistent improvements are
not observed across count levels and lesions.

This work is supported by the EPSRC-funded UCL Centre for Doc-

toral Training in Intelligent, Integrated Imaging in Healthcare (i4Health)

(EP/S021930/1), the UK NIHR funded Biomedical Research Centre at
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simulated data. Riccardo Barbano and Željko Kereta contributed equally.

380 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Figure 2: Axial slices taken through the center of lesions. Slices of ground truth emission and lower count data reconstructions with DIP,
BSREM (β = 4.5e−2), and DIP+RDP (β = 1.5e−2). DIP reconstructions are the minimum-loss solutions over 20,000 epochs. CRC
and STDEV values quotes are for the lesion shown in the slice. Colour-scales between reconstructed image slices are kept constant.
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Abstract Deep-learning (DL) super-resolution methods have recently 

shown encouraging results in improving the clarity of fine anatomical 

details in CT images. In this work, we explore the feasibility of using 

images generated with a high-frequency reconstruction kernel as the 

input to a DL network to boost the resolution capability of CT. 

Specifically, we use an “edge kernel”, which is not routinely used to 

reconstruct clinical CT images due to its high level of noise and artifacts, 

but its higher-resolution image details may be exploited by a DL network. 

Then, we introduce the SRCAN2 network that takes both Edge and Bone 

kernel images as inputs to improve the super-resolution capability of DL. 

Also, we introduce a numerical method for generating super-resolution 

training data using the CatSim simulation environment. The results show 

that the proposed DL super-resolution method substantially improves the 

visual sharpness of CT images relative to the inputs. The modulation 

transfer function 10% threshold frequency can be increased by up to 

56%. We further applied non-linear image quality metrics to characterize 

the contrast- and anatomy-dependent behavior of the DL network and 

obtained promising results. 

1 Introduction 

The importance of image resolution in x-ray CT scanning 

can not be overstated. Improved image resolution means 

that more fine detail of the human anatomy can be shown in 

the reconstructed images. Better resolution leads to better 

diagnosis and higher clinician confidence in the scan and 

the reconstructed image. Better image resolution could also 

reduce image blooming artifacts, which occur around small 

structures like coronary artery calcifications. 

 

Recent literature in the field of Deep-learning based image 

super-resolution can be divided into 4 categories: (1) 

Traditional DL networks like EDSR [1]  rely on residual 

blocks, while Ref [2] uses U-net [3] type architecture. (2)  

GAN-based techniques: SRGAN [4] uses a generator 

network with residual blocks. GAN-CIRCLE [5] was 

created for CT images and applies constraints like cycle-

constraints. Ref [6] presents another popular GAN-based 

framework for microscopy images, while PULSE [7] 

augments GAN with exploration through the latent space of 

the generative model for faces and photos. (3) Channel-

attention/Spatial transformer techniques: RCAN [8] 

applies channel-attention, residual blocks and image 

upsampling for resolution enhancement of general 

photographs. DFCAN [9] applies channel-attention in 

Fourier domain for microscopy images. Ref [10] combines 

spatial transformer with GANs to perform image 

upsampling in general images. (4) Combination of DL and 

iterative techniques: DPSR [11] applies Deep learning 

within ADMM iterations, and in Ref [12] the proximal 

regularization step within the iterative loop is replaced with 

a Deep neural network. 

 

This study aims to improve DL super-resolution for CT by 

using non-standard input images and a new method for 

training data generation. Existing DL super resolution 

methods for CT usually directly use a standard clinical 

image as the network input. Although these images are 

optimized for human observers, they are not necessarily the 

optimal choice for the purpose of DL super resolution.  

Here, we test the idea of using higher frequency kernels like 

the Edge kernel to generate input images for the DL 

network. The Edge image is typically not used by clinicians 

for diagnosis due to its high noise, but it carries more high-

frequency information which could be more effectively 

utilized by a DL network. Along with the high 

reconstruction kernel, we also use a very small input pixel 

size to preserve the fine details in the input image. 

 

Another challenge for DL super resolution is the lack of 

easy ways to generate the high resolution training labels. In 

this work, we build high-resolution digital phantoms based 

on denoised and analytically sharpened clinical patient 

images, then  apply  CatSim [14] to simulate the CT 

imaging chain and generate the training inputs. Finally, we 

apply non-linear resolution metrics to characterize the 

contrast- and anatomy-dependent behavior of the DL 

network. 

 

The organization of this paper is as follows. An SRCAN2 

network for image resolution improvement is presented first 

(Sec 2.1). Next, we describe the method proposed to 

produce the training images (Sec 2.2). The details of the 

image evaluation methods are described in Sec 2.3. This is 

followed by results and conclusions.  

2 Materials and Methods 
2.1 Super-resolution RCAN with 2 input channels 

We developed a lightweight super-resolution Fourier 

residual channel attention network with dual kernel inputs 

(SRCAN2) by adapting Ref [8]. A few modifications have 

been made to the RCAN network to improve the 

performance while reducing the total number of training 

parameters. First, we modified the network to have two 

input channels: Edge and Bone kernel filtered back 

projection (FBP) image reconstructions. We used an Edge 

382 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

 

kernel image as an input so that we can preserve as much 

high frequency information as possible from the measured 

sinogram. To combat the aliasing artifacts typically found 

in Edge kernel images, we added a Bone kernel image as 

the second input channel (Fig 1). The Bone kernel image is 

less sharp when compared to the Edge kernel image, but 

may help in removing the aliasing artifacts to a large extent; 

Second, we adopted a more advanced Fourier channel 

attention mechanism [9] to replace the original attention 

mechanism for better utilization of all frequency 

information from the dual kernel inputs to boost the 

performance; Third, we removed the upscaling module and 

only kept one residual group consisting of 15 Fourier 

channel attention blocks since our input and output image 

share the same size and the depth reduction of the network 

facilitate the network training on both speed and stability 

without significant performance loss in our application.  

 

For the training loss function, we followed the settings in 

Ref [15, Eq 14] which consists of a L1 loss on absolute 

errors and a L2 loss on relative errors. The former term 

regulates the overall fidelity while avoid blurring, and the 

latter one emphasizes the fine details with small values, e.g., 

the anatomy with low intensity/HU in the lung regions. 

 
Fig 1. Deep-learning network for image super-resolution 

The SRCAN2 was trained using 8 patient exams, each 

containing around 200 slices. More details about the 

generation of training data will be described in the next 

section. 240k patches of size 64×64 were generated: 80% of 

those were used for training and 20% for validation. For 

each training batch, 320×2 input CT image patches with the 

size of 64×64 were fed into the network. The model 

parameters were updated with ADAM optimizer (1 = 0.9; 

2 = 0.999, and  = 10-8), and the learning rate was set as 

1×10-5 initially then exponentially decayed at a rate of 0.95 

per epoch. The network was trained for 60 epochs on 8 

Tesla V100 GPUs and took 3.3 hours. The inferencing time 

for one 512x512 slice was 0.106 seconds on a single GPU. 

 

2.2 CatSim based training data generation 

We built  high-resolution voxelized phantoms based on 

retrospective patient cardiac images acquired on a GE 

Revolution CT scanner (Fig 2). These original images were 

reconstructed with the standard kernel at 0.387-0.396mm 

pixel sizes. To generate clean training labels, the images 

were denoised using a previously developed 15-layer CNN 

CT denoising network . Then, to boost the image resolution, 

we applied a circular-symmetric Fourier-domain filter 

whose response is unity at zero frequency and increases 

quadratically to the maximum frequency: 

𝐻(𝑓𝑥, 𝑓𝑦) = 1 + (𝑓𝑥
2 + 𝑓

𝑦
2

)/(9.6)2, 

where are 𝑓
𝑥
 and 𝑓

𝑦
 are in lp/cm. Finally, we applied a non-

linear gray level transform to each pixel of the image 

(termed “cartoonization” here), to further enhance the 

sharpness of the boundaries of bone and lung tissues: 

𝑇(𝑥; 𝑐, 𝑟, ℎ) = 𝑥 + ℎ
𝑥 − 𝑐

𝑟
𝑒

−(
𝑥−𝑐

𝑟
)

2

,  

where 𝑥 denotes the input gray level for each pixel, which 

is converted from HU by 𝑥 = 1 + 𝐻𝑈/1000. The 

transform was applied twice, with parameters 𝑐 = 0.6, 𝑟 =
0.08, ℎ = 0.113 for lung tissues, and 𝑐 = 1.3, 𝑟 =
0.08, ℎ = 0.113 for bone tissues,  respectively.  

 
Fig 2. High-resolution, low-noise ground-truth phantom image derived 

from a patient image. WW/WL=2000/1000 HU (Air=0HU). 

To generate super-resolution phantoms from these images, 

we also shrank the image pixel size to 0.133 mm i.e., a 

three-fold reduction relative to an original pixel size. Such 

scaling introduced miniature anatomical structures beyond 

the instrinsic resolution of the clinical image. This is based 

on the assumption of fractal self-similarity between 

different CT image scales.  

 

The super-resolution phantoms were used as the ground 

truth training labels. CT scans of the phantoms were 

simulated in the CatSim environment which models the CT 

imaging process. The Edge and Bone kernel reconstructions 

from the simulation data were used as the training inputs 

(Fig 3). 

 
Fig 3. The digital phantom and the simulated Edge and Bone kernel 

reconstructions are used as training data for SRCAN2. 

2.3 Image quality evaluation 
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We evaluated the image resolution in this study by adapting 

the methods in [16] and [13], where Dirac impulses (or 

wires) of various amplitudes were inserted at random 

locations in a testing image, and the difference between the 

output images with and without the impulses was used to 

quantify image resolution (Fig 4). The modulation transfer 

function (MTF) and contrast recovery coefficient (CRC) 

were computed from the wires to quantify the non-linear 

response of the DL network. The CRC adapted to this study 

was defined as the ratio between the maximum value of the 

output wire profile to the maximum value of the Edge 

kernel input wire profile.  

 

The details of the method used to compute the resolution 

metrics is as follows: 

Step 1. Generation of testing wires for Edge and Bone 

images. We inserted single-pixel impulses (10 g/cc) as 

testing wires at 65 random locations in the digital phantom, 

but ensuring a separation of at least 32 pixels between the 

wires. A CT scan of the wire-inserted phantom was 

simulated in CatSim. In the reconstructed image, we 

subtracted the background to extract the wire profiles. We 

then averaged the wire profiles to obtain the testing wire 

profiles for the Edge and Bone kernels, respectively. 

Step 2. Measurement of the wire responses of the DL 

network. For each test image set (containing Edge and Bone 

kernel images for each image slice), we first obtained the 

super-resolution output images from the DL network 

without inserting the wires. Then, at 41 random pixel 

locations (but separated from each other by atleast 32 

pixels) we added a scaled version of Edge and Bone wire 

profiles obtained in Step 1 to the test image set. The super-

resolution images with the wires were obtained as the DL 

outputs. This was repeated with different wire contrasts in 

the range of 20 to 2000 HU. The contrast- and location-

dependent wire responses of the DL network was obtained 

by taking the difference between the output images with and 

without the inserted wires.  

Step 3. Computation of MTF10% metric. For each wire 

profile we computed the MTF curve by taking the absolute 

value of the 2D Fourier transform of the wire profile, and 

averaging the x- and y-profiles. Then, we computed the 

frequency (in lp/cm) where the response dropped to 10% of 

the DC value of the MTF curve. 

Step 4. Computation of CRC metric. We computed CRC as 

the ratio between the maximum value of the output wire 

profile to the maximum value of the Edge kernel input wire 

profile. 

3 Results 

The DL network was tested on two patient exams, which 

were not a part of the training and validation sets. The 

digital phantom (i.e. ground truth) for these patient exams 

was generated, then the Edge and Bone kernel input images 

were generated from CatSim. The super-resolution images 

produced by the SRCAN2 network are visually 

substantially sharper than both the input Edge and Bone 

kernel reconstructions (Figs 5 and 6). 

 
Fig 4. Method to compute MTF10% and CRC image quality (IQ) metrics 

The wire profiles for Edge and Bone kernel input images 

and the network output image for an example wire is shown 

in Fig 7.  When the wire contrast was 2000HU (in the Edge 

image), the MTF10% for Bone input, Edge input, and 

Super-res output are 10.7, 12.4 and 19.4 lp/cm respectively, 

i.e., an improvement of 56% over the Edge input. The peak 

value of the output wire was 2.27 times of the peak of the 

Edge input wire, i.e. CRC=2.27. 

 
Fig 5. DL network input images, output images, and ground truth image 

for a representative 2D slice. Standard kernel image is also shown for 

reference. WW/WL=800/1200 HU, =2000/700 HU for inlay (Air=0HU). 

The x- and y-profiles through the blood vessel inside the dashed circle 

are in Fig 6. 
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Due to the non-linear nature of the DL network, the 

MTF10% and CRC varied with the contrast level of the test 

wire. The measured output image resolution reduced as the 

contrast level of the input test wire was reduced (Fig 8). The 

dependence of mean MTF10% and mean CRC on contrast 

level is used to characterize the non-linear behavior of the 

DL based image super resolution method. 

 
Fig 6. The x- and y-profiles through the blood vessel inside the dashed 

circle in Fig 5. 

 
Fig 7. (a,b) X- and y-profiles through a test wire for Edge input image, 

Bone input image, and Super-res image. (c) MTF curves for the same test 

wire for Edge input image, Bone input image, and Super-res image. Note 

that the contrast level of the test wire in the Edge input image is 2000HU. 

4 Conclusion 

We explored the feasibility of using non-standard 

reconstructions such as images reconstructed with the Edge 

kernel as the input of a DL network to boost CT image 

resolution. Our SRCAN2 network takes multiple inputs of 

both Edge and Bone kernel images. To overcome the 

difficulty in finding super-resolution training data, we built 

high-resolution digital phantoms based on denoised and 

analytically sharpened clinical patient images, then 

generated the training inputs in a CatSim environment. The 

results showed that the proposed DL method substantially 

improved the visual sharpness of CT images relative to the 

inputs. The MTF10% increased by up to 56%. We also 

applied non-linear image quality metrics to characterize the 

dependency of the image resolution improvement on the 

contrast level of local features. 
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Abstract In this work, we investigate hybrid PET reconstruction algo-
rithms based on coupling a model-based variational reconstruction and
the application of a separately learnt Deep Neural Network operator
(DNN) in an ADMM Plug and Play framework. Following recent
results in optimization, fixed point convergence of the scheme can be
achieved by enforcing an additional constraint on network parameters
during learning. We propose such an ADMM algorithm and show in
a realistic [18F]-FDG synthetic brain exam that the proposed scheme
indeed lead experimentally to convergence to a meaningful fixed point.
When the proposed constraint is not enforced during learning of the
DNN, the proposed ADMM algorithm was observed experimentally
not to converge.

1 Introduction

In the quest for PET image reconstructions adapted to a
protocol, to a specific patient or to a given task, deep learning
approaches are currently a promising avenue of research.
Early works have already illustrated the potential of such
approaches to achieve better resolution, contrast recovery and
noise propagation trade-offs compared to classical model-
based variational methods for PET reconstruction [1, 2]. In
particular, a reduction of the dose injected to the patient could
be envisioned without sacrificing much of the reconstructed
image quality compared to a standard dose exam, which
would be beneficial for the patient and/or to reduce the cost
of a PET scan [3].
However using deep learning in PET raises several new is-
sues compared to the aforementioned variational approaches.
In particular these specific methods can generate instabilities
related to the ill-posedness of the problem that could lead to
images with artefacts as already observed in biomedical im-
age reconstruction applications [4]. Furthermore, deep learn-
ing techniques for reconstruction often use neural networks
as a black box operator in the reconstruction pipeline. This
leads to end estimates that lack mathematical or statistical
guarantees that could make them robust, contrary to classical
reconstruction techniques typically associated with a convex
variational problem. Robustness of the reconstruction is also
of paramount importance in PET where datasets are often
small (with typically only tens of exams per protocol) leading
to limited learning and validation.
In this context, hybrid techniques inspired by model-based
PET reconstruction approaches in a learning framework have
been proposed to avoid learning the direct model and to aim
at more reliable estimates [5]. We will focus on this work on
a less investigated hybrid framework for PET reconstruction
than unrolled [2] or synthesis [1] approaches: the ADMM
Plug and Play approach [6]. In this framework, an implicit

operator related to the prior is only learned [7], making this
approach flexible. Fixed-point convergence results have been
investigated for this framework even though the optimization
problem is non-convex and the learned operator is implicit
[8, 9]. Based on these results, we propose and investigate
in this work a convergent ADMM Plug and Play approach
for PET image reconstruction using Deep Learning. We
present in section 2 the convergent ADMM Plug and Play
approach that we propose, the datasets used for training and
evaluation and detail the architecture and implementation of
the additional constraint needed for fixed-point convergence
of the scheme. We then present and discuss our results on
realistic [18F]-FDG synthetic exams.

2 Materials and Methods

2.1 Convergent ADMM Plug and Play

We consider the reconstruction of an image denoted by
x ∈ RN

+, from an observed noisy sinogram y ∈ NM. The
ADMM plug and play algorithm is described in Algorithm 1.
In our context of PET reconstruction LL(y,x) is the Pois-
son log-likelihood and Dθ is a DNN operator with inputs
the reconstructed PET images, with parameters learnt in a
separated step.

Algorithm 1 ADMM Plug and Play with a DNN Dθ .

1: Choose z(0), u(0), ρ , K.
2: for k = 0..K do
3: x(k+1)

ρ = argmin
x∈RN

+

−LL(y,x)+ ρ

2 ‖x− (z(k)ρ −u(k)
ρ )‖2

2

4: z(k+1)
ρ = Dθ

(
x(k+1)

ρ +u(k)
ρ

)
5: u(k+1)

ρ = u(k)
ρ +x(k+1)

ρ − z(k+1)
ρ

6: end for
7: return x(K+1)

ρ

Compared to unrolling techniques, this ADMM framework
decouples learning the DNN and reconstructing the images,
which is convenient for integrating DNN inside the recon-
struction. In particular the number of ADMM iterations can
be large with no impact on the GPU VRAM contrary to un-
rolling techniques. Besides the reconstruction problem in
line 3 is a standard (convex) minimization problem, which
can be solved using an efficient existing PET algorithm [10].
Compared to synthesis ADMM approaches, this Plug and
Play formulation leads to a simple condition on the DNN for
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this scheme to converge as described below. Note in partic-
ular that no heuristic choice of an iteration-dependent ρ is
needed to stabilize the algorithm as often proposed as in [8],
even though our final estimate still depends on ρ .
If the operator Dθ corresponds to the proximal operator of
a proper, closed and convex function, Algorithm 1 is the
classical ADMM algorithm with an implicit operator and
with convergence properties described in [11, 12] . However
for a general Dθ , such algorithm may not even minimize a
convex problem and there is no guarantee of convergence of
such a scheme. Conditions for fixed point convergence of the
ADMM Plug and Play algorithm have however been studied
in [8, 9] and references therein. In particular, [9] shows that
one ADMM iteration can be written equivalently as apply-
ing an operator Tθ = 1

2 Id+1
2(2Dθ − Id)(2Prox−LL/ρ− Id).

This implies in particular that if Lθ = (2Dθ − Id) is a non
expansive operator and Tθ has a fixed point, then fixed
point convergence of the scheme is obtained [9]. The non-
expansiveness constraint is however difficult to enforce nu-
merically. [9] proposed to use real spectral normalization on
each layer to constrain the Lispchitz constant of each layer of
the DNN. In this work, we rather use the approach proposed
in [13]. Taking also into account a supervised loss (Mean
Squared Error - MSE), the DNN parameters are estimated in
the following minimization problem:

min
θ

B

∑
b=1
‖Dθ (xb)− x̄b‖2

︸ ︷︷ ︸
MSE

+β max{‖∇Lθ (x̃b)‖+ ε−1,0}1+α︸ ︷︷ ︸
Non expansiveness constraint

,

(1)
where b is the batch index, ε , α and β are hyperparameters
to balance the supervised loss and the constraint and x̃b is
obtained as a random convex combination of the reference
image x̄b and the output of the neural network as follows:

x̃b = κ x̄b +(1−κ)Dθ (xb),κ ∼U [0,1]. (2)

Note that the spectral norm of the Jacobian for a given entry
point can be estimated using automatic differentiation but the
computation is particularly intensive in terms of both GPU
VRAM and execution time.

2.2 Datasets and Learning settings

The database used for learning and evaluation of the proposed
approach was derived from 14 brain [18F]-FDG brain exams
of healthy subjects and their associated T1 weighted MR im-
ages. The T1 images were first segmented into 100 regions
using FreeSurfer1. The PET signal was then measured in
a frame between 30 minutes and 60 minutes after injection
in each region using PETSurfer [14] to generate 14 distinct
anatomo-functional phantoms. 3-dimensional PET simula-
tions for a Biograph 6 TruePoint TrueV PET system were
then generated using an analytical simulator [15], including

1https://surfer.nmr.mgh.harvard.edu

normalization, attenuation, scatter and random effects. 11
phantoms were used for training and 3 for testing. Data aug-
mentation was performed for each phantom by simulating 10
realizations of the injected dose so that the total number of
counts simulated spans the range observed in the 14 exams.
This results in 110 shuffled simulations used for training and
30 realizations for testing. These simulations were recon-
structed with CASToR [16] using OSEM with 8 iterations of
14 subsets.
The network Dθ was chosen as a U-Net [17] with 443649
parameters. We made several modifications compared to the
architecture presented in [1], as a balance between perfor-
mance of the network and number of parameters to learn: we
use 3 levels with instance normalization, 3D average pooling
and concatenation between the decoder branches and encoder
branches, and we use an overall skip connection to learn on
the residual image. Note that the input reconstructed images
are first normalized so that the network performance is robust
to dose variation. The normalization factor is then applied to
the output of the network to recover the correct scale.
The DNN parameters of the U-Net were learned in two steps.
In a preliminary phase, the DNN parameters are learnt only
with the supervised MSE loss. The ADAM optimizer with 50
epochs and a learning rate of 0.001 was used. Batch size was
1, and the reference in the supervised loss corresponds to the
noise-free images. This results on a first DNN without the
constraint on the Jacobian, named "PRE" in the following.
In a second phase, the total loss in Equation 1 is considered
and the Power Iterative Method (with a maximum of 10
iterations) and automatic differentiation is used to compute
the spectral norm of the Jacobian. In this case we use 14
additional epochs on the PRE DNN to enforce the constraint,
using ADAM with a learning rate of 0.0005, batch size of 5,
β = 10, α = 0.1 and ε = 0.05 in Equation 1. This network
is named "JAC" in the following.
Both networks are then employed in Algorithm 1 using 40
iterations and compared on the simulations. For initialization
z(0) is an OSEM reconstructed image with 8 iterations of 14
subsets and u(0) = 0. We first investigated the choice of ρ on
the convergence speed and on the solution by looking at the
norm of the primal residual defined as x(k)ρ − z(k)ρ and of the

dual residual ρ(z(k+1)
ρ − z(k)ρ ) [12]. Both should converge to

zero for ADMM to converge.

3 Results

MSE curves during training and testing of the PRE U-Net
illustrate that 30 epochs are necessary to learn parameters in
the preliminary phase (not shown). Figure 1 shows that the
choice of β leads to balanced supervised and constraint loss
in the first iteration. Both MSE and Jacobian constraint com-
ponents of the loss are decreasing over epochs. Performance
in the testing and training datasets were comparable in terms
of MSE, and the proposed implementation of the constraint
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Figure 1: Loss functions for JAC U-Net. Left: the total loss is
subdivided into its two individal contribution. Middle: MSE for
training and testing phases. Right: Jacobian spectral norm for
testing dataset.

Figure 2: Performance of U-Nets in post-processing for a simula-
tion in the test set. From top to bottom: noise-free reference image,
OSEM image, PRE U-Net estimate, JAC U-Net estimate.

leads to a Jacobian spectral norm in the testing dataset less
than 1 as expected (compared to more than 3.5 for PRE).
Figure 2 illustrates the performance of both U-Nets when
used as simple post-processing for reconstructed PET im-
ages: propagated noise has been reduced while preserving
the high frequency structures present in the original phantom.
Compared to the PRE U-Net higher frequencies are observed
in the background region for the JAC U-Net, indicating that
the denoising performance is slightly degraded when using
the Jacobian constraint.
The two networks were then employed in Algorithm 1. The
impact of hyperparameter ρ is illustrated on Figure 3 for
the JAC U-Net. This illustrates that a carefull choice of this
hyperparameter is needed to reach adequate convergence
speed for the overall scheme similarly to what is observed
in ADMM in convex problems. In the following, we chose
ρ = 5e−7 which achieves fast convergence as indicated in
both primal and dual residuals.
Figure 4 illustrates the performance of PRE and JAC U-Nets
across ADMM iterations, for the previously selected value
of ρ . It can be observed that JAC U-Net leads to decreasing
primal and dual residuals and to a rapid stabilization of both
MSE to a low value and log-likelihood to a high value. On

Figure 3: Norm of the primal (left) and dual residual (right) across
ADMM Plug and Play iterations for the JAC U-Net.

Figure 4: Evolution for both U-Nets of Top: primal (left) and dual
(right) residuals; Bottom: log-likelihood (left) and MSE (right).

the contrary the PRE U-Net has not converged as illustrated
in primal and dual residuals, and has lower log-likelihood
and higher MSE than JAC.
Figure 5 illustrates the recovered images using ADMM Plug
and Play with PRE and JAC U-Nets, compared to the best
Gaussian post-filtered OSEM image. JAC results lead to the
closest image to the reference, with the lowest MSE. On the
contrary, PRE U-Net leads to a not converged image further
from the reference.

4 Discussion

In this work we have proposed a strategy to build a conver-
gent ADMM Plug and Play algorithm by enforcing a non-
expansiveness constraint during the learning of the DNN.
Enforcing a strict (global) non-expansiveness constraint is
actually replaced by enforcing ‖∇Lθ (x̃b)‖ to be less than 1
for sampled x̃b using Equation 1. More epochs are needed
to ensure sufficient sampling of the space close to the solu-
tion. However, the results presented in this work illustrate
that the constraint is satisfied even for the test set. It was
also observed experimentally that Algorithm 1 converges as
expected. Nonetheless, robustness of such a reconstruction
scheme should be further assessed. We have shown that the
choice of hyperparameter ρ is crucial for convergence speed
as in the convex case, but in this non-convex case the solu-
tion also depends on ρ . The choice of ρ is therefore crucial,
and the choice of this hyperparameter should be investigated
more thoroughly. Finally we plan to investigate the perfor-
mance of such algorithm in low-dose scenarios to assess the
performance of such approach in a more clinically relevant
setting.
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Figure 5: Reconstructed images for the same test set simulation as
in Figure 2. On top, the OSEM reconstructed image with the best
Gaussian post-filtering selected (MSE:90265). In the middle, the
PRE U-Net results after 80 iterations (MSE:75227). In the last row,
the result obtained with the proposed JAC U-Net after 80 iterations
(MSE:50957).

5 Conclusion

In this work we have proposed a new approach for PET re-
construction using Deep Learning. Based on the ADMM
Plug and Play framework, the proposed approach uses a con-
straint on the spectral norm of an operator Jacobian during
learning. This promotes the non-expansiveness that leads
to a convergent reconstruction scheme. We show in experi-
mental simulations that without this constraint the ADMM
does not converge. On the contrary, the proposed approach
experimentally converges to a higher likelihood solution and
to a lower MSE, illustrating the interest of such an approach.
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Abstract Previous approaches using X-ray dark-field imaging to obtain 

a tensor representation of small angle scatter in tissue involved first 

reconstructing the coefficients of a fixed vector field at each voxel, then 

fitting a Gaussian tensor representation of the small-angle scatter to the 

reconstructed vector space. A recent simulation study (Graetz [1]) 

demonstrated that small angle scatter can be represented by a linear 

tensor model to recover orientations with an accuracy of less than 1°. 

Based on this observation, we developed an iterative algorithm that 

reconstructs a symmetric 2nd rank tensor of small angle scatter from 

scalar projections of visibility measurements obtained from grating 

stepping acquisitions. The novelty is the design of a data acquisition 

method and reconstruction algorithm that provides estimates of tensor 

representation of small angle scatter. Its relation to medical imaging 

involves using the small angle scattering properties of X-ray interactions 

with tissue micro-structure to identify lesions with negligible density 

variation relative to surrounding tissues. 

 

1 Introduction 

 

There is a significant need to provide improved lesion 

detection using X-ray CT, especially for lesions in the lung. 

The goal of this work is to develop new direct tensor 

reconstruction algorithms that avoids having to first 

reconstruct the coefficients of a fixed vector field at each 

voxel, and then fitting a Gaussian tensor representation of 

the small-angle scatter to the reconstructed vector space [2].  

Based on the premise that dark field scatter can be 

represented by a symmetric 2nd rank tensor [1], a tensor 

reconstruction algorithm is developed using measurements 

to reconstruct the six unknown elements of the symmetric 

tensor at each voxel representation.  

 

In the following we first describe the tensor model for small 

angle X-ray scatter and then, in evaluating the tensor model, 

we describe how wave optics are used to simulate the 

projections of a phantom consisting of four layers of parallel 

carbon fibers. 

 

A key aspect of this work is demonstrating that using X-ray 

interferometry, longitudinal directional measurements 

(parallel to the optical axis) and transverse directional 

measurements (orthogonal to the optical axis and in the 

direction of the gradient sensitivity) can form directional 

tensor projections. Using these measurements with 

sufficient angular projection samples, one can reconstruct 

2nd-rank tensor fields of dark field scatter.  

2 Materials and Methods 

 

A. Tensor Model for Small Angle X-ray Scatter 

 

It has been shown [3-5] that the physical model behind 

directional dark-field imaging can be described by  

����, �� � exp � �〈�̂��, �, ��, �̂〉����          �1� 

where ����, �� are the projections with detector coordinates ��, ��, �̂��, �, �� is the small angle scattering coefficients 

with 3D coordinates ��, �, ��, and �̂ is the sensitive vector 

of the grating (Fig. 1). In small angle X-ray scattering 

experiments, anisotropic scattering, represented as an 

ellipsoid, is related to anisotropy of the sample structure. 

Based on the nanostructure orientation distribution function 

and directional dark field imaging, a model representing the 

projection of small angle scatter is developed here, which 

establishes the relationship between the dark field 

projection and small angle scatter. 

 

The relationship between the direction of the beam, the 

sample, and the measurement direction is defined as 

follows: �̂� is the direction unit vector of the incoming X-

ray beam; �̂�  is the measurement direction unit vector, 

which is the sensitivity direction of the grating parallel to 

the grating surface but perpendicular to grating lines; �̂� is 

the unit vector of the corresponding direction of the 

nanostructure orientation distribution function.  

 
Fig. 1. Schematic diagram of the X-ray interferometry system 
used in our simulations.  

 

The local small angle scatter is assumed to be a symmetric 

2nd-rank tensor field ���, �, �� . The measured intensity ���, �, ��� can be expressed as ���, �, ��� � �̂�� ∙ ���, �, �� ∙ �̂�                  �2� 

where �̂�  is the sensitivity vector of the grating 

interferometer. Thus,  �̂��, �, �� � ���, �, ���̂� � ���, �, ���̂            �3� 

Substituting (3) into (1), 
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����, �� � exp# $〈�̂��, �, ��, �̂〉���̂�% �  exp# $〈���, �, ���̂, �̂〉���̂�% � exp# $ ���, �, �����̂�%                         
              ����, �� � &��# $ �̂�  ���, �, �� ∙ �̂ ��̂�%          (4) 

where �̂ is perpendicular to �̂� . The equation in (4) has the 

same expression as �'( (
 in Fig. 2, where the contribution of 

each voxel to the line integral in the direction of �̂�  is the 

length of the blue line in the direction of �̂ intersecting the 

ellipsoid. The integration line goes through the centers of 

all ellipsoids. 

 

 
 
Fig. 2. Illustration of dark field projection. Here the integration 

line goes through the centers of all ellipsoids. (a) �'' ': the integral 

along * (along +,�) summing the orange intersections along *. (b) �'( (
: the integral along *  (along +,� ) summing the blue 

intersections in the direction of -. (Drawn based on Fig. 5 in [6] 

but modified to indicate the tensor measurements along the 

coordinates * and  - in the lab frame.)  

 

Due to symmetry, we can rewrite ���, �, �� as 

���, �, �� � .��� ��/ ��0��/ �// �/0��0 �/0 �00
1 ��, �, ��   . �5�  

If - � #456*4567, 456*6897, 689*%� , then ����, ��  in 

(1), which is the projection �'( (
, becomes 

 ln#����, ��% �  ln <�'( (��, ��= � 

�>�456*4567����� ? 2�456*4567456*6897���/  

?�456*6897���//  2�456*4567689*���0  

              2�456*6897689*��/0 ? �689*���00@��          (6) 

Simplifying: 

 ln#����, ��% �  ln <�'( (��, ��= � 

$>+����� ? +�/��/ ? +�0��0 ? +//�// ? +/0�/0 ? +00�00@��    (7) 

where +�� � �456*4567��
， +�/ � 2456*4567456*6897 ，+�0 � 2456*4567689*，+// � �456*6897��

， +/0 � 2456*6897689*，+00 � �689*�� , 

are determined by - , or here denoted by the sensitivity 

vector �̂ of the grating interferometer. 

 

The reconstruction problem involves solving a large system 

of linear equations. In this work we used a simultaneous 
algebraic reconstruction algorithm to reconstruct the tensor 

elements directly using (7). The iteration step from k to k+1: 

�AB �CDE� � �AB �C� ? ∑ GHIJK∑ ∑ LJMNOJPQOP�R�SMTUVOTU∑ ∑ LJMNOJPSMTUVOTU WJPXYJPJ∈I�[,∅�R
∑ ∑ WJPXOJPJ∈I�[,∅�RVOTU ,

                                           ∀1 ^ _ ^ `                                               �8�
  

where �AB �CDE�
 is k+1 iteration for tensor matrix element o 

(for example o=xy) for voxel j=1,…,N;  bcB  are elements of 

the system matrix for projection i, voxel j; +AcB  are 

coefficients of the tensor elements, de is an update factor to 
improve the step size performance; sum over all projections 8fg�',h�C; ic is  ln j�'( (��, ��k in (7). 

  
Fig. 3. Phantom used to simulate the tensor projections. The 

phantom consisted of four layers of parallel carbon microfibers to 

provide preferential scatter perpendicular to the direction of the 

fibers. The angles 7  and *  show the rotation directions of the 
projections of the phantom. (This is a copy of Fig. 3 in [7].) 

 

B. Phantom Simulation 

 

X-ray projections were simulated for an asymmetric 

scattering phantom in Fig. 3 consisting of four layers of 

parallel carbon microfibers designed to emphasize the small 

angle scatter in the dark field projections. Each layer width 

was 0.5 mm and the diameter of the disk was 8 mm. The 

layers each consisted of an array of 71,000 fibers of 15 lm 

diameter. All solid carbon fibers had the same orientation 

along the x-axis providing preferential scatter along the y-

axis perpendicular to the fibers.  
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The directional projections were formed using an integrated 

wave optics framework [8,9] to model X-ray-matter 

interaction and free-space propagation. A wave optics 

representation of the projections involves solving the scalar 

wave equation for the phantom from Maxwell’s equation 

for an electromagnet wave whose vector representation of 

the electric and magnetic disturbance can be represented by 

a scalar wave function with complex amplitude Ψ��, �; �� 

[8,9]. The scalar wave equation describes the interaction of 
X-rays with an object as a wave, and thus is appropriate to 

simulate the forward model for phase-sensitive X-ray 

imaging:  �∇� ? p�q⃑���Ψ�q⃑� � 0   , p�q⃑� � p9�q⃑�, p � 2t/d   , 

where d is the wavelength in a vacuum and 9��, �; �� is the 

complex refractive index of the object. Note that the 

refractive index decrement v  is related to the complex 

refractive index 9 : 9��, �, �� � 1  v��, �, �� ?8-��, �, ��, where 1  v��, �, �� and -��, �, �� is a measure 

of dispersion and of absorption, respectively. 

 

The first-order Born or Rytov approximation [10] simplifies 

the solution for the scalar wave equation. The first-order 

Rytov approximation is more appropriate for X-ray 

imaging, because the imaged object is very thick (compared 

to the wavelength) but has a small refractive index 

difference (on the order of 10-7). Using the first-order Rytov 

approximation, the complex amplitude Ψ��, �; �� of the X-

ray wave function after the interaction with the object can 

be written as 

 Ψ��, �; �� � Ψw��, �; �� &��#7���, �; ��%,         (9) 

where Ψw��, �; ��  is the X-ray’s complex amplitude 

assuming no object in the beam path, and � is the distance 

from the center of the object. The complex scattered phase 7���, �; �� can be related to the scattering potential of the 

object x��, �; �� by  

 7y�zp� , p/ ; �{ � #84t�p0 ? 1 d⁄ �%~E &���82tp0�� xyzp�, p/ , p0{,  (10) 

where d is the wavelength in vacuum,  p0  is determined by p0 � z�1 d⁄ ��  p��  p/�{E �⁄  1 d⁄ . 7y�zp� , p/; �{  is 

the 2D Fourier transform of 7���, �; �� with respect to � 

and � . xyzp� , p/, p0{  is the 3D Fourier transform of x��, �, ��. The scattering potential x��, �, ��  is given by 

the complex-valued refractive index 9��, �, ��: 

     x��, �, �� � �2t d⁄ ���1  9��, �, ����    .            (11) 

For the phantom in Fig. 3, we derived in [7] an expression 

for xyzp� , p/, p0{ for the entire stack of fibers as the sum xy��zp�, p/, 0{ of xyczp� , p/ , p0{ of individual microfibers. 

Relating xy��zp� , p/ , 0{  to the scatter phase 7y��zp� , p/; �{ 

for all layers:  

7y�� zp� , p/; �{ � d84t &��>8td�zp�� ? p/�{@ � 

∑ &~c��zC��JDC�/J{zxw��c p/⁄ {�Ez2t�p/{6894��cp����J����c�E  . 

Therefore, the complex amplitude ΨE��, �; ��  of X-rays 

after a stack of microfibers is  

          ΨE��, �; �� � Ψw��, �; ��&��>7����, �; ��@   .      (12) 

We then showed that the propagation of ΨE��, �; �� through 

G1 and transported a distance D2 before G2 (Fig. 4) obtained 

an expression Ψ���, �; �� (see [7]). Assuming the square 

modulus: ����, �; �� � |Ψ���, �; ��|� , is a reasonable 

approximation for the intensity of the irradiance 

distribution, we obtained an expression for ����, �; �� . 

Digitizing the expression provided projection images of 
16384×256. The images were oversampled along the x-scan 

direction to capture the small-angle scattering. The 

16384×256 phase stepped images were processed as 

described below and then down sampled to 256×256.  
 

 
Fig. 4. Schematic diagram of the simulation geometry used in the 

simulation study. G1 and G2 are the gratings and the phantom is 

the four layers of fibers shown in Fig. 3. D1 is the distance 

between the phantom and the first grating G1. D2 is the distance 

between the first grating and the second grating G2. The numbers 

1 through 5 in the circles refer to the planes where ΨE��, �; �� Ψ���, �; �� were calculated. For the phase grating simulation, the 

phase grating G2 was shifted 8 positions in the x-direction over 

one period. (This is a copy of Fig. 4 in [7]) 

 

In our simulations gratings G1 and G2 were similar both with 

a grating pattern width of 10.24 mm with an 8-pixel period 

width of 0.005 mm and grating aperture of 0.0025 mm. 

From the eight phase steps, the visibility with phantom and 

with reference were extracted as the inverse discrete one-

dimensional Fourier transform along the x coordinate to 

obtain the 1st harmonic of the discrete inverse of the eight 

phase steps / 0st harmonic of the discrete inverse of the eight 

phase steps: [ �A�Bz8, _, *� , 7�{ � �EA�B�8, _, *� , 7��/�wA�B�8, _, *� , 7�� , [ ����z8, _, *� , 7�{ � �E����8, _, *� , 7��/�w����8, _, *� , 7��. Thus, the projections in (7) were 

 ln#����, ��% �  ln <�'( (��, ��= �  ln ��Y�P�c,B������c,B��  . 

The tomographic projections of the phantom in Fig. 3 

included a total of 546 parallel projection images for θ from 

0° to 90° at 18° steps (6 angles), and 7 from -90° to 90° at 

2° steps (91 angles). Eight phase steps were simulated for 

each projection. If one assumes the phantom is static, the 
interferometry system rotates around the phantom, so the 

sensitivity vector of the grating rotates. When * is 0 and 7 

is 0, sensitivity vector is [1,0,0], in the direction of x axis. 
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Then rotating around z axis, sensitivity vectors become 

[1,0,0] (0°), [0.951,-0.309,0] (18°), [0.809,-0.588,0] (36°), 

[0.588,-0.809,0] (54°), [0.309,-0.951,0] (72°), [0,-1,0] 

(90°). When the phantom rotates around the x axis, it is 

equivalent to the sensitivity vector rotating in a plane 

perpendicular to the sensitivity vector, which does not 

change the sensitivity vector. From the six sensitivity 

vectors, we see the z component is always 0, causing some 

coefficients in (7) being 0. We cannot reconstruct the tensor 

elements if the coefficients are 0. In the implementation, the 

sensitivity vector was set to [0.99,-0.1,0], deviating from 

[1,0,0] a little bit when * is 0° and 7 is 0°. In this case, the 

z component of sensitivity vectors would not always be 0. 

3 Results 

Figure 5 shows results of the reconstruction of the six 

elements of the symmetric tensor for a single slice 

reconstructed from the simulated projections of the 

phantom (Fig. 3) using the algorithm described in (8). 

 
Fig. 5. Reconstructed tensor field using the direct tensor 

reconstruction algorithm in (8). The nine elements from slice 128 

of the symmetric tensor are shown in the figure, respectively. 

4 Discussion 

A key to modeling small angle scatter as a tensor is being 

able to determine whether the specific orientation 

dependence of small-angle scatter associated with an 

underlying anisotropic mass distribution can be represented 

by a tensor model. Gratez [1] showed that X-ray dark-field 

scatter could be approximated as a tensor and X-ray 

interferometry, longitudinal and transverse directional 

measurements, could form scalar directional tensor 

projections. Using this result our work presents methodogy 

for the direct reconstruct of a tensor representation of X-ray 
small angle scatter from grating measurements of X-ray 

dark-field projections. Expressions in (2) and (3) are used 

to derive the tensor representation of the dark field 

projection of small angle scatter in (1). Wave optics was 

used for the the simulation of the grating X-ray 

interferometry projections. Fourier processing of the 

simulated projections provided scalar values of the 

transverse directional projection measurements �'( (
. From 

these projection measurements an iterative reconstruction 

algorithm was performed to directly reconstruct the tensor 

representation of small angle scatter for a phantom of 

parallel carbon fibers.  In the future we need to verify 

whether these simulated projections were sufficient since 

we have shown [11] that three orthogonal orbits with two 

separate directional projection measurements �'( (
 and �'' '

 

may be necessary to uniquely reconstruct the tensor 

elements using a filtered backprojection algorithm. 

5 Conclusion 

An iterive reconstruction algorithm is able to provide a 

minimum norm solution for the reconstruction of a 

symmetric  2nd rank  tensor representation of small angle 

scatter with structure and preferential scattering directions 

as one would expect from a structure of parallel fibers.  
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Abstract In this proof-of-concept work, we propose a method to further 

increase spatial resolution and contrast in the material decomposition 

approach for photon counting computed tomography (PCCT). By using 

different weights in the frequency domain of the two basis images 

obtained from a simulated phantom of water and aluminum, we improve 

the resolution of the reconstructed image and thereby correctly resolve 

the line patterns even after the first zero of the MTF. From the results, the 

proposed method manages to increase the modulation up to 80-200% 

depending on the amount of cross-talk in the detector, while correctly 

resolving the line pattern at low and high frequencies. To the best of our 

knowledge, this is the first demonstration of resolution improvement by 

differential basis image filtering, and this technique allows further 

enhancing the diagnostic quality of PCCT images. 

 

1 Introduction 

In the field of radiology, Computed Tomography (CT) is a 

well-known technique that allows to image a wide range of 

body structures with high resolution, from bones and 

muscles to blood vessels and organs. 

Lately, the introduction of Photon Counting Detectors 

(PCD) in the CT approach, has allowed further improving 

the technique’s performances: increased contrast and spatial 

resolution, improved SNR, intrinsic spectral information, 

reduced radiation dose and image acquisition time. 

[4][5][6]. 

Moreover, thanks to the capability of PCD to distinguish 

between X-rays photons of different energies, the material 

decomposition approach can be used to improve imaging of 

objects that contain material with different atomic numbers. 

In the case of medical imaging, the more common case is 

when imaging hard tissues, such as bone, together with 

softer tissues. Despite this, a more challenging case for 

conventional CT is represented when we want to tell apart 

two soft tissues of different materials but with similar 

density. In this latter case, PCD and material decomposition 

approach can further boost the image contrast and spatial 

resolution, taking advantage of the energy dependence of 

the linear attenuation coefficients of the different materials 

[7]. 

With this work, we simulate a phantom made of two 

materials (water and aluminum), and we filter with different 

weights in the frequency domain the two related basis 

images in the material decomposition approach, to further 

increase contrast and spatial resolution in the reconstructed 

image. 

 

 

2 Materials and Methods 

In the material decomposition approach, we can 

differentiate measurements of different incident energies 

𝐸𝑖𝑛𝑐 and then sort the attenuation into different energy bins. 

By doing so, one can obtain a sinogram for different 

energies, and energy becomes one further degree of 

freedom for the attenuation, which we can denote as 

𝜇(𝐸𝑖𝑛𝑐). The main assumption in this approach is that all 

materials in the object can be decomposed into two or three 

basis materials. The materials we used in out simulated 

phantom are water and aluminum so we can write: 

 

𝜇(𝐸𝑖𝑛𝑐) =  𝑎𝑊𝑎𝑡𝑒𝑟𝜇𝑤𝑎𝑡𝑒𝑟(𝐸𝑖𝑛𝑐) +  𝑎𝐴𝑙𝜇𝐴𝑙(𝐸𝑖𝑛𝑐)             (1) 

 

 𝜇𝑋 are known functions and 𝑎𝑋 coefficients need to be 

determined from the measurements of the intensity. To do 

so we based our simulations for the material decomposition 

on the linearized version of the maximum-likelihood 

estimator obtained by linearization around the simulated 

ground truth of the pathlength vector 𝐴𝑛: 

 

𝐴𝑛
∗ = 𝐴𝑛 + ( 𝐽𝑛

𝑇𝛬𝑛
−1𝐽𝑛)−1 𝐽𝑛

𝑇𝛬𝑛
−1(𝑌𝑛 − 𝜆𝑛)                       (2) 

 

Where 𝐽𝑛 is the Jacobian of the forward model evaluated at 

𝐴𝑛 and 𝛬𝑛 is the diagonal matrix of the forward model 

evaluated at 𝐴𝑛 (see ref [8] for derivation). 

Note that the approximation used required to know the true 

path lengths a priori, which is not known in a realistic 

setting, but it remains a convenient approach when 

constructing a simulation. 

Moreover, we made a slight modification to the equation 

(2), by having 𝑌𝑛 − 𝜆𝑠𝑖𝑚𝑝 where 𝜆𝑠𝑖𝑚𝑝 is the output of a 

simplified forward model built from summing over the 

neighbor’s matrix the values in the PSF, concentrating the 

registered counts in the pixel of incidence. This was done 

because originally 𝑌𝑛 = 𝜆𝑛 + 𝑛𝑜𝑖𝑠𝑒, and it is necessary to 

linearize around 𝜆𝑠𝑖𝑚𝑝 instead of 𝜆𝑛 to model the effect of 

the PSF on the image spatial resolution. 

The program used for simulation was MATLAB, based on 

the code from [8], and using the same geometry for the PCD 

as the one used in the reference. 

The PSFs of the detector were obtained by a Monte Carlo 

simulation model of edge-on-irradiated silicon sensors 

[2][8] for two cases: standard conditions 𝑃𝑆𝐹𝑠 (charge cloud 

𝜎 = 19 μm at 70 keV), and 4 times bigger charge cloud 

𝑃𝑆𝐹4𝑥  (charge cloud 𝜎 = 75 μm at 70 keV) originated 

from photon interaction with the detector. This was done to 

394 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

study the effect of charge sharing between adjacent pixels 

in the detector and its effect on the reconstructed image 

when applying our filtering.  

The total phantom used in the simulations is composed by a 

cylindrical water object with inserts made of parallel 

segment of aluminum of tunable spatial frequency disposed 

at the same radial distance. The parameters of the total 

phantom such as cylinder radius, radial distance of the 

aluminum inserts, their number, and their height can be all 

changed at will. For our simulations we mainly focused on 

a 4.3mm radius phantom (insert radius of 2.8mm, bar height 

of 1 mm and 5 bars for all the inserts), and each pixel in the 

simulated phantom measures 0.0063x0.0063 mm^2 to 

allow plotting very high lp/mm smoothly. The same results 

were achieved on a bigger phantom with a 2.5 cm radius. 

Due to aliasing and computational limitations it was 

challenging to test our results on a bigger phantom, while 

maintaining a small pixel size in the simulated phantom to 

avoid being limited by it. Despite this, we do not expect to 

find any relevant differences in applying our method to a 

bigger phantom or object. 

For the source parameters 1000 mAs and 2 ∗ 106 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑚𝐴𝑠∗𝑚𝑚2 

were used. 

In the simulations we did not include noise, since our 

purpose here is to study the limits of attainable spatial 

resolution dictated by the MTF. 

Moreover, we oversampled by a factor of 3 to reduce the 

aliasing, which is not the focus of this study and was heavily 

influencing the reconstructed image due to the 

approximation used in material decomposition at high 

spatial frequencies. 

The main purpose behind the filter applied in the frequency 

domain of the two basis images is to obtain two images that 

exhibit the same trend of maxima and minima in attenuation 

values, successfully achieving 5 distinct maxima 

corresponding to the 5 aluminum inserts for frequencies 

higher than the first zero of the MTF. The general 

mechanism is shown in Fig.1. All this must be done 

maintaining the same attenuation coefficient values at zero 

frequency, while enhancing the contrast, and the resolution 

at high frequencies. 

In our simulations we analyzed the profile of the aluminum 

insert varying the frequency with integer unit steps and we 

noticed that the modulation approached zero for 39 lp/cm in 

the 𝑃𝑆𝐹𝑠 case and 44 lp/cm for the 𝑃𝑆𝐹4𝑥 one. After the 

afore-mentioned frequencies, both the water and the 

aluminum basis images inverted their minima and maxima 

position, as we would expect after having a zero in the MTF 

of a system. This led to obtaining 4 bright bars in the 

reconstructed image instead of the 5 we would expect from 

the aluminum inserts. 

The next step was to identify potential filters that could 

improve contrast, also around the zero crossing of the 

MTFs, together with resolution at high frequencies while 

maintaining the same attenuation values we would expect 

from the materials. 

Before the zero crossing, aluminum basis image exhibits 

maxima where the aluminum segments are, while water 

exhibits minima for the same positions. For this reason, we 

focused on two types of filters shown in Fig.2 that could 

also enhance the contrast before the zero of the MTF: a first 

“overcompensating” filter that gives positive weights >1 to 

the aluminum for low frequencies, and then a “double zero 

crossing” filter, where we introduce a second zero crossing 

of the MTF for the water basis image. In both cases the 

weights are assigned to observe in the reconstructed image 

5 brights bars at high frequencies and at the same time 

trying to increase modulation for lower and higher 

frequencies.  

The filters were constructed following the mentioned 

criteria and using the sum of one or more functions with 

form of: 

𝑓(𝑥) =
𝑦1 − 𝑦2

1 + 𝑒𝑥
+ 𝑦2 

This allows us to have smooth filters with two tunable 

asymptotes.  

To compute the modulation to quantify the contrast increase 

we used the following formula: 

𝑚𝑓 =
𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛

|𝐴𝑚𝑎𝑥 + 𝐴𝑚𝑖𝑛|
 

where 𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛 were determined withing 2 periods 

of a given lp/cm from the center of the insert. 

Fig.2: On the left we have the “double zero crossing” filter and on the 

right the “overcompensating” one for 𝑃𝑆𝐹𝑠. In each images black 

represent the filter for aluminum basis image and blue the water one. For 

𝑃𝑆𝐹4𝑥 the zeros at 44 lp/cm would be at 39 lp/cm instead. 

Fig.1: The general flow from normal reconstructed image to the filtered 

reconstructed one for a 50 lp/cm insert. The plots refer to the red line in 

the images on the left. In the two central images we plotted the insert 

section before and after filtering in red, together with the section in the 

same position for the insert in the phantom (square wave in green). The 

two plots on the right shows the water basis image (blue) and the 

aluminum one (black). For this example, the “overcompensating” filter 

was used. 
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3 Results 

Given the approximations and conditions for the simulation, 

in Fig.3 we can see reconstructed images with and without 

filtering, for 𝑃𝑆𝐹𝑠  at different 𝐸𝑖𝑛𝑐.  

To assess the improvement of the filtering in the 

reconstructed image, we plotted in Fig.3 a phantom having 

inserts with frequencies lower and higher than 44lp/cm, 

which represent the zero crossing of the MTF for 𝑃𝑆𝐹𝑠. We 

can observe how the contrast increases for all the energies. 

In addition, we are able in the filtered reconstructed images 

to correctly count 5 bars for the 50lp/cm pattern too, as 

Fig.4a shows more clearly. 

Similar images and improvements were obtained for the 

simulations with the 𝑃𝑆𝐹4𝑥, as we can see from Fig.4b and 

Fig.5. 

To quantify the comparison between the normal and filtered 

case for both PSF analyzed, we plotted in Fig.6 the 

modulation at different frequencies at a given energy of 

𝐸𝑖𝑛𝑐 = 40 𝑘𝑒𝑉.  

Fig.6: In red the modulation values for non-filtered reconstructed image, 

in magenta the filtered one with “double zero crossing” filter, and in cyan 

the case of the “overcompensating” filter. 

Fig.3: Reconstructed images of a phantom with 25lp/cm, 35lp/cm and 

50lp/cm inserts is plotted for increasing 𝐸𝑖𝑛𝑐 of 20 keV, 40 keV and 70 

keV from left to right. The first row represents non filtered case, the 

second one deploys the “double zero crossing” filter and the third one 

the “overcompensating” one. The scalebar is the attenuation in 𝑚𝑚−1.  

Fig. 5: Same as Fig.3 but for 𝑃𝑆𝐹4𝑥. The scalebar is the attenuation in 

𝑚𝑚−1.  

Fig.4b: Section of the 50 lp/cm 

aluminum insert at 40 keV with 

𝑃𝑆𝐹4𝑥 for the different filtering 

cases. Similar results were 

obtained also for other values of 

𝐸𝑖𝑛𝑐. 

Fig.4a: Section of the 50 lp/cm 

aluminum insert at 40 keV with 

𝑃𝑆𝐹𝑠 for the different filtering 

cases. Similar results were 

obtained also for other values of 

𝐸𝑖𝑛𝑐. 
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For different energies, similar trends were observed, 

showing the consistency of the filtering method with respect 

to 𝐸𝑖𝑛𝑐. 

4 Discussion 

As the results clearly shows, the filters proposed in this 

study works great for a wide range of frequencies, in both 

PSF cases and for different energies, managing to restore 

the correct five aluminum bars in the reconstructed image 

after the zero of the MTF that would normally lead to 

modulation inversion, also for frequencies higher than 50 

lp/cm and before the second MTF’s zero.  

Despite the “double zero crossing” filter performs better in 

terms of modulation, we think that the “overcompensating” 

one would be better overall, since it introduces less artifacts 

in the image, such as the ringing artifact at the phantom 

edge in the second row (double-crossing filter) of Fig. 3, 

while still increasing contrast, and resolution at high 

frequencies. 

Regarding the filter’s choice, their shapes, zero crossing 

positions, and weights can be improved ad hoc, if the 

underlining idea of the proposed method is maintained as 

described in materials and methods section. This could be 

done for example for a different detector that exhibit a zero 

of the MTF at higher frequencies, or for different materials 

in the phantom that could require different weights in the 

filters. 

By comparing the two PSFs, one interesting thing that can 

be noticed is the increased modulation that the filtered 

images with 𝑃𝑆𝐹4𝑥 show when compared to the ones 

obtained with 𝑃𝑆𝐹s before and after the zero-crossing point 

of the MTF (Fig.6). This happens even though the non-

filtered images have very similar modulation for both PSFs. 

We hypothesize that a larger amount of charge sharing gives 

a larger difference between the MTFs for different energies, 

making it easier to avoid the zero-crossing by suitable 

weighting of basis images. 

In addition to that, for both PSFs we can observe an increase 

in modulation for frequencies close to the zero crossing of 

the MTF. 

Despite all the considerable improvements, a first drawback 

for this method is that one should first characterize different 

frequencies in a given range of interest to know where the 

zero of the MTF lies and what are the most appropriates 

weights and shapes for the filter. 

Moreover, while it is true that we maintain the correct 

attenuation values at zero frequency for both materials, it is 

possible to obtain, especially at high frequencies and for 

𝑃𝑆𝐹4𝑥, values that are slightly higher than the expected ones 

should be. In that sense, a deeper study for the 

characterization of the ideal weights at every frequency and 

energy could lead to having consistent attenuation values 

for all cases. 

5 Conclusion 

To conclude this proof-of-concept work, we can affirm that 

the proposed approach is effective in correctly resolving 

and increasing the visibility of high spatial frequencies 

inserted in the framework of material decomposition. As 

discussed, this may come at a price of not having exactly 

the exact attenuation values in the reconstructed image at 

high frequencies but studying in more detail the weights of 

the filter and its shape we believe it is possible to further 

reduce this problem. 

In addition, the use of a bigger charge cloud PSF seemed to 

have increased the visibility of the aluminum inserts before 

and after its MTF zero crossing point.  

We believe that filtering the basis images in the material 

decomposition approach for a PCCT, could lead to 

improvements in the medical imaging field, allowing 

doctors to correctly identify small structures and increasing 

the contrast around the zero of the MTF, resulting in a more 

clear reconstructed image. 

Further studies could be made to investigate the 

improvement of using a bigger charge cloud PSF, as well as 

validating the method proposed here with an oversampling 

of a factor of 2 (or without), taking into account noise and 

testing it for different materials and with a real phantom to 

assess how it could perform in a real-world case.  
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Abstract In computed tomography (CT), the projection geometry
used for data acquisition needs to be known precisely to obtain a clear
reconstructed image. Rigid patient motion is a cause for misalignment
between measured data and employed geometry. Commonly, such
motion is compensated by solving an optimization problem that, e.g.,
maximizes the quality of the reconstructed image with respect to the
projection geometry. So far, gradient-free optimization algorithms
have been utilized to find the solution for this problem. Here, we show
that gradient-based optimization algorithms are a possible alternative
and compare the performance to their gradient-free counterparts on a
benchmark motion compensation problem. Gradient-based algorithms
converge substantially faster while being comparable to gradient-free
algorithms in terms of capture range and robustness to the number
of free parameters. Hence, gradient-based optimization is a viable
alternative for the given type of problems.

1 Introduction

Numerous problems in computed tomography (CT) require
optimizing the CT acquisition geometry based on a target
function formulated on the reconstructed image. One of
the most prominent examples is rigid motion compensation
where the acquisition geometry is updated to compensate
for involuntary patient motion occurring during the scan.
This can be achieved by formulating target functions which
quantify the quality of the reconstructed image via measures
such as image entropy, total variation, or gradient entropy
[1–4]. Minimization of the image quality criterion yields
the motion parameters which produce the best reconstructed
image according to the target function.
So far, these approaches have been limited to gradient-free
optimization algorithms because the parameters being opti-
mized and the target function live in different domains which
are connected via the reconstruction operator. The free pa-
rameters define the geometrical relationship between scanned
object, X-ray source, and detector pixels. Meanwhile, the
target function is formulated in image space. The image
space depends on the scan geometry in a complex manner
where a change in a single geometry parameter can influence
the entire reconstructed image. As a result, formulating the
gradient of a target function in image space with respect to
the scan geometry is not trivial and needs to incorporate the
reconstruction step.
Recently, we proposed an algorithm for fan-beam CT geome-
tries which computes all partial derivatives of the gray values
in a reconstructed image with respect to the entries of the pro-
jection matrices parameterizing the scan geometry in CT [5].
These computations bridge the gap between image domain
and geometry space and enable the formulation of gradi-

ents for the motion compensation problem mentioned above.
Consequently, gradient-based optimization algorithms can
be applied.
In this paper, we investigate the performance of different
gradient-free and gradient-based optimization algorithms on
the same geometry optimization problem concerning run
time, capture range, and robustness to the number of free
parameters. Doing so, we analyse whether gradient-free
algorithms are naturally a better choice for the given type of
problems or if gradient-based optimization algorithms are a
comparable or even superior alternative.

2 Methods

2.1 Analytical Geometry Gradients

In our recent work [5], we presented the mathematical deriva-
tion and implementation to compute the partial derivatives
of the gray values in a reconstructed CT image with respect
to the entries of the 2× 3-shaped CT projection matrices
in fan-beam geometry. Projection matrices are a common
parameterization of the CT scan geometry and describe the
geometrical relationship between a point in the reconstructed
image and the detector coordinate onto which this point is
mapped. This fully specifies the orientation of the object
(extrinsic information) as well as the detector itself (intrinsic
information). We refer the reader to [5] for a detailed ex-
planation of the mathematical steps involved in the gradient
computation. For this paper, we assume that all partial deriva-
tives of the reconstructed image I ∈ RNx×Ny with respect to
all entries of the projection matrices P ∈ RNp×2×3 can be
computed analytically, i.e., the partial derivative ∂ I

∂P is given.
Here, Nx and Ny are the image dimensions and Np is the
number of projections. Computing ∂ I

∂P is the crucial step for
formulating the gradient of a target function f : Nx ×Ny →R
with respect to the N f free parameters g ∈ RN f influencing
the scan geometry. This is because the derivatives ∂ f

∂ I and ∂P
∂g

are usually straight-forward to formulate or can even be com-
puted via automatic differentiation in common deep learning
libraries. Together, these variables define the gradient of the
target function f with respect to the free parameters g via the
chain rule of differentiation

∂ f
∂g

=
∂ f
∂ I

· ∂ I
∂P

· ∂P
∂g

. (1)
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2.2 Optimization Algorithms

We are interested in finding the optimal motion parameters
g∗ ∈ RN f by minimizing the target function f

g∗ = argmin
g∈RNf

f (g) . (2)

In general, Eq. 2 is an unconstrained, non-convex problem
which, however, can be locally convex depending on the pa-
rameterization and initialization of g. Several numerical opti-
mization algorithms exist to solve Eq. 2 of which we compare
the following ones: Covariance matrix adaptation evolution
strategy (CMA-ES), Nelder-Mead Simplex, gradient descent,
and Broyden-Fletcher-Goldfarb-Shanno (BFGS).
CMA-ES and Nelder-Mead Simplex are gradient-free al-
gorithms which operate by repeatedly evaluating the target
function until a minimum is met. Being an evolutionary al-
gorithm, CMA-ES iteratively estimates a covariance matrix
based on which new candidate solutions are generated. The
Nelder-Mead Simplex algorithm evaluates the target func-
tion at the vertices of a N f +1 dimensional simplex followed
by a number of possible operations on the simplex vertices
designed to progress downhill on the target function. Both
have successfully been applied to CT motion compensation
via image quality criteria [2–4].
Gradient-based optimization has not been applied extensively
to the considered problem even though gradient information
is known to aid minimization by providing the steepest de-
scent direction at a certain point ĝ [6]. Gradient descent
with a predefined step size updates the current solution by a
step into the direction of the negative gradient multiplied by
the step size. BFGS additionally uses an approximation of
second order Hessian information and performs a line search
along the descent direction instead of using a predefined step
size.

2.3 Rigid Motion Compensation

The extrinsic component of each projection matrix is updated
to compensate for rigid, inter-frame patient motion. The
search space of this problem consists of the three rigid motion
parameters rotation (r) and translation (tx, ty) for each of the
Np projections leading to a total of 3Np free parameters. To
reduce the dimensionality of the search space and limit it to
realistic motion patterns, further constraints can be enforced
on each of the parameters by means of a motion model m :
RN f ×RNp×2×3 → RNp×2×3 which takes free parameters g ∈
RN f and the current estimate of projection matrices Pn to
yield updated projection matrices Pn+1

Pn+1 = m(g,Pn) . (3)

In this case, the number of free parameters can be consider-
ably smaller, i.e., N f ≪ 3Np [3].

3 Experiments

3.1 Data

We simulate motion-affected fan-beam sinograms from real
reconstructed CT slices of publicly available cone-beam CT
data of the head [7]. The images are of size 512×512 and
the pixel spacing is assumed to be 1 mm. Fan-beam pro-
jection data are simulated for 360 projections over a full
circle, a source-to-isocenter distance of 1000 mm, a source-
to-detector distance of 2000 mm, and 1024 detector pixels
with a spacing of 2 mm. Forward projections are performed
using the implementation in [8]. Comparable to previous
work in [2], the artificially introduced motion pattern is a
step-like function for r, tx, and ty. From a start projection
pstart , the perturbation increases linearly until it reaches its
maximal amplitude at projection pend and stays constant for
the rest of the scan. The maximal motion is ±10 mm for
translation in x and y and ±5.73◦ (±0.1rad) for rotation un-
less stated otherwise. pstart and pend are chosen such that
the motion pattern extends over 50 to 200 projections and is
completed within the full 360 projections. The perturbation
is only applied to the projection matrices, the projection data
itself represent a circular motion-free trajectory.

3.2 Optimization Problem

Starting from the perturbed projection matrices (Sec. 3.1),
we aim to find the motion parameters tx, ty, and r which opti-
mally annihilate the introduced step-like motion pattern and
restore a circular trajectory. This is done by minimizing the
mean squared error (MSE) between the motion-affected re-
construction and the ground-truth, motion-free reconstruction
with respect to the motion parameters. The utilized motion
model m enforces a smooth curve for each of the three mo-
tion parameters by fitting a cubic spline with Nn nodes which
are equally distributed across the full scan range. Hence, the
number of free parameters is N f = 3Nn, i.e., three times the
number of nodes in the respective splines. The number of
nodes is Nn = 10 if not specified differently.

3.3 Optimizer Configurations

The problem described in Sec. 3.2 is optimized using each
of the four optimization algorithms introduced in Sec. 2.2.
All compared optimization algorithms are based on the same
implementation of the target function and, if applicable, its
gradient. As [5] is already implemented as a differentiable
PyTorch operator, we further use the deep learning library
to implement the spline-based motion model1 and the MSE
target function. This way, the gradient of the loss function
(Eq. 1) is obtained easily by means of automatic backpropa-
gation. Both gradient-free optimization algorithms terminate
as soon as the target function value changes by less than

1https://github.com/patrick-kidger/torchcubicspline
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Figure 1: Left: Minimization of the MSE target function over time. Gradient-based optimization algorithms converge considerably
faster than gradient-free algorithms. The plot does not show the gradient-free curves until full convergence. Middle: Evaluation of
capture range. CMA-ES and BFGS converge successfully even for large motion perturbations. Right: Robustness against increase in free
parameters. CMA-ES and gradient descent are most robust up to ∼ 200 free parameters. The gray dashed line marks an MSE of 25 below
which we consider an optimization result successful.

Gradient? Source NFEV NJEV MSE Time [s]
CMA-ES ✗ pycma1 7330.84±761.61 0.0 0.99±0.52 209.36±20.78
Nelder-Mead ✗ scipy2 3481.12±1751.20 0.0 6.28±2.95 101.44±51.11
Gradient descent ✓ custom 670.68±1945.85 670.68±1945.85 4.16±1.46 36.83±52.09
BFGS ✓ scipy2 69.56±14.46 67.84±11.21 1.21±0.65 6.56±1.32

1https://github.com/CMA-ES/pycma 2https://github.com/scipy/scipy

Table 1: Overview of compared optimization algorithms and quantitative results. We report the number of objective function evaluations
(NFEV) and the number of gradient evaluations (NJEV) needed until convergence. Further, the target function value (MSE) of the final
optimized solution and the time needed for convergence is given. Standard deviations are computed across five different anatomies and
five different initial motion perturbations.

0.1 or after 20000 function evaluations. The gradient-based
optimization algorithms terminate once the gradient norm is
less than 2 or after 500 iterations (BFGS)/ 10000 iterations
(gradient descent). Initial standard deviations (CMA-ES)
and step sizes (gradient descent) are adjusted to account for
the different scales of translations [mm] and rotations [rad].
The step size in gradient descent decays by a factor of 0.995
after each iteration. Implementations of the optimization
algorithms are summarized in Tab. 1.

4 Results

We first optimize the given problem with all four optimization
algorithms using the standard settings described in Sec. 3.
Each optimization algorithm is run 25 times using slices from
five different patients with five realizations of the motion pat-
tern each. Motion patterns vary concerning pstart and pend
as well as the direction of rotation and translations (positive
or negative), but have the same amplitude. Each initializa-
tion and patient slice is used for all optimization algorithms
identically. The resulting measurements are summarized in
Tab. 1. The gradient-free optimization algorithms (CMA-
ES and Nelder-Mead) have a considerably higher number
of objective function evaluations (NFEV) than the gradient-
based optimization algorithms (gradient descent and BFGS).
For example, NFEVs for CMA-ES are two orders of magni-
tude higher than for BFGS. Both gradient-free optimization
algorithms do not evaluate the gradient of the objective func-
tion and, hence, the number of gradient evaluations (NJEV)

is zero whereas for the gradient-based algorithms NJEV ≈
NFEV. The MSE of the optimized solution to the ground truth
is smallest for CMA-ES and BFGS. However, by visual in-
spection, we find that all MSE values below 25 represent suc-
cessfully compensated images. The time until convergence
exhibits the most notable differences. All gradient-based
algorithms converge strikingly faster than the gradient-free
counterparts, e.g., BFGS is over 30 times faster than CMA-
ES for the investigated problem setting. This relationship
is visible in the plot of the target function value over the
optimization time in Fig. 1 (left) as well.
To analyse the capture range of the optimization algorithms,
we measure their performance for motion patterns with in-
creasing amplitude. On the same image slice, the amplitude
of the initial motion perturbation is increased from the de-
fault value of ±10 mm to ±40 mm for translations and from
±5.73◦ to ±22.92◦ for rotation. The results are summarized
in Fig. 1 (middle), where the motion amplitude factor de-
scribes the multiplicative increase of the motion amplitude
compared to the default configuration. Hence, the higher the
motion amplitude factor, the higher is the distance between
initialization and true solution of the optimization problem.
All four optimization algorithms exhibit a stable behavior up
to motion amplitude factor of 2, and CMA-ES and BFGS
even succeed for factors as high as 4. Initial and recovered
reconstructions from the largest investigated motion ampli-
tude are depicted in Fig. 2. Apparently, the initial motion
degrades the image severely. Whereas CMA-ES and BFGS
compensate the motion well, streaking artifacts remain for

400 

https://github.com/CMA-ES/pycma
https://github.com/scipy/scipy


17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Init CMA-ES Nelder-Mead Gradient descent BFGS

Figure 2: Reconstructed images recovered from the largest investigated motion amplitudes. The initial motion perturbation degrades the
image severely. All optimization algorithms recover the shape of the head, but artifacts remain for Nelder-Mead and gradient descent.

Nelder-Mead and the result optimized with gradient descent
still exhibits slightly misaligned edges.
Finally, we investigate the robustness of the four candidates
to an increase in the number of spline nodes, and hence the
number of free parameters, in the motion model. On the
same image slice, we keep the motion pattern constant and
vary the number of nodes per spline from 10 to 20, 40, and
80 leading to 30, 60, 120, and 240 free parameters (see Fig. 1
(right)). All algorithms succeed for up to 120 free parameters,
but CMA-ES and gradient descent behave more stably for an
even higher number of free parameters.

5 Discussion and Conclusion

We compare gradient-free and gradient-based optimization
algorithms for a geometry optimization problem in fan-beam
CT. Gradient-based optimization algorithms converge sub-
stantially faster mainly due to a largely reduced number of
target function evaluations. In the investigated case, where
each target function evaluation is expensive as it incorporates
a reconstruction step, a reduction in NFEV is essential to
speed up the optimization. We acknowledge that our imple-
mentation is not optimized for run time, but it is comparable
and, therefore, applicable for a relative comparison between
the investigated methods. While it is known that gradient-
based optimization algorithms are susceptible to terminating
in local minima, our investigations concerning capture range
reveal a behavior comparable to the gradient-free algorithms
for the given, generally non-convex problem setting. In par-
ticular, BFGS converges to a solution close to the global min-
imum even for largely perturbed initializations. The same
holds for the robustness with respect to the number of free
parameters. In this case, gradient descent performs on par
with CMA-ES and succeeds even for high-dimensional opti-
mization problems. Note that the gradient-based algorithms
converge still substantially faster in both these experiments.
Of course, we further acknowledge that our target function re-
quires a ground-truth, motion-free scan at optimization time
which is an unrealistic requirement for practical applications.
In this work, however, the MSE target function serves as the
most basic objective which lets us study the performance of

different optimization algorithms without any influencing ef-
fects of a sub-optimal target function itself. In future studies,
the MSE objective should still be replaced by an alterna-
tive image quality criterion. Additionally, future work might
investigate the generalizability of our results to the 3D cone-
beam case, but we are confident that the optimization speed
up is even more pronounced in that computationally more
expensive setting. Ultimately, we conclude that gradient-
based optimization algorithms are a viable alternative for the
studied geometry optimization problem because they accel-
erate the optimization without sacrificing capture range or
robustness to the number of free parameters.
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Abstract Every year, new nanomedicines are developed for diagnostic
and therapeutic applications. Antibody-tagged nanoparticles are par-
ticularly useful for targetting specific tissues. The current standard for
preclinical evaluation of new antibody nanoparticles is positron emis-
sion tomography (PET) where the animals are divided into two groups,
with one receiving the antibody nanoparticle and the other receiving a
reference nanoparticle. However, there is significant mouse-to-mouse
variation which means many mice must be scanned to make statisti-
cally significant claims about the effect of the antibody. With spectral
CT and basis material decomposition one can potentially image the
reference and antibody nanoparticles simultaneously in a single mouse.
We propose a new type of functional imaging called Immuno-Contrast
CT in which the reference nanoparticle distribution is subtracted from
the antibody nanoparticle distribution to highlight the differential im-
munofunctional impact of the antibody. In this work we use physics
simulations to jointly optimize contrast agent materials and spectral
CT instrumentation for immuno-contrast CT. Our results show this op-
timization significantly reduces noise in the immuno-contrast images.

1 Introduction
Nanomedicine is a rapidly growing field that combines nan-
otechnology, immunology, and biomedical engineering to
develop nanoparticles for diagnostic and therapeutic appli-
cations in medicine [1]. One particularly important area of
research is the development of antibody-tagged nanoparti-
cles that double as imaging contrast agents to target specific
tissues or cell populations and highlight those areas in med-
ical images [2] [3]. These antibody nanoparticles must be
well-validated in a small animal model so that we under-
stand the biological impact of the the nanoparticle before
considering clinical use. Currently, one of the standard meth-
ods to determine the biodistribution of a nanoparticle with
and without an antibody is to conduct a preclinical mouse
imaging study with positron emission tomography (PET) [4]
[5]. Typically, the mice are divided into two groups; one
group would receive the antibody nanoparticle tagged with a
radioisotope for PET imaging and the other group would re-
ceive a reference nanoparticle without the antibody. However,
one problem with this type of PET imaging study is there can
be significant mouse-to-mouse variation in the distribution of
the nanoparticles. To test a hypothesis about the immunolog-
ical function of a new antibody, one may need to use a large
number of mice in order to have sufficient statistical power.
Injecting so many mice with radioactive nanoparticles and
scanning each mouse with a PET scanner can be a difficult
and costly process and the final image results from PET of-
ten have low-spatial resolution and high-noise. In this work,
we investigate the possibility of imaging nanoparticles with
spectral x-ray computed tomography (CT). The key advan-
tages over PET are 1) the ability to image the reference and
antibody nanoparticles simultaneously in the same mouse
using basis material decomposition 2) the lack of dependence
on radioactive materials 3) higher spatial resolution with CT
over PET.
Spectral CT uses x-ray projection measurements from multi-

ple view angles and varied spectral sensitivity. This type of
data can be used for three-dimensional tomographic image
reconstruction as well as basis material decomposition. Spec-
tral CT has already been used to image gold nanoparticles
in mice [6] [7]. It has also been used to image iodine and
gadolinium nanoparticles in mice simultaneously to charac-
terize tumor vasculature [8] [9]. These studies show that
imaging nanoparticles with spectral CT is a promising pos-
sibility. However, we know that material decomposition
introduces noise relative to conventional CT images, so we
expect that sensitivity to low concentrations of nanoparticles
will be a challenging engineering problem.
We propose to investigate a new functional CT imaging
method called Immuno-Contrast CT where a mouse is in-
jected with both reference and antibody nanoparticles simul-
taneously. The two nanoparticles are labeled with two differ-
ent CT contrast materials (e.g. iodine and gadolinium). Mate-
rial decomposition permits reconstruction of separate image
volumes for 1) water, 2) calcium, 3) reference nanoparticle
concentrations, and 4) antibody nanoparticle concentrations.
We define the Immuno-Contrast Image as the difference be-
tween the antibody nanoparticle image and the reference
nanoparticle image. As a result, the immuno-contrast im-
age will show the differential impact of the antibody on the
biodistribution of the nanoparticle.
In this work, we use physical simulations of spectral CT
systems to investigate different combinations of two contrast
agent materials for immuno-contrast CT imaging and we sim-
ulate many spectral instrumentation designs and to answer
three questions: 1) To what degree can we improve immuno-
contrast CT image quality through intelligent spectral instru-
mentation design? 2) What are the optimal pair of contrast
materials? 3) What are the optimal system designs pair of
contrast materials? After this joint optimization, we evalu-
ate our optimized design by generating a three-dimensional
digital image volume with realistic mouse anatomy, simulat-
ing spectral measurements with x-ray sources and photon-
counting detectors, and applying a model-based material
decomposition algorithm to see the impact of our design
optimization on immuno-contrast CT imaging performance.
2 Materials and Methods
2.1 Spectral CT Measurement Likelihood Model
Our mathematical model of spectral CT measurements is
a random vector with a multivariate Gaussian distribution,
p(y|x), parameterized by the mean, ȳ(x), and covariance,
Σy|x. The mean is defined as

ȳ(x) = Sexp(−QAx), (1)
where x is a column vector of basis material densities for each
voxel, A is the matrix of line integrals for each x-ray projec-
tion, Q is the basis material mass attenuation matrix, S is the
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system spectral sensitivity matrix including all information
about spectral sources and detectors, and y is a column vec-
tor of spectral CT measurements. Note, projection-domain
material decomposition is a special case of this model where
A = I. The negative log-likelihood is defined as

− logp(y|x) = 1
2
(y− ȳ(x))T

Σy|x
−1(y− ȳ(x))+ c (2)

where c is a constant with respect to x and y.
2.2 Spectral CT Fisher Information Matrix and the

Cramer-Rao Lower-Bound on Covariance
We aim to optimize spectral CT instrumentation by quantify-
ing imaging performance as a function of the design matrices
in (1). Specifically we are interested in jointly optimizing
spectral instrumentation, described by S, and contrast mate-
rials, described by Q. This section defines a mathematical
relationship between these design matrices and the Cramer-
Rao Lower Bound (CRLB).
The Cramer-Rao inequality states that the covariance of an
unbiased estimator is greater than or equal to inverse of the
Fisher information matrix, F. The definition of the Fisher
information matrix is the Hessian, or second derivative, of the
negative log-likelihood with respect to the vector x. Taking
the gradient of (2) yields

−∇x logp(y|x) = AT QT DT
x ST

Σ
−1
y|x(y− ȳ(x)) (3)

Dx = D{exp(−QAx)} (4)
and so the Fisher information matrix is

F =−∇
2
x logp(y|x) = AT QT DT

x ST
Σ
−1
y|xSDxQA (5)

.In this work, we use the CRLB, Σx ≥ F−1 to optimize spec-
tral instrumentation design for immuno-contrast imaging.
This predictive mathematical model describes the best-case-
scenario for multi-material noise characteristics of unbiased
material decomposition without the need to run a full material
decomposition algorithm for each candidate design.
2.3 Simulations of Immuno-Contrast CT in Mice
We used the MOBY phantom [10] to generate three-
dimensional digital image volumes of realistic mouse
anatomy with 0.1 mm cubic voxels. For each voxel, there
were four basis materials: water, calcium, the reference
nanoparticle, and the antibody-labeled nanoparticle. To ac-
complish this, we ran the MOBY attenuation coefficient
generator at 60 keV and 100 keV and analytically decom-
posed water/calcium basis image volumes. MOBY also has
the ability to label activity level in specific tissues (usually
for nuclear imaging simulations). We used the activity label
images to define the concentration of reference and anti-
body nanoparticles in units of percent injected dose per gram
(%ID/g). We used [5] as a rough guide for the biodistribution
of reference nanoparticles and antibody nanoparticles which
resulted in 15 %ID/g in the liver, 20 %ID/g in the spleen,
5 %ID/g in the kidney, and 2 %ID/g in the rest of the body
for both the reference and antibody nanoparticles. We also
inserted a 5 mm diameter spherical tumor into the liver which
has 70 %ID/g for the antibody nanoparticle and 2 %ID/g for

the reference nanoparticle. We assumed that the nanoparticle
injections were 200 mL at 100 mg/mL to convert between
%ID/g and mass density.
We used PYRO-NN [11], to model a cone beam forward pro-
jector, A, with 1200 mm source-to-detector distance, 600 mm
source-to-axis distance, and 0.2 mm square pixels. Our
model for Q contains the mass attenuation spectra for water
and calcium and two contrast materials. Our model for S
is a polyenergetic x-ray source using the TASMICS model
[12] with aluminium filtration as well as k-edge filtration
computed using SPEKTR [13], and a photon counting de-
tector. We do not include any model of non-ideal effects of
photon counting detectors. We assume the detector has two
energy bins per exposure and we have control over the energy
threshold for three exposures. More details about the spectral
instrumentation and contrast agent models are provided in
the following section. For some select designs, we apply
a projection-domain model-based material decomposition
algorithm on a pixel-by-pixel basis using 1000 iterations of
Newton’s method to optimize the objective function in (2).
2.4 Optimization of Spectral CT Instrumentation and

Nanoparticle Contrast Agent Materials
The goal of this work is to jointly optimize nanoparticle
contrast agent materials and spectral instrumentation for
immuno-contrast imaging. Therefore, our performance met-
ric is the CRLB on the standard deviation in an immuno-
contrast image formed by subtracting the reference nanopar-
ticle image from the antibody nanoparticle image to highlight
immuno-functional properties of the antibody.
For a given spectral design, S, and set of basis materials,
Q, we consider one detector pixel in the projection domain
and compute the cross-material Fisher information matrix
using (5). We assume the background is 30 mm of water.
Then we compute the CRLB by taking the matrix inverse
and we compute the immuno-contrast variance using the
formula (wT Σxw)/(wT w) where w is vector zero for water
and calcium, positive one for the antibody nanoparticle, and
negative one for the reference nanoparticle. This is equivalent
to the noise variance in the immuno-contrast image. This
process was repeated for the four material imaging scenario
(water, calcium, X, Y) and three-material imaging scenario
(water, X, Y). (We note that in the latter case, any calcium
in the image volume will necessarily be modeled using the
other basis materials. This model may have a potential noise
advantage with fewer material bases but will generally bias
material estimates.)
We evaluated the above performance metrics for 421,875
spectral designs and 10 combinations of two contrast ma-
terials for a total of over 4.2 million spectral CT imaging
scenarios. The design parameters for the spectral source are:
source voltage (60, 70, 80, 90, or 100 kVp), aluminium filter
thickness (0.0, 0.5, 1.0, 2.0, or 4.0 mm), and k-edge filter
(None, 250 µm Praseodymium, 250 µm Erbium, 125 µm
Tantalum, or 125 µm Lead ). The design parameters for the
photon counting detector are: energy threshold for each of
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Figure 1: The CRLB for 4-material decomposition for all spectral
designs and all contrast materials. Then the designs were sorted by
immuno-contrast noise levels.

.

the three exposures (50, 60, 70, 80, or 90% of kVp) and ex-
posure time for each of the three exposures (1, 2, or 3 relative
exposure). Exposures were normalized such that incident
x-ray fluence after source filtration is 106 photons per pixel
per view. So, for example, if the three relative exposures
are (1,1,1) then the number of incident photons is 3.33×105

for all three exposures, but if the three relative exposures are
(1,1,3) then the first two exposures have 2.00×105 incident
photons and the third exposure has 6.00×105 incident pho-
tons. Finally, we repeat the evaluation for all combinations of
two contrast agent materials from among: Iron (Fe), Iodine
(I), Gadolinium (Gd), Ytterbium (Yb), and Gold (Gd).
3 Results

The CRLB of immuno-contrast standard deviation is summa-
rized for all designs in Figures 1 and 2. The three-material
imaging case is shown in Figure 1 and the four-material case
is shown in 2. For each contrast agent combination, we sorted
the designs by immuno-contrast noise. The x-axis shows the
design percentile and the y-axis shows our performance met-
ric, the CRLB on immuno-contrast standard deviation. The
0th design percentile indicates the spectral designs with the
best performance. We have summarized the performance
of optimized spectral designs in Figure 3 and the optimized
design parameters have been listed in table 1. Finally, the
results of the model-based material decomposition are shown
in Figures 4 5 and 6. Figure 4 shows the ground truth material
density line integrals for this simulation. Figure 5 shows the
material decomposition results for the 50th percentile system
design and Figure 6 shows the 0th percentile top performing
system design for H2O/Ca/I/Gd imaging.
4 Discussion

In Figures 1 and 2 we see that there is a wide range of perfor-
mance levels for different spectral designs and different com-
binations of materials. There is a relatively steep falloff in
performance relative to the best designs (near 0th percentile)
which indicates that fine tuning the spectral sensitivity of the
system can significantly reduce noise in the immuno-contrast
images. In Figure 2 we see that all of the cases using iron
as a contrast agent material have extremely high noise even
for the optimized design. We believe this is due to the fact

Figure 2: The CRLB for 3-material decomposition for all spectral
designs and all contrast materials. Then the designs were sorted by
immuno-contrast noise levels.

Figure 3: The Cramer-Rao lower bound on immuno-contrast noise
standard deviation for all combinations of contrast agents using
optimal spectral instrumentation.
that the k-edge of iron is much lower than the x-ray spec-
tra of these designs. Therefore, water, calcium, and iron,
are approximately linearly dependent on only two basis (e.g.
photoelectric effect and Compton scattering). The contrast
agents which achieved the lowest immuno-contrast noise for
four-material decomposition were iodine and gadolinium.
These are the same contrast agents used in [8, 9] so there is
already evidence it is possible to image these two materials si-
multaneously in mice. The material decomposition results in
Figures 4 5 and 6 show visible reduction of immuno-contrast
noise for the optimized design relative to the 50th percentile.
These results show that a 5 mm diameter lesion with realis-
tic nanoparticle concentrations in visible with realistic x-ray
fluence levels.
5 Conclusion

This simulation study is an early stage investigation to deter-
mine the feasibility of immuno-contrast CT imaging. There
are several areas where we have made assumptions and ide-
alized approximations about both the mouse biodistribution
model and spectral CT imaging simulation and material de-
composition. For example, we have assumed that the refer-
ence and antibody nanoparticle biodistributions are the same
with the exception of the tumor. This may not be true in
practice especially when using two different contrast mate-
rials. For the material decomposition algorithm, we used a
perfectly matched reconstruction model to the data gener-
ation model. In practice it is very difficult to calibrate the
sensitivity of spectral CT imaging systems.
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Contrast Agents Source kVp Al Filter K-Edge Filter Exposure 1 Threshold 1 Exposure 2 Threshold 2 Exposure 3 Threshold 3
H2O-Ca-Fe-I 60.0 kVp 4.0 mm Al 250um Pr 2.00E+05 30.24 keV 6.00E+05 33.6 keV 2.00E+05 42.0 keV
H2O-Ca-Fe-Gd 60.0 kVp 0.5 mm Al None 5.00E+05 25.92 keV 2.50E+05 28.8 keV 2.50E+05 48.0 keV
H2O-Ca-Fe-Yb 70.0 kVp 0.5 mm Al None 5.00E+05 28.35 keV 1.67E+05 31.5 keV 3.33E+05 63.0 keV
H2O-Ca-Fe-Au 60.0 kVp 0.5 mm Al None 5.00E+05 18.9 keV 3.33E+05 37.8 keV 1.67E+05 42.0 keV
H2O-Ca-I-Gd 70.0 kVp 4.0 mm Al None 3.33E+05 30.24 keV 5.00E+05 50.4 keV 1.67E+05 63.0 keV
H2O-Ca-I-Yb 80.0 kVp 0.0 mm Al 125um Pb 4.29E+05 34.56 keV 1.43E+05 57.6 keV 4.29E+05 64.0 keV
H2O-Ca-I-Au 100.0 kVp 4.0 mm Al 250um Pr 2.00E+05 36.0 keV 2.00E+05 40 keV 6.00E+05 80.0 keV
H2O-Ca-Gd-Yb 90.0 kVp 4.0 mm Al 125um Ta 1.67E+05 45.36 keV 3.33E+05 50.4 keV 5.00E+05 63.0 keV
H2O-Ca-Gd-Au 100.0 kVp 4.0 mm Al 125um Pb 2.00E+05 44.8 keV 2.00E+05 56 keV 6.00E+05 80.0 keV
H2O-Ca-Yb-Au 100.0 kVp 4.0 mm Al 125um Pb 1.67E+05 38.4 keV 3.33E+05 64 keV 5.00E+05 80.0 keV
H2O-Fe-I 100.0 kVp 0.5 mm Al None 5.00E+05 27.0 keV 3.33E+05 30 keV 1.67E+05 50.0 keV
H2O-Fe-Gd 100.0 kVp 1.0 mm Al None 2.00E+05 40.5 keV 2.00E+05 45 keV 6.00E+05 50.0 keV
H2O-Fe-Yb 90.0 kVp 4.0 mm Al 250um Pr 2.00E+05 51.03 keV 2.00E+05 56.7 keV 6.00E+05 63.0 keV
H2O-Fe-Au 100.0 kVp 4.0 mm Al 250um Pr 2.00E+05 40.5 keV 6.00E+05 81 keV 2.00E+05 90.0 keV
H2O-I-Gd 80.0 kVp 0.0 mm Al 125um Ta 3.33E+05 45.36 keV 5.00E+05 50.4 keV 1.67E+05 56.0 keV
H2O-I-Yb 70.0 kVp 0.5 mm Al None 4.29E+05 25.2 keV 4.29E+05 28 keV 1.43E+05 35.0 keV
H2O-I-Au 70.0 kVp 1.0 mm Al None 3.33E+05 30.24 keV 5.00E+05 33.6 keV 1.67E+05 42.0 keV
H2O-Gd-Yb 70.0 kVp 4.0 mm Al None 1.67E+05 39.69 keV 3.33E+05 44.1 keV 5.00E+05 49.0 keV
H2O-Gd-Au 70.0 kVp 4.0 mm Al None 2.00E+05 45.36 keV 6.00E+05 50.4 keV 2.00E+05 56.0 keV
H2O-Yb-Au 80.0 kVp 2.0 mm Al 125um Pb 1.43E+05 51.84 keV 4.29E+05 57.6 keV 4.29E+05 64.0 keV

Table 1: Optimized spectral instrumentation design parameters for low immuno-contrast noise for each contrast material combination.
Despite the idealized conditions, we can draw some conclu-
sions from the results of this preliminary investigation. First,
immuno-contrast CT appears to be physically possible for re-
alistic nanoparticle concentrations and x-ray exposure levels.
Second, iodine and gadolinium are a good choice of con-
trast agents for immuno contrast imaging. Third, optimizing
the spectral design for specific combinations materials can
significantly reduce noise in the immuno-contrast images.
Immuno-contrast CT imaging has the potential to accelerate
the development of nanomedicines because it can simultane-
ously image the reference and antibody nanoparticle biodistri-
butions, improving the statistical power of preclinical imag-
ing studies. In the future, we look forward to addressing
some of these non-ideal effects and moving on to physical
experiments with spectral CT imaging systems.

Figure 4: Material density line integral ground truth generated
with the MOBY phantom. Immuno-contrast is Gd minus I.

Figure 5: Material density line integral estimates for 50th per-
centile design for low immuno-contrast noise power.

Figure 6: Material density line integral estimates for optimal
design for low immuno-contrast noise power.
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Abstract
Axial multi-detector computed tomography addresses multiple impor-
tant clinical applications. At the same time, it suffers from cone-beam
artifacts. These artifacts appear due to data insufficiency and get more
pronounced with increasing axial coverage.
In this paper, we propose to train a 3D convolutional neural network to
correct for cone-beam artifacts of axial multi-detector CT systems with
16 cm coverage.The approach relies on the simulation of cone-beam
artifacts, patch-based training, mixed precision technology, and the 3D
U-net model architecture. The method is tested using both simulated
and real data. While being less accurate on average in terms of the
root mean square error, we achieve better artifact suppression at the
extreme compared to the two-pass approach commonly used in the
field.

1 Introduction

Axial multi-detector computed tomography with a wide cov-
erage scanner is a common acquisition mode for many clini-
cal applications. It allows to quickly capture a large portion
of the body within a narrow time window which makes it
a favorable choice for imaging moving organs. Important
application areas enabled by this mode of scan on a 16 cm
wide-detector CT scanner include brain imaging (including
brain perfusion) and cardiac imaging.
Larger cone angles lead to cone-beam artifacts for non-exact
reconstruction methods due to the missing data problem as-
sociated with circular trajectories [1, 2]. They exhibit a
low-frequency shading or streak artifacts generated by strong
z-gradients in the irradiated volume. Many methods already
exist for reducing cone-beam artifacts [3]. Since in this pa-
per we use aperture weighted wedge filtered backprojection
(AWW-FBP) as the reconstruction algorithm [4], we consider
only the correction methods applicable to it. One of them
weights redundant data based on aperture weighting. It is al-
ready integrated into the considered reconstruction algorithm.
Another well-known approach to correct cone-beam artifacts
is the two-pass approach [5]. It restores missing structures
of high spatial gradient with soft tissue and air. After the
subsequent forward- and backprojection step it provides an
estimation of actual cone-beam artifacts.
Convolutional neural networks (CNNs) have become ubiq-
uitous in computer vision ever since AlexNet [6] won the
ImageNet challenge [7]. Over the last years, several ap-
proaches have been proposed to correct for cone-beam ar-
tifacts using CNNs. Han et al. [8] corrected cone-beam
artifacts in coronal and sagittal views with separate 2D U-net
models having 3D fusion afterwards. Training data were

simulated based on a dataset of 3D CT volumes without ar-
tifacts. Maspero et al. [9] registered cone-beam CT scans
to planning CT to further process it with a 2D cycle-GAN
network. Minnema et al. [10] applied a 2D CNN along radial
slices to achieve better training data consistency.
In this work, instead of applying 2D CNNs as used in the
mentioned publications, we propose to employ a 3D CNN
to directly correct for cone-beam artifacts in axial CT scans.
We hypothesize that a 3D network is more suited for such
correction due to the nature of the artifacts but comes with
higher demands on the GPU memory for training and infer-
ence. We use helical scans to simulate axial ones with 16 cm
axial coverage to generate a set of registered training pairs,
patch-based training setup, mixed precision technology and
the 3D U-net model architecture. We consider head scans for
training and validation. The results are compared against the
two-pass approach.

2 Materials and Methods

2.1 Two-Pass Approach

The basic idea of the two-pass pass approach is to use the
(erroneous) reconstructed image to estimate an image con-
taining the artifact-inducing structures. This image is then
used as input to a simulation of the imaging system including
forward projection and reconstruction using the same recon-
struction algorithm. This is what is referred to as second
pass. The reconstruction will produce similar artifacts as
in the original reconstruction, but in this case the error in
the images can be deduced from comparison to the forward
simulation input.
The original approach [5] applied threshold operations aim-
ing at tissue classification. In particular, soft tissue is sub-
sequently replaced by a constant HU level which removes
most cone-beam artifacts within soft tissue, while the HU
values of bone are left untouched. Although soft-tissue con-
trast is eliminated completely, the major gradients, namely
those at the bone boundaries are preserved, which are indeed
the major source of artifacts. We use a modified version of
this processing including additional gradient filtering, bone
correction and z-dependent post-filtration after the second
pass.
Truncation at the upper and lower boundary of the volume is
a problem for this approach since artifact-inducing structures
are not limited to the coverage that can be reconstructed.
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Structures outside the coverage may also introduce long-
range artifacts leaking into the reconstructible region. In this
paper, we apply constant row extrapolation for projections.

2.2 Data Generation

To develop and validate our approach we simulate cone-
beam artifacts using clinical CT scans acquired in helical
geometry (called “helical images” in the rest of the text) . The
data comes from the Philips iCT 6000 CT System (Philips
Medical Systems, Cleveland, USA) with 4 cm collimation
and pitch factor varying between 0.4 and 1.
Instead of directly using helical images as ground truth (GT),
we process them to achieve a better match in terms of blur-
ring. This way, the CNN is not trained to compensate for
simulation-induced blurring which is not present in real scans.
The starting point for obtaining a pair of artifact-prone and
GT images is a helical image which is processed in two ways:

1. It gets forward projected onto an axial trajectory at a
wide cone angle with a given source position along the
z-axis, and subsequently reconstructed using aperture
weighted wedge filtered backprojection. The resulting
image contains axial cone-beam artifacts, and will serve
as input to the CNN.

2. For each z-position corresponding to an image slice of
the image obtained from step 1, the helical image gets
forward projected onto an axial trajectory at a narrow
cone angle with a source position being equal to that
z-position. Afterwards, each of the resulting projections
undergoes filtered backprojection onto a 2D image posi-
tioned at the corresponding value of z. Finally, all the
resulting 2D images are stacked along z, resulting in a
3D image with identical geometry as the one from step
1. This image serves as GT for the network training.

As both images have undergone one iteration of forward- and
backprojection, we achieve close levels of blurring. Note that
cone-beam artifacts vanish on the image plane containing
the source trajectory; hence, the GT image constructed as
outlined above is free from axial cone-beam artifacts.
In addition, for a given helical image, we propose to generate
several pairs of input and GT images by varying the source
position along the z-axis used in step 1. These different off-
sets along z lead to different cone-beam artifacts in the image,
and thus serve as an efficient method of data augmentation.
This approach is particularly relevant in case the number of
available helical images is limited.
In our experiments we use 22 CT scans for training and
3 for testing. Each training scan is reconstructed using 3
offsets along z. The size of the volume for each scan is
(512,512,256) voxels with dimensions (250,250,160) in
(x,y,z).

2.3 Training and Inference

The training setup is illustrated in Fig. 1. Before passing the
data to the model during training we normalize data accord-
ing to the sample mean and standard deviation calculated
along all artifact-prone scans and randomly sample patches
of size (128, 128, 64) corresponding to (x,y,z). Since cone-
beam artifacts typically cover a significant fraction of the
image size, the chosen patch size should be sufficiently large.
After data generation and preprocessing, the pairs of artifact-
prone patches and the slice-by-slice GT deduced from helical
scans can be used for training a model. We propose to train a
3D U-net model [11] from scratch (without transfer learning
or pre-training) as described above, with the MSE as a loss
function. In order to reduce GPU memory footprint, mixed
precision training is utilized [12].
Inference also has to be done using patches, because still an
image volume cannot be fit into GPU memory in our case. In
our implementation patches overlap and are later fused using
gaussian weights. Namely, if a point is covered by several
patches, a point value from each patch will contribute with
a weight proportional to its distance from the center of the
patch.
For our experiments we used the MONAI library [13].

2.4 Metric

Since the clinical impact of cone-beam artifacts depends on
where they appear in the image, we restrict the quantitative
assessment of our results to the brain tissue. Specifically, the
cerebrum and cerebellum as these brain parts are of interest
in brain perfusion scans. In order to do that, we provide
binary segmentation masks of the brain tissue for the three
scans from the test set (Fig. 2h). In our experiments, we use
the root mean square error (RMSE) calculated for the voxels
within the mask. In addition, we also use quantiles of the
absolute error within the masked region which also should
better address the problem of the uneven spatial distribution
of the artifacts.

3 Results

Table 1 shows the quantitative evaluation of the proposed
approach and its comparison against the aperture weighted
reconstruction and the two-pass approach using simulated
16 cm axial CT data. Metrics are calculated for the three CT
scans from the test set. We explicitly position the detector so
that it covers the top of the skull to eliminate the extrapolation
effect for the two-pass approach.
Visual results of cone-beam correction on simulated data are
demonstrated in Fig. 2. Each method is represented by a
sagital slice of the head scan from the test set along with the
absolute difference with the GT slice. Cone beam artifacts
are visible on the images with differences as streak artifacts
and low-frequent shading towards the boundaries.
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Figure 1: Training setup for correcting cone-beam artifacts.

(a) AWW-FBP (b) |AWW-FBP−GT|

(c) Two-pass (d) |Two-pass−GT|

(e) Proposed (f) |Proposed−GT|

(g) GT (h) Brain mask

Figure 2: Comparison of cone-beam correction methods for a
scan covering the top of the skull. L/W = 35 HU/70 HU is used for
(a), (c), (e), (g). L/W = 10 HU/20 HU - for (b), (d), (f). (h) is the
mask used for calculating the metrics.

Method
RMSE,

HU
95% perc.,

HU
99.7% perc.,

HU
AWW-FBP 4.51±0.71 17.97±3.75 56.68±16.77
Two-pass 1.97±0.32 7.62±1.89 24.90±7.20
Proposed 2.26±0.31 6.57±0.78 14.73±0.39

Table 1: Quantitative assessment of cone-beam artifact correction
methods for head imaging across three test cases. Mean and stan-
dard deviation of the corresponding metric is presented for each
method.

Fig. 3 presents the results of cone-beam artifacts correc-
tion for an anthropomorphic phantom scanned on an 8 cm
CT 7500 system. The data was acquired in several modes:
in helical mode with pitch factor 1 at 2 cm collimation and
in axial mode. The phantom was not moved between the
different scans; hence we can at least visually compare the
reconstructions of the helical scans to the ones from the 8 cm
axial acquisitions.

4 Discussion

Although the two-pass approach is slightly better than the
proposed one in terms of the RMSE, the quantiles of the
absolute error show that it is less accurate and more divergent
at extreme.
Visual analysis shows that the artifacts are quite success-
fully removed by the network (Fig. 2e). In particular, the
horizontal streaks visible in the image reconstructed with
aperture weighted wedge filtered backprojection (Fig. 2a)
are almost fully removed. However, the network induces a
low-frequency bias in parts of the image, visible mainly by
the bright region within the skull in the absolute residuum
(Fig. 2f). This is a generic finding across the different test
cases studied in this work: the network-based approach in
general is good at removing artifacts with a high frequency in
the z direction, but can introduce a more subtle low-frequency
bias across a larger range in z. The reason for that can be due
to inability of the network to accurately define the location
of an incoming patch.
At the same time, the two-pass approach by design does not
introduce any errors in the area of low cone angles. However,
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(a) AWW-FBP (b) |AWW-FBP−GT|

(c) Two-pass (d) |Two-pass−GT|

(e) Proposed (f) |Proposed−GT|

(g) GT (h) Brain mask

Figure 3: Comparison of cone-beam correction methods for an
anthropomorphic phantom scanned on an 8 cm CT 7500 system.
The residuals are smoothed using the in-plane (XY ) Gaussian filter
in order to focus on the meaningful differences related to cone-
beam artifacts rather than the different noise realizations between
the helical and axial scans. L/W = 35 HU/70 HU is used for (a),
(c), (e), (g). L/W = 10 HU/20 HU - for (b), (d), (f).

it still leaves visually noticeable artifacts, namely the streaks
in the lower part of the brain. This visual observation corre-
lates with the numbers presented in Table 1 where quantile
values for the two-pass approach are higher.
Fig. 3e shows the result of applying the artifact-correcting
network to the AWW-FBP reconstruction. Evidently, the
streak-like artifacts in the lower half of the image are signif-
icantly (though not completely) reduced by the network. It
is worth noting that the phantom data differs in two ways
from the data used for training the network: first, it corre-
sponds to real data and thus has a different noise texture
than the forward-projected data employed for training, and
second, it is based on a phantom not seen during training.
Given this domain shift, it is reassuring to observe that the
artifact-correcting network nevertheless successfully reduces
the level of streak-like artifacts in the image.

5 Conclusion

While larger cone angles for axial CT acquisition open up
new opportunities to improve image quality, they come at a
price of inaccurate reconstruction due to missing data. In this
paper, we present an approach based on a 3D CNN applied
as a post-processing step to fix the artifacts introduced after
reconstruction. Targeting 16 cm axial coverage, we find a
way to generate a training dataset using helical scans. The
results on simulated data show that the proposed approach is
capable of reducing the problem. The approach can introduce
a minor bias but is quite good at removing extreme streaks

compared to the two-pass approach. The proposed method
generalizes to 8 cm data coming from an actual CT system
and demonstrates similar results. Future research directions
may include designing a geometry-aware CNN-based ap-
proach for cone-beam artifacts correction preventing it from
introducing bias in the central plane area.
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Abstract The diagnostic quality of computed tomography (CT) scans
is usually restricted by the induced patient dose, scan speed, and image
quality. Sparse-angle tomographic scans reduce radiation exposure and
accelerate data acquisition, but suffer from image artifacts and noise.
Existing image processing algorithms can restore CT reconstruction
quality but often require large training data sets or can not be used
for truncated objects. This work presents a self-supervised projection
inpainting method that allows optimizing missing projective views via
gradient-based optimization. By reconstructing independent stacks
of projection data, a self-supervised loss is calculated in the CT im-
age domain and used to directly optimize projection image intensities
to match the missing tomographic views constrained by the projec-
tion geometry. Our experiments on real X-ray microscope (XRM)
tomographic mouse tibia bone scans show that our method improves
reconstructions by 3.1–7.4%/7.7–17.6% in terms of PSNR/SSIM with
respect to the interpolation baseline. Our approach is applicable as
a flexible self-supervised projection inpainting tool for tomographic
applications.

1 Introduction

Computed tomography (CT) scanners allow the reconstruc-
tion of unknown 3D object density distributions from a set
of acquired X-ray projection images. Most clinical applica-
tions use filtered back projection (FBP)-based reconstruction
algorithms that require a dense angular sampling to meet
the precondition of the analytical algorithm. Although de-
creasing the number of measured projection images can be
beneficial to reduce patient dose, improve acquisition speed,
and reduce motion effects [1], it introduces noise and image
artifacts that can impair diagnostic value.
Different image processing algorithms were proposed to re-
store the image quality of scans acquired with reduced angu-
lar sampling and dose, intervening at different stages of the
CT reconstruction pipeline. A first set of algorithms operates
directly on the acquired sinogram data with the goal to up-
sample the number of projection images [2, 3]. Consistency
conditions on CT projection data were applied to limited-
angle acquisitions to improve image quality while preserving
consistency with the measured data [4, 5]. However, such
methods are often insensitive to in-plane artifacts and only
work for non-truncated data. A second group of methods
apply pure image post-processing algorithms to improve the
overall quality of noisy reconstructions acquired with reduced
dose [6–8]. To make CT reconstruction pipelines compatible
with gradient-based data-driven training, differentiable FBP
operators were presented that allow propagating a loss calcu-

lated on the reconstructed image back to the raw sinogram
data [9, 10]. Such known operators [11] allow training CT
pipelines employing neural networks on the sinogram and
the reconstruction simultaneously [12]. Existing approaches
use neural networks or other denoising operators to restore
image quality [13, 14] or make use of conventional inpaint-
ing techniques to increase the angular projection sampling
artificially [15].
So far most learning-based models are trained supervisedly
on large-scale low and high-quality paired data sets [2]. How-
ever, multiple self-supervised training approaches exist that
circumvent the need for paired training data. Noise2Noise
[16] calculates a loss metric from two independent noisy
image representations. Noise2Inverse [17] and other works
[18] extend this principle to tomographic CT settings by
splitting projection data into two independent sets. The re-
sulting reconstructions are regarded as image representations
with independent noise realizations and allow for deriving a
self-supervised denoising loss. Only a few self-supervised
inpainting techniques exist and even fewer are applied to CT
problems [3, 19].
In this work, we present a self-supervised CT projection
inpainting method. We regard missing projection images
as trainable data tensors that are updated to be consistent
with the measured data. Reconstructing them with a differ-
entiable FBP operator allows deriving a self-supervised loss
in the image domain with the real measured sparse-angle
reconstruction. Backpropagating that loss through our fully
differentiable reconstruction pipeline allows directly optimiz-
ing the missing projection data tensor to generate additional
projection views. Our contributions are the following:

• We present a self-supervised projection inpainting
method based on a differentiable FBP pipeline.

• We propose to directly optimize missing CT projection
information through the fixed projective geometry of a
differentiable FBP operator.

• We evaluate our method on high-resolution cone-beam
X-ray microscope (XRM) ex-vivo mouse tibia bone
data.
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Figure 1: Illustration of the proposed self-supervised projection inpainting scheme. A target image is reconstructed from a sparsely
sampled CT scan, e.g., one-third of the usual number of projections from a high-resolution scan (orange data). The intensities of
intermediate missing projections are regarded as trainable parameters (green projections). Further, a self-supervised loss is calculated
between the two reconstructed projection stacks and backpropagated through a differentiable FBP operator to the inpainted projections to
update them consistently with the measured data.

2 Methods

2.1 Differentiable Reconstruction Pipeline

The acquisition of CT projection images p j with j ∈
{0, . . . ,J} can be written as

p j = A[G j]y+n j (1)

with the true scanned object y, noise vector n j, and the for-
ward operator A conditioned to the projection geometry G.
The inverse CT problem aims to reconstruct the unknown
object from the acquired set of J projections using the adjoint
system matrix A⊤ and the filter operator K

ŷJ =
1
J ∑

j
A[G j]

⊤Kp j . (2)

Using a differentiable backprojection operator [9] allows
backpropagating a loss metric L derived on the reconstructed
image ŷ to the raw CT projection data using the chain rule

∂L
∂p j

=
∂L
∂ ŷ

∂ ŷ
∂p j

. (3)

Hence, models working in the projection domain or the pro-
jection data itself can be directly modified using gradient-
based optimization.

2.2 Optimizing Consistent Sinogram Information

Following the Noise2Inverse [17] pipeline, a self-supervised
loss L can be derived from the reconstructions of two indepen-
dent stacks of CT projection images p j ( j ∈ {0, . . . ,J}) and
pk (k ∈ {0, . . . ,K}). In the reconstruction domain, only their
image content but not their noise realization is correlated
which allows deriving a loss between both reconstructed im-
ages to assess the consistency of the image contents. Other
works [17] minimize that loss to train the weights of denois-
ing models f (·,w) in the projection and the reconstruction
domain self-supervisedly

argmin
w

L(ŷJ, ŷK) . (4)

In the sparse-angle tomographic setting where only a limited
number of J projection images was measured, we propose to
minimize the following expression to optimize the missing
set of K noise-free projection images pk

argmin
pk

L(ŷJ, ŷK) = argmin
pk

L(ŷJ[G0:J], ŷK [G0:K ]) . (5)

We regard the pixel intensities of the inpainted projection
images pk as trainable weights and optimize them in a self-
supervised and data-driven way as illustrated in Fig. 1. To
enable backpropagating the gradient to the projection images,
we use a differentiable FBP operator [9] within our XRM re-
construction pipeline [10]. Due to the well-defined projection
geometries G j and Gk for the individual projection images
p j and pk, the proposed pipeline is constrained to optimize
missing angular projection data in between the measured
sparse-angle projections to predict realistic reconstructions
ŷK close to ŷJ . Although the pipeline can in theory converge
to an identity solution where inpainted projections equal the
true measured data, this solution is not favored by the derived
pixel-wise loss as both independent reconstructions would
be slightly misregistered through the different sets of view
geometries G0:J and G0:K .

3 Experiments

3.1 Data

The used data set consists of five high-resolution X-ray mi-
croscope (XRM) cone-beam scans of ex-vivo mouse tibia
bones. Investigating bone structures on the micrometer scale
is instructive for understanding the cause and progression of
bone-related diseases on the cellular level as well as for de-
veloping adapted therapies. Lacunar bone structures, visible
in Fig. 2 as tiny holes in the bone, are in particular of interest
as they contain osteocyte cells that are heavily involved in
the bone-remodeling process [20]. To resolve Lacunae rea-
sonably well, 1401 projection images are acquired, which
accumulates to a total acquisition time of around 14h. Here,
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neither acquisition time nor induced sample dose allow for
desired in-vivo investigations [1]. Sparse-angle CT acquisi-
tions in combination with self-supervised projection inpaint-
ing algorithms can enable faster low-dose acquisition while
preserving a high reconstruction quality. The used XRM
scans image the tibia bone of mice close to the knee joint and
contain truncated information of the proximal fibula bone in
some projective views.
The study was performed in line with the principles of the
Declaration of Helsinki. Approval was granted by the Ethics
Committee of FAU Erlangen-Nürnberg (license TS-10/2017).

3.2 Training

We evaluate the effectiveness of our method on five XRM
mouse tibia scans using half (50% dose) and one-third (33%
dose) of the available 1401 projections for all compared in-
painting strategies. Projection images are reconstructed us-
ing the public cone-beam XRM reconstruction framework
of Thies et al. [10]. Nearest neighbor interpolation and tri-
linear interpolation operators are taken from the PyTorch
framework and compared to our proposed self-supervised
projection inpainting method. We initialize the missing pro-
jection intensities with interpolated projections to accelerate
the optimization and start from a reasonable reconstruction.
Subsequently, projections pk are registered in the PyTorch
graph as trainable parameters and are updated using a stochas-
tic gradient descent optimizer with learning rate 0.1 without
momentum. Further, we use the mean absolute error as
loss function L. Quantitative performance metrics are cal-
culated with respect to the high-resolution XRM images
reconstructed from all available projections.

4 Results and Discussion

We compute the commonly used quantitative image qual-
ity metrics peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) to evaluate reconstructions

50% dose PSNR SSIM

Nearest neigh. int. 27.0±0.4 0.620±0.008
Trilinear int. 27.8±0.4 0.656±0.008
Optimized projections 222999...000±±±000...555 000...777222999±±±000...000000999

33% dose PSNR SSIM

Nearest neigh. int. 25.8±0.5 0.571±0.011
Trilinear int. 26.2±0.5 0.585±0.011
Optimized projections 222666...666±±±000...555 000...666111555±±±000...000111333

Table 1: Quantitative reconstruction results (mean ± std) calcu-
lated between the prediction starting from one half and one third of
the full number of projections and the high-resolution reconstruc-
tion that is regarded as ground truth.

GT

500 m

GT

LR nearest

learned trilinear

Figure 2: Reconstructions of mouse tibia bone XRM scans. The
magnified region of interest is highlighted in the overview slice.
The ground truth (GT) and low-resolution (LR) images are cal-
culated from all and one-third of the available projection images
respectively. Nearest, trilinear, and optimized denote the different
reconstructions from the interpolated and optimized CT projection
images.

with respect to the high-resolution ground truth images re-
constructed from all available projections. Mean ± standard
deviation of the used five XRM scans is provided in Tab. 1
for both investigated sparse-angle settings. The calculated
metrics indicate improved reconstruction quality of the op-
timized XRM projections across both sparse-angle tomo-
graphic settings and over the compared reference methods.
In our experiments, optimized projection images improve the
PSNR by 3.1–7.4% and the SSIM by 7.7–17.6% relative to
the nearest neighbor interpolation baseline.
Qualitative results are compared on the reconstructions of

the inpainted projection images in magnified regions of inter-
est in Fig. 2. Biologically interesting lacunar structures are
visible as small dark holes within the bone tissue. Whereas
nearest neighbor interpolation only slightly improved the
noise level within the bone region, trilinear interpolated and
optimized projections further reduce reconstruction noise. Al-
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though the bone reconstructed from the optimized projections
appears a bit smoother compared to trilinear interpolation,
only small improvements are visible.
None of the compared methods contain deep neural networks
or require any form of pre-training on additional data, refer-
ence data, or a learned prior. In our proposed method, pro-
jection intensities are directly changed using gradient-based
optimization within the fully differentiable reconstruction
pipeline. In contrast to other techniques employing view
consistency, we believe that our self-supervised pipeline is
not limited to circular CT trajectories but can be applied to
more difficult acquisition geometries as long as there is a
differentiable reconstruction operator at hand. In addition,
three of the five used bone scans contain truncated residual
parts of the proximal fibula bone which are only visible in
some projection views which would severely disturb most
projection consistency-based algorithms. Our experiments
show that the present data truncation can be handled well by
our proposed projection optimization method. Further work
is required to fully evaluate the generalizability of end-to-end
optimization of CT projections and compare it to existing
projection consistency-based methods or deep learning-based
models.

5 Conclusion

In this work, we present a truly self-supervised projection
inpainting technique to improve the reconstruction quality
of sparsely acquired CT projection data. Our method allows
directly optimizing projection image intensities through a
differentiable FBP operator and a self-supervised loss metric
calculated from two independently reconstructed projection
stacks. The proposed pipeline requires further evaluation
to prove its clinical effectiveness. Nevertheless, it has great
potential over existing self-supervised algorithms as addi-
tional regularization can be applied and data consistency is
enforced.
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Abstract Deep learning (DL) has attracted great attention in the medical 

imaging field as a promising solution for high-fidelity CT image 

reconstruction in low-dose cases.  Meanwhile, most of the existing DL-

based methods are centralized machine learning frameworks with the 

need to centralize the data for training. These methods have poor 

generalization for the privacy policies. Federated learning (FL) can 

address privacy concerns by using local CT datasets without transferring 

data.  The FL-based CT reconstruction performance still has room for 

improvement due to the limited capability of the global server. In 

addition, the absence of labeled data in the global server could also 

degrade the performance. In this work, to improve FL-based CT recons- 

truction performance, we first propose a novel federated learning frame- 

work with a circulation mode for low-dose CT image denoising, and the 

newly proposed framework is termed as Circulation FL, i.e., Ci-FL. 

Specifically, there is no fixed global server in the presented Ci-FL. Each 

local client can be regarded as the global server in each FL network 

training wherein the labeled data in the global server can help network 

training efficiently. The rest ones are regarded as the local client 

constructing an FL framework in each circulation node. With each site 

trained as a global server in the framework, we obtain the desired Ci-FL 

network. Experiments on multi-sites CT datasets clearly demonstrate 

enhanced reconstruction performance of the proposed Ci-FL against site-

specific and traditional federated methods in terms of qualitative and 

quantitative assessments. 

 

1   Introduction 

 

Concerns have been raised about the risk of carcinogenesis 

from radiation doses in computed tomography (CT). 

Various specific CT techniques to minimize radiation dose 

while providing diagnostic examinations have been 

developed. One simple way is to lower the tube current in 

the examination. Meanwhile, this might suffer elevated 

noise if no adequate treatment in the reconstruction. To 

improve CT image quality, a variety of classical CT 

reconstruction methods have been proposed, including the 

sinogram-based methods, the image-based methods, and the 

model-based iterative reconstruction (MBIR) methods, etc. 

With the rapid development of deep learning (DL) 

techniques in recent years, DL-based CT reconstruction 

models have been actively explored and often obtain 

promising performance in the CT imaging task. A variety 

of DL-based CT reconstruction models have been applied, 

ranging from early convolutional neural network-based 

methods [1][2] to recent unrolling-MBIR networks [3][4]. 

Meanwhile, there are some intrinsic limitations in current 

DL-based methods. (i) Some of the DL-based methods are 

constructed based on datasets from one site with poor 

generalization ability. (ii) The other DL-based methods 

trained on the collected dataset from multi-site might suffer 

from privacy concerns [5]. 
 

Federated learning (FL) can be used to improve data privacy 

and efficiency in the medical field by allowing decentrali-

zed network training among multiple sites to collaborate 

without local data aggregation [6]. For example, Yang et al. 

developed a hypernetwork-based federated learning for 

low-dose CT imaging by learning common features from 

multi-sites in the global server and reconstructed CT images 

efficiently in local clients [7]. Meanwhile, the existing FL-

based CT reconstruction methods have some disadvantages. 

(i) The global server without any training data only itera- 

tively aggregates the model parameters of local clients, 

which might limit its capability. (ii) In each local client, the 

reconstruction performance highly depends on the dataset 

itself and cannot be comparable to the centralized DL-based 

CT reconstruction methods. 
 

In this work, to promote the FL-based CT reconstruction 

performance, we propose a new FL strategy based on a 

circulation mode for low-dose CT denoising, dubbed as 

Circulation FL (Ci-FL). Specifically, instead of a fixed 

global server in the traditional FL, the proposed Ci-FL has 

a dynamic global server composed of each local site 

wherein each local site can be regarded as a global server 

and this global server has fully-labeled CT image pairs (i.e., 

normal-dose images/corresponding low-dose ones). The 

global server with labeled data can further improve training 

efficiency. In the proposed Ci-FL, except for one site as the 

global server, the remaining sites are regarded as local 

clients in each FL training in each circulation node. 

Moreover, in each node in the circulation, the local models 

are trained independently on different types of datasets in a 

supervised manner, and the parameters of the different local 

models are aggregated on the server at each round. The 

proposed Ci-FL selects one site as the global server in turn 

to aggregate parameters. Experiments on multi-site CT 

datasets clearly show the proposed Ci-FL substantially 

improves reconstruction performance compared with the 

other competing methods. 

2   Materials and Methods 

2.1   The proposed Ci-FL  
 

Figure 1 shows the framework of the presented Ci-FL. The 

presented Ci-FL consists of a circulation training model and 
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an FL framework. And, all the sites have labeled data 
𝑠𝑖𝑡𝑒𝑙𝑖𝑠𝑡 = [𝑠𝑖𝑡𝑒1, 𝑠𝑖𝑡𝑒2, . . . , 𝑠𝑖𝑡𝑒M] , i.e., normal-dose 

CT images/corresponding low-dose ones acquired with 

different scanner/protocols, respectively.   
 

At first, one of the sites, i.e., 𝑠𝑖𝑡𝑒𝑚, is chosen as the global 

server which is different from that in the traditional 

framework, and the rest are defined as local clients as the 

same in the traditional FL framework. Then, with the 

defined global server and local clients, the present Ci-FL is 

updated iteratively similar to the traditional FL wherein 

local models are trained with corresponding parameters and 

the global server aggregates the parameters and helps train 

efficiently global models with the labeled data in the global 

server. Next, parameters in the global model are distributed 

to each local site to update parameters iteratively. In 

particular, after a certain amount of global epochs is reached, 

we replace the updated datasets trained by the global server 

in the order in which they have been set. Similarly, each site 

can be selected as the global server in turn in each 

circulation node. In each training epoch, the dataset in each 

site dataset is related to model weights in the corresponding 

training stage. After completing multiple circulation epochs, 

we can obtain the final Ci-FL model that can produce 

optimal results. 

2.2   The Ci-FL training 

The presented Ci-FL aims to learn a generalized global 

model to process the CT data from multiple sites without 

sharing data directly and introduces the circulation mode 

into the FL framework to promote denoising performance. 

Specifically, different from the traditional FL framework, 

the presented Ci-FL allows each site to be selected as the 

global server for global model training in turn. This can help 

take advantage of the information among all the sites and 

obtain a more robust denoising model. 

2.2.1   Local model training 

In each local client, the local model is trained on local site 

datasets as follows:  

 

                             min
𝑤𝑚

ℒ𝑚(Φ𝑤𝑚(𝑥𝑖
𝑚) − 𝑦𝑖

𝑚),                 (1) 

 

where ℒ𝑚 is the loss function for the 𝑚th local model and 

in this study, it is set to be L1 norm. With 𝑀∗ =
[1,2,3, … , 𝑀 − 1]  sites, 𝑀∗  local models is denoted as 

{Φ𝑤𝑚}𝑚=1
𝑀∗

, where Φ𝑤𝑚  is the 𝑚 th local model with 

parameters 𝑤𝑚 . 𝑥𝑖
𝑚  is the 𝑖th low-dose CT image, 𝑦𝑖

𝑚  is 

the normal-dose CT images in local dataset 𝑆𝑚 =

{𝑥𝑖
𝑚, 𝑦𝑖

𝑚}𝑖=1
𝑛𝑚

. 𝑛𝑚 is the number of samples in the 𝑚th local 

client. 

In the tth round, parameters at the 𝑚th local client can be 

updated as follows:  

 

𝑤𝑡+1
𝑚 = 𝑤𝑡

𝑚 − 𝜎𝑚 min
𝑤𝑚

ℒ𝑚(Φ𝑤𝑚(𝑥𝑖
𝑚) − 𝑦𝑖

𝑚),      (2) 

where 𝜎𝑚 is the learning rate of 𝑚th local model. 

2.2.2   Global model training 

The parameters of local models are uploaded and aggre- 

gated in proportion to the sample number of each local 

dataset at a certain round 𝑡, and then the global model Φ�̃� 

is updated as follows:  

 

                       �̃�𝑡+1 ⟸ �̃�𝑡 =
1

𝑛
∑ 𝑛𝑚𝑤𝑚𝑀

𝑚  ,                    (3) 

where 𝑛 = ∑ 𝑛𝑚𝑀
𝑚  is the total number of samples in all the 

local datasets. 

Figure 1: The framework of the presented Ci-FL. 

415 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

 

 

 

After updating the global model by aggregating the local 

parameters, the global model is further trained by the site 

dataset in the global server. The global model is trained on 

the central server similar to that in the local client. In each 

round, the global model is updated to obtain the trained 

parameters. After that, the local models receive the updated 

parameters of the global model at the next local training 

stage.  This will repeat until the global model converges. In 

this work, the Adam algorithm is utilized to optimize both 

the global and local models. 

3   Experiments 

3.1   Dataset 

To validate and evaluate the performance of the presented 

Ci-FL method, four different CT datasets are used in the 

experiment, i.e., three from local hospitals with approval 

from the Local Institute Research Medical Ethics 

Committee (i.e., site 1, site 2, and site 3), and Mayo dataset 

authorized by “2016 NIH-AAPM-Mayo Clinic Low Dose 

CT Grand Challenge” [8]. All datasets are acquired with 

different protocols from different scanners. Each dataset in 

sites 1, 2, and 3 contains 1000 normal-dose CT images, and 

the corresponding quarter-dose projection images are simu- 

lated based on the previous study [9]. Site 4 contains 300 

normal-dose/low-dose CT image pairs. In the site 1, 2, and 

3, 800 and 200 cases are assigned for training and testing 

datasets, respectively. In the site 4, 200 and 100 cases are 

assigned for training and testing datasets. The training 

image patches are set to 64 × 64 with a stride of 64. 

3.2  Compared methods and implementation details  

In this work, the conventional filtered back-projection (FBP) 

algorithm with an ideal ramp filtering kernel, FedAvg, and 

four local models (i.e., 𝑆𝑖𝑛𝑔𝑙e_s𝑖𝑡𝑒 1, 𝑆𝑖𝑛𝑔𝑙e_s𝑖𝑡𝑒 2, 
𝑆𝑖𝑛𝑔𝑙e_s𝑖𝑡𝑒 3, 𝑆𝑖𝑛𝑔𝑙e_s𝑖𝑡𝑒 4) trained on each dataset are 

chosen as competitive methods. We empirically set the 

training parameters of Single_site 1, Single_site 2, 

Single_site 3, Single_site 4, and FedAvg to obtain optimal 

results by reference to the ground truth.  
 

In the experiment, the backbone network of the presented 

Ci-FL method adopts a modified residual network (ResNet) 

with 12 residual blocks [10]. The training parameters are set 

as follows: (1) the number of cycle epochs and the number 

of global training epochs of the central server are 

respectively set to 5 and 5/4/3, (2) the epoch number is set 

to a maximum of 100 and the weight is decayed at the 100th 

epoch by multiplying 0.2, (3) the learning rate and batch 

Figure 2: Results of Ci-FL and compared methods. 

(The Ci-FL results: C × G × M, C is the circulation epoch, G is the global training epoch of the central server and M is the site number) 
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size of the local and global models are 1.0 × 10−4 and 32, 

respectively, (4) the aggregating round for the parameters 

of each local model is set to 1 epoch. All the networks in 

this work are implemented with Pytorch library, and the 

FBP algorithm is based on the ASTRA toolbox by utilizing 

one NVIDIA Tesla P40 graphics processing unit (GPU) 

which has 24 GB memory capacity. 

4   Results 

Figure 2 showcases the visual comparison results on the 

four sites from the competing methods, and the CT images 

at normal doses are treated as ground truth. It can be 

observed that the FBP results suffer from noise-induced 

artifacts. FedAvg can suppress noise-induced artifacts to 

some extent but it would lead to undesired artifacts in the 

final results improves the image quality and reduces the 

noise. But it causes over-smoothed results and decays the 

image resolution, as shown in the red zoomed-in regions of 

interest (ROIs) at site 1 and site 4. The possible reason can 

be that the FedAvg does not consider the information from 

different sites. In the Best_Local cases, the model trained 

with the data on a single site can process the low-dose CT 

images at its own site efficiently. It should be noted that 

these models fail to process the low-dose CT images at 

other sites due to the heterogeneity among different sites, as 

shown in Figure 3. Moreover, the presented Ci-FL success- 

fully reduces noise-induced artifacts in the CT images from 

all the sites and produces promising results. The zoomed-in 

ROIs indicated by the red boxes also demonstrate its 

efficiency, indicating its generalization and robustness in 

processing datasets from different sites simultaneously. The 

main reason might be that the presented Ci-FL implements 

a circulation FL mode where each different site dataset 

takes turns acting as a central server to further train the 

model parameters for each round of aggregation,  which has 

the potential to balance and improve the performance of the 

trained models across all medical imaging centers.   
 

To evaluate the performance of the presented Ci-FL, three 

measure metrics are used, i.e., peak signal-to-noise ratio 

(PSNR), root mean square error (RMSE), and structural 

similarity index (SSIM). It can be seen that the presented 

Ci-FL method performs better than the FedAvg method and 

achieves similar performance with the single site models in 

terms of PSNR, RMSE, and SSIM measurements, indicat- 

ing that the presented Ci-FL has stronger generalization 

ability than the other competing methods. 

5   Conclusion 

In this work, we propose a federated learning strategy with 

a circulation mode for low-dose CT image denoising, i.e., 

Ci-FL. Specifically, there is no fixed global server in the 

presented Ci-FL. Each local client can be regarded as the 

global server in each FL network training wherein the 

labeled data in the global server can help network training 

efficiently. Experimental results demonstrate that the pre- 

sented Ci-FL strategy outperforms the other competing 

methods qualitatively and quantitatively. This can provide 

a new strategy for the FL framework in low-dose CT 

imaging tasks. 
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Abstract The motion of gas bubbles (gastrointestinal gas) in the 

abdominal and pelvic region can produce significant artifacts on the 

cone-beam CT (CBCT) , which adversely affects the imaging quality and 

limits the process of image-guided radiotherapy and CBCT-based 

adaptive planning. In this study, we evaluated the effectiveness of cycle 

generative adversarial network (CycleGAN) for improving CBCT image 

quality and Hounsfield unit (HU) accuracy of abdominal and pelvic scans 

by synthesizing high-quality CT images based on the image content of 

CBCT images. The improved image quality of the synthetic CT (sCT) on 

both gas bubble artifact reduction and HU correction compared to the 

original CBCT demonstrated that CycleGAN is a promising tool for 

onboard CBCT image quality improvement, which can potentially 

increase the treatment precision of radiotherapy. 

1 Introduction 

 

Onboard cone-beam computed tomography (CBCT) is 

widely used in radiotherapy clinics for patient set up. It has  

been conventionally used for treatment target positioning in 

image-guided radiation therapy (IGRT), and has been 

increasingly used for treatment re-planning in adaptive 

radiation therapy (ART) more recently [1-4]. However, the 

application of CBCT in abdominal and pelvic cancer 

radiotherapy is still limited due to its low image quality. Its 

inherent limitation of imaging physics induces scattering 

and beam hardening artifacts on the image, and it is 

sensitive to motion of gastrointestinal gas because of the 

long-time onboard scanning process [5-7]. Methods for gas 

bubble motion artifact reduction and HU accuracy 

correction on CBCT are of great importance. 

 

A lot of research has been done to reduce these artifacts and 

improve the CBCT image quality, especially for the scatter 

noise correction and beam hardening artifact correction. 

And much work has been done to address the periodic 

motion artifact caused by such as motion of heart and lung. 

However, the artifacts produced by isolated aperiodic 

motions of small structures, such as gastrointestinal gas 

bubble, have been rarely described, and no available 

method has been discussed to correct them to our 

knowledge [2, 8]. As the gas bubble motion artifact is 

frequently seen in abdominal and pelvic scan and could 

induce severe artifacts (Figure 1), an artifact correction 

method designed for gas bubble motion is desired to 

improve the abdominal CBCT image quality and then aid in 

online patient setup and adaptive radiation therapy.  

 

 

 

Figure 1: Examples to show the gas bubble artifacts and Hounsfield 

unit (HU) inaccuracy of onboard abdominal and pelvic CBCT. CT 

images are on the left, their corresponding CBCT images are on the 

right. 

 

The correction of motion artifacts in medical imaging is a 

challenging problem, particularly in the context of real-time 

imaging. Traditional methods for artifact correction, such as 

image registration and motion compensation, update the 

image iteratively, which can be time-consuming and 

computationally intensive, making them unsuitable for real-

time applications. For image guided adaptive replanning,  

while these methods can yield good dosimetry results for 

more stationary disease sites such as head and neck cancer, 

the performance might be poor due to the substantial patient 

motion and different air/water filling status in the 

abdominal and pelvic region.  

 

Recently, deep learning methods, such as Cycle Generative 

Adversarial Networks (CycleGANs), have been applied to 

deal with the unpaired image data in multiple applications 

in medical imaging [4, 9-11]. The CycleGAN is a type of 

GAN that is trained to learn the mapping between two 

image domains, and used for cross-domain image 

transformation, such as CT-based synthetic MRI generation 

and CBCT-based synthetic CT (sCT) generation. And it 

showed promising performance on these tasks while 

preserving the anatomical well.  
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In this work, we propose the use of a CycleGAN for CT-

quality image synthetization to reduce the artifact caused by 

motion of gas bubbles and HU inaccuracy caused by 

scattering in abdominal and pelvic onboard CBCT scans 

used for radiotherapy. The effectiveness of CycleGAN was 

evaluated using a CBCT dataset of real abdominal or pelvic 

cancer patients. 

 

2 Materials and Methods 

2.1 Image acquisition and processing 

The dataset used for this study consisted of abdominal 

planning-CT and onboard CBCT scans from 70 patients 

who received radiotherapy in the University of Texas 

Southwestern Medical Center. All the planning-CTs were 

acquired with Philips Big Bore CT simulator (Koninklijke 

Philips N.V.,), and all the CBCTs were acquired on Elekta 

Agility XVI (Elekta, Stockholm, Sweden). The treatment 

areas include cervix, pancreas, uterus, vagina and vulva. 

Obvious gas bubble motion artifacts were identified on all 

these CBCT scans. All the image data were extracted 

retrospectively under an IRB-approved protocol. 

 

The dataset was divided into two parts: a training set 

consisting of CT and CBCT scans for 60 patients, and a 

testing set consisting of the remaining patient scans. All the 

images were resample and cropped to 3D matrixes with 

resolution of 205×205×80 and voxel size of 2×2×3mm3. 

The HU range was clipped to [-1000, 1000] and then the 

images intensity values were rescaled to [-1, 1] for model 

training and validation. 

 

2.2 CycleGAN architecture 

As shown in Figure 2, the architecture consisted of two 

generator networks and two discriminator networks. The 

generator networks were designed to learn the mapping 

between the CT and CBCT iamges, where CT images are 

viewed as the idea image with accurate HU and without the 

gas bubble motion artifact. The discriminator networks 

were designed to distinguish between the real and generated 

images. Sepcifically, Generator A synthesized sCT from 

CBCT, and Generator B generates synthesized CBCT 

(sCBCT) from CT. Discriminator A discriminates between 

CT and sCT, while Discriminator B  discriminates between 

CBCT and sCBCT. The two-cycled workflow includes: 1) 

generation of sCT based on CBCT and sCT based cycle-

CBCT synthesization, 2) generation of sCBCT based on CT 

and sCBCT based cycle-CT synthesization. Meanwhile, the 

two discriminators discriminates between CT and sCT,  

CBCT and sCBCT, resepctively. Another set of identity 

images is generated by feeding CT patchs to Generator A 

and CBCT patches to Generator B to generate identity CT 

and identity CBCT, respectively. 

 
Figure 2: Schematic flowchart of the proposed CT image systhetic 

based on CBCT using cycleGAN. Two generators and discrimiators 

are trained in the cycleGAN structure using abdominal and pelvic CT 

and CBCT patches. And the trained generator for CBCT to CT 

conversion is used for synthetic CT (sCT) generation. 

 

The 3D patchGAN discriminator architecture is used for our 

discriminators, and the a 3D CNN architecture with 9 resnet 

block is used for our generators. The implementation of our 

3D CycleGAN architecture was based on 

https://github.com/davidiommi/3D-CycleGan-Pytorch-

MedImaging. We use MAE loss for cycle loss and identity 

loss calcualtion. For calcuation of discrimitor loss and 

generator loss, binary cross entropy loss is used to identity 

systhetic images and real images. 

 

2.3 Training and evaluation 

The CycleGAN was trained using the Adam optimizer with 

a initial learning rate of 0.0001 and a batch size of 1. In the 

first 1000 epoch, the network was trained with the initial 

learning rate. In the second 1000 epoch, the network was 

trained with the a decreasing learning rate from 0.0001 to 0. 

Model weights updated after each batch. The training 

process was monitored using a validation set, consisting of 

50 real and 50 simulated scans. 

 

As shown in Figure 2, during training, the images are 

random cropped to patches of 128×128×64 and go through 

the generation network to produce the corresponging 

synthetic images. The generated patches then feed into the 

adverse generation network to produce the cycle images. 

The original patches are also feeded into different 
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generators to generate identity images. Discriminator loss, 

which considers the BCE loss of identifying real image 

only, is used to update the discriminator. Generator loss, 

which considers the similarity of synthesized image to the 

corresding modality image measured by discrimotor loss, 

the similarity of original images to their cycle-images, and 

original images to their identity-images, measured by MAE 

loss, is used to update the generators. 

 

For testing, a new CBCT image would be cropped into 

pathes of 3D size 128× 128 × 64 with an overlab of 

16×16×16 between every two neighboring patches after 

image normalization. Generator A will generate sCT 

patches based on the input CBCT patches, and all the sCT 

patches will be combined together to the size of the orginal 

CBCT image. Finally, the image denormalization step will 

be performed to map the sCT image intensity to HU. 

 

The model was trained and tested on an NVIDIA GeForce 

RTX™ 3090 Ti GPU with 24 GB memory. The batch size 

was 4. The algorithm was implemented by Python 3.9 and 

Pytorch 1.13. The training process took around 48 h and the 

generation of one sCT took about 5 sec. 

 

3 Results 

 

The effectiveness of the CycleGAN for correction of the 

motion artifact and HU value was evaluated quantitatively 

and qualitatively. The qualitative evaulation included visual 

inspection of the generated images, and comparison of the 

CT, CBCT and sCT images. We selected some regions with 

different tissue/materials from CT, CBCT and sCT images 

to show the image quality improvement in HU accuracy and 

image uniformity for quantitative evaulation.  

 

3.1 Qualitative evaluation 

We generated the sCT for all the 10 testing patients based 

on their CBCT using the generator A in our CycleGAN 

model. The results of the qualitative evaluation showed that 

the CycleGAN was able to effectively remove the motion 

artifact and preserve the structural details of the abdominal 

images (Figure 3). Visual inspection of the generated 

images showed that the CycleGAN was able to correct the 

blurring and distortion caused by the gas bubble motion 

artifact, and produce images with similar visual quality to 

the real images.  

 

3.2 Quantitative Evaluation 

On each image, we identified three 7×7×7 volumes within 

the gas bubble artifact surrounded gas/air, fat, and muscle 

volumes, respectively. We comparied the HU distritbution 

of these volumes on each of the testing patients’ CT, CBCT,  

 
Figure 3: Image examples for qualitative evaluation of the gas bubble 

motio artifact reduction and Hounsfield Unit correction for abdominal 

and pelvic onboard CBCT using cycleGAN synthetic CT (sCT). 

 

and synthetic CT for HU accuracy and image uniformity 

evaluation (Figure 4). The results of the quantitative 

evaluation showed that the generated sCTs have narrower 

ranges of HUs within volumes of a same material/tissue 

than CBCTs. And the HU ranges of fat and muscle tissues 

in sCTs are almost the same as the ranges of CTs. The 

distritbution of HU values of the sCT demostrate the 

effectiveness of CycleGAN for HU inaccrucy correction 

and reduction of gas bubble motion induced streak artifacts.  

 

4 Discussion 

 

In this study, we proposed the use of a CycleGAN for 

correction of HU value, and reduction of the motion artifact 

caused by gas bubbles in onboard abdominal/pelvical 

CBCT scans used for radiotherapy. Our results showed that 

CycleGAN was able to effectively remove the motion 

 

Figure 4: Hounsfield unit (HU) of selected gas bubble, fat, and muscle 

volumes around the gas bubble artifact region in different images. 

7×7×7 volumes within the gas bubble, fat, and muscle were selected 

on all the testing patients’ CT, CBCT, and synthetic CT (sCT) for 

comparison. 
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artifact from the images, producing scans with improved 

image quality and accurate HU compared to the original 

scans. The correction of the motion artifact was achieved in 

real-time, making the CycleGAN a suitable tool for use in 

clinical practice. 

High quality onboard imaging technique is of great 

importance for cancer radiotherapy. For abdominal and 

pelvic region, serval studies have been conducted to 

characterize the effect of gas bubble motion artifacts 

through phantom and/or clinical experiment [6, 12, 13]. 

They suggested that the artifact can result in inaccuracy 

target locating and contouring, incorrect dose calcuation, 

and suboptimal treatment outcomes. By using a CycleGAN 

to correct the artifact, we can improve the accuracy of the 

onboard image which ensure that the better possible 

treatment plan can be developed for each patient. This 

onboard CBCT-based image genration method may help to 

reduce costs associated with additional devices or repeated 

imaging, speed up the dose calcuation workflow comparing 

to the tradition registration based method, and imporve the 

quality of treatment planning, and ultimately, has the 

potential to result in improved patient outcomes. 

 

There are several limitations to our study that should be 

considered. First, as we don’t have paired registrated CBCT 

and CT data, we didn’t perform detailed quantitive 

comparision and analysis between the generated sCT and 

CT of a same patient in the current study. Phantom study or 

deformable registration of CT image to CBCT image which 

can genrate paired data for result analysis can conducted. 

Second, as the current model is not patient specific, 

although the pattern of gas bubble motion artifact in the 

image can be replaced with normal image pattern without 

gas bubble motion, the generated image might have fake 

strucuture in the previous artifact region, which is of low 

anatomic accuracy. To address this issue, a patient specfic 

model or projection image based generation model is 

necessary in our future work. Third, as the one important 

goal of this study is to improve the CBCT image quality for 

abdominal/pelvic cancer treatment planning. Dosimetric 

analysis of plan generated based on the CT, CBCT, and sCT 

needs to be done next to illustrate the effectiveness of the 

sCT based planning. Overall, even with these limitations, 

this approach is an important step towards the development 

of more advanced CBCT-based imaging methods to assist 

in abdominal and pelvic cancer patient radiotherapy.  

5 Conclusion 

 

In this study, we have trained an cycle-GAN model for 

abdominal and/or pelvic CBCT to sCT generation. The sCT 

images could effectively correct the motion artifact caused 

by gas bubble motion and provide more accurate HU. This 

approach can potentially improve the precision of IGRT, 

increase the accuracy of dose calculation, and facilitate the 

development of CBCT-based segmentation method and 

treatment planning method to assist in online adaptive 

radiotherapy.  
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Abstract Dual-energy computed tomography (DECT) utilizes 

energy-dependent information and can improve the 

differentiation between tissues of different material 

composition that may exhibit similar attenuation in single-

energy CT scans. While DECT systems are not always 

available in clinics, a single-source sequential rotation-to-

rotation kVp-switching scan is feasible on most CT systems. 

However, non-negligible misalignment between the dual-

energy images due to slow kVp switching limits the potential 

clinical application. Accurate registration between the two 

kVp images is required for further spectral analysis. The 

application of conventional registration methods is time- and 

computational power- consuming, making it challenging to 

achieve pixel-level alignment. We propose a generative 

approach as an alternative to coordinate registration methods 

to produce a perfectly aligned dual-energy set in the image 

domain. We discuss a statistical image mapping method based 

on histograms and explore the feasibility of integration with a 

deep learning strategy. The spectral transfer is implemented at 

the feature level with statistical information. Preliminary 

experiments using phantom and clinical data demonstrate that 

the proposed method can generate reliable DECT images and 

provide accurate material decomposition. 

Keywords: Rotation-to-rotation DECT, misaligned images 

mapping, deep learning 

1 Introduction 

DECT is a technique that uses two different spectral settings, 

enabling the integration of materials with different 

attenuations at varying photon energy levels. The DECT 

protocol provides several spectral image reconstruction 

sequences that optimize the visualization of suspicious 

lesions for diagnostic purposes. These sequences include 

virtual monochromatic images, material decompositions, 

virtual non-contrast images, and equivalent electron density.  

Among the various realizations of DECT, the single-source 

sequential rotation-to-rotation DECT is widely available on 

most CT systems. However, it suffers from patient motion-

induced misalignment between the two kVp acquisitions. 

Such misalignment can result in significant artifacts in 

subsequent spectral analyses. The registration between 

dual-energy image pair poses a challenging task. 

Image registration using a coordinate mapping strategy, 

encompassing effective control point searching, continuous 

deformation field generation, and image morphological [1]. 

Recent years have seen several spatial transform networks 

(STNs) designed for medical image registration [2]. For 

example, Voxel Morph, [3] a rapid deep learning-based 

framework for deformable medical image registration, 

employs a convolutional neural network to process the 

misaligned input image pair into a deformation field that 

aligns one image with the reference image. The accuracy is 

comparable to state-of-the-art conventional model-based 

methods. The registration model is adaptable to various 

imaging modalities, even handling cross-modality 

registration tasks with specific loss function designs. 

However, Voxel Morph struggles if any topological change 

of anatomy occurs. It remains challenging to interpret how 

Voxel Morph can translate image value information into 

coordinate system mapping using only convolution and 

normalization layers.  

Alternatively, generative methods leverage the preserved 

structure of the original images that enables pixel-level 

alignment. Prior research has explored generating dual 

energy imaging by exploring spectral information in single 

kV acquisition [4], which requires precise system modeling 

and tuning. Other research works focus on reconstructing 

images from limited-angle dual-energy scans to enhance 

temporal resolution [5] [6].  For rotation-to-rotation DECT, 

pure data-driven algorithms fail to utilize the entire 

information effectively and risk overfitting. 

Substantial studies have demonstrated the capability of deep 

learning technique for style and cross-modality transfer in 

both natural and medical images. For example, the Adaptive 

Instance Normalization (AdaIN) layer [7] enables real-time 

arbitrary style transfer. This highlights that image style 

transformation is as simple as data distribution modification 

based on feature-level statistics. While for medical images, 

the lack of big dataset poses sparse and noisy features with 

a broad dynamic range that may not achieve the required 

accuracy for diagnostic use.  

As the attenuation properties are determined by the imaging 

object, a deterministic relationship between CT values at 

two spectral settings can be established for a known 

material. For homogeneous objects, one can simply apply 

normalization to align the mean and standard deviation 

between the two kVp images. This normalization can 

extend to histogram matching when dealing with a single-

material object of varying concentrations.  However, global 

histogram matching is unsuitable for clinical DECT images 

transformation due to complex material compositions. To 

safely apply histogram matching for precise style transfer 
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between two kVp images, one must segment the 

reconstructed volumes into numerous small volumes 

containing only similar material, wherein local histogram 

matching can be applied. This work aims to integrate feature 

extraction, mapping, and reconstruction into one deep 

learning framework to generate pixel-wise aligned DECT 

image pairs. 

 

2 Materials and Methods 

Figure 1 provides an overview of the architecture of the 

Feature Transformation Network (FTN) and the 

training/inference workflow. The network takes the DECT 

images using filter-back projection (FBP) reconstruction as 

inputs. Here, 𝜇LE,𝑡1  denotes the low-energy image 

measured at 𝑡1 and  𝜇HE,𝑡2 denotes the high-energy image 

measured at 𝑡2. 𝜁  and 𝜁 denote the encoded and transferred 

feature maps, respectively. After the decoding process, the 

network generates pairs of high and low energy images at 

both 𝑡1  and 𝑡2  ( {�̂�HE,𝑡1 , �̂�HE,𝑡2 , �̂�LE,𝑡1 , �̂�LE,𝑡2} ). In the 

following sections, we delve into the details of network 

architecture design, the dataset used for training and testing, 

and the training and inference procedures. 

 

2.1 Network architecture 

 

The network adopts a Variational AutoEncoder (VAE) 

backbone that comprises three main modules: encoder, 

decoder, and cross-modality transfer layer.  

The encoder module includes three dense blocks with no 

normalization layer. Skip connections are intentionally 

omitted to emphasize the style transfer mapping within the 

down-sampled deep feature space. To address the depth 

limitation resulting from the absence of skip connections, 

we increase the number of channels to enhance the capacity 

of the encoder layers.  

The style transfer module processes the output of the 

encoder layers and swaps the feature maps between the two 

kVp images. In this work, we select the histogram matching 

module (Figure 2) to find a precise pixel value on an aligned 

pixel grid. In preliminary investigation, we have observed 

that histogram matching outperforms the conventional 

AdaIN layer, particularly when the two kVp images share 

similar structural details.  

The decoder module, on the other hand, reconstructs the  

aligned images at full resolution using either the original or 

transferred features as inputs. 

Figure 2. Example of histogram matching 

Figure 1. The architecture of the proposed Feature Transfer Network (FTN) and training/inference workflows.  
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2.2 Dataset 

The raw datasets obtained through DECT systems (United 

Imaging, Shanghai, China) were encrypted and granted 

authorization for research use. A conventional registration 

algorithm was applied to obtain aligned dual-energy image 

pairs to generate the corresponding ground truths. 

For data augmentation, additional unregistered pairs were 

generated by applying random deformation fields to one of 

the registered images based on prior knowledge of human 

organ deformation. 

 

2.3 Training procedure 

We adopted a supervised learning approach to fine-tune the 

network parameters. Throughout the training phase, four 

different features were produced: two originated directly 

from the encoder, and two were transferred using the 

transfer module. The training loss features a weighted sum 

of value accuracy loss (mean absolute error) and the 

structure loss (structure similarity index measure) between 

the registered images and the corresponding ground truth. 

𝐿𝑜𝑠𝑠 = ∑(𝛼𝑛FedelityLoss(�̂�𝑛, 𝜇𝑛) + 𝛽𝑛StructLoss(�̂�𝑛, 𝜇𝑛))

4

𝑛=1

 

 

2.4 Testing procedure 

Low-energy images typically exhibit a wider dynamic range 

and higher noise level compared to high-energy images. 

Transferring from a wider dynamic range to a narrower one 

is more feasible through histogram matching. Therefore, 

during the inference process, we estimate registered low-

energy images with the same distribution as the high-energy 

images. We evaluated our method using both GAMMEX 

DECT phantom data and clinical data sampling a range of 

different anatomical sites. Notably, none of the testing data 

were used during the training phase. To better visualize the 

registration results, we applied a standard image-domain 

material decomposition method to compute the 

water/iodine concentration maps 𝜌water and 𝜌iodine: 

[
𝜌water

𝜌iodine
] = [

𝜇LE,water
𝑚 𝜇LE,iodine

𝑚

𝜇HE,water
𝑚 𝜇HE,iodine

𝑚 ]

−1

[
𝜇LE
𝜇HE

], 

where  {𝜇LE,water
𝑚 , 𝜇LE,iodine

𝑚 , 𝜇HE,water
𝑚 , 𝜇HE,iodine

𝑚 }  are 

the effective mass attenuation coefficients of water and 

iodine at low kVp and high kVp respectively.  

 

3 Results 

Figure 3 summarizes the GAMMEX DECT phantom 

experiment where we compare the water/iodine material 

decomposition results using the FBP images or the FTN 

results. The quantitative results are summarized in Table 1. 

The proposed method can correct the structural 

misalignment, maintain the CT value accuracy, and reduce 

the noise.  

In Figure 4, we show the clinical data results across 

different anatomical sites, including abdomen, thorax, and 

lower extremity. We compare the water/iodine material 

decomposition results using the original misaligned FBP 

images or the registered images using a conventional 

registration method or the proposed network. We observe 

improved material decomposition estimations at the edges 

and noise reduction in the FTN results. 

4 Conclusions and Discussion 

The proposed FTN is the first time to introduce the feature-

level mapping strategy into registration tasks instead of 

coordinate system mapping. The trained network proves the 

capability of resolving the misalignment due to the low 

temporal resolution of rotation-to-rotation dual-energy 

scanning protocol, while the CT value accuracy and spectral 

image quality satisfy the clinical diagnostic requirement. As 

ROI 

Index 

Ground Truth FBP FTN 

Water Iodine Water Iodine Water Iodine 

1 1000 0 997.88±56.24 1.81±21.95 1001.05±22.00 0.82±2.52 

2 1000 20 999.70±62.56 21.7±23.33 1003.54±26.15 20.45±1.84 

3 1000 50 1004.33±58.84 53.24±22.66 1011.62±20.19 51.03±3.59 

4 1000 100 1014.50±63.12 99.80±26.80 1021.76±14.85 97.66±7.33 

5 1000 150 1019.94±52.72 149.82±21.27 1023.89±18.32 148.59±4.84 

FBP FTN 

W
at

er
 

Io
d

in
e 

Figure 3. Quantitative comparison of water-iodine 

decomposition GAMMEX DECT phantom of original 

scan (left) and proposed method (Right). WL/WW is 

1000/300 for water map (top) and 50/150 for iodine map 

(bottom). 

 

Table 1. Quantitative material decomposition results of different ROIs (mean ± standard deviation) in mg/ml. 
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the noises of dual-energy images are correlated after feature 

mapping, the dose of scanning may be reduced as well.  

The deep feature transformation module was designed 

based on partial histogram matching. One may interpret 

how the CT values are transformed between the DECT 

images by examine the feature maps and corresponding 

histogram matching functions.  

In this work, a coarse registration between the DECT 

images was applied if the mismatch is too severe. The upper 

limit of the resolvable displacement will be further tested to 

evaluate the robustness of the network. While we used a 

supervised learning strategy, the proposed FTN can be 

trained using unsupervised learning with a loss function 

evaluating the structure similarity between the estimated 

image with the corresponding image acquired at a different 

kVp.   

The network is designed to align single-source sequential 

dual-energy images, where we use the same encoder and 

decoder for each image. This can reduce the number of 

parameters and enhance the generalizability. A more 

general implementation may adopt different encoders and 

decoders for other cross-modality registration tasks, 

including PET-CT, PET-MR, etc. This will be explored in 

future work. This will be investigated in future work.   
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Figure 4. The testing results on different body parts. For each 

testing case, the above results show the water (top row) and 

iodine (bottom row) decomposition results. The left column is 

the result of original scanned dual energy images, the middle 

column is after non-rigid registration, the right column shows 

the results of the proposed method.  
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Abstract Score-based generative model demonstrates strong perfor-
mance in solving under-determined inverse problems. However, in the
field of medical imaging, it is difficult to obtain high-quality datasets
for model training. The experiment demonstrates that if the training
samples are perturbed with noise, the data distribution gradient of the
SGM is corrupted. It makes the reverse process of recovering images
be unstable, resulting in further compromising the reconstruction per-
formance. To address this challenge, we proposed a general unsuper-
vised technique by incorporating the compressed sensing knowledge
into the SGM for stable training. The results demonstrates our pro-
posed method can not only reconstruct the high-quality images without
clean data training, but also greatly improve the sampling stability.

1 Introduction

Score-matching-based generative models (SGMs) have gen-
erated tremendous impacts on various domains from super-
resolution [1], adversarial interference [2], to medical image
reconstruction [3]. Especially in tomographic reconstruction,
SGMs have attracted great attentions. Typical SGMs work
consists of the two stages, forward noising and inverse de-
noising. The forward diffusion process reveals a gradient
distribution from training data. With the learned gradient
distribution, the reverse recovery process reconstructs high-
quality images through Langevin dynamics. Although the
SGM can restore high-quality images, it strongly depends on
clean and diverse training samples. Unfortunately, it is diffi-
cult to obtain such high-quality training data in practice. As a
result, the score-matching/diffusion model could be unstable
and fail to real applications.
To address this challenge, here we propose a wavelet-based
stabilization technique and incorporate sparsity into the SGM
for stable training. Specifically, raw training data are sep-
arated into high and low frequency components and sepa-
rately purified by deep neural networks. In the reconstruction
process, the wavelet-based total variation regularization is
integrated into the reconstruction model for enhanced ro-
bustness and image quality. We verified on CT and MRI
experiments that the results from our method in presence of
noise perturbation are similar to the counterparts from clean
data.
In this paper, we propose a wavelet-based technique to stabi-
lize the SGM. First, we construct a noise suppression module
using a trainable wavelet transform. The perturbed image is
divided into high-frequency and low-frequency parts to filter
out noise and artifacts. Second, the wavelet total variation
regularization is integrated into the reconstruction model to
improve the sampling stability. When the score function is
subject to erroneous data, recovered images could look blurry

and unrealistic. Meanwhile, the Langevin sampling dynam-
ics are not convergent either in low-density regions, leading
to fine details missing. It is well known that the wavelet
total variation regularization preserves edges and details by
imposing appropriate constraints. To optimize the quality
of reconstructed images, we further introduce data consis-
tency to optimize the solution. The proposed framework is
verified with the DSM (Denosing Score Matching) and SDE
(Stochastic Differential Equations) (two typical score-based
generative models) in CT and MRI reconstruction tasks.

2 Materials and Methods

2.1 Denoising Score Matching

The target of one typical medical imaging problem is to
sample high-quality images from the posterior distribution
p(x|y), where x and y represent training and testing samples.
The prior distribution p(y|x) of the data is usually unknown,
but one can train SGMs on the clean datasets to estimate
the prior distribution [3]. The denoising score matching
algorithm estimates the score function from data and generate
new samples with Langevin dynamics [4].
The denoising score matching algorithm can be able to ap-
proximate the gradient distribution by training the score func-
tion ∇x log p(x) [5]. To obtain the approximate probability
of p(x), multi-level Gaussian noise is injected into the clean
data for training the network [6].

2.2 Perspective of Stochastic Differential Equations

Score-based models can be further appreciated in the per-
spective of Stochastic Differential Equations (SDEs) [3]. To
diffuse an original image into a prior noise distribution, we
start with a continuous diffusion process {x(t)}T

t=0, where
x(t) ∈ Rn and t ∈ [0,T ]. Let Pdata and PT be the data distribu-
tion and prior distribution, then x(0)∼ Pdata and x(T )∼ PT .
The forward process is

dx = f (x, t)dt +g(t)dw (1)

where w stands for a standard N-dimensional Brownian mo-
tion, f : Rn 7→ Rn and g : R 7→ R correspond to the drift and
diffusion coefficients of the diffusion process respectively.
Various f and g give different SDE functions. Typical SDEs
include Variance Exploding (VE), Variance Preserving (VP),
and subVP [7], where the VE-SDE is a common strategy
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used for medical imaging [7] [8] [9]. f and g in VE-SDE are
formulated as

f = 0,g =

√
d [σ2(t)]

dt
, (2)

where σ(t)> 0 is a monotonically increasing function [10].
The sampling process can be treated as the inverse solution
of Eq. (1), which starts with samples from x(T )∼ pT . The
reversing procedure is expressed as

dx =
[

f (x, t)−g(t)2
∇x log pt(x)

]
dt +g(t)dw̄

=
d[σ2(t)]

dt ∇x log pt(x)+
√

d[σ2(t)]
dt dw̄

(3)

where w̄ denotes another standard Wiener process in the
reverse-time direction [11], and ∇x log pt(x) is referred to as
the score of the distribution at time t.

2.3 Wavelet Theory based Scored Generative Models

We introduce a trained module consisting of multiple CNN
blocks, as well as convolution and pooling layers. Ex-
tracting multi-scale features for noise suppression, the up-
sampling and down-sampling operations are replaced with
the wavelet transform. Specifically, a compromised im-
age is divided into multiple sub-bands of different fre-
quencies, HHl, HLl, LLl,and LHl . For example, one
single-level wavelet transform has four sub-band filters,
fHH , fHL, fLL, and fLH , and the compromised image is
down-sampled through the convolution layer xi = ( fi ⊗ (Ax+
σ1)) ↓ 2. After DWT, CNN blocks are used to learn depen-
dencies between the sub-bands [12]. Each layer consists
of 3*3 filters Conv, BN and Relu activation functions. We
choose the Haar wavelet method for three-level wavelet de-
composition and the number of network convolution layers is
set to 24. It is known that the global information of the image
is concentrated in the low frequency region, while the edge
information and noise are concentrated in the high frequency
region. Our target is to remove noise in the high frequency
region without significantly damaging high-frequency infor-
mation. According to wavelet theory, the sub-band image
can be reconstructed using the inverse wavelet transform
(IWT), and edge information is thus recoverable. The noise
suppression process is defined as

W (Ax+δ ) = Ax+ ε (4)

where ε << δ represents a much-reduced noise level. Then,
the forward training process is introduced in the noise-
cleaned domain so that the score estimation can be greatly
facilitated; i.e., Sθ (x,σi + ε)≈ ∇x log pσi+ε(x). this prepro-
cessing step greatly improves the robustness of the SGM. In
the reverse process, the Langevin dynamics sampling can be
difficult to converge in unknown or sparsely sampled data
zones. Hence, we propose the wavelet total variation regular-
ization to stabilize Langevin dynamics sampling. At the same

time, we further add data consistency to ensure the accuracy
of the image reconstruction, and adjust the regularization
parameters with the J-invariant calibrator. The minimization
problem is defined as

x(k+1) = argmin
x

[∥y−Ax∥2 +λ1Φ2(Φ1(x))], (5)

where λ1 is a factor to balance data consistency, Φ1 and
Φ2 represent the score-matching generative model and the
compressed sensing constrain respectively.
Let us introduce a variable u to convert Eq. (5) into a con-
strained minimization problem

(x(k+1),u(k+1)) = argmin
x,u

[∥y−Ax∥2 +λ1Φ2(u)]

s.t.,u = Φ1(x),
(6)

Eq. (6) can be further expressed as an unconstrained opti-
mization problem

(x(k+1),u(k+1)) =

argmin
x,u

[∥y−Ax∥2 +λ1Φ2(u)+ λ2
2 ∥Φ1(x)−u∥2] (7)

Let v represents a Langevin dynamic sampling based recon-
structed image Φ1(x), Eq. (15) can be then converted into a
constrained linear optimization problem:

(x(k+1),u(k+1),v(k+1)) =

argmin
x,u,v

[∥y−Ax∥2 +λ1Φ2(u)+ λ2
2 ∥v−u∥2]

s.t.,v = Φ1(x)

(8)

where λ2 > 0 is a weighting factor. The above optimization
problem is further converted into the following:

(x(k+1),u(k+1),v(k+1)) = argmin
x,u,v

[∥y−Ax∥2

+λ1Φ2(u)+ λ2
2 ∥v−u∥2 + λ3

2 ∥v−Φ1(x)∥2]
(9)

where λ3 > 0 is a coupling factor. Eq. (17) can be op-
timized using an alternative iterative strategy as the three
sub-problems:

x(k+1) = argmin
x

[∥Ax− y∥2 + λ3
2

∥∥Φ1(x)− v(k)
∥∥2
] (10)

v(k+1) = argmin
v

[λ2
2

∥∥v−u(k)
∥∥2

+ λ3
2

∥∥v−Φ1(x(k+1))
∥∥2
]

(11)
u(k+1) = argmin

u
[λ1Φ2(u)+ λ2

2

∥∥u− v(k+1)
∥∥2
] (12)

3 Results

3.1 Experimental data

In the tomographic reconstruction, the clinical data of human
abdominal CT scan are provided by the AAPM challenge. In
tomographic experiments, the low-dose datesets of 9 patients
are used for training, and 1 patient is used for evaluation. The
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Figure 1: Low-dose CT reconstruction results from simulated Poisson distributed noise (bi = 5e3). From left to right are ground truth,
FBP, DIP, RED-CNN (supervised method), DSM, our method (SGM inbuilt).

Figure 2: 60-views reconstruction results from AAPM low-dose CT (bi = 5e4) datasets. From left to right are ground truth, ADMM,
FISTA, DSM, FBPConvNet (supervised method), our method (SGM inbuilt).

5480 images with 512*512 pixels and the 1mm thickness are
used to train the SGM. Poisson noise are added to simulate
low-dose CT, having bi = 5 ∗ 103 Poisson disturbance for
training sample and bi = 5∗103 for testing sample. We add
bi = 5∗104 Poisson noise to generating training sample for
60-views sparse data. Two-dimensional fan-beam geometry
is employed. The tomographic datasets are collected from
720 angles and the used detector consists of 1000 pixels with
1mm. The distances starting from x-ray source to patients
and detector are setting as 500mm and 1000mm.
In the MRI under-sampled reconstruction experiments, the
fastMRI knee joint dataset is used. We train the network
on real-valued part of the single-coil image with the size of
320*320 pixels. We remove the first 5 and the last 5 slices of
each case. The training samples are generated by masking
Gaussian 1D, 4x acceleration and center fraction 0.08. The
test samples are under the Gaussian 1D masks.

3.2 Experiment results

In the CT denoiseing experiment, we simulated low-dose
data with Poisson noise (bi = 5e3) as shown in Fig. 1. Our
proposed frame results is almost as great as that obtained by
RED-CNN. Although there are some errors compared with
the SGM in terms of detail recovery, the image quality shows

the framework still achieve great reconstruction without clean
image. In particular, the boundary and details of organs of
our proposed frame demonstrate it has great reconstruction
performance.
In the sparse-view experiment, we sampled 60 angles at equal
intervals and the test samples results are shown in Fig. 2.
Our method not only restores image details better than the
traditional iterative method (ADMM and FISTA), but also
has higher structural fidelity. Indicator performance shows
that the proposed frame outperforms the baseline iterative
method, and the image artifacts are almost invisible.
In the MR reconstruction, we follow the method [13] to
simulate under-sampled MRI, as shown in Fig. 3. Limited
by the simple network structure, the reconstruction effect of
the supervised method CascadeNet and UPDNet are slightly
lower than that of SDE. Our method has certain advantages in
the suppression of motion artifacts. In terms of performance
indicators, our method results is close to those obtained by
the Score SDE.

4 Discussion

In this work, we propose a wavelet-based technique to stabi-
lize SGMs, and our approach has yielded encouraging results
in computed tomography (CT) and magnetic resonance imag-
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Figure 3: 4x acceleration reconstruction results with Gaussian 1D mask. From left to right represent ground truth, input, L1Wavelet,
score SDE, CascadeNet (supervised method), UPDNet, our method (SDE inbuilt).

ing (MRI) reconstruction tasks. It is worth noting that our
approach addresses the inverse problem of no clean labels
in medical imaging in an unsupervised mode, which is of
clinical significance. We present a series of classical medical
image processing experiments – CT denoising, sparse view
CT reconstruction and under-sampled MRI reconstruction,
and show that our method can achieve great results without
relying on clean images. Theoretical derivation also proves
that our method can effectively manage the error of data gra-
dient in training and is beneficial to data reconstruction in
the sampling process.
Although our method produced exciting reconstruction re-
sults, the results were still not as great as the results of train-
ing in clean labels. Specifically, first, SGMs are the main
carrier of the algorithm, and the proposed method has inher-
ent randomness. This method can not completely eliminate
the noise interference of training samples, preserved artifacts
and detail fuzzy results. We note that our approach inherits
the limitations of the generated model. Unable to generate
fine texture structure, image edge information distortion. Sec-
ond, we train SGMs without using clean labels, and the data
distribution learned by the scoring function is inaccurate.

5 Conclusion

In conclusion, we propose a novel approach to the unsuper-
vised training the SGM. The implementation results show
that our method can improve the robustness of the model and
further optimize the sampling process. Our method opens up
a new way to solve the imaging inverse problem and has a
certain reference value for engineering applications.
In the future, we will actively address the limitations of the
SGM. We will further reduce the error of data gradient in
training, and optimize the sampling process to accelerate
the convergence of Langevin dynamics. In the follow-up
work, we hope that the reconstruction results can reduce the
distortion of the edge structure and restore a finer texture.
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Abstract Dual energy computed tomography (DECT) can provide both 

structural and material information of the scanned object, and has been 

widely used in the medical field. However, patients may suffer from 

genetic damage and cancer under long-term high radiation dose of x-ray 

exposure. To reduce radiation dose and ensure optimal hardware cost. 

This work studies the switching technology based on the x-ray tube 

voltage (kVp). However, the kVp switching technology faces the 

problems of low sampling rate of each energy spectrum and the spatial 

misalignment of projection data of different energy spectrum. Thus, this 

study introduces an adversarial learning mechanism and proposes a Prior 

Information enhanced Projection data Inpainting Network (PINet). The 

experimental results show that the PINet framework is a promising 

approach for sparse-view angle DECT imaging. 

1 Introduction 

Different from traditional computed tomography (CT), dual 

energy computed tomography (DECT) can simultaneously 

provide the structural information and material information 

of the scanned object by obtaining the attenuation 

measurement of two different x-ray energy spectrum [1]. At 

present, DECT has been widely used in clinical diagnosis, 

such as virtual monoenergetic imaging [2],perfused blood 

volume imaging [3], and aortic disease diagnosis [4]. 

Increasing the radiation dose of x-ray is known to improve 

the quality of medical images. However, patients are likely 

to suffer from genetic damage and cancer under long-term 

high radiation dose of x-ray exposure. Therefore, lowering 

the radiation dose is also the focus of the medical imaging 

community. In order to reduce radiation dose and ensure 

optimal hardware cost. This paper study the switching 

technology based on x-ray tube voltage (kVp) as shown in 

Fig. 1. This technology only requires traditional energy 

integration detector and ray source, and the dose is about 

half of that of traditional DECT.  

However, technology based on kVp switching not only 

faces the problem of low sampling rate of each energy 

spectrum, but also a common problem is that the projection 

of different energy spectrum is not aligned in space. 

Recently, deep learning has shown great potential in the 

field of medical image processing. Lee et al. proposed an 

interpolation method based on convolutional neural 

networks (CNN) to inpainting missing projection [5]. In 

2022, Cao et al. developed a CNN framework for sparse-

view projection completion and material decomposition [6]. 

Generative Adversarial Networks (GAN) also have great 

potential in the application of DECT. Kawahara et al. 

proposed an image synthesis framework based on GAN to 

material decomposition images of bone and fat scanned by 

DECT [7]. In 2022, Wang et al. designed a dual-way 

mapping GAN to mine the relationship between two 

different energy projection data, aiming at recovering the 

missing data[8]. 

 
Figure 1: An illustration of the kVp switching technology. 

 

There is a certain correlation between low-energy and high-

energy projection data of the same object for DECT. When 

DECT imaging is faced with a serious shortage of 

projection data, researchers usually use the correlation 

between energy spectrum data to achieve DECT imaging 

[9]. Therefore, this study fuses dual energy projection data 

as prior information, and proposes a Prior Information 

enhanced Projection data Inpainting Network (PINet) for 

sparse-view angle DECT. In the PINet framework, this 

work introduces an adversarial learning mechanism to 

generate results close to the real projection data. In order to 

make full use of the prior information and original 

information, the prior information and sparse-view dual 

energy projection data are sent to two separate encoders to 

extract and fuse useful features. Then, the two decoders 

perform differential learning on the projection data in 

different energy channels. 

 

2 Methods 

The PINet framework is shown in Fig. 2. First, the kVp 

switching technology is used to obtain two sparse-view 

projection data with different energy spectrum. Then, the 

generator G  takes prior information and sparse-view 

projection data as input, extracts and uses various features 

to generate low-energy and high-energy full angle (360°) 

projection data. The prior information is the data after 

fusing the sparse-view projection data of two kinds of 

energy. Due to the different scanning angles of different 

energies, the data of prior information is twice as large as 

that of single energy sparse-view data. At the same time, the 
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discriminator D  encourages the generator G  to generate 

realistic results as much as possible. Once the PINet training 

is completed, the trained generator G  can be used to 

generate the completed projection data. 
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where   is the weight parameter. 
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 is the label 

projection data of full angle. In the objective function, the 

mean absolute error (MAE) between the generated 

projection data and the label projection data is introduced to 

generate more realistic projection data. During network 

training, G  tries to minimize the objective function, while 

D  tries to maximize the objective function, i.e.,  

 
* *

PINet, arg min max
G D

G D       (3) 

 
Figure 2: Schematic of the PINet framework. 

 

The PINet consists of a generator G  and a discriminator D . 

The generator G  is improved from the classic U-Net [10] 

as shown in Fig.3. To make full use of prior information and 

match two energy channels, the structure of G  is extended 

to a dual input and dual output network structure. The 

network structure consists of three parts: encoding module, 

fusion module and decoding module. The encoding module 

contains two encoding channels, which process prior 

information and sparse-view projection data respectively. 

The sparse-view projection data channel is used as the main 

channel, and the initial number of channels is set to 32. The 

prior information channel is used as an auxiliary component, 

and the initial channel number is set to 8. Then, the fusion 

module aims to achieve the fusion of the features extracted 

from the two encoding channels. Considering that the 

difference between different energy projection data is the 

key to material identification, the decoding module uses two 

decoding channels to process the fused feature information 

to generate DECT data. During decoding, the shallow 

extracted features of the encoding module will be copied 

and connected to the low-energy and high-energy decoding 

channels. 

The structure of the discriminator D  is a CNN, and its input 

is paired sparse-view angle projection data and full angle 

projection data (generated or label). The discriminator D  

has five layers. The first layers contain convolution,  batch 

norm (BN) and Rectified Linear Unit (ReLU) operations. 

The size of the convolution kernel is 3×3, the stride is 2, and 

the number of channels is 32. The second and third layers 

contain 3×3 convolution with stride 2, 3×3 convolution with 

stride 1, BN and ReLU operations, and the number of 

channels is 64 and 128 respectively. The last layer includes 

global average pooling, full connection and sigmoid 

operations The output of the discriminator D  is true or 

false to match the projection data pair, which is equivalent 

to 0-1 classification. 

 

3 Experimental Results 

The experimental dataset was established from real clinical 

dataset, and the DECT images were obtained using the 

SOMATOM Definition Flash DECT scanner (Siemens 

Healthcare, Germany). 80 kVp and 140 kVp spectra are 

used for low-energy and high-energy scanning, respectively. 

The dataset includes 1491 cranial cavity images of 6 

patients. The size of the image is 512 × 512. The projection 

dataset used to train PINet is generated using 1000 images 

of 5 patients, while 100 images of another patient are used 

as the test dataset of the network. 

In this paper, Sidden’s ray tracing algorithm [11] is used to 

simulate the geometry of the fan beam. The distances from 

the x-ray source to the object and the detector are set to 1000 

mm and 1500 mm respectively. Both low-energy and high-

energy projections collect 360 frames of projection data 

within the 360 degree scanning range. The projection data 
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Figure 3: Network structure for the generator G . 

of each frame is collected by a linear detector, which 

consists of 512 bins. The size of the generated full angle 

projection data is 360 × 512, and then two 76 × 512 size all 

zero matrices are added to the generated data. Finally, the 

size of full angle projection data is 512 × 512 obtained as 

the label of PINet training. In this work, low-energy and 

high-energy sparse-view projection data are obtained by 

kVp switching in every 3° rotation range. The size of each 

energy projection data is 60 × 512. The size of prior 

projection data is 120 × 512. Then, using operations similar 

to label data generation, the size of sparse projection data 

and prior projection data are 512 × 512 input into PINet. 

Peak Signal to Noise Ratio (PSNR), Root Mean Square 

Error (RMSE) and Structure Similarity Index (SSIM) are 

used to evaluate the reconstructed images. In order to 

evaluate the performance of the proposed method, it is 

compared with SC-CNN [6]. 

Fig. 4 shows the results of projection data inpainting and 

images reconstruction by the PINet method and comparison 

method under sparse-view angle scanning. Then, we use the 

full angle projection data generated by the network to 

reconstruct the CT image. It can be observed that the image 

reconstructed by SC-CNN still has obvious artifacts, and 

the proposed method can effectively reduce the serious 

artifacts caused by the missing projection data. Furthermore, 

this study also compares PSNR, RMSE and SSIM of 

different methods as shown in Tabel 1. Compared with SC-

CNN method, the PSNR of high-energy and low-energy 

images obtained by the proposed method is improved by 

1.5413 dB and 1.2953 dB, and SSIM of proposed methods 

also has significant advantages. The RMSE of SC-CNN is 

higher than 0.0183, while the RMSE of proposed methods 

is lower than 0.0173. Numerical results show that the 

proposed method has some advantages in noise suppression 

and structure preservation. 

 
Figure 4: Results of inpainting projection data and reconstructed 

images from sparse-view angle scanning. (a) and (d) represent 

label projection data and reconstructed images. (b) and (e) 

represent projection data generated by PINet and reconstructed 

images. (c) and (f) represent projection data generated by SC-

CNN and reconstructed images. (1) and (2) represent high-energy 

and low-energy, (3) and (4) represent corresponding error maps. 

Display windows of projection data, reconstructed images, error 

maps of projection data and error maps of reconstructed images 

are [0, 2.5], [0, 0.04], [-0.1, 0.1] and [-0.02, 0.02], respectively. 
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avg. 

PSNR 

avg. 

RMSE 

avg. 

SSIM 

PINet(H) 36.2473 0.0154 0.9030 

PINet(L) 35.2881 0.0172 0.8890 

SC-CNN(H) 34.7060 0.0184 0.8629 

SC-CNN(L) 33.9928 0.0200 0.8535 

Tabel 1: Quantitative results (PSNR: Peak Signal to Noise Ratio; 
RMSE: Root Mean Square Error; SSIM: Structure Similarity 

Index). Averaged over 100 test samples. 

 

In order to verify the performance of the proposed method, 

the reconstructed images of PINet and SC-CNN are further 

decomposed to obtain the decomposition results of tissues 

and bone materials, as shown in Fig. 5. It can be seen that 

the basis material decomposed by PINet from the 

reconstructed image is closer to the ground truth, and the 

decomposition accuracy is higher. 

 
Figure 5: Decomposition results of different methods. (a), (b), (c) 

and (d) represent ground truth, raw sparse data, PINet and SC-

CNN decomposition results, respectively. (1) and (2) represent 

tissue and bone materials. All display windows are [0, 1]. 

 

4 Discussion and Conclusion 

DECT has great potential in medical field. To reduce the 

radiation dose and ensure the best hardware cost, this paper 

studies the kVp switching technology. In addition, aiming 

at the problem of missing projection data faced by this 

technology, this study uses the correlation between the 

projection data to fuse the sparse-view projection data under 

two different energies, and introduces the adversarial 

learning mechanism to propose a PINet framework with 

prior information. In the clinical data experiment, the 

feasibility of the proposed method is demonstrated. In the 

future work, we will extend this work to the application of 

spectral CT, and design corresponding image post-

processing module and material decomposition module 

based on deep learning to achieve high-resolution spectral 

CT imaging. 
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Abstract In cone-beam computed tomography (CBCT), metal implants 

produce severe artifacts during imaging, causing serious damage to the 

clinical structure and information of the teeth, reducing imaging quality, 

and ultimately affecting subsequent clinical treatment. However, 

currently, although there are many metal artifact reduction (MAR) 

methods, they still lack in preserving tooth structure. The proposed MAR 

method combines CBCT data and intra-oral scan data to better guide the 

segmentation of metal areas and comprehensively use projection domain 

and image domain data to remove metal artifacts. The experiment results 

are presented to demonstrate the feasibility of the proposed approach. We 

propose a novel MAR method that uses intraoral scan data for the first 

time in the analysis and processing of projection domain data, thus 

accurately reconstructing 3D dental images.  

1 Introduction 

 

Cone beam computed tomography (CBCT) has advantages 

of lower radiation dose, higher spatial resolution and 3D 

visualization images, which provide reliable imaging data 

for oral physicians[1, 2]. However, with the widespread use 

of restorative and implant materials, some oral metal 

materials may produce metal artifacts on CBCT images, 

which may affect preoperative assessment and disease 

diagnosis by oral physicians. Metal artifact reduction (MAR) 

is a challenging task as the creation of metal-induced streaks 

and shadowing is complexly linked to the interactions 

among metal, bones and tissue, with several factors such as 

beam hardening, scatter, non-linear partial volume effects, 

photon starvation and highly non-uniform attenuation[3, 4]. 

In order to reduce the impact of metal artifacts on image 

quality, scholars have been researching and exploring 

methods to reduce metal artifacts from various aspects, 

including metal artifact correction using iterative 

algorithms[5-7], inpainting-based correction in the 

projection domain[8, 9], and deep learning methods[10-13]. 

The above methods only used sinogram data containing 

metal implants, and the data itself has been severely 

damaged. Improving the damaged data details is a difficult 

task, therefore, the performance of the above methods in 

restoring tooth shape and structure is still unsatisfactory and 

has limitations in clinical application. Recently, a new 

method for MAR has been proposed which is based on deep 

learning networks[14]. In the image domain, image-

enhancing network and 𝛼 -shape-based weighted 

thresholding operation are used in the method to combine 

radiation-free intra-oral scan data with reconstruction 

 
1 Supported partially by the grants from Beijing Natural Science Foundation (L222001) and Tsinghua University Initiative Scientific Research 

Program of Precision Medicine 

images to extract tooth shape and provide high-quality 

shape information to compensate for missing or severely 

uncertain tooth structures, and display the parts of the tooth. 

Due to the addition of extra information, this method can 

better correct for metal artifacts. 

In this study, we propose another method for metal artifact 

correction that also combines intra-oral scan data with 

reconstruction images, but differs from the above method in 

that we register the intra-oral scan data with the 

reconstructed image containing artifacts, and find the 

location of the metal parts in the projection data through 

information such as shape and threshold. This location's 

projection data is interpolated and replaced, and the 

reconstruction is done by combining the data of the original 

projection and the interpolated projection, and synthesizing 

the reconstruction images. We conduct clinical experiment 

to study the potential impact of the proposed method on 

MAR. The results of the experiment demonstrate the 

feasibility of the proposed method and show the benefits of 

using intra-oral scan data in the projection domain. 

2 Materials and Methods 

 

In dental CBCT, the measured sinogram data 𝑦  can be 

expressed as 

𝑦 = 𝑇 (− ln ∫ 𝜂(𝐸) exp(𝐴𝑥) 𝑑𝐸
 

𝐸

+ 𝑏) 

Here, 𝑥  is the attenuation coefficient distribution of a 

patient’s bone-teeth-jaw to be scanned at energy 𝐸, which 

is also the result we are looking for, 𝜂  is the energy 

distribution of the radiation source, 𝐴 is the system matrix, 

𝑏 is the noise, and 𝑇( ) is a function of truncation caused by 

the size and geometric position of the detector. 

The goal of the proposed method is to accurately locate 

metal positions by introducing additional intraoral scan 

information, and to repair metal-affected projection data in 

the projection domain, ultimately reconstructing a high-

quality 3D bone-teeth-jaw model without metal artifacts. 

The proposed method is based on the registration of the 

intra-oral scan data and the metal-affected reconstruction 

image, projection domain metal positioning, projection data 

processing and reconstruction images synthesis, as shown 

in Fig.1. 
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Fig.1 The proposed method 

 

In the registration stage, we plan to use the neural network 

method to register the intra-oral scan data which is a point 

cloud image with the metal-affected CBCT reconstruction 

image. The so-called registration is a map of geometric 

position as 𝑓𝑟𝑒𝑔: 𝑥𝑠𝑐𝑎𝑛 → 𝑓(𝑥𝑠𝑐𝑎𝑛) ≈ 𝑥𝐶𝐵𝐶𝑇. Here, 𝑥𝑠𝑐𝑎𝑛 is 

the coordinates of a point in the intra-oral scan data, 𝑥𝐶𝐵𝐶𝑇 

is the coordinates of a voxel in the reconstruction grid. At 

present, there have been studies on multimodal registration 

of CBCT[15]. However, due to the lack of clinical data, in 

fact only 1, we have obtained, the current research uses the 

manual registration method, i.e. manually find several 

registration points to calculate the map 𝑓𝑟𝑒𝑔. 

In the projection domain metal positioning stage, we first 

find the accurate position of the metal implant in the image 

domain, then project the position of the metal implant to the 

projection domain, thus finding the data position of the 

metal implant in the projection domain. We can first depict 

the contour of the tooth with the metal implant using the 

registered point cloud data. However, sometimes the 

implant is inside the tooth, such as root canal therapy. In 

this case, the tooth contour data obtained from the intra-oral 

scan cannot give us an accurate position of the implant. We 

had originally planned to use neural network methods to 

find the specific location of metal artifacts in the image 

domain by combining reconstructed images with intraoral 

scan data, but due to the limitation of the number of clinical 

data, we can only use the characteristic of the metal implant 

with a higher CT value to determine the position of the 

metal implant, so we manually adjust the CT threshold in 

this experiment. Then, we can obtain the implant data 

position in the projection domain through the projection 

matrix. 

In the projection data processing stage, we first interpolate 

the data where the metal positions are located in the original 

projection data 𝑦, and replace the original metal position 

data with the interpolation results to obtain the interpolated 

projection data 𝑦′. After that, we can obtain the difference 

projection data ∆𝑦 = 𝑦 − 𝑦′. Since the projection data of 

the metal location is significantly higher than the data 

around the metal location, the difference projection data ∆𝑦 

is non-negative. Then, We perform reconstruction of the 

difference projection data and interpolation projection data 

separately using SIRT, resulting in 𝑥𝑑𝑖𝑓𝑓 and 𝑥𝑖𝑛𝑡𝑒𝑟. Here, 

when reconstructing the difference projection data, we 

restrict the reconstruction area to the metal area. 

In the images synthesis stage, we get 𝑥 = 𝑥𝑑𝑖𝑓𝑓 + 𝑥𝑖𝑛𝑡𝑒𝑟 as 

the final result. 

3 Results 

 

The projection data of a real patient were obtained from a 

commercial CBCT machine, while the intra-oral scan data 

obtained from a structrued light scanning machine. The 

projection data size is 645*628*546, where 645 is the 

number of sampled projection views, the first 640 of 645 is 

the number of views in [0,2𝜋), and 628*546 with real scal 

of 0.119 mm for each axis is the number of samples 

measured by the 2D flat detector for each projection view. 

The reconstruction imags were reconstructed in a voxel size 

of 960*960*630 with a real scale of 0.25 mm. For cone 
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Fig.2 The intra-oral scan data 

 

 
Fig.3 The result of registration of CBCT and intra-oral scan data 

 

 
Fig.4 The reconstructed images 

 

beam projection and reconstruction, an open-source code, 

known as ASTRA Toolbox, is used[16, 17]. The intra-oral 

scan data as known as structured light scanning data is 

presented in the form of a point cloud, which is a 3D surface 

data composed of points of tooth surface, as shown in Fig.2. 

The result of the registration can be seen in Fig.3, it can be 

observed that the registration is quite good. 

we use our proposed method to reconstruct the result using 

the astra toolbox with SIRT, as shown in Fig.4(b), while the 

original image reconstructed with FDK, with metal artifacts, 

is shown in Fig.4(a). 

It can be clearly seen that the reconstructed images using 

the method proposed by us have significantly reduced metal 

artifacts, while also preserving the contour features around 

the metal artifacts, significantly improving the quality of the 

3D images, and accurately depicting the structure of teeth 

and surrounding bones and tissues. 
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4 Discussion 

 

In the current experiment, although good results have been 

achieved in MAR, the limitation of the number of clinical 

data prevents us from further adopting neural network 

methods for experiments, which forces us to use manual 

registration and manual threshold adjustment methods to 

find the metal region to complete our experiment. The 

registration stage uses the method of manually selecting 

registration points to calculate the registration matrix. Due 

to the limitations of visual recognition, the manually 

selected CBCT and intra-oral scan registration points may 

not perfectly correspond to each other, and this 

phenomenon did occur in the experiment. Therefore, many 

different registration points need to be tried, which results 

in certain errors in the registration process. But if neural 

network registration is adopted, the registration accuracy 

should be further improved. Manually adjusting the 

threshold to find metal regions also has certain limitations. 

We found that in the experiment, the edges of the metal 

regions obtained by this method are not smooth. In addition, 

there are also some cases of disconnection of metal regions, 

which leads to poor segmentation of metal regions. 

However, if neural network methods are used for metal 

region segmentation, the accuracy of region segmentation 

should be improved. 

5 Conclusion 

 

We propose a method that combines 3D CBCT data with 

intra-oral scan data and jointly considers the metal artifacts 

in both the projection and image domains. Our experiments 

have shown that non-radiative intraoral scan data can 

provide very accurate guidance for the localization of metal 

parts and have a very positive impact on the removal of 

metal artifacts while preserving the image details of teeth. 

However, due to the limitation of the clinical data, our 

experiments have not yet been able to try neural network, 

which will further enhance the reconstruction accuracy of 

our proposed method. 
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Abstract We present injectivity and microlocal analyses of a new
generalized Radon transform, R, which has applications to a novel
scanner design in 3-D Compton Scattering Tomography (CST), which
we also introduce here. Using Fourier decomposition and Volterra
equation theory, we prove that R is injective and show that the image
solution is unique. Using microlocal analysis, we prove that R satis-
fies the Bolker condition (sometimes called the “Bolker assumption")
[1], and we investigate the edge detection capabilities of R. This has
important implications regarding the stability of inversion and the am-
plification of measurement noise. This paper provides the theoretical
groundwork for 3-D CST using the proposed scanner design.

1 Introduction

CST is an imaging technique which uses Compton scattered
photons to recover an electron density, which has applications
in security screening, medical and cultural heritage imaging
[2–6].
We introduce a new scanning modality in 3-D CST, whereby
monochromatic (e.g., gamma ray) sources and energy-
sensitive detectors on a cylindrical surface scan a density
passing through the cylinder on a conveyor. See figure 1,
where we have illustrated (x,y) and (x,z) plane cross-sections
of the proposed scanner geometry. The incoming photons,
which are emitted from s with energy E, Compton scatter
from charged particles (usually electrons) with energy E ′,
and are measured by the detector d; meanwhile, the electron
charge density, f (represented by a real-valued function),
passes through the cylinder in the z direction on a conveyor
belt. The scattered energy, E ′, is given by the equation

E ′ =
E

1+(E/E0)(1− cosω)
, (1.1)

where E is the initial energy, ω is the scattering angle and
E0 ≈ 511keV denotes the electron rest energy. If the source
is monochromatic (i.e., E is fixed) and we can measure the
scattered energy, E ′, i.e., the detectors are energy-sensitive,
then the scattering angle, ω , of the interaction is fixed and
determined by equation (1.1). This implies that the surface
of Compton scatterers is the surface of rotation of a circular
arc, which we denote as a lemon, L . Example 2-D cross
sections of a lemon are shown in figure 1. Thus, we model
the Compton scattered intensity as integrals of f over lemons.
See, e.g., [3] for other work which models the Compton
intensity in this way.
The geometry and physical modeling leads us to a new Radon
transform, R, which integrates f over lemon surfaces. Us-
ing Fourier decomposition and Volterra equation theory, we

prove that R is injective, which implies f can be uniquely
recovered using Compton scatter data. Using the theory of
linear Fourier Integral Operators (FIO), we prove that R sat-
isfies the Bolker condition [1], which gives insight into the
reconstruction artifacts. In addition, we investigate the edge
detection capabilities of R and discuss how this relates to
image edge reconstruction.
The results presented here provide a novel framework for
CST, and lay the theoretical foundation for 3-D density re-
construction using the proposed scanner design.

2 Materials and Methods

We analyze the generalized Radon transform, R, defined by

R f (s,d,E ′,z0) =
∫

L (s,d,E ′,z0)
f dS, (2.1)

where L = L (s,d,E ′,z0) denotes a lemon surface, param-
eterized by (s,d,E ′,z0), as in figure 1, and dS denotes the
surface measure on L . We consider only the L with cen-
tral axis parallel to z. In total, we vary four parameters,
namely s and d (i.e., the positions of the tips of the lemon),
the scattered energy, E ′, which determines ω , and z0, which
translates L in direction z. Equivalently, z0 controls the
position of f on the conveyor.
In the following subsections, we discuss the tecniques we
use to analyze injectivity and microlocal stability of R.

2.1 Injectivity

In [7], Volterra type integral equations are discussed. The
authors give conditions on the integral kernel for injectivity,
and outline a reconstruction method using Neumann series.
To prove injectivity of R, we use the theory of [7], and derive
a reconstruction formula for f . Showing injectivity of R is
important, as it shows that the solution for f is unique, and
thus there can be no artifacts due to null space.

2.2 Microlocal analysis

To analyze the stability of R from a microlocal perspective,
we apply the theory of linear FIO [8, 9]. An FIO is a special
type of integral operator which propagates the edges of an
image in specific ways. Through analysis of FIO we can
discern important information about the recovery of image
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Figure 1: (x,y) and (x,z) plane cross sections of the proposed cylindrical scanning geometry. The cylinder has unit radius. The (x,y)
plane of the left-hand figure is highlighted as a dashed line in the (x,z) plane. Cross-sections of a lemon of integration, L , are labeled.
The sources (s) are located on the bottom half of the cylinder, highlighted in blue, and the detectors (d), highlighted in red, are located
on the upper half. The scanning target, f , displayed as a green, irregular disc, passes through the cylinder on a conveyor belt in the z
direction. The variable z0 ∈ R is z component of the center of L .

edges and image artifacts. FIO theory and microlocal anal-
ysis can also be used to predict artifact location [10] and to
develop techniques for artifact suppression [11].
The analysis we present here focuses on the Bolker condi-
tion [1]. The Bolker condition relates to image artifacts in
reconstructions from Radon transform data (e.g., R f ), specif-
ically to artifacts which are additional (unwanted) edges in
the reconstruction that are not in the object. If the Bolker
condition is satisfied, this implies reconstruction stability,
and unwanted image edges are eliminated. Conversely, if the
Bolker condition fails, the capacity for artifacts is amplified.

2.2.1 Edge detection

We investigate the edge detection capabilities of R using
microlocal analysis. See [12] for similar work, where the
authors present a microlocal analysis of the classical straight
line Radon transform, commonly applied in X-ray CT.
R integrates f over lemon surfaces. Edges in directions
normal to the lemons are detected by R. See figure 2. The

x

ξ

−x

z

s

d
L

Figure 2: An edge, at position x in direction ξ ∈ S2, on the
boundary of a green disc, normal to a lemon, L .

highlighted edge at x in direction ξ ∈ S2, where S2 is the unit
sphere in R3, is normal to L and is thus detectable by R.

If an edge is detectable, then it can be stably reconstructed.
Edges which are not detectable are invisible to the data and
cannot be recovered stably without sufficient a-priori infor-
mation regarding the edge map of f . Thus, the edge detection
capabilities of R give great insight into the inversion stability.

3 Results

Here we present our theoretical results on injectivity and
microlocal analysis, and show simulations to validate our
results.

3.1 Injectivity

Let Cε = {
√

x2 + y2 < 1−ε}, for some small offset 0 < ε <
1, and let L2

c(Cε) denote the set of square integrable functions
with compact support in Cε . Then, we have the following
theorem.

Theorem 3.1. Let 0 < ε < 1 be fixed. Then, the lemon Radon
transform, R, is injective on domain L2

c(Cε).

Theorem 3.1 shows that any f ∈ L2
c(Cε) can be recovered

uniquely from R f . To prove Theorem 3.1, we first take a
Fourier decomposition of R on the cylinder, which reduces
R to a set of one-dimensional Volterra operators of the first
kind. After which, we apply the theory of [7] to prove injec-
tivity of R, and derive an inversion formula using Neumann
series. The support of f is required to be bounded away from
the cylinder surface (i.e., by distance ε) to avoid singularities
(division by zero) in the Volterra equation kernel.

3.2 Microlocal analysis

We state our main microlocal theorem below.
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Theorem 3.2. R, on domain L2
c(C0), is an FIO which satis-

fies the Bolker condition

Theorem 3.2 shows that there are no added, unwanted edges
in a reconstruction from R f data, for functions f ∈ L2

c(C0).
In particular, we prove that any added image edge artifacts are
reflections of the true image edge map through planes tangent
to the boundary of C0. Thus, if f is supported within C0, the
added artifacts must lie outside of C0, and do not interfere
with the scanning region. We can also use our theory to
predict precisely where artifacts will occur. For example,
see figure 3, where we show the artifacts predicted by our
theory in reconstructions of delta functions. A delta function
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Figure 3: Predicted artifacts due to Bolker when reconstructing
delta functions ( f = δ ) from R f . The boundary of C0 is displayed
as a black circle. The δ positions are the dots in C0, and the curves,
of the same color, are the corresponding locations of reconstruction
artifacts.

is supported at a single point, and has edges in all directions.
The artifacts due to Bolker, in this case, are embedded in
the (x,y) plane and appear on cardiod type curves which lie
outside of C0.

3.2.1 Edge detection

Here we investigate the edge detection capabilities of R
within C0 using microlocal analysis, as discussed in subsec-
tion 2.2.1. See figure 4. For every point x ∈C0, we calculate
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Figure 4: The percentage of edges detectable by R within C0. For
the purpose of this simulation, we set the height of C0 as 4.

the proportion of directions ξ ∈ S2 which are detectable by

R. We show our results as an image in the (x,z) plane. This
represents the full 3-D edge detection map due to circular
symmetry. A value closer to 1 on the colorbar means greater
edge detection, and conversely for values closer to 0.
We see that, as we go closer to the center of C0, the edge
detection ability of R is greatest, and this tapers off quite
significantly near the boundary and top and bottom of C0.
Nowhere in C0 are 100% of edges detectable, and thus the
problem is one of limited-angle tomography, which are often
severely ill-posed [12]. If the inversion of R is not suffi-
ciently regularized, we will likely see a blurring effect in the
reconstruction near the undetected edges, as is observed, e.g.,
in conventional limited angle X-ray CT [12].

4 Conclusions and further work

In this paper, we introduced a novel scanning modality in
3-D CST, and a new generalized Radon transform, R, which
mathematically models the Compton signal. We showed
that R, on domain L2

c(Cε), for some fixed 0 < ε < 1, is
injective and an FIO which satisfies the Bolker condition. We
also derived a reconstruction formula using Neumann series.
This work lays the theoretical foundation for 3-D Compton
imaging using the proposed scanner design.
In further work, we aim to use the reconstruction formula
derived here as basis for a reconstruction algorithm. The
microlocal analysis results indicate the problem is severely
ill-posed, and thus strong regularization (e.g., total variation,
machine learning) will likely be needed to address this. We
aim to pursue such regularization ideas in further work.
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Abstract PET dual-nuclide simultaneous imaging is an advanced
functional imaging technique. Most of the existing dual-nuclide
imaging techniques either use extra detectors to detect prompt gammas
from non-pure emitter or employ dynamic acquisition protocol to
distinguish between nuclides. However, they also cause the problems
of complex system structure and complicated data acquisition process.
In this paper, based on the detection of prompt gammas, we used a
software-based coincidence processing method to realize simultaneous
dual-nuclide imaging in a conventional PET system without extra
detectors. In order to evaluate the effectiveness of the dual-nuclide
method used, phantom and mouse experiments of 18F/124I were
performed on the in-house quad-panel PET system. In the phantom
experiment, the separation images of dual-nuclide showed good
separation of the different nuclides. In the mouse experiment, the
separated images of 124I and 18F showed different activity distributions
in the thyroid, heart and bladder, which were consistent with the single-
nuclide reconstructed images. Comparing the separated 124I images with
the mixed dual-nuclide images using double coincidence, we found that
the intensity of the signal in the thyroid was increased by more than 20
times. This work demonstrates the feasibility of dual-nuclide
simultaneous imaging using a software-based triple coincidence
processing method in a conventional PET system.

1 Introduction
Positron emission tomography (PET) is a technique that
uses molecular imaging signals generated by radionuclides
to detect information about human tissue. PET uses a
double coincidence technique to achieve the 511-keV
photon detection and then images the distribution of the
nuclide. However, conventional PET imaging can only
image a single-nuclide and cannot distinguish between
different nuclides in one scan. With the increasing clinical
application of non-pure positron emitter which emits
additional gamma during β+ decay, there is a need to use
dual-nuclide for simultaneous diagnosis of pathological
information. For example, the application of tracers co-
labeled with 18F and 68Ga can reflect the multiple
heterogeneities of human tumors [1], allowing physicians
to make a more comprehensive diagnosis of pathology.
Therefore, dual-nuclide imaging research has flourished in
recent years [2]. For simultaneous imaging of non-positron
and pure positron nuclides, the detection of triple
coincidence is important. The existing dual-nuclide
imaging acquires triple-coincidence by additional prompt
photon detectors [3] and hardware-based coincidence
processing on field programmable gate array (FPGA). The
former enhances the detection sensitivity of prompt
photons, but it causes the problem of complex system as

well. Another method is to separate imaging of dual-
nuclide by multiple scans or 45-90 min time-sharing
dynamics [4]. However, it requires a long time to scan and
is difficult to apply in the clinic.
In order to solve the above problems, this paper applies 20
basic detection modules (BDMs) [5] (Raycan Technology
Co., Ltd (Suzhou)) to construct a quad-panel PET system.
BDM is capable of transferring the collected single-photon
information, such as photon arrival time, photon energy,
coordinates of the position of the photon hitting the SiPM,
etc. Transfer them to the software side via User Datagram
Protocol (UDP). The data format is shown in Figure 1,
which provides the data basis for the implementation of
the software-based triple-coincidence algorithm. In the
process of coincidence processing, based on the energy
characteristics and time information of prompt photons
different from annihilation photons, a sorting-based time
coincidence method [6] and a dual energy window-based
energy coincidence method were proposed to achieve
triple coincidence of dual-nuclide imaging. To evaluate the
effectiveness of the software-based triple coincidence
method, the simultaneous imaging and separation effects
of dual-nuclide at 18F/124I were explored. The metrics were
quantified on the basis of a phantom model and small
animal experiments.

Figure 1: Detector data storage format

2 Materials and Methods
In the dual-nuclide imaging, the software-based triple
coincidence method is applied to the image reconstruction
of non-pure positron nuclides. Figure 2 shows the
coincidence diagrams for pure and non-pure positron
nuclides, respectively. The comparison reveals that the
prompt photon is an important feature of the dual-nucilde
separation. Therefore, in the dual-nuclide imaging process,
the separation of the dual-nuclide image should focus on
the detection of prompt photon. The prompt photons
information of some commonly used non-pure positron
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nuclides is shown in Table 1. The separation process of
dual-nuclide means that the lines of response (LOR) of
different nuclides are counted separately by the energy-
spectrum information and the time information of prompt
photons.

(a) (b)
Figure 2: Photon coincidence diagrams for two nuclides.

(a) Schematic diagram of response lines of pure positron nuclide. (b)
Schematic diagram of the response lines of non-pure positron nuclide.

Nuclides Half-life
annihilation

photon Energy
（%）

Prompt
Photon Energy

（keV）

Prompt photon
emission ratio

（%）

22Na 2.60 yr 90.4 1274.5 99.9

44Sc 3.97 h 94.3 1157.0 100

94mTc 52 min 70.2 871.1 96.4

124I 4.18 days 22.5 602.7 52.0

68Ga 67.8 min 88.9 1077 3.2
Table 1: Information table of non-pure positron nuclides

2.1 Quad-panel PET System
Because of the flexible structure of the plane PET and
adjustable plate spacing, the field of view (FOV) can be
adjusted according to the actual object. It is suitable for
site-specific imaging, so the quad-panel PET system is
built for dual-nuclide imaging, as shown in Figure 3. The
BDM is made of LYSO crystals for detecting annihilation
photons and prompt photons from nuclide decay. The
system consists of four panels, and each panel consists of
five BDMs. The detection area of each BDM is 27.5×107
mm2. The imaging FOV of the system is 110×110×150
mm3. The spatial resolution of the system is 1.2 mm.

(a) (b)
Figure 3: Construction of the four flat panel system

2.2 Software triple coincidence
The flowchart of the PET software coincidence is shown
in Figure 4. The data extraction for software coincidence
of the dual-nuclide is performed using a home-made quad-
panel detection system. The γ-photon single-event data is
obtained by synchronous clock detection of the BDM
array. The coding, decoding and correction of the software
coincidence data are performed at the software side.

Considering the energy-spectrum difference between
prompt photons and annihilation photons and the arrival
time information of detectors, unlike the traditional double
software coincidence, the triple software coincidence
adopts a sorting-based time coincidence approach with a
dual energy window-based energy coincidence to realize
the double and triple coincidence LOR counting.

Figure 4: PET software coincidence flowchart
2.2.1 Time-coincidence methods based on sorting
Data acquisition by BDM enables to obtain the γ-photon
single event data for each detector module. By decoding
the storage structure of the data shown in Figure 1, each γ-
photon single event is represented as
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jt denotes the arrival time of the jth γ-

photon arriving at detector i in nanoseconds (ns), i
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denotes the energy value of the scintillation pulse caused
by the jth γ-photon arriving at detector i in keV and
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denotes the position coordinates of the jth γ-photon
arriving at detector i. The single time stream (Ti, Ei, Pi) of
the ith detector module is given by Equation 1. The time
coincidence method based on ordering arranges the single
events of each detector module according to the photon
arrival time information from smallest to largest. Finally
there can obtains a globally ordered sequence of γ-photon
single events (T,E,P) sorted , as shown in Eq. 2.
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After initializing the time window Δtc, the time
components of (T,E,P)sorted are subjected to the first-order
forward difference Δ1T with step 1 and the first-order
forward difference Δ2 T with step 2, respectively, as
shown in Eqs. 3 and4. The dataset of time-double
coincidence (E,P)double and time-triple coincidence
(E,P)triple are obtained by comparing with the time window.

 
1n21n21 mmmmmm23121 tt,tt,ttT
   (3)

 
2n21n21 mmmmmm24132 tt,tt,ttT

   (4)
2.2.2 Energy coincidence based on dual-energy windows
The basic detection module (BDM) is able to achieve an
energy resolution of 15%. In the pre-experimental
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validation, the use of the BDM was able to resolve prompt
photons with an energy-spectrum similar to 511-keV, as
shown in Figure 5. The energy-spectrum of the non-pure
positron nuclide 124I was detected by using the quad-panel
PET system. This system has 15 detection crystals at
different positions of multiple detectors. The energy
window of 550 keV-750 keV was selected for energy-
spectrum plotting. In the figure, the 15 energy-spectrum
curves can clearly distinguish the energy-spectrum peaks
of 511keV and 602.7keV, indicating that dual-nuclide
energy coincidence can be achieved through the energy
window.

Figure 5: Energy-spectrum of 124I
In the process of software coincidence, by selecting the
energy windows of 400-600 keV and 550-700 keV, the
prompt photons and annihilation photons of 124I are energy
coincided respectively. Finally the double coincidence
dataset (T,E,P)double and triple coincidence dataset
(T,E,P)triple can be obtained.

3 Results
3.1 Experimental Setups
In order to evaluate the data processing method of
software-based triple coincidence and test the
effectiveness of dual-nuclide separation. It is proposed to
test the effect of dual-nuclide separation using phantom
and small animal experiments. 18F and 124I are selected for
the effect evaluation.
（1）The background-free phantom was used to evaluate
the separation effect of 18F/124I. The size of the phantom
was 30×30×35 mm3. A 3×3 array of 5×5×30 mm3 thermal
holes was arranged at the symmetric center for injection of
the nuclide. The 10 μCi/ml 124I solution, 20 μCi/ml 124I
solution, 10 μCi/ml 18F solution and 20 μCi/ml 18F solution
were injected at the four corners of the phantom
respectively. The acquisition lasted for 15 minutes, and the
phantom were re-acquired for 15 minutes after 24 hours,
when the 18F had completely decayed. The data of 124I
single nuclide was collected.
（2）The mouse experiments were conducted using
18F/124I for dual-nuclide imaging experiments to assess the
effectiveness of the software-based triple coincidence
method. The experiments were conducted by injecting 100
μCi of 124I nuclide solution, 100 μCi of 18F nuclide
solution, and a mixture of 18F and 124I with activity of 200
μCi into the tail vein of mice respectively. Observing the
nuclide activity changes in mice. The acquisition time of
each experiment was 15 minutes.
In the experiments, twenty BDM ensure full-angle data
acquisition. In the software-based triple coincidence, the

energy window of annihilation photon is set to 400-600
keV. The energy window of prompt photon is set to 550-
700 keV. The coincidence time window is set to 6 ns, and
the image reconstruction is performed by MLEM iterative
reconstruction method with 10 iterations.
3.2 Phantom experiment of 18F/124I
The nuclide distribution of 18F/124I is shown schematically
in Figure 6. The simultaneous imaging results of 18F/124I
can be seen using the reconstructed algorithm of double
coincidence as shown in Figure 7(a). The conventional
reconstruction results of the dual-nuclide algorithm cannot
distinguish the reconstructed images of both 18F and 124I.
The reconstruction using the software-based triple
coincidence algorithm separates the reconstructed images
of 18F and 124I as shown in Figure 7(c)(d). Comparing the
reconstructed images of the separation, the 18F and 124I
separation images are able to separate the hot holes.
Comparing the 124I single-nuclide image with the
separation image，they have the same activity region. The
comparison of the two sets of images verifies the
effectiveness and accuracy of the software-based triple
coincidence algorithm.

Figure 6: Schematic of nuclide distribution

(a) (b)

(c) (d)
Figure 7: Dual-nuclide reconstructed image. (a) The dual-nuclide

reconstructed image using the dual-coincidence reconstructed algorithm.
(b) 124I single-nuclide reconstructed image. (c) 18F separation
reconstructed image .(d) 124I separation reconstructed image.

3.3 Mouse experiment of 18F/124I
The mice were placed in the enclosed space by means of
gas hemp, as shown in Figure 8. The experimental results
are shown in Figure 9. In Figure 9(a), the double
coincidence reconstructed algorithm cannot distinguish the
distribution of 18F and 124I in mice. Figure 9(b)(c) shows
the reconstructed image of 124I injected alone and the
reconstructed image of 124I separated by mixed injection,
respectively. When a certain slice is selected to compare
the two images, there are obvious areas of high activity in
both thyroid sites, while the activity was lower in the heart
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and bladder. Figure 9(d)(e) shows the reconstructed
images of 18F injected alone and the reconstructed images
of 18F separated by mixed injection, respectively. By
comparing the 18F single-nuclide reference image and
selecting a certain slice to compare the two images, there
were obvious high-activity regions in both the heart and
bladder areas. Comparing the above results can verify that
the proposed method can achieve the separation of 18F and
124I dual-nuclide image.

Figure 8: Experimental placement of mice

(a) (b) (c)

(d) (e)
Figure 9:Mouse imaging reconstructed image. (a) The dual-nuclide

reconstructed image using the dual-coincidence reconstructed algorithm.
(b)124I single-nuclide reconstructed image. (c) 124I separation

reconstructed image .(d)18F single-nuclide reconstructed image. (e) 18F
separation reconstructed image.

The mean values of the ROIs with 3 mm, 4 mm and 5 mm
in diameter were calculated in the thyroid, heart and
bladder regions, respectively. As shown in Table 2,
comparing the double coincidence reconstructed images
with the separated images of 124I, the signal intensity at the
thyroid is enhanced by more than 20-fold, but there is still
signal residual at the center of the separated images of 124I.

Signal intensity ratio Thyroid/
Bladder

Heart/
Bladder

Thyroid /
Heart

Original image 0.205 0.410 0.501
124I separate images 4.760 0.379 12.559
124I reference images 16.787 0.034 491.558
18F separate images 0.061 0.405 0.150
18F reference images 0.018 0.231 0.078

Table 2: ROIs signal intensity ratio
Two relatively uniform regions with nuclide distribution
are selected, such as the red dashed area in Figure 9(d)(e) .
Their regional signal-to-noise ratios are calculated, and the
results are shown in Table 3. The signal-to-noise ratio of
18F-separated images is not affected, while the signal-to-

noise ratio of 124I-separated images decreases by a factor of
2-5.

Signal to Noise Ratio Region 1 Region 2
124I separate images 2.20 2.53
124I reference images 4.76 10.02
18F separate images 5.38 3.42
18F reference images 3.77 3.08

Table 3: Signal-to-noise ratio of reconstructed images

4 Discussion And Conclusion

In this paper, a software-based triple coincidence
algorithm is proposed to realize the simultaneous dual-
nuclide imaging without adding extra detectors. The
experimental results based on 18F/124I showed that the
proposed software-based triple coincidence algorithm
could separate 18F and 124I images. Especially, in the
18F/124I mouse test, single-nuclide separated images of
different mouse organs could be distinguished based on
the proposed method in current quad-panel PET system.
The effectiveness of the algorithm was verified by
quantitatively comparing the single-nuclide separated
images with the single-nuclide reference images. However,
the dual-nuclide separation in the experiment produces
residual image of the other nuclide, which is still far from
the ideal signal intensity. This phenomenon is caused by
that the prompt photon energy of 124I used is 602.7 keV
which is similar to 511 keV, considering that the detector
energy resolution is usually 11%~15%, there are still some
annihilation photons in the selected energy window of
550-700 keV that are conformed to the triple coincidence.
Subsequently, it is necessary to introduce a random
correction algorithm to eliminate the nuclide residues in
the separated images. A study on denoising is still on-
going. Overall, this work demonstrates the feasibility of
dual-nuclide simultaneous imaging using a software-based
triple coincidence processing algorithm in a conventional
PET system.
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Abstract Computed tomography is a frontline tool for monitoring 

colorectal cancer and its possible progression into liver metastases, but 

image features predictive of metastasis (met) behavior are dependent on 

scanning protocols and reconstruction algorithms. We propose a 

simulation pipeline for studying the effects of imaging parameters on the 

ability to characterize liver metastasis features. This pipeline utilizes a 

fractal approach for generating a diverse population of virtual metastasis 

shapes and then superimposes these on a realistic CT liver region to 

perform a virtual CT scan using CatSim. We also propose filtered back 

projection using a high-frequency kernel, which is designed to preserve 

more high-resolution information than a standard reconstruction kernel. 

Synthetic liver metastases image patches generated with our pipeline 

were used to train and validate deep neural networks to recover crafted 

metastasis characteristics: internal heterogeneity, edge sharpness, and 

edge fractal dimension. In the absence of added noise, models that used 

high-frequency reconstruction scored significantly better compared to 

standard reconstruction when characterizing edge sharpness and fractal 

dimension (𝑝 < 0.05). Our novel virtual imaging framework can be used 

for further study of imaging feature preservation, and our results indicate 

the possibility of optimizing the reconstruction for enhanced AI-based 

anatomical feature characterization. 

1 Introduction 

Contributing to about 50,000 deaths in the United States and 

900,000 deaths worldwide, colorectal cancer is considered 

the fourth deadliest cancer [1], [2]. Diseased patients often 

die from colorectal liver metastases (CRLM) rather than the 

primary cancer. Although many treatments exist, including 

resection, chemotherapy, and ablation, monitoring patient 

responses for the most effective therapies is a complex 

problem requiring further research [3], [4]. Accurate and 

continuous monitoring of disease progression and treatment 

response is critical for optimizing patient outcomes. To this 

end, x-ray computed tomography (CT) is among the best 

and most available imaging modalities for observing 

CRLM progression. CT image features, such as hepatic 

metastases texture and liver texture have been studied for 

predicting treatment response [5]–[8]. Fractal dimension of 

CT metastasis images also has been investigated for 

response prediction to chemoradiation therapies in patients 

with locally advanced rectal cancer [9], [10].  

 CT image features are highly sensitive to the scan and 

reconstruction parameters used. Despite this, these 

parameters are heterogeneous across studies in the current 

literature. The optimization of imaging parameters for the 

task and robustification of crucial features to various 

conditions are necessary for drawing consistent conclusions 

regarding different biomarkers and their relationship with 

patient outcomes [11]–[13]. 

Optimizing the imaging procedure for CRLM treatment 

requires extensive exploration of the parameter space. 

Simultaneously, artificial intelligence has accelerated a new 

paradigm of radiomics, where often inconspicuous features 

are learned over large datasets rather than pre-determined 

[14]–[16]. Satisfying these needs in practice is infeasible, 

requiring many high-quality patient samples, with patients 

subject to multiple repeated scans for comparison. As such, 

we propose a virtual imaging approach [17] for exploring 

parameters in the context of CLRM. In this paper, we: 

• Define a virtual imaging pipeline for simulating CT 

scans of liver mets with varying scan and 

reconstruction parameters. 

• Use this pipeline to compare radiomic performance 

using filtered back projection (FBP) reconstruction 

with a standard versus a high-frequency kernel.  

Figure 1: Flowchart of met simulation and radiomic 

analysis. Backgrounds and generated mets are scanned in 

parallel using CatSim. Extracted met image patches from 

scan reconstructions are used to train DNNs tasked with 

estimating the correct metastasis characteristics. 

This approach is illustrated in Figure 1. Our met generation 

process employs a fractal generation method, which models 

a diverse distribution of random shapes. As these mets are 

synthetic, they do not have specific clinical labels, but their 

characteristics (such as edge fractalness) are precisely 
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known. Consequently, they are useful for evaluating 

different scanning and reconstruction schemes, since the 

ability for an imager to preserve these characteristics of 

virtual mets is likely associated with its ability to preserve 

clinically relevant features of real mets. In our experiments, 

we judge a scheme’s ability to preserve characteristics by a 

deep neural network’s (DNN) ability to recover these 

characteristics post-reconstruction.  

FBP is the basis for the reconstruction used on all 

commercial CT scanners and is a fast way to convert from 

the sensor to the image domain. Unfortunately, information 

– and potential prognostic detail – may be partially lost 

during this transformation. As such, we propose using a 

high-frequency kernel for data filtering, resulting in a 

noisier image but with closer agreement to the raw data. 

 

2 Materials and Methods 

Met Synthesis: Random initial met shapes are synthesized 

by generating vertices of a random fractal shape using an 

‘infinite detail’ method inspired by [18], and then 

smoothing the shape with a moving average filter applied 

over the list of vertices. Specifically, six initial vertices 

defining a rough hexagon are first initialized; the midpoints 

along each edge are perturbed by random uniform noise 

scaled by the distance between the edge vertices for that 

mid-point and a roughness parameter, doubling the number 

of edges. This process is repeated until the separation 

between vertices is less than the resulting inter-pixel 

spacing. To produce diversity in edge smoothness, the list 

of vertex coordinates is convolved with a moving average 

filter of random length up to half of the number of vertices 

(longer kernel produces a smoother shape). 

 
Figure 2: Met traits and their visual impact. Edge sharpness 

is measured by the standard deviation of the Gaussian 

kernel used to blur the shape. 

 The grayscale contrast (intensity relative to the background) 

of each met is randomly sampled from a uniform 

distribution between -20 HU and -80 HU (Hounsfield 

Units). In addition to this homogenous base, a region of 

heterogeneity, which we refer to as the ‘insert’, is 

superimposed over each met. These inserts each consist of 

2-3 sub-shapes, which are generated using the same fractal 

generation and smoothing method but fit within the met 

boundary. This insert is scaled such that the maximum 

difference between an insert point and the met background 

is sampled uniformly between 0 HU and 80 HU. Edge 

sharpness (blur) is altered by filtering the image with a 

Gaussian blurring kernel with a standard deviation between 

0 and 0.78mm (higher deviation creates more blurring). 

Figure 2 illustrates different met parameters of interest.  

We also characterize the jaggedness along the outer edge of 

each metastasis with fractal dimension. Met shapes are 

quantized as a 256 × 256 bit map and then processed with 

an edge detector. The nuclear box-counting method is then 

used to calculate the fractal dimension of the edge images 

as the average slope of the log-log plot of the box scale 𝑟𝑖 ∈
{1,2,4,8,16,32} pixels and number of boxes 𝑁(𝑟) required 

to cover the contour [19]. 

Simulation and Reconstruction: Twenty 512 × 512 slices 

with large visible liver regions were selected as image 

backgrounds. The “Reduce Noise” filter from Adobe 

Photoshop Elements 11 was used to reduce pre-existing 

noise in the clinical backgrounds. The liver region of each 

slice was manually segmented, excluding confounding 

structures, to identify regions suitable for synthetic met 

insertion.   

Scans were simulated using CatSim [20], [21]. Image 

backgrounds were converted to water density maps based 

on their CT number. The synthetic mets were randomly 

positioned 25 𝑚𝑚 × 25 𝑚𝑚 non-overlapping patches of 

the liver map. Rather than superimposing the mets and 

clinical backgrounds in the image domain, the images were 

reprojected separately and superimposed in the sinogram 

domain, allowing the mets to be simulated at a much higher 

resolution (voxel size 0.156mm) than the clinical 

backgrounds (voxel size 0.68-0.82 mm). 10 to 12 mets were 

scanned with each background. Although backgrounds 

were reused, met placement varied between scans, resulting 

in diverse image patches. Scanning parameters were set to 

mimic the Lightspeed VCT scanner (GE HealthCare), with 

140𝑘𝑉𝑝 x-ray tube voltage. Each scanned slice was 

reconstructed using FBP with either a standard or high-

frequency kernel. Images were reconstructed with 40 𝑐𝑚 

field-of-view and 0.2 𝑚𝑚 voxel size. 

Edge sharpness and fractal dimension cannot be evaluated 

within the same dataset, as blurring the edge of a met 

destroys the original fractal dimension. As such, two 

separate studies were simulated: a blurred study where 

blurring was applied to the met shapes, and a no-blur study. 

10,000 mets were generated in each study. 

Deep Characterization: The goal of characterization is to 

use a DNN to estimate the true met parameters from the 
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reconstructed images. Reconstructions were cropped to 

128 × 128 patches centered around each met. The network 

architecture was roughly based on ResNet V2 [22] (Figure 

3). Optuna was used to optimize hyperparameters [23]. 

 
Figure 3: DNN architecture used for all characterization 

tasks. Conv(n): Convolutional layer with n output filters. 

Different models were trained for each characteristic (90/10 

training/validation). Fractalness and heterogeneity were 

evaluated using the datasets without blur, while edge 

sharpness was evaluated on the dataset with blur. Adam 

optimizer with a learning rate of 4𝑒 − 5 and a mean-squared 

error loss function were used. 

Each network trained for 120 epochs (batch size 40). At the 

end of each epoch, a ‘bias adjustment’ was performed, 

where the parameters of the final dense layer were adjusted 

using a globally computed linear regression (across the 

entire training dataset) to help convergence.  

 
Figure 4: Samples of mets pre-simulation (left) and after 

reconstruction using standard (middle) and high frequency 

(right). Top two rows are from no-blur study; bottom row is 

from blurred study. 

3 Results 

Figure 4 illustrates example simulation image patches from 

standard and high-frequency reconstructions. One can 

notice greater noise but sharper edges in the high-frequency 

images. Additionally, this figure visualizes some typical 

met characteristics. 

Characterization performance as the average squared error 

on validation label prediction (normalized by label 

variance) is reported in Figure 5. Two-tailed paired t-tests 

found significant differences between standard versus high-

frequency reconstructions for predicting edge sharpness 

(𝛼 = 0.012) and fractal dimension (𝛼 = 0.049). 

 
Figure 5: Squared error (normalized by label variance) of 

characterization on validation data. Error bars show 95% 

CI. ∗ denotes statistically significant difference (p<0.05). 

4 Discussion 

 Generating a realistic but diverse population of mets for 

image simulation is an outstanding problem, and the 

increasing complexity and variety of imaging systems has 

elevated the demand for virtual clinical trials [17]. Despite 

the relative simplicity of our approach, the output 

population of mets appear both plausible and diverse in 

terms of their shape and internal structures. Furthermore, 

unlike methods that superimpose shapes over reconstructed 

images, our approach generates shapes at high resolution 

prior to scanning and reconstruction. Shape information is 

known precisely, allowing one to evaluate different imaging 

and reconstruction settings on feature preservation. 

 While this simulation approach is advantageous for 

evaluating imaging methods, a drawback is the lack of 

direct clinical labels. The generated mets have well-defined 

anatomical characteristics, but clinical labels differentiating 

malignancy cannot be generated in this fashion. However, 

many anatomical features of mets, such as fractalness and 

texture, relate to clinical classification. Consequently, 

imaging methods that better preserve these features are 

assumed to have more clinical information. 

 Compared to the standard kernel, high-resolution 

reconstructions contain aliasing-like noise patterns, but also 

sharper edges (Figure 4). The high-frequency kernel 

preserves frequencies higher than what is classically 
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permitted by the Nyquist theorem. Standard filtering 

reduces the noise but inevitably destroys high frequency 

features in this process. The results shown in Figure 5 

indicate that deep learning methods can more accurately 

recover high frequency characteristics, such as edge 

sharpness and fractal dimension, from high-frequency as 

opposed to standard kernel reconstructions. While the noise 

patterns from high-frequency filtering are less appealing to 

humans, sufficiently trained deep models can leverage the 

underlying detail that is preserved by this reconstruction. 

Future research should investigate high-frequency 

reconstruction and the impact of scan noise. High-

frequency reconstruction can also be used in conjunction 

with downstream data-driven processing, such as other 

analysis tasks or deep image denoising [24]. 

5 Conclusion 

In this paper, we propose and assess a simulation pipeline 

for studying scanning and reconstruction methods for CT in 

CLRM imaging. Our fractal-based method for met 

synthesis is fast and simple yet generates a diversity of 

plausible shapes and variations. Our deep radiomics 

analysis suggests that the proposed high-frequency filter 

reconstruction is superior for preserving high frequency 

features such as edge fractalness and sharpness and might 

reasonably be expected to better discriminate alternative 

image-based metrics considered for diagnostic purposes in 

low noise scenarios. Future studies should expand these 

simulation methods to improve clinical translation and add 

more features such as complex texture variations. 

Additionally, future work should investigate using high-

frequency reconstruction in low-noise, high resolution 

imaging applications and with data-driven image tasks, 

such as deep denoising and further analysis. 
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Abstract: Metal objects in human hearts such as pacing leads can result 

in severe artifacts in reconstructed 4D CT images and hinder the 

development of fully automatic whole-heart functional analysis 

algorithms. These artifacts are difficult to remove with the conventional 

two-pass metal artifacts reduction (MAR) methods due to non-uniform 

cardiac motion over the heart cycle.  

In this work, a pure image domain processing pipeline was developed to 

generate metal and motion artifacts free 4D CT images without accessing 

projection domain data. Most of the current deep learning-based MAR 

methods are supervised learning methods trained with emulated data and 

suffer from performance degradation when being translated to real 

patient data. To address this (domain shift) issue, we propose a new 

generative adversarial network that utilizes both, (i) labeled “hybrid” data 

(i.e., metal free clinical data augmented with emulated metal objects) and 

(ii) unlabeled real patient data, through a domain discriminator. The 

resulting metal-free images were then processed sequentially with a 

partial angle reconstruction-based motion estimation method.  

Experimental results from real patient data confirmed the benefit of using 

both “hybrid” and real patient data, which resulted in a 57.6% and 43.2% 

improvement respectively in a uniformity metric compared to hybrid data 

only and real patient data only approaches. Application of the proposed 

processing pipeline led to significantly reduced metal and motion 

artifacts, resulting in images suitable for downstream automatic cardiac 

functional analysis tasks [e.g., left ventricle (LV) segmentation, LV 

function, cardiac perfusion, treatment response prediction].  

1. Introduction 

Metal artifacts present a major challenge in fully automatic 

functional analysis of 4D cardiac CT. Factors underlying 

the shading and streaks commonly termed metal artifacts 

include beam hardening, x-ray scatter, and photon 

starvation.1 In cardiac CT, metal artifact from pacing leads 

is a common reason that functional analysis of the left 

ventricle (LV) requires time consuming human guidance 

and editing. While many conventional and deep learning 

approaches for metal artifact reduction (MAR) exist,1,2 very 

few include support for dynamic objects. Success can be 

achieved even for moving pacing leads provided that the 

leads can be successfully segmented in the projection data.3 

However, doing so still requires access to raw projection 

data, which poses additional constraints on an otherwise 

purely image domain functional analysis workflow.  

Motivated to address the lead artifacts issue in a fast and 

broadly applicable manner, in this work, we design an 

image domain metal artifact removal network for cardiac 

CT that handles moving pacing leads. The proposed 

network and training strategy properly utilize both labeled 

“hybrid data” (i.e., metal free clinical data augmented with 

emulated metal objects) and unlabeled real data (i.e., patient 

data with real moving pacing leads). The resulting metal-

free reconstructions can then be processed sequentially with 

a previously proposed image domain motion compensation 

method.4 Together, this processing pipeline provides metal 

and motion artifacts free image suitable for fully automatic 

functional cardiac analysis5,6 (e.g., LV segmentation, LV 

function, cardiac perfusion, treatment response prediction).   

2. Materials and Methods 

As illustrated in Fig. 1: the proposed cardiac CT analysis 

pipeline involves three steps: (i) With raw / uncorrected 

images as input, the metal removal network [Fig. 1(a)] 

generates metal free images, which are then (ii) corrected 

for motion artifacts with an image domain motion 

compensation approach [Fig. 1(b)]. Finally, the resulting 

metal and motion artifact free images at different cardiac 

phases are used for cardiac function analysis [the key step, 

LV segmentation, is shown in Fig. 1(c)].  

2.1. Deep Learning-Based Metal Object Removal 

Existing deep learning-based MAR methods are mostly 

supervised learning methods, which requires paired metal-

contaminated and metal-free reconstructions as training 

data. Since it’s extremely difficult to acquire such paired 

data with real patients, most supervised MAR approaches 

resort to emulated data instead. However, errors in the 

emulation process (e.g., imperfectly modeled motion, beam 

hardening and scatter process) could result in severe 

 

Figure 1. Illustration of the 4D cardiac CT processing pipeline. Both (a) metal removal and (b) motion compensation steps are performed in the 

image domain without accessing raw data. Functional analysis is then performed on metal and motion artifacts corrected reconstructions.  
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performance degradation when translating the trained 

networks to real clinical datasets. This is typically referred 

to as the “domain shift” issue.7 While unsupervised learning 

MAR approaches do not suffer from this issue8, structural 

fidelity of their output are sometimes questionable due to a 

lack of pixel-wise similarity loss function.   

In this work, we propose a metal removal network that 

utilizes supervised learning from both "hybrid” data and 

real data domains (Fig. 2). Training input from the hybrid 

domain (𝑥𝐻
𝑈) was generated by adding emulated metal 

objects onto metal-free patient data (training label, 𝑥𝐻
𝐶 ). As 

mentioned above, the fidelity of 𝑥𝐻
𝑈 is limited by the 

accuracy of the emulation process (i.e., “imperfect input”). 

Training labels within the real domain (𝑥𝑅
𝐶) were generated 

via interpolating real metal-contaminated patient data 

(training input, 𝑥𝑅
𝑈) in the projection domain. Residual 

artifacts from the interpolation process reduces the fidelity 

of 𝑥𝑅
𝐶 compared to 𝑥𝐻

𝐶  (i.e., “imperfect label”). Details of the 

training data generation procedure can be found in Sec. 2.2.  

Note that accessing projection domain data is only required 

in the network training stage.  

As shown in Fig. 2, a 3D residual U-Net9 (generator, 𝐺) was 

used to translate metal contaminated reconstructions from 

both hybrid and real domains into metal-free ones. Residual 

blocks10 were added at each of the 4 levels of the encoding 

and decoding path of the U-net [Fig. 3(a)]. We utilized a 

domain discriminator (𝐷) to differentiate between generator 

outputs from hybrid or real data domains. Since labels from 

the hybrid domain (𝑥𝐻
𝐶 ) are of higher fidelity, this 

adversarial framework was specifically focused on domain 

adaptation, where 𝐺 was trained to produce outputs similar 

to hybrid data labels with inputs from either hybrid or real 

domains.  A three level Patch-GAN classifier was used as 

the domain discriminator as shown in Fig. 3(b).  

The network was trained by solving the following minimax 

optimization problem: 

min
𝐷

max
𝐺

ℒ𝐺𝐴𝑁(𝐷, 𝐺) + 𝜆𝑠ℒ𝑆(𝐺) (1) 

where ℒ𝐺𝐴𝑁 and ℒ𝑆 are the GAN loss and pixel-wise 

similarity loss respectively. The GAN loss between the 

generator and the domain discriminator can be written as: 

ℒ𝐺𝐴𝑁(𝐷, 𝐺) = 

𝔼𝑋𝑅
𝑈 [− log(1 − 𝐷 (𝐺(𝑥𝑅

𝑈))] + 𝔼𝑋𝐻
𝑈 [log (𝐷(𝐺(𝑥𝐻

𝑈))] (2) 

Slightly different similarity losses were used for hybrid and 

real domains. Only the L1 loss was used for the hybrid 

domain thanks to its completely metal artifact free training 

label 𝑥𝐻
𝐶 . For the real domain, a weighted combination of 

L1 loss and gradient correlation loss11 was used to account 

for residual artifacts in its training label 𝑥𝑅
𝐶. Training was 

performed with the Adam optimizer (learning rate 5×10-4, 

batch size = 32). The generator was first trained for 100 

epochs with only similarity losses. Following that, both the 

generator and discriminator were trained following Eq. (1) 

for another 100 epochs.  

  

Figure 2. Proposed framework for combining training data from hybrid 

(metal free patient images plus emulated metal objects) and real (real 

metal-contaminated patient images) domains.   

 

Figure 3. Illustration of the network architectures: (a) Generator (𝐺). (b) 

Domain discriminator (𝐷).  

2.2. Training Data Generation 

Using the CatSim toolkit12 tuned for a 256-slice multi-

detector CT system (Revolution CTTM, General Electric 

Healthcare, Chicago, IL, US), a metal free thoracic phantom 

was forwarded projected with and without a library of 

analytical pacing lead object models at different 3D 

locations and orientations. Realistic metal traces (including 

metal attenuation, metal-induced scatter, and beam 

hardening effects) were obtained by subtracting metal-free 

forward projections from the metal-contaminated ones. 

These metal traces were randomly selected and combined 

with real metal free patient data to provide paired training 

data for the hybrid domain.  

A projection domain interpolation type approach was used 

to provide the (imperfect) training labels for the real 

domain. Due to pacing leads motion, the conventional two-

pass approach (image domain metal segmentation followed 

by forward projection) cannot be used to identify metal 

trace locations in the projection domain.1 Instead, we 
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propose a semi-automatic metal trace delineation approach, 

where 20 B-spline knots were manually placed along the 

pacing lead trace for one out of every 70 views. Cubic spline 

interpolation was then performed across and between views 

to create a complete metal trace delineation.  

Images in both hybrid and real domains were reconstructed 

with short-scan 3D filtered backprojection method on a 

volumetric grid covering a 30×30×16 cm3 FOV (axial 

plane voxel spacing: 0.58×0.58 mm2; slice thickness: 0.625 

mm). The metal artifact removal network was trained using 

4200 paired 64×64×64 patches from 7 hybrid domain scans 

and 7 real domain scans. Two additional real domain scans 

were used as testing cases.  

2.3. Motion Compensation 

Following the removal of metal objects, we integrate a 

motion compensation approach into the processing pipeline, 

which is based on conjugate pairs of partial angle 

reconstructions (PAR).4 Fourier domain wedge filters were 

used to generate conjugate PARs in image domain 

(separated in time by a half rotation). Motion vector fields 

between conjugate PARs were estimated through cross-

correlation functions. These PARs were then warped by the 

estimated MVFs and recombined to form the motion 

compensated reconstructions. Note that in this work, motion 

compensation was performed after metal artifacts removal 

and in image domain.  

3. Results 

To demonstrate the benefits of our proposed network and 

joint hybrid-real training strategy, two additional networks 

were trained with (i) hybrid domain data only (using the 

same amount of training patches as the joint hybrid-real 

approach); (ii) real domain data only (using all real domain 

training patches in the joint hybrid-real approach, without 

any hybrid domain training patches). These two networks 

have the same structure as shown in Fig. 2 sans the domain 

discriminator, since the training data only comes from a 

single domain (hybrid or real).  

Figure 4 shows the performance of these three metal 

artifacts removal networks on one example test case in the 

real domain, which features a large in-plane pacing lead coil 

near the septum, preventing reliable visualization and edge 

delineation of the LV myocardium from LV blood pool. The 

proposed joint hybrid-real approach [Fig. 4(d)] 

outperformed the other two approaches in terms of visual 

 

Figure 4. Performance of the metal objects removal network on an example test case (patient with real metal objects). (a) Raw / uncorrected 

reconstruction. (b) Output from the network trained with hybrid domain data only. (c) Output from the network trained with real domain data 

only. Residual artifacts in (b) and (c) are pointed by the pink arrows. (d) Output from the network jointly trained with both hybrid and real domain 

data using a domain discriminator (Fig. 2). Hounsfield unit uniformity is measured from 7 yellow dashed ROIs placed inside myocardium. (e) 

Automatic level set-based LV blood pool segmentations on (a) (top row) and (d) (bottom row) respectively. 

 

Figure 5. Performance of the proposed 4D cardiac CT processing pipeline. (a) Raw reconstruction. (b) Reconstruction after metal artifacts 

removal. (c) Reconstruction after metal artifacts removal + motion compensation (i.e., input to automatic cardiac functional analysis).   
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fidelity and residual artifacts [pointed by the pink arrows in 

Fig. 4(b-c)]. The image texture in Fig. 4(d) also appears 

more realistic in both axial and coronal planes, likely due to 

the introduced domain discriminator that promotes 

similarity to artifacts-free labels in the hybrid domain. As 

there was no ground truth image for comparison, 

quantitative analysis was performed by measuring the 

Hounsfield unit uniformity across a uniform region [i.e., 7 

yellow ROIs within the myocardium in Fig. 4(a)]. The 

proposed method achieved a uniformity of less than 15 HU 

within the myocardium, which is 57.6% and 43.2% better 

compared to hybrid and real domain only approaches 

respectively.  

Figure 4(e) shows the dramatic improvement in level set-

based automatic LV blood pool segmentation13 with the 

proposed processing pipeline. After metal artifact removal, 

the segmentation becomes much more accurate owing to 

greatly reduced streaks and blooming artifacts and better-

defined LV boundaries as shown in Fig. 4(d). This 

improvement in segmentation performance results in a high 

degree of reproducibility in cardiac functional analysis 

despite the original pacing lead artifact.  

Figure 5 illustrates the feasibility of sequentially adding 

motion compensation immediately after metal artifact 

removal in the processing pipeline. The metal artifact 

removal network is robust to the presence of motion objects 

as shown in Fig. 5(b). Motion  compensation resulted in a 

better-defined ascending aorta edge (orange zoom in Fig. 

5), right coronary artery [RCA, top left pink arrow in Fig. 

5(b)], and carotid arteries (cyan zoom in Fig. 5). Note again 

that these results were achieved purely in the image domain 

without accessing raw / projection domain data. 

4. Discussion and Conclusion 

This work presents a novel pure image domain metal object 

removal and motion compensation pipeline for 4D cardiac 

CT. The deep learning-based metal object removal network 

features a domain discriminator, which addresses the 

domain shift issue and allows utilization of both hybrid and 

real metal contaminted reconstructions as training data. 

Compared with hybrid and real data only approaches, the 

proposed joint hybrid-real training approach resulted in 

improved accuracy of metal removed reconstructions and 

uniformity in the LV muscle. Downstream tasks (e.g., LV 

segmentation) became much easier and more reliable after 

removing metal artifacts. 

In this work, the network was trained to remove only metal 

artifacts even in the presence of metal motion, making it 

suitable to be chained directly with image domain motion 

compensation methods. Since many exisiting motion 

estimation method rely on registration metrics such as cross 

correlation or mutual information, removing high contrast 

metal artifacts beforehand could potentially improve the 

reliability of these methods. Together, the proposed 

rocessing pipeline provides metal and motion artifact free 

images for fully automatic cardiac functional analysis. 

Because the method is in the image domain, large clinical 

registries of 4D Cardiac CT studies can have lead artifacts 

removed retrospectively for inclusion in important studies 

evaluating the use of 4DCT in prognosis for many cardiac 

conditions (heart failure, post myocardial infarction, cardiac 

resynchronization therapy, for example). Ongoing work 

includes expanding training and testing testing datasets as 

well as more rigirous validation of our training data 

generation framework.  
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Abstract Different reconstruction filters are used in CT imaging to
promote sharpness or suppress noise, for example. Designing machine-
learning algorithms for CT image processing that can be used with
different reconstruction filters, however, remains a challenge. In par-
ticular, it has recently been reported that CT image denoising based on
convolutional neural networks (CNNs) generalizes poorly to different
reconstruction filters and corresponding noise power spectra (NPS).
While it is conceivable to train different CNNs for different reconstruc-
tion filters each in a dedicated manner, in this paper we argue that
such a machine-learning algorithm for image denoising can and should
be made fully independent of the reconstruction filter, instead. In
particular, we show that it is well possible to train a single CNN-based
denoising model for a standard ramp filter, and obtain the desired filter
characteristics in the denoised images through an additional fast post-
processing step. This is demonstrated both by visual and quantitative
comparison using a clinical CT scan of the abdomen.

1 Introduction

All medical imaging modalities are susceptible to noise due
to inherent statistical effects in physical signal generation and
data acquisition. In X-ray computed tomography (CT), keep-
ing the radiation exposure as low as reasonably achievable
(ALARA) is a guideline commonly agreed upon. Low-dose
CT, however, comes at the cost of higher noise levels in the
reconstructed images. This explains the need for fast high-
quality image denoising algorithms. Convolutional neural
networks (CNNs) are a powerful machine-learning technique
well suited to perform image denoising in various medical
image domains.
CT images are reconstructed in practice using different recon-
struction filters, thereby promoting sharpness or suppressing
noise, for example (Fig. 1). It is a well-understood goal to
have image processing algorithms such as for image denois-
ing that are robust w. r. t. such changes of the reconstruction
settings. Machine-learning methods, and in particular deep
learning, however, are prone to overfit to the training data and
thus often fail to generalize to parameter settings not sampled
in training. In particular, it has recently been reported in [1]
that CT image denoising based on CNNs generalizes poorly
to different reconstruction filters and corresponding noise
power spectra (NPS). We have made the same observation.
While it is conceivable to train multiple CNN-based denois-
ing models for different reconstruction filters each in a dedi-
cated manner, it is highly undesirable or may even be unfea-
sible to train and maintain a large number of trained CNNs as
part of such a denoising solution. In this paper, we argue that
CNN-based CT image denoising can and should be made
fully independent of the reconstruction filter, instead, thereby

Figure 1. Exemplary CT images of the head (cropped FOV),
reconstructed with filtered backprojection (FBP) using (left) a soft
reconstruction filter and (right) a sharp reconstruction filter.

reducing the number of required CNN trainings substantially.
Specifically, we propose to train a single CNN-based denois-
ing algorithm for a standard ramp filter, and always start out
from images reconstructed with such a generic filter. After de-
noising the images with this ramp filter-trained CNN model,
different image characteristics can be achieved through an
additional fast filtering step in the image domain.
Our approach is motivated by the fact that standard recon-
struction filters consist of two parts, namely the ramp and an
additional multiplicative modulation. We refer to the latter
as the modulation transfer function (MTF). The well-known
Fourier slice theorem shows that the application of the recon-
struction filter corresponds to a multiplication of the image
spectrum with a (properly defined) filter spectrum. Notably,
this holds true for the reconstruction filter parts independently,
i.e., we may first apply the ramp part of the filter during FBP
to reconstruct an image, and subsequently filter the images
with the MTF in the image domain. We have found empiri-
cally that the MTF part of the filtration commutes very well
with CNN-based image denoising. This enables us to train a
more generic CNN-based denoising model for the ramp filter,
and obtain the desired filter characteristics in the denoised
images through an additional fast post-processing step. Our
proposed solution is illustrated in Fig. 2.

2 Materials and methods

2.1 Data

Raw data from five clinical body scans performed with a
Philips iCT with an energy-integrating detector were used
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Figure 2. Proposed workflow for CNN-based CT image denoising. In this approach, one always reconstructs the image(s) with a ramp
filter first. Then a generic denoising CNN is applied, which is trained to operate with ramp filter only. The desired filter characteristics of
the images are then obtained through an additional fast post-processing step in the image domain.

to test our strategy for reconstruction-filter agnostic CNN-
based CT image denoising. Three cases were used as training
data, one case as validation data (see below), and one case
was reserved for testing. The tube current in these scans
was 335 mA, 347 mA, and 298 mA (training cases), 384 mA
(validation case), and 447 mA (testing case). The tube voltage
was 120 kV in all scans. All scans had the same rotation time
(500 ms) and approximately the same table speed (8 cm/s).
We applied an advanced low-dose simulation technique [2]
to the acquired raw data to simulate a 25% dose level from
the acquired 100% dose level by artificially reducing the tube
current by a factor of four. Images were reconstructed with
FBP using three different reconstruction filters: a ramp filter,
a sharp body filter, and a soft body filter. Reconstructions
were performed with 512× 512 matrix size and a field of
view (FOV) of 400 mm. The slice thickness and increment
were 1.0 mm and 0.5 mm, respectively. No image-based
denoising was used at this stage. A total of 3,779 (1,425)
slice images for each dose level (100% and simulated 25%)
were reconstructed for training (validation, respectively).

2.2 CNN-based CT image denoising using a bias-free
DnCNN

Machine-learning and in particular deep-learning approaches
have recently gained popularity in medical image denoising
due to substantial improvements over classical methods (see
[3, 4], for example). Specifically, in supervised learning,
models in the form of convolutional neural networks (CNNs)
with dedicated topology/architecture are trained to remove
noise from an input image by presenting to the model noisy
images and noise-free or low-noise counterparts during train-
ing phase. Noisy images can be generated by imposing (ad-
ditional) noise with the desired statistical characteristics on
noise-free or low-noise images (as in our case), or by directly
acquiring images with noise. The model may be trained in
residual learning mode, which means that the network is not
trained to directly produce a denoised image from the input,
but instead provide as output an estimate of the noise in the
input image. This noise estimate is then (partially) subtracted
from the input after inference to yield a (partially) denoised

image. Pixel-wise loss functions such as mean squared error
(MSE, also referred to as L2 loss) or mean absolute error
(MAE, also referred to as L1 loss) are common choices, but
other types of loss function such as structural similarity index
(SSIM) and adversarial losses have also been used.
An aspect of high practical relevance is whether the noise
level in the input images is fixed/known a priori. If the
noise level is not known during model inference, one speaks
of blind image denoising. It is generally desirable to have
a model that is robust w. r. t. varying noise levels (in med-
ical imaging, often not only between different images but
often also within a single image). Such a robust solution
to the problem of blind image denoising has recently been
introduced in [4], and we use this approach in this paper to
demonstrate our approach to filter-agnostic CNN-based CT
image denoising.
Specifically, we used PyTorch1 to train the bias-free denois-
ing CNN (BF-DnCNN) described in [4] in residual learning
mode using a standard ADAM (‘adaptive moment estima-
tion’) optimizer [5] with a learning rate of 1e-4 and with
MSE as the loss function. Training was carried out three
times in exactly the same manner for the ramp filter, the
soft reconstruction filter, and the sharp reconstruction filter,
respectively. Random initial weights (parameters) for the un-
trained CNNs were automatically generated by PyTorch. The
BF-DnCNN architecture we used has 16 convolutional layers
with 3×3 kernel size and without padding (so-called valid
convolutions), each followed by a leaky ReLU as nonlinear-
ity, plus one final layer with a 1×1 convolution. The number
of channels between the convolutional layers was 64. Train-
ing was done in a patch-wise manner, i.e., the networks were
trained on image patches with a size of 64×64 pixels (the
output patch size was thus 32×32). Random flipping in both
directions was done on-the-fly during training as data aug-
mentation. The target data were the corresponding patches
containing only the noise from the input (that is, the differ-
ence between simulated 25% dose and acquired 100% dose
images). The networks were each trained for 2,000 epochs,
where one epoch was defined as one sweep over 42,513 ran-

1https://pytorch.org/
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domly drawn patches using a minibatch size of 200 patches.
We saved the model with the best validation error, where
validation was done after each epoch using the same 3,000
patches that were drawn randomly from the validation images
at the beginning of training (without augmentation).

2.3 Image post-filtration

As explained above, the Fourier slice theorem shows that the
MTF part of the reconstruction filter may be applied as a
convolution operation on the reconstructed images to obtain
the desired filter characteristics. This can be done in a fast
way using multiplication in the frequency domain. We thus
reverse-engineered the MTF part of the soft and the sharp
reconstruction filter for body used in this work. This allowed
for fast application of these filters to (denoised) images recon-
structed with a ramp filter using the fast Fourier transform
(FFT) and its inverse. If the exact MTF of the requested
reconstruction kernel is known analytically, one can convert
this known MTF into its corresponding 2D image domain
filter representation for the described post-filtration step after
image-based denoising. In absence of this knowledge one
has to revert to the reverse-engineering approach as used in
this work.

3 Experiment

We used the ramp filter-trained BF-DnCNN to denoise the
25% dose images reconstructed with the ramp filter, and
applied image post-filtration to the denoised images to obtain
images with the filter characteristics of the soft and sharp
body reconstruction filter, respectively. For comparison, we
applied the corresponding BF-DnCNN models that were
dedicatedly trained for the soft and the sharp reconstruction
filter to the 25% dose images reconstructed with the soft and
the sharp filter, respectively.

4 Results and discussion

Figure 3 shows the slice-wise mean of the absolute error (AE)
and structural similarity index (SSIM) computed on the test
case, providing for a quantitative comparison between the
dedicated filter-trained CNNs and our proposed alternative
stategy with only one ramp filter-trained CNN. We also show
the 95th percentile of the absolute error for each slice (i.e.,
the absolute error is below this value for 95% of the pixels
in each slice). It can be seen that our filter-agnostic method
for CNN-based CT image denoising consistently achieves
essentially the same values as the dedicatedly trained CNNs,
with similar distribution of the absolute error and only slightly
different SSIM (slightly lower for the soft filter and slightly
higher for the sharp filter; however these particular directional
differences were not always observed in other cases that
we tested our approach on). Note that the absolute error
was computed with the soft and sharp filter-reconstructed

Figure 3. Slice-wise absolute error (AE, mean and 95th percentile)
and structural similarity index (SSIM), computed on the test case.
The horizontal axis runs through 400 slices, starting at roughly the
center of the heart and ending roughly at the ilium. Both AE and
SSIM were computed with the soft and sharp filter-reconstructed
images with acquired 100% dose as the respective ground truth.

images with acquired 100% dose as the respective ground
truth, which itself contains noise.
Figure 4 shows exemplary denoised images of the abdomen
with different filter characteristics, as well as the correspond-
ing ground truth images with acquired 100% dose (left col-
umn) and images with simulated 25% dose (center left col-
umn). The images in the center right column were generated
from the ones in the center left column by applying the two
denoising CNNs dedicatedly trained for the soft and sharp
reconstruction filter, respectively. While this approach does
yield high-quality denoising results, the number of CNNs in
this method is unnecessarily high. The right column shows
the corresponding results with the proposed alternative strat-
egy. Here a single image with simulated 25% dose was first
reconstructed using a standard ramp reconstruction filter (not
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Exemplary CT images of the abdomen (cropped FOV), with (a) acquired 100% dose reconstructed with a soft body filter, (b)
simulated 25% dose reconstructed with a soft body filter, (c) image (b) denoised with soft filter-trained CNN, (d) simulated 25% dose
reconstructed with ramp filter and denoised with ramp filter-trained CNN with subsequent application of the soft-filter MTF, (e) acquired
100% dose reconstructed with a sharp body filter, (f) simulated 25% dose reconstructed with a sharp body filter, (g) image (f) denoised
with sharp filter-trained CNN, and (h) simulated 25% dose reconstructed with ramp filter and denoised with ramp filter-trained CNN with
subsequent application of the sharp-filter MTF. Note that the same denoising CNN was used to generate the images in the right column,
yielding virtually the same results as training different CNNs for different reconstruction filters, shown in the center right column.

shown). This image was denoised with the ramp filter-trained
CNN-based denoising algorithm. Subsequent application of
the MTFs for the soft and the sharp reconstruction filter in the
image domain using the FFT and its inverse yielded virtually
the same results as those shown in the center right column.
These results clearly demonstrate that it is well possible to
train a single CNN-based denoising model for a standard
ramp filter, and obtain the desired filter characteristics in the
denoised images through an additional fast post-processing
step. We thereby arrive at a potentially more robust and
broadly applicable solution while at the same time reducing
the number of required CNN trainings. Our approach may
also reduce the number of reconstruction filters in general,
because many of such have essentially been designed to
control the SNR of the reconstructed images. This may not
be necessary with improved CNN-based CT image denoising
anymore.
One aspect of practical relevance is that when using FFTs
to apply the MTF to the denoised images, one has to take
into account the implicitly assumed periodicity of the image
data in order not to introduce wrap-around artifacts with post-
filtration. This amounts to using an adequate linear (i.e., not
circular) type of convolution.
Finally, we note that the idea presented here may also be used
with other types of CNN-based CT image processing.
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Abstract For sparse-view computed tomography (CT), the neural
networks have limited ability to remove the artifacts with only infor-
mation in the image domain. The introduction of sinogram can achieve
a better anti-artifact performance, but it inevitably requires the feature
maps of the whole image to be put into video memory, which makes
handling large-scale or three-dimensional (3D) data a great challenge.
In this paper, we propose a patch-based denoising diffusion proba-
bilistic model (DDPM) for sparse-view CT reconstruction. A DDPM
network based on patches extracted from fully sampled projection data
is trained and then used to inpaint the down-sampled projection data.
The network does not require paired full-sampled and down-sampled
data, enabling unsupervised learning. And the processing of the data
is patch-based, which can be distributedly deployed, overcoming the
challenge of processing large-scale and 3D data. The experiments
also show that the proposed method can achieve excellent anti-artifact
performance while maintaining the texture details.

1 Introduction

Sparse-view CT has kept receiving wide attention from in-
dustry and academia because it can reduce the radiation risk
to patients and enable healthier diagnosis. Concomitantly, a
number of researchers have devoted themselves to eliminat-
ing artifacts and noise in sparse-view CT, making it practical
for clinical applications.
In the last two years, the denoising diffusion probabilistic
model (DDPM) [1] emerged and achieved success in the
image generation field. DDPM gradually adds Gaussian
noise perturbation to the image, projects the image into the
latent spaces, and uses the network to learn the denoising
process of the latent spaces. DDPM overcomes the mode
collapse problem of GAN and also exhibits better stability
than GAN in image enhancement tasks [2].
Inspired by DDPM, in this paper, we propose a projection
patch-based DDPM method for sparse-view CT reconstruc-
tion. In the training stage, we use U-Net [1] to learn the re-
verse diffusion process for fully sampled projection patches.
In the sampling process, we first implement fully sampling
radon transform on the sparse-view CT images to obtain
pseudo fully sampled projection data. Then pseudo fully
sampled projection data is cropped into patches as the condi-
tion of reverse diffusion. The patches restored by ordinary
differential equation (ODE) sampling are put together to get
the final projection data, and high-quality reconstructed im-
ages are obtained using FBP. The reconstruction with our
proposed method can eliminate the artifacts while preserving
clinically important details. Also, two additional features of
our method make it clinically friendly. First, our method does
not require paired data, and both training and sampling are in

an unsupervised training framework. Second, the sampling
of our method is patch-based, which can split the large-scale
data and 3D data into patches or cubes and process them in
parallel. These features allow our proposed method to solve
the challenges of deep reconstruction in the clinic.

2 Methodology

2.1 Score-Based DDPM for Patch Inpainting

We denote the fully sampled projection data as YYY ∈ RNv×Nd ,
where Nv and Nd represent the number of projection views
and the detector elements, respectively. The down-sampled
projection data can be obtained by a linear transform

ZZZ = P(MMM⊙YYY ), (1)

where ZZZ ∈ RN′
v×Nd denotes the sub-sampled projection data,

MMM ∈ RNv×Nd is the mask, with the entry MMMi j = 1 if the i-th
view is sampled else MMMi j = 0, ⊙ represents the element-wise
multiplication, and P : RNv×Nd → RN′

v×Nd is the operation to
extract the selected view data from the projection data.
To implement the patch-based diffusion, we randomly extract
a patch yyy ∈ Rd×d from the fully sampled projection data YYY .
According to [1], the forward process of DDPM is a Markov
chain which gradually adds Gaussian noise perturbation to
the clean patch yyy0 = yyy with a predefined variance sequence
βββ = {β1,β2, · · · ,βT}:

q(yyy1:T |yyy0) =
T

∏
t=1

q(yyyt |yyyt−1), (2)

where
q(yyyt |yyyt−1) = NNN(yyyt |

√
1−βtyyyt−1,βtIII). (3)

The iteratively perturbed patch at any time step t can be
directly obtained from yyy0:

q(yyyt |yyy0) = NNN(yyyt |
√

ᾱtyyy0,(1− ᾱt)III), (4)

where αt = 1−βt and ᾱt = ∏
t
i=1 αi.

And a U-Net [1] can be used to learn the Gaussian perturba-
tions:

LLL = Eyyy,εεε,t

∥∥∥εεε − εεεθθθ (
√

ᾱtyyy0 +
√

1− ᾱtεεε, t)
∥∥∥2

2
. (5)

In the inference stage, the iterative expression of the inverse
diffusion process yyyt−1 ∼ pθ (yyyt−1|yyyt) can be computed as
follows:

yyyt−1 =
1√
ᾱt

(
yyyt −

1−αt√
1− ᾱt

εεεθθθ (yyyt ,xxx, t)
)
+σtξξξ . (6)
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Figure 1: Score-based DDPM for projection patch sampling.

Song et al. used a stochastic differential equation (SDE) to
describe the diffusion process [3]:

dyyy = f (t)yyydt +g(t)dwww, (7)

where www ∈Rd×d is the standard Wiener process, f : R→R is
the scalar function to obtain the drift coefficient, and g : R→
R is the scalar function to obtain the diffusion coefficient.
And according to [1], the reverse diffusion process can also
be modeled as the solution to an SDE:

dyyy =
[

f (t)yyy−g(t)2
∇yyy log pt(yyy)

]
dt +g(t)dw̄ww, (8)

where w̄ww ∈ Rd×d is the standard Wiener process for reverse
time SDE, and ∇yyy log pt(yyy) is referred to as the score. Instead
of that DDPM network learns the noise perturbation, the
score-based model uses the network to estimate the score. So
we can train a time-dependent network score estimate model
sssθ with the following loss function:

LLL = Eyyy,tλ (t)
∥∥sssθθθ (yyy(t), t)−∇yyy(t) log pt(yyy(t)|yyy(0))

∥∥2
2 . (9)

where λ (t) is a positive weighting function.
In the reverse time SDE sampling, the step size is limited by
the randomness of the Wiener process [4]. Song et al. proved
that the reverse time SDE sampling shares the same marginal
probability densities with an ordinary differential equation
(ODE) sampling process [3]:

dyyy =
[

f (t)yyy− 1
2

g(t)2
∇yyy log pt(yyy)

]
dt, (10)

By ODE sampling, the reverse diffusion process can reduce
the noise generated by the random Wiener process and allow
a larger step size to improve the sampling efficiency.
Essentially, DDPM in [1] can be seen as a special form of
SDE. And The perturbation prediction network of DDPM
εεεθ can essentially be seen as estimating the scaled score
−σt∇yyy log pt(yyy(t)). Therefore, the trained perturbation pre-
diction network and the score prediction network can be
converted to each other. In this paper, we trained a score esti-
mation network with patches extracted from fully sampled
projection data, whose flowchart is shown in Fig. 1. And
Algorithm 1 shows the training procedure of the estimation
model sssθθθ .

Algorithm 1: Training of the score estimation model sssθθθ .
Input: Diffusion parameters β1,βT

Output: Trained model sssθθθ

Initialize sssθθθ randomly;
while not converged do

YYY ∼ p(YYY )
Randomly extract patch yyy(0) from YYY
t ∼ Uniform([0,1])
Update θθθ with the gradient
∇θθθ

[
g(t)2

∥∥sssθθθ (yyy(t), t)−∇yyy(t) log pt(yyy(t)|yyy(0))
∥∥2

2

]
end

2.2 Conditional ODE Sampling

The reverse time SDE can be solved with the Euler-
Maruyama sampler and further corrected by the Langevin dy-
namic as demonstrated in [3]. Starting from yyyi(t0)∼ NNN(0, III),
such sampling will finally generate a random projection data
patch. To achieve the restoration of the down-sampled pro-
jection data, we will add the down-sampled projection data
as a condition to the reverse diffusion process. First, for
the down-sampled projection data ZZZ, we first use the FBP
algorithm to obtain the noisy image X̄XX , then implement the
fully sampling radon transform on X̄XX to obtain the noisy fully
sampling projection data Z̄ZZ. The real projection data ZZZ is
used to rectify the noisy fully sampling projection data by
inserting the real projection values in ZZZ into Z̄ZZ:

Z̃ZZ = P−1(ZZZ)⊙MMM+ Z̄ZZ ⊙ (1−MMM), (11)

where P−1 : RN′
v×Nd →RNv×Nd is the operation to reshape the

down-sampled data into the fully sampling size by inserting
zero into the pixels corresponding to the discarded views,
Z̃ZZ is the final pseudo fully sampled projection data. Then
we extract N overlapped patches from pseudo fully sampled
projection data and down-sampling mask with a fixed stride,
and obtain two sets of patches {z̃zzi}N

i=0 and {mmmi}N
i=0.

For the reverse diffusion process at time moment t j, we first
obtain the forward diffusion distribution of {z̃zzi}N

i=0 as the
condition:

q(z̃zzi(t j)|z̃zz) = NNN
(
z̃zzi(t j)|a(t j)z̃zz,b(t j)

2III
)
, i = 1,2, ...,N. (12)
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Figure 2: Conditioning method for projection patch sampling.

Algorithm 2: Inference with the trained denoising model
sssθθθ .
Input: Number of time steps T ; Diffusion parameters

β1,βT ; Under-sampled projection data ZZZ;
Under-sampling mask MMM

Output: YYY

Load sssθθθ ;
X̄XX = FBP(ZZZ); Z̄ZZ = Radon(X̄XX);
Z̃ZZ = P−1(ZZZ)⊙MMM+ Z̄ZZ ⊙ (1−MMM)

Extract Patches {z̃zzi}N
i=0, {mmmi}N

i=0
{t j}T

j=1 = linspace(1,0)
for i = 1,2, ...,N do in parallel

yyyi(t0)∼ NNN(0, III)
for j = 1,2, ...,T do

z̃zzi(t j) = a(t j)z̃zz+b(t j)ξξξ , ξξξ ∼ NNN(0,1)
ŷyyi(t j) =

[
γ z̃zzi(t j)+(1− γ)yyyi(t j)

]
⊙mmmi +[

η z̃zzi(t j)+(1−η)yyyi(t j)
]
⊙ (1−mmmi)

yyyi(t j+1) = SDE Solver(sssθθθ , ŷyyi(t j), t j)

end
end
Obtain YYY by assembling patches {yyyi(tT )}N

i=0

Inspired by [5], we propose a conditioning method for sparse-
view CT projection data restoration. As shown in Fig. 2,
before solving the SDE, the forward diffusion distribution
{z̃zzi(t j)}N

i=0 is used to condition the reverse diffusion sampling
as follows:

ŷyyi(t j) =
[
γ z̃zzi(t j)+(1− γ)yyyi(t j)

]
⊙mmmi

+
[
η z̃zzi(t j)+(1−η)yyyi(t j)

]
⊙ (1−mmmi)

, (13)

where 1 ∈ Rd×d is the matrix with all elements of one. The
flowchart of the reverse diffusion process conditioned by
the pseudo fully sampled projection data is shown in Algo-
rithm 2.
However, the reverse time SDE sampling will introduce slight
perturbations to the projection data due to the randomness of
the Wiener process. Although these disturbances are indis-
tinguishable to the naked eye, they will spread to the entire
image domain after reconstruction with FBP algorithm, re-
sulting in serious degradation of image quality. To avoid the
perturbations caused by the Wiener process, we adopt ODE
sampling in this paper. In [3], Song et al. used the RK45

ODE solver [6] for the ODE sampling. In this study, we
introduce a more efficient ODE solver to further improve the
sampling performance [7].
In [8], Kingma et al. defined the scalar functions in Eq. (7)
as follows:

f (t) =
dlogηt

dt
, g2(t) =

dσ2
t

dt
−2

dlogηt

dt
σ

2
t , (14)

where ηt =
√

ᾱt . Substituting the perturbation prediction
model into Eq. (10):

dyyy =
[

f (t)yyy+
g2(t)
2σt

εεεθθθ (yyy(t), t)
]

dt, (15)

which is a semi-linear ODE [7], whose solution at time mo-
ment t can be calculated with the variation of constants for-
mula [9] as follows:

yyy(t) = exp
(∫ t

s
f (τ)dτ

)
yyy(s)

+
∫ t

s

[
exp

(∫ t

τ

f (r)dr
)

g2(τ)

2σt
εεεθθθ (yyy(τ),τ)

]
dτ

. (16)

Let λt = log(ηt/σt), Eq. (16) can be further simplified into

yyy(t) =
ηt

ηs
yyy(s)+ηt

∫ t

s

[(
dλτ

dτ

)
στ

ητ

εεεθ (yyy(τ),τ)
]

dτ. (17)

The predefined λt can be obtained with a strictly decreasing
function of t, denoted as λ (t), which has a inverse function
t = tλ (λ ). Then, by changing the time variable t into the
parameter variable λ and denoting ŷyy(λ ) := yyy(tλ (λ )) and
ε̂εεθθθ (ŷyyλ ,λ ) := εεεθθθ (yyy(tλ (λ )), tλ (λ )), Eq. (17) can be rewritten
as

yyyt =
ηt

ηs
yyy(s)+ηt

∫
λ t

λs

[
e−λ

ε̂εεθθθ (ŷyy(λ ),λ )
]

dλ , (18)

This integral can be calculated numerically by Taylor expan-
sion. According to the order of Taylor expansion, Lu et al. [7]
provided three solvers for the flow probability ODE, which
are called DPM-Solver-1, DPM-Solver-2 and DPM-Solver-3,
respectively.

3 Experiments and Results

The 2016 NIH-AAPM-Mayo Clinic Low-Dose CT Grand
Challenge dataset was chosen to conduct experiments. The
dataset has 2,378 paired CT images with a thickness of 3mm
from 10 patients. We selected 1,923 paired images from
8 patients as the training set, and 455 paired images from
the remaining 2 patients as the test set. The image size is
512x512. Then simulated projection data was obtained with
the distance-driven algorithm [10]. The geometric parameters
used in the simulation are consistent with those given in the
dataset. In our method, the patch size is set to 64x64. And the
continuous time range is t ∈ [0,1]. β1 and βT are respectively
set to 10−4 and 0.02 according to the recommendation in [1].
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Figure 3: The results obtained with our proposed method. (a) Ground truth, (b) Sparse-view CT, (c) Ours. The display window is
consistently set to [-160, 240] HU.

Table 1: Average quantitative results of our proposed method.

PSNR SSIM

Sparse-View CT 26.41 0.5608
Ours 38.69 0.9132

The model was trained with the Adam optimizer [11] with
a learning rate of 1×10−4. The training process converged
well after 2×105 iterations on a computing server equipped
with an Nvidia RTX A5000 GPU. When sampling, the projec-
tion data is uniformly down-sampled to 92 projection views
over the full 360◦. The stride for extracting patches is set to
32 for overlapping extraction. The number of functional eval-
uations (NFE) is set to 1000. And the condition parameters γ

and η are set to 1.0 and 0.1, respectively.
Fig. 3 shows the results obtained with our proposed method.
It can be seen that our proposed method can eliminate the
artifacts contained in the sparse-view CT reconstruction with
FBP. In particular, our method also preserves the structure
well without any detail loss or over-smoothness, which often
occur in deep learning-based methods. Observing from the
perspective of texture maintenance, the reconstructed CT
image with our proposed method has a very similar texture
to the ground truth, which is consistent with the doctor’s
reading habits.

4 Conclusion

In this paper, we propose a patch-based DDPM model for
sparse-view CT reconstruction. The method has excellent
anti-artifact performance while preserving the details and
textures. Our proposed method is based on unsupervised
learning, which can overcome the challenge of difficulty in
the acquisition of clinical paired data. At the same time, we
split the entire projection data into patches so that the data
can be processed in parallel, enabling the deep reconstruction
of large-scale and 3D data.
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Abstract Cardiac computed tomography is widely used in the diagnosis 

of cardiovascular disease, the leading global cause of morbidity and 

mortality. Diagnostic confidence depends strongly on the temporal 

resolution of the images. To freeze heart motion, one can reduce the 

scanning time by acquiring limited-angle projections, but this leads to 

increased noise and non-motion-related artifact. The ability to reconstruct 

high quality images from limited-angle projections is thus highly 

desirable. However, this is a difficult, ill-posed problem. With the 

development of deep learning networks, such as U-Net and transformer 

networks, much success has been achieved on many image processing 

tasks. Here, we propose a hybrid model based on U-Net and Swin-

transformer networks. U-Net has the potential to restore structural 

information lost due to missing projection data and related artifacts, while 

the Swin-transformer can  gather a more detailed feature distribution. We 

demonstrate, through application to synthetic XCAT data, that our 

proposed method outperforms the state-of-the-art competing deep 

learning-based methods.         

1. Introduction 

Computed Tomography (CT) is one of the most highly 

utilized imaging tools in clinics and hospitals. In typical 

multislice CT imaging scanning, the detector acquires 

projection views over the entire range of angles required for 

a full-scan tomographic reconstruction. These views can be 

combined to reconstruct a cross-sectional image using 

algorithms such as filtered back projection (FBP).  

  The limited-angle problem typically refers to a scanning 

range of less than 180°, and it is a highly ill-posed problem. 

 By reconstructing images based on a limited angle dataset, 

it is possible to image moving objects within a shorter time 

window. Also, it may be possible to image using a lower 

radiation dose to the patient. 

In a typical CT scan, even though the patient is typically 

under a breath-hold instruction and is told to keep still, it is 

impossible to eliminate physical movements of organs such 

as the beating heart. Hence, cardiac CT images exhibit 

motion artifact due to insufficient temporal resolution. 

Since temporal resolution is limited by maximum speed of 

the rotating gantry, short-scan data are typically used for 

image reconstruction and make it possible to select that 

cardiac phase that exhibits the least motion artifact. In many 

practical cases (e.g., atrial fibrillation), current temporal 

resolution is not adequate to freeze the beating heart. This 

is because the optimal phase may be different for different 

vessels/segments of the coronary tree, and even if the best 

phase is selected, motion will still occur within the 

corresponding temporal gating window when the heart rate 

is high. To further improve the temporal resolution of 

cardiac CT, limited-angle image reconstruction is a natural 

solution.  

Direct application of a conventional image reconstruction 

algorithm (e.g., FBP) to limited-angle projections would 

result in images with poor quality and severe streak artifacts. 

Previously, researchers have assumed that an image is 

sparse, and that this prior knowledge can help to improve 

image quality. For instance, the total variation (TV) 

regularization model is based on the assumption of 

piecewise constancy of the image and the sparsity of the 

discrete gradient transform; TV can suppress noise while 

preserving edges [1].  

Iterative minimization algorithms were also developed to 

enhance reconstruction performance. Although these 

iterative reconstruction algorithms can improve image 

quality in terms of noise-based metrics, they often suppress 

image detail, and reconstructed images often exhibit 

residual artifacts and poor texture. Additionally, these 

methods incur a high computational cost [2], and the 

performance may be even worse when applied to the 

limited-angle reconstruction problem.   

     In recent years, deep learning has been widely applied in 

computer vision fields such as image segmentation, as well 

as for denoising and super-resolution. The limited-angle 

reconstruction problem can be formulated as a learned 

mapping between low-quality and high-quality images. 

This requires large dataset, and the results rely on 

supervised learning. Convolutional neural network (CNN)-

based models have been proposed to improve model 

representation ability by using more elaborate neural 

network architectures, such as generative adversarial 

network (GAN) based models [2][3], U-Net models [4][5], 

and residual blocks [6]. DD-Net is a dense and 

deconvolution network intended to increase the data quality 

by reusing the features more effectively [7]. TomoGAN 

adopted the adjacent noisy images and developed a GAN 

network with U-Net generator [8]. 

      Transformer, a natural language processing model, has 

achieved great success in computer vision tasks [9]. When 

applied to vision problems, it divides a natural image into 

small patches and learns inside knowledge using a self-

attention module. It also explores the global interactions 

between different patches. To further increase the 

interaction, a shift window (Swin) multi-head attention was 

developed by shifting the partition [10]. TransUNet applied 

transformer blocks on deep feature maps [11]. Swin-UNet 

replaced all the convolution layers with transformer blocks 

in U-Net [12]. SwinIR added the convolution layer and long 

shortcut connections to the transformer network [13].  
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U-Net achieves great success when applied to image 

segmentation tasks, which implies is may be capable of 

helping to restore major structural information to limited-

angle images. Meanwhile, Transformer blocks perform well 

on the task of learning global information between patches. 

Those observations inspire us to develop a parallel network 

structure to combine U-Net and transformer blocks to 

jointly learn structural features and details of limited-angle 

cardiac CT images. Long shortcut connections and a 

convolution layer offer the potential to further enhance the 

image quality.  

2. Materials and Methods 

2.1 Network architecture 

In this paper, we propose a Swin-Transformer-based image 

restoration model for limited-angle cardiac CT, which we 

refer to as SwinUC. The model is composed of four 

elements: Swin-transformer block, U-Net module, 

convolution layer, and skip connection. First,  a convolution 

layer extracts the feature map, followed by a stack of 

residual U-Net Swin-Transformer blocks for latent feature 

extraction. A long skip connections are added to combine 

features and feed these into the last convolution layer.  

 
Fig. 1. The framework of the proposed Swin-transformer U-Net 

convolution network. UST represents Swin-transformer U-Net blocks. 

The input is a low quality FDK result from limited-angle projections, and 

the label is a high quality FDK result from full view projections without 

motion. 

As shown in Fig.1, a low-quality image reconstructed 

from limited-angle projections serves as an input 𝐼 LA  ∈
 ℝ𝐻×𝑊, where H and W are image height and width. We use 

a convolution layer Conv𝐶 to extract to feature maps, the 

kernel size is 3 × 3, and 𝐶 represents the channel number. 

We then obtain a feature with a higher dimension 

𝐹 ∈ ℝ𝐻×𝑊×𝐶 . UST represents Swin-transformer blocks, 

and two UST blocks UST1 and UST2  are consecutively 

connected after the convolution layer. Then, a residual 

connection combined the early-stage features and the deep 

features. Next, we use a convolution layer with one channel 

Conv1 to improve the local features: 

       𝐼 out = Conv1 ((UST2(UST1(Conv𝐶(𝐼 LA))))  +

Conv𝐶(𝐼 LA) ).                                                         (1) 

In our image reconstruction experiment, we train the 

network by minimizing the mean square loss: 

          Loss =  ||𝐼 out − 𝐼 FV||2,                             (2) 

where 𝐼 FV represents the ground-truth that is reconstructed 

by FBP/FDK from full view motionless projections. 

 

 

 
Fig. 2. The structure of Swin-transformer U-Net block. ST represents a 

Swin-transformer block.  

As shown in Fig.2, the Swin-transformer U-Net block is 

a residual connection with parallel Swin-transformer layers 

and U-Net. We feed an input feature map 𝑓in in parallel to 

Swin-transformer layers ST1, ST2  and U-Net layers U. We 

then extract the latent features and feed these into the 

convolution layer Conv.  Finally, we add the residual 

connection to get the output feature 𝑓𝑜𝑢𝑡: 

𝑓out =  Conv(U(𝑓in) + ST2(ST1(𝑓in))) + 𝑓in .    (3) 

In this block, U-Net gathers structural information, and the 

Swin-transformer layer integrates global spatial 

information. The skip connection layer aggregates distilled 

features to capture shallow features.  

 
Fig. 3. The structure of a Swin-transformer block. LN is layer 

normalization, MSA is multi-head self-attention, MLP is a multilayer 

perceptron, and SWMSA is a shift window multi-head self-attention. 

In figure 3, we show the standard Swin-Transformer 

architecture, which consists of two consecutive transformer 

blocks. The first is a window multi-head attention block, 

and the second , a window shift multi-head attention block. 

Each block includes layer normalization, skip connections, 

and a two-layer multilayer perceptron with ReLU layer. As 

introduced in [10], the shifted window partitioning 

approach introduces connections between non-overlapping 

windows in previous layer, and is effective for feature 

extraction. Given an input feature size of input 𝐻 × 𝑊, the 

transformer first reshapes it into  
𝐻𝑊

𝑀2 × 𝑀2  features by 

partitioning the input into 𝑀 × 𝑀 windows. It computes the 

self-attention on each window. For a local window feature 

𝑋 ∈  ℝ𝑀2
, by using projection matrices 𝑃𝑞 , 𝑃𝑘 , 𝑃𝑣 ; 𝑄, 𝐾, 𝑉 

are computed as: 

𝑄 = 𝑋𝑃𝑞 , 𝐾 = 𝑋𝑃𝑘 , 𝑉 = 𝑋𝑃𝑣 .                              (4) 

The self-attention process is as following: 

Attention(𝑄, 𝐾, 𝑉) = SoftMax(
𝑄𝐾𝑇

√𝑑
+ 𝐵)𝑉,         (5) 

where 𝑄, 𝐾, 𝑉 ∈  ℝ𝑀2×𝑑 , are the query, key, and value 

matrices; d is the dimension;  𝑀2 is the number of features 

in a window; and 𝐵 is relative position bias 𝐵 ∈  ℝ𝑀2∗𝑀2
. 

2.2. Evaluation: Dataset and Experiment Setup 

We use the 4D extended cardiac-torso (XCAT) phantom 

version 2 to generate realistic projection data to simulate a 

cardiac CT imaging procedure performed with injected 

iodinated contrast medium. This widely utilized 

multimodality phantom was developed at Duke University 

and is described in detail in [14]. XCAT can output a 4D 

phantom of attenuation coefficients to mimic a patient with 
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beating heart which is close to realistic dynamic cardiac CT 

imaging situations. Phantoms are generated based on a set 

of pre-defined parameters, including spatial resolution, 

temporal resolution, respiration rate, and heart rate. After 

generating the digital phantoms, we use XCAT’s CT 

projector to generate the cone-beam CT projections. The CT 

projection simulation is controlled by some key parameters, 

such as the distance from the object to the source, distance 

from the object to the detector, the detector array size, the 

x-ray source energy spectrum, and the beam half-fan angle. 

These parameters are configured to mimic a representative 

GE CT scanner. After generating the projection data using 

a circular scan, the standard FDK algorithm is employed to 

reconstruct the 3D volumetric image for each phase and 

scaled into Hounsfield Units (HU). Based on the tuned 

parameters, simulated images are generated for 10 patients 

both on dynamic and static phantoms. We reconstruct 

images at phases from 20% to 80%, with an interval of 3% 

[15].  

     Each simulated human phantom yields 21 different 

motion-blurred phases. For each phase, we apply standard 

FDK reconstruction to produce 32 image slices. For motion 

data, we select 120-degree-range views to reconstruct 

limited-angle images. In this way, we generate a cardiac 

phantom image dataset containing 6720 motion-blurred 

limited-angle images, and the corresponding 6720 static 

ground-truth images. The reconstructed images have 256 × 

256 pixels. We select images from nine patients and one 

patient as training and test datasets, respectively. 

    We employ the following settings: batch size =1, number 

of epochs = 100, Adam is used to optimize the model, and 

the learning rate is set at 10−5. We implement the proposed 

network with PyTorch, and use one NVIDA 2080Ti GPU 

for training. 

  We compare the performance of the following methods: 

TomoGan, DDNet, and U-Net. Two representative slices 

from the test dataset that include the major vessels and bone 

structures are shown to enable visual comparison of the 

methods. Both qualitative and quantitative analysis are 

performed. 

 

3. Results and Analysis 

Limited-angle reconstructed images, full-view 

reconstructed images, and images reconstructed using the 

different models, are shown in Figures 4 and 5. Due to the 

limited scanning range of projections, there are severe 

streaking artifacts in the raw FDK reconstructions.  

Although major structures are recovered, much edge and 

texture information is lost. Figures 4 and 5 show that all the 

deep learning-based methods demonstrate suppression of 

the streaking artifacts, but there are notable differences in 

performance. Comparing the region of interests (ROI) 

indicated by the blue and red arrows (see Figure 6), U-Net 

restores more edge information than DDNet. It preserves 

piecewise smoothness better than the TomoGan.  However, 

some of the vessel morphology is lost. The organs and bony 

structures contain more noise. The proposed method 

improves the image quality, and it is closer to the ground-

truth than other methods. These results demonstrate that 

SwinUC can reduce artifacts at edges and reconstruct 

dynamic objects more precisely; blood vessel and bone 

structure are preserved, and organ boundaries are well-

defined.  

 

 

Fig. 4. Reconstructed images of simulated case 153 (phase 

40, slice 10) using U-Net, TomoGan, DDNet, and SwinUC.  

 

 

Fig. 5. Reconstructed images on patient 153 (phase 40, slice 

21) using U-Net, TomoGan, DDNet, and SwinUC.  

We compare the reconstruction results quantitatively 

using the structural similarity index measure (SSIM) and 

root mean square error (RMSE) as metrics. The average 

values of SSIM and RMSE results using each method 

appear in Table 1. Better reconstruction image quality leads 

to higher SSIM values and lower RMSE values. One can 

see that DDNet outperforms U-Net and TomoGan. 

Compared to DDNet, our proposed method increases the 

SSIM value by 0.021 and reduces RMSE by 35.7%. These 

quantitative measures of reconstruction confirm that our 

proposed method achieves better performance than 

competing methods. 
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Fig 6. Magnified region of interest on patient 153 (phase 40, 

slice 21) using U-Net, TomoGan, DDNet, and SwinUC. 
 

Table.1 Quantitative comparison (average PSNR/SSIM) 

on the test dataset. 

 U-Net TomoGan DDNet SwinUC 

SSIM 0.9409 0.9357 0.9424 0.9631 

RMSE 0.0016 0.0018 0.0014 0.0009 

4. Discussion 

Limited-angle projetion imaging can be used to enhace 

temporal resolution in CT, but generally at the expense of 

the introduction of serious artifacts. Deep learning 

techniques can  help address this image inpainting and 

image denoising problem. U-Net is very effective for 

segmentation tasks, and can restore shape and edge 

information to the image. Transformer blocks gather global 

information by partitioning the image and using attention 

modules. The results of limited-angle reconstruction show 

that combining the U-Net and Swin-tranformer blocks 

creates a network that more effectively restores missing 

information. Our results show that edges oriented along 

directions within the scanning range are clear, while noise 

and artifacts are greatly reduced for image detail oriented 

along the range of missing angles. Our network outperforms 

other methods in the task of restoring bone and soft-tissue 

organ stuctures.    

Our network architecture combines U-Net and the Swin-

transformer to generate a UST block, and then stacks two 

UST blocks. In [10], stacking more transformer blocks is 

shown to typically improve network performance. However, 

the number of parameters increases dramatically and much 

higher computational cost is incurred. The optimal number 

of blocks can be found by performing further comparison 

experiments.  

We have demonstrated both qualitative and quantitative 

improvement in image quality using SwinUC. However, 

additional work is needed to further eliminate noise and 

achieve higher image quality, while preserving structural 

information.  

5. Conclusion 
   In this paper, we propose a network that combines the 

advantages of Swin- transformer and U-Net to solve the 

limited-angle tomographic reconstruciton problem. We 

descrubed the network structure and demonstrated its 

effectiveness. By comparing images reconstructed with 

DDnet, U-Net, and TomoGan, all trained on the same 

simulated dataset, we have shown that our method can 

effectively remove severe artifacts and improve the 

reconstruction image quality, as quantified by higher SSIM 

and smaller RMSE values.  
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Abstract Low-dose positron emission tomography (PET) imaging is 

made possible with the use of high sensitivity PET/computed 

tomography (CT) scanners with a long axial field of view (FOV). 

However, using CT for anatomical localization in this process imposes a 

considerable radiation burden. We aim to achieve total-body PET multi-

organ segmentation on non-corrected PET imaging using a deep learning 

(DL) approach as a step towards true CT-free PET imaging. Total-body 

18F-FDG PET images of 114 patients scanned with a Siemens Biograph 

Vision Quadra were used for the development. The ground-truth multi-

organ segmentation labels were generated using the CT images as input 

to the Multi-Organ Objective Segmentation (MOOSE) software. A 3D 

U-Net-like network was trained on the non-attenuation and non-scatter 

corrected PET images. Three nuclear medicine physicians independently 

assessed the utility of the results in a clinical setting.  The trained model 

achieved an average Dice similarity coefficient (DSC) of 0.82 on the test 

dataset. These preliminary results show an accurate overlap between the 

MOOSE-generated labels and our predicted organ segmentations: 70% 

of targeted organs achieved DSCs of more than 0.80, whereas a few 

organs exhibited lower scores (e.g., bladder [0.70], thyroid [0.69] and 

pancreases [0.59]). The visual readings conducted by three nuclear 

medicine physicians confirmed the usability of the generated 

segmentations for anatomical localization. In conclusion, our study 

demonstrates the possibility of total-body PET multi-organ segmentation 

using a deep learning-based method that does not require the anatomical 

information from CT. 

1 Introduction 
 

Positron emission tomography (PET) is one of the main 

imaging modalities in clinical routine procedures, 

especially in oncology [1] and neurology [2]. PET is being 

widely acknowledged as an indispensable tool for diagnosis, 

monitoring of malignant diseases, and determination of 

prognosis [3]. The advent of  long axial field of view (FOV) 

total-body PET [4] has enabled previously unachievable 

levels of sensitivity and quantification with reduced 

radiopharmaceutical dose [5]. Commercial PET/computed 

tomography (CT) scanners such as the Siemens Biograph 

Vision Quadra utilize the anatomical information provided 

by CT imaging mainly for localization and quantification 

purpose, which inevitably introduces additional ionizing 

radiation to patients [6] (6.4 mSv for low-dose CT [7]). As 

for the quantification aspect, attenuation (AC) and scatter 

correction (SC) are essential for precise PET quantification 

[8], which necessitate additional structural images from CT 

to calculate attenuation factors and model scatter. Deep 

learning (DL)-based methods have been proposed as a 

substitute for CT-based PET attenuation and scatter 

correction and have been verified on various scanners and 

tracers [9]. 
However, the localization function of CT-free PET imaging 

remains unadressed. Physicians continue to desire 

additional anatomic information from CT for localization 

purposes, which enhances their confidence in interpreting 

study results [10]. By utilizing the additional anatomic 

information provided by high sensitivity total-body PET 

[11], we aim to achieve total-body PET multi-organ 

segmentation on non-corrected PET imaging using a DL 

approach as a step towards true CT-free PET imaging.   

2 Materials and Methods 
 

A. Patient Cohorts 
 
114 subjects with 18F-FDG PET imaging were included in 

this study. Table 1 depicts information on the patients’ 

demographics. The subjects were scanned with a Siemens 

Biography Vision Quadra total-body PET/CT scanner at 

Inselspital, Bern, Switzerland.  

 

Scanner 
Siemens Biograph Vision 

Quadra 

Tracer 18F-FDG  

Number of Patients 114 

Total dose (MBq) 216.7±47.6 

Post-injection time 

(min) 
67.3±10.8 

Gender 

(Male/Female) 
49/65 

BMI (kg/m2) 24.9±4.8 

Table 1 Information on patients’ demographics 

B. Segmentation Pipeline & Evaluation 
 
The ground-truth multi-organ segmentation labels were 

generated using the CT images as input to the Multi-Organ 

Objective Segmentation (MOOSE) software [12]. The 

segmentation labels were then transformed to the PET 
image space and the dataset was randomly split into 91 

training and 23 test cases. We set up a segmentation pipeline 

to generate the multi-organ labels from the non-attenuation 

and non-scatter corrected PET (NASC-PET) images using 

the nnU-Net software [13]. A 3D U-Net [14] like model 
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with instance normalization [15] layers and leaky ReLU [16] 

activation functions was trained with deep supervision, 

where the loss is computed using multiple resolution levels. 

As the loss function, we used the sum of the cross-entropy 

and Dice [17] loss. The model was trained for 1,000 epochs 

with a batch size of 2, Stochastic Gradient Descent (SGD) 

as the optimizer, and with a decaying learning rate starting 

at 0.01. Common data augmentation techniques such as 

random rotations, scaling, and Gaussian noise were applied 

to the data during the training procedure. The trained model 

was used to predict segmentation maps of the test images 

with the sliding window approach. We additionally trained 

another model using the same procedure on attenuation and 

scatter corrected PET (ASC-PET) images to determine the 

influence of CT-based image corrections on the networks 

performance. Three board-certified physicians 

independently and blindly reviewed a mixed dataset 

consisting of both ground-truth and predicted 

segmentations. 

3 Results 
 

 NASC-PET ASC-PET 

Aorta 0.8817 0.8836 

Bladder 0.6991 0.7084 

Brain 0.9530 0.9531 

Heart 0.8966 0.9100 

Kidneys 0.8590 0.8767 

Liver 0.8826 0.9212 

Pancreas 0.5849 0.6266 

Spleen 0.8085 0.8769 

Thyroid 0.6871 0.6968 

Lung 0.9306 0.9504 

Table 2 Dice similarity coefficients of the different organs in the test 

dataset. 

Table 2 shows the average Dice similarity coefficients 

(DSCs) of the different organs over the test dataset. We 

depict the scores for the NASC-PET as well as the ASC-

PET images as a comparision. The trained model achieved 

an average DSC of 0.82 in the test dataset when using the 

NASC-PET images as input and a DSC of 0.84 when using 

the ASC-PET images as input. The preliminary results show 

an accurate overlap between the MOOSE-generated labels 

and our predicted organ segmentations: 70% of targeted 

organs achieved DSCs of more than 0.80, whereas a few 

organs exhibited lower scores (e.g., bladder [0.70], thyroid 

[0.69] and pancreases [0.59]). Figure 1 visualizes an 

exemplary test prediction. Visual readings of three nuclear 

medicine physicians shows no significant difference 

between ground-truth and predicted segmentations within 

test group. 

 

 
Figure 1 Exemplary test results of 18F-FDG imaging from SIEMENS 

Healthineers Vision Quadra. 

4 Discussion 
 
The advancement of DL-based attenuation and scatter 

correction technology provided a starting point for CT-free 

PET imaging. It enabled several application scenarios, such 

as multiple PET tracers examinations [18, 19], pediatric 

patients with previously acquired anatomic images [20], 

and pharmaceutical developments [21, 22]. However, for 

CT-free PET imaging to be considered clinically acceptable, 

the function of anatomical localization must be realized. 

The combination of PET and CT has increased the 

confidence of interpreting studies and the accuracy of 

localization and identification of non-pathologic uptake 

[10]. Our proposed multi-organ segmentation for total-body 

PET imaging can replace anatomical imaging by generating 

a segmentation mask from the PET image. 

In our study, we trained the model on NASC-PET images 

and found that the results were comparable to those 

obtained from a model trained on attenuation and scatter 

corrected PET (ASC-PET) images. As the ASC-PET data 

already incorporates anatomical information from 

attenuation maps (μ-maps) after correction, we deemed it 

more appropriate to conduct our study using NASC-PET 

images to avoid using any information coming from CT 

images.  

It should be emphasized that our preliminary study utilized 

a model trained on a homogeneous dataset from one scanner 

and one tracer, which tends to lead to the problem of 

overfitting of a DL model. We are currently in the process 

of collecting data from subjects injected with various 
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radiopharmaceuticals on the Vision Quadra and the United 

Imaging uExplorer, which will be incorporated into our 

development in the future. For the time being, ground-truth 

data is generated using the MOOSE software. Our 

physicians are currently assisting us with manual 

delieaniation of multiple organs, which will serve as either 

the ground-truth or be used for fine-tuning. Additionally, 

previous studies have suggested generating μ-maps or 

pseudo-CTs from non-corrected PET images [23]. We are 

interested in comparing our results with those obtained by 

segmenting organs from generated pseudo-CTs. 

5 Conclusion 
 
Our study explored the possibility of total-body PET multi-

organ segmentation using a deep learning-based method 

that does not require the anatomical information from CT. 

This represents an important step towards true CT-free PET 

imaging and has the potential to improve the efficiency and 

safety of PET scans.  
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Abstract Proposed is a semi-iterative whole heart Motion Estimation
(ME) algorithm. ME is performed in an iterative fashion in small
neighborhoods of motion nodes. Location of the nodes is selected
according to a new scheme. Then the nodes are ordered in a tree-
like structure based on spatial proximity. The motion of each node is
described by a parameterized model, and the motion model at each
node is estimated almost independently of the motion of the other
nodes. ME at the nodes is performed sequentially according to the
selected ordering. During ME, we reconstruct local patches, which
are small volumes centered at the motion nodes. Reconstruction is
done using short-scan data and the current motion model. Selecting
the best motion model is performed by minimizing a motion artifact
metric (MAM). Our MAM is the sum of two terms. The first one
measures similarity between patches reconstructed from two different
short-scan ranges. The second term measures image sharpness at
reference phase. Once ME for all nodes is complete, a global motion
model is computed by interpolating the estimated local models.
Finally, the global model is used for motion compensation in an FDK
algorithm. Numerical experiments show that the algorithm is robust
and provides good image quality.

1 Introduction

Despite the increased gantry rotation speed (of ∼ 0.25sec
per rotation in most advanced scanners presently available),
cardiac imaging still suffers from motion artifacts. A num-
ber of software-based approaches for improving temporal
resolution and reducing motion artifacts have been proposed.
The vast of majority of such approaches are based on
estimating the motion of the heart. Fully iterative algorithms,
which estimate both the volume at reference time and the
motion model, are usually time consuming and not suitable
for clinical practice [1]. Approaches, which are based
on performing motion estimation (ME) first using some
shortcuts, are more efficient. A group of popular approaches
is based on reconstructing subphase volumes (partial angle
reconstructions, or PARs) and using them for ME [2–4].
One option is to perform ME by registering pairs of PARs
that have been reconstructed at pairs of points separated
by 180◦ (e.g., as in [2]). Another option is to warp the
PARs according to some motion model and add them all
up to produce the full image. The optimal motion model is
selected by minimizing some motion artifact metric (MAM).
The choice of a MAM is usually a difficult task. Finding the
optimal motion model is a difficult task too, because the cost
functional is highly non-convex and multiple local minima
exist [5]. One way to overcome these difficulties is to use an
artificial neural network (ANN)[6, 7]. However, the use of
ANNs has its own challenges, which include getting ground

truth data, stability of the results with respect to fluctuations
in HU values, and others. In this paper we develop an ME
algorithm based on PARs and MAM, but we do not use an
ANN. Instead, the difficulties inherent in the task are solved
by using some novel ideas.

2 Algorithm description

Our cardiac Motion Estimation and Motion Compensation
(ME-MC) algorithm is semi-iterative. It combines locally-
iterative motion estimation (in a neighborhood of scattered
motion nodes) with analytic motion compensation. The
motion of each node is described by a parameterized model,
and motion parameters at each node are estimated almost
independently of all other nodes. The algorithm begins
with the following three steps: (1) determining positions
of the nodes, (2) ordering the nodes, and (3) sequential
motion estimation at each node by following the selected
order. Motion estimation at each node is iterative. Given
the current motion model we reconstruct three versions of
the same patch using three different short scan subsets of
the available projection data. A patch is a small volume
centered at a motion node, and the reconstructions are
motion compensated. Then we evaluate the quality of the
motion-compensated patches based on a cost functional.
The functional measures volume similarity between the two
versions of the same patch and their volume sharpness. Once
motion estimation at all nodes is complete, we perform the
final two steps: (4) finding a global motion model of the
heart by interpolating the local motion models found in step
(3), and (5) performing motion compensated reconstruction
using the global motion model found in step (4).

2.1 Motion estimation

To evaluate the motion at each node independently, we use
a set of patches, and compute the cost functional within
each patch. For the purposes of local motion estimation,
we assume that the motion does not change much within
each patch, so the assumption of rigid body motion is made.
Note that we assume rigid body motion only for local motion
estimation. The global motion model used for the final
motion compensation is elastic.
Our cost functional requires three patches reconstructed
using three different short-scan data ranges, we call them
SS-ref, SS-0 and SS-1. They are subsets of the total
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Figure 1: Schematic diagram of the short-scan ranges for SS-0,
SS-1, and SS-ref, shown on the source trajectory. Solid dots are
the short-scan center phases of the corresponding short-scans.

scan range, which is assumed to be slightly larger than
one full rotation. SS-ref is the short-scan range, which
is centered at the reference phase. This range is used for
the final reconstruction. Note that our algorithm neither
assumes nor requires that reference phase be the phase
where the cardiac motion is minimal. The algorithm
successfully reconstructed a motion-compensated volume
with the maximum estimated speed reaching 78 mm/s at
some nodes. SS-0 and SS-1 are short-scan ranges with their
centers at equal distance from the reference phase and on
opposite sides of it. Figure 1 illustrates the three short-scan
ranges.

2.1.1 Cost functional and its components

For each motion node, we use the following cost functional
to estimate the motion:

M̂ j = argmin
M

ϕ s
j (M)+ γp

j ϕ p
j (M)+ γ reg

j ϕ reg(M), (1)

where

• M is the set of motion parameters,
• ϕ s is the volume similarity cost functional,
• ϕ p is the volume sharpness cost functional,
• ϕ reg is the motion parameter regularizer,
• γt is the strength parameter of the corresponding

component ϕt ,

2.1.2 Volume similarity

Let F0
j (M), F1

j (M), and F ref
j (M) denote motion com-

pensated, reconstructed patches centered at the j-th node
using short-scans SS-0, SS-1, and SS-ref, respectively.
When the motion near the node is properly estimated
and compensated, the reconstructed volumes centered at

different phases should be almost identical. Therefore, we
use the sum of squared differences between F0

j (M) and
F1

j (M) to gauge how accurate the motion model M is. We
call the resulting value volume similarity ϕ s, and it is the
first part of our MAM.

ϕ s
j (M) =

1
N j

∥F0
j (M)−F1

j (M)∥2
2. (2)

Here N j is the number of voxels in the patch around the j-th
node.

2.1.3 Volume sharpness

Image sharpness is used as the second part of the MAM.
We estimate image sharpness by summing a vector norm
of the spatial gradient over the voxels in the patch.
Generally, imaging of moving objects produces blurry
images. However, CT reconstruction of moving objects
produces not only a blurry image, but also a depression
artifact, which is characterized by image values that are
too low. Frequently, these values are much lower than the
average reconstructed value inside the patch. Depression
artifacts tend to increase sharpness and cause bad local
minima of MAM. To reject the sharpness increase due to
a depression artifact, we apply a soft-thresholding function
G(x), which downweights the sharpness value around the
depression artifact. Detection of depression artifacts is
performed by analyzing image values. Since the final
reconstruction is done for the SS-ref, we maximize the
sharpness of F ref

j (M) as part of MAM to estimate motion.
Let x denote the vector of voxel spatial coordinates, and
f ref

j (x,M) denote the value of the motion compensated
reconstruction F ref

j at the voxel x. Then, we define the
volume sharpness cost functional as follows:

ϕ p
j (M) =− 1

N j
∑

i

∥∥∥∇ f ref
j (xi,M)

∥∥∥p

p
G(xi), (3)

where p is the exponent in the Lp vector norm.

2.1.4 Regularization

Minimization of the sum of the volume similarity and
sharpness cost functionals with respect to M can be used to
estimated motion. However, this sum is highly non-convex,
there are many local minima, and it is often difficult to find
the global minimum without an exhaustive search.
To use a gradient-based optimization technique, regulariza-
tion is required to avoid undesirable local minima. We
achieve this by penalizing various non-physical features,
such as an excessively large motion amplitude and a non-
smooth change in space.
To make motion estimation more stable, we also adjust the
regularization strength γ reg

j and the patch size for each node
depending on image features inside the patch.
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2.2 Node distribution

The distribution of motion nodes inside the heart is designed
in such a way so that the following two conditions are
satisfied: (1) motion nodes are distributed in an optimal
fashion so that the minimum number of nodes can be used
to accurately represent the motion of the entire heart; and
(2) motion nodes are placed only in the regions where
sufficiently distinctive features (e.g., strong edges) are
present. This ensures the robustness of motion estimation.
To satisfy condition (2), we distribute the nodes in regions
where anatomically significant features and/or significant
motion is present. Motion significance is measured in
an automated fashion by computing the edge difference
between uncompensated reconstructions of SS-0 and SS-1.
While the same overall algorithm is used to estimate motion
at all nodes, some parameters of the cost functional may vary
from node to node depending on anatomical characteristics
of the image near the node.

2.3 Warm-start sequence

As was mentioned earlier, the motion estimation cost
functional has multiple local minima, and gradient-based
optimization often fails to converge to the desired minimum.
Along with the regularization described in section 2.1.4,
we use a predetermined warm-start sequence during motion
estimation to improve robustness of the algorithm. The
idea is to estimate the motion of each node one by one
sequentially, so that iterative motion estimation at one node
is warm-started by the motion model computed at an already
processed, nearby node (called the parent node below).
Creating a warm-start sequence requires sorting the nodes.
Let Nk, k = 1,2, . . . , denote the desired node sequence. The
goal of the sorting is to make sure that for each node in
the sequence Nk, k ≥ 2, there is another node earlier in
the sequence Nm, m < k, so that dist(Nm,Nk) is below a
threshold. The node Nmk , mk < k, for which this distance
is minimal is called the parent node of Nk. This ensures
that the change of motion parameters between a node and
its parent node is small. The sorting algorithm works as
follows. The algorithm is initiated by creating two sets of
nodes: sorted and unsorted. Initially, the list of sorted nodes
contains only a starting node, which is located at the start of
the RCA, and the list of unsorted nodes contains all the other
nodes. Then the following steps are performed. (1) Find
the closest (in terms of the Euclidean distance) node pair
between the sorted nodes and unsorted nodes. (2) Remove
the identified unsorted node from the unsorted node list and
append it to the end of the sorted node list. The other
(already sorted) node from the optimal pair is marked as the
parent node for the newly added node. (3) Repeat (1) and
(2) until the unsorted node list is empty.
Once node sorting is over, we run motion estimation at each
node as described in section 2.1 by following the order in

the sorted node list. Motion estimation at the first node starts
with the zero motion. Motion estimation at each subsequent
node is warm-started using the estimated motion at its parent
node.

3 Test results

We present reconstruction results for clinical datasets
acquired using a Canon Aquilion ONE 320-slice CT scanner.
A total of 22 clinical datasets were tested, and all results
showed good improvement after ME-MC is applied. Figures
2 to 5 show four clinical data examples of our ME-MC
FDK reconstructions compared with the uncorrected FDK
reconstructions. The uncorrected images are on the left, and
the corresponding corrected ones - on the right. Comparing
the locations marked by arrows, we see that the algorithm
provides good image quality.

4 Conclusions

In this work, we presented a computationally inexpensive
algorithm for cardiac motion estimation and motion com-
pensation. The algorithm is based on MAM minimization,
and a number of ideas have been implemented in order to
avoid false local minima. Numerical experiments show that
the algorithm is robust and provides good image quality.
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(a) Uncorrected FDK (b) ME-MC FDK

Figure 2: Example of ME-MC results, first dataset. Maximum
estimated motion speed is 78 mm/s.

(a) Uncorrected FDK (b) ME-MC FDK

Figure 3: Example of ME-MC results, second dataset. Maximum
estimated motion speed is 46 mm/s.

(a) Uncorrected FDK (b) ME-MC FDK

Figure 4: Example of ME-MC results, third dataset. Maximum
estimated motion speed is 63 mm/s.

(a) Uncorrected FDK (b) ME-MC FDK

Figure 5: Example of ME-MC results, fourth dataset. Maximum
estimated motion speed is 45 mm/s.
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Abstract The temporal resolution of x-ray computed tomography (CT) 

is limited by the scanner rotation speed and detector readout time. One 

approach to reduce the readout time is to acquire fewer projections. 

However, reconstruction using sparse-view data could result in a loss of 

spatial resolution loss and reconstruction artifacts that could impact the 

accuracy of clinical diagnoses. Therefore, improving the spatial 

resolution of sparse-view CT (SVCT) is of great practical value. The aim 

of this study is to investigate the potential of using denoising diffusion 

probabilistic models (DDPMs) to eliminate noise and streaky artifacts 

while preserving fine details and enhancing textures in SVCT images. 

The DDPM was trained on a simulated dataset and its effectiveness was 

evaluated on both simulated and real data. The results of the study 

showed that the DDPM was successful in not only suppressing noise and 

artifacts, but also significantly enhancing the texture of the CT images.  

1 Introduction 

X-ray computed tomography (CT) plays an important role 

in medical imaging [1]. There are applications where high 

temporal resolution is important, such as reducing motion 

artifacts or visualizing spatial-temporal changes of contrast 

agents [2]–[4]. The temporal resolution of X-ray CT is 

limited by two factors: the rotation speed of the X-ray tube 

and the time it takes to read the detector for all the projection 

data. To reduce the detector readout time, fewer projections 

can be acquired per rotation. However, this can lead to a 

loss of spatial resolution in the reconstructed images, 

causing reconstruction artifacts [5] that can negatively 

impact the accuracy of clinical diagnoses. Improving the 

quality of sparse-view CT (SVCT) images is therefore of 

great practical significance. Compared to the traditional 

sparse-view problem, which is based on step-and-shoot 

acquisition, the SVCT investigated in this work suffers not 

only from angular under-sampling, but also from angular 

blurring due to the continuous rotation of the X-ray source. 

 

Numerous CNN-based methods have been proposed to 

restore SVCT images and have shown impressive results. 

However, these enhanced SVCT images usually suffer from 

over-smoothing. The overall appearance and local textures 

are significantly different from the CT images reconstructed 

using conventional methods, such as filtered back-

projection (FBP). In recent years, deep generative models 

(DGM), such as generative adversarial networks (GANs) [6] 

and denoising diffusion probabilistic models (DDPMs) [7], 

have shown promise in complex image enhancement tasks 

in the computer vision area. Compared to GANs, DDPMs 

have the advantage of producing more accurate distribution 

estimates, which can be useful in tasks such as noise and 

texture estimation [7], and they can effectively address the 

over-smoothing issue. DDPMs can also be trained using 

more efficient algorithms, such as maximum likelihood 

estimation (MLE) or maximum a posteriori (MAP) 

estimation, which are faster and more stable than the 

adversarial training approach used in GANs. 

 

The purpose of this study is to examine the potentials of 

utilizing DDPM to enhance the spatial resolution and 

restore textures in SVCT images.  

2 Materials and Methods 

2.1 The SVCT problem 

This study aims at recovering full-view CT (FVCT) images 

from SVCT images. We focus on the sparse-view data from 

helical CT scans with a continuously rotating X-ray source. 

In this case, each sparse-view projection covers a wider 

angular range than a full-view projection and is equivalent 

to the average of multiple full-view projections. This 

angular averaging leads to a radially dependent blurring 

effect in the reconstructed SVCT images, in addition to the 

streaks caused by angular under-sampling. 

 

2.2 SVCT enhancement using DDPM 

In this study, we applied a conditional DDPM to enhance 

the SVCT images, as depicted in Fig. 1. The underlying 

procedure of the network includes a forward diffusion 

process that gradually adds noise to input and a reverse 

denoising process that learns to generate data by denoising. 

DDPM works by learning to transform a standard normal 

distribution into an empirical data distribution through a 

sequence of refinement steps using a U-Net architecture 

network. Details can be found in references [7], [8]. In our 

experiments, we set the number of the root features to 64 

and the number of time steps to 2000. The network was 

trained with SVCT images as the conditional inputs and 

FVCT images as the labels. Additionally, as a point of 

comparison, we also trained and tested a conventional U-

Net utilizing the L1 loss function. 

 

2.3 Experimental datasets 

We obtained full-view helical CT scans of four subjects. 

Three scans were used to generate training data and the 

fourth scan was used for evaluation. The FVCT data have 

1,200 projections per rotation. The corresponding SVCT 

scans were simulated by averaging every five projections 

into one, resulting in 240 projections per rotation. The tube 

current for the FVCT scans ranged from 103 to 461 mAs, 

with a tube voltage was 120kVp. Both the FVCT and SVCT 
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images were reconstructed using a 512×512 image matrix 

size. To augment the training dataset, 12 image rotations 

were performed with 30-degree intervals. 

 

 
Fig. 1. The forward diffusion process (X0→XT) gradually adds Gaussian 

noise to the target image. The reverse inference process (XT→X0) 

iteratively denoises the target image conditioned on a source image. The 

source image is not shown here.  

 

2.4 Metrics for evaluation 

In this study, the commonly used metrics of mean absolute 

error (MAE), signal-to-noise ratio (SNR), and structural 

similarity index (SSIM) [9] were evaluated to compare 

different networks. To examine the difference of textures, 

two addition metrics were introduced: histogram correlation 

(HC) and local-binary-pattern-based (LBP-based) texture 

similarity [10], [11]. The definitions of these two new 

metrics are provided in subsequent sections. In addition, we 

also compared the noise power spectrum (NPS) [12] of the 

network predictions with that of the reference FVCT images. 

 

2.4.1 Histogram Correlation (HC) 

HC is a macroscopic metric that measures the histogram 

similarity between the network predictions and labels. It is 

calculated as: 

 

𝐻𝐶 =
∑[𝐻(𝐼𝑝𝑟𝑒𝑑) − �̅�(𝐼𝑝𝑟𝑒𝑑)][𝐻(𝐼𝐹𝑉𝐶𝑇) − �̅�(𝐼𝐹𝑉𝐶𝑇)]

√∑[𝐻(𝐼𝑝𝑟𝑒𝑑) − �̅�(𝐼𝑝𝑟𝑒𝑑)]2 ∑[𝐻(𝐼𝐹𝑉𝐶𝑇) − �̅�(𝐼𝐹𝑉𝐶𝑇)]2

 
(1) 

where 𝐻(𝐼𝑝𝑟𝑒𝑑) and 𝐻(𝐼𝐹𝑉𝐶𝑇) are the Hounsfield unit (HU) histograms 

of the network prediction and FVCT images, respectively, and  

�̅�(𝐼∗) =
1

𝑁
∑ 𝐻(𝐼∗) (2) 

and 𝑁 is the total of histogram bins. 

 

While HC is not a comprehensive metric and it is difficult 

to accurately assess image quality using HC alone, it can 

provide valuable information when used in conjunction 

with other pixel-wise metrics, such as MAE, for a more 

comprehensive understanding of the local texture and 

accuracy of the HU values in the images. 

 

2.4.2 Local-binary-pattern-based (LBP-based) 

texture similarity 

LBP [11] is a visual descriptor commonly used in computer 

vision to extract texture information from images. LBP-

based texture similarity (LBP-TS) calculates the similarity 

or dissimilarity between two LBP histograms, which are 

generated by quantifying the frequency of different LBP 

patterns that appear in the images. The similarity measure 

used in this study was Kullback–Leibler divergence, with 

lower values indicating a better match between the two 

images. The calculation process is shown in Fig. 2. 

 

 
Fig. 2. The schematic diagram of the LBP-based texture similarity 

calculation.  

 

2.5 Noise power spectrum (NPS)  

NPS is employed to further compare the texture restoration 

abilities of the networks. Twenty image patches, each with 

a size of 64×64, were extracted from the liver region across 

20 transaxial slices. To remove intensity variation, the 

averaged patch was filtered using a non-local means (NLM) 

method and subtracted from all the patches.  The resulting 

patches were considered as random noise and used to 

calculate the NPS. 

3 Results 

3.1 Image comparison 

Fig. 3 compares two representative image slices from the 

simulated test dataset. The images, from left to right, are the 

SVCT images, predictions from the U-Net, predictions 

from the proposed DDPM, and FVCT reference images, 

respectively. The display window for the lung slice is set to 

Width (𝑊) = 1500 HU/Level (𝐿) = −600 HU, while the 

display window for the abdominal slice is set to 𝑊 =
400 HU/𝐿 = 40 HU . The MAE, SNR, SSIM, HC, and 

LBP-TS were calculated and displayed below each image. 

The HU histograms are also presented in the right boxes. 
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Fig. 3. Comparison of two representative slices from the simulated test dataset. From left to right, the images are SVCT images, predictions from the 

U-Net, predictions from the proposed DDPM and FVCT images (reference), respectively. Blue and yellow boxes are the enlarged regions, the green 

boxes are the corresponding absolute difference image with respect to the FVCT reference images (W=80 HU/L=40 HU), and red boxes are the HU 

histograms of the corresponding slices. 

 

It is evident that both network predictions offer significant 

improvements over the SVCT images in terms of MAE, 

SNR, and SSIM, effectively reducing noise and suppressing 

artifacts. As shown in the magnified regions, both 

predictions enhance the sharpness of anatomical boundaries 

in the lung regions while preserving the details and fine 

structures of CT images in the abdominal regions. 

Furthermore, a comparison of the two network predictions 

shows that the results from the proposed DDPM exhibit a 

higher degree of texture restoration, a closer HU 

distribution to the reference, and an overall image 

appearance that is more similar to the FVCT reference 

images. 

 

3.1 Quantitative results 

Table 1 presents the averaged results of the MAE, SNR, 

SSIM, HC, and LBP-TS calculated over all tested slices for 

the SVCT image, the U-Net prediction, and the DDPM 

prediction. On average, the DDPM prediction achieved 

slightly lower scores in terms of MAE, SNR, and SSIM 

compared to the U-Net prediction, but significantly 

outperform the U-Net in terms of HC and LBP-TS (as 

determined by a paired t-test with a p-value ≪0.01). 

 

Table 1. Averaged metrics over all test CT slices (mean ± std) 

 SVCT U-Net DDPM 

MAE 26.40 ± 0.88 14.73 ± 1.10 18.65 ± 1.92 

SNR 26.50 ± 0.53 31.81 ± 0.37 30.05 ± 0.65 

SSIM 0.864 ± 0.006 0.951 ± 0.008 0.927 ± 0.015 

HC 0.946 ± 0.029 0.897 ± 0.027 0.989 ± 0.006 

LBP-TS 0.027 ± 0.006 0.015 ± 0.021 0.006 ± 0.002 

 

3.2 NPS comparison 

Fig. 4(a) shows the 2-D NPS and the corresponding 

absolute difference images with respect to the reference 2-

D NPS from the FVCT. Fig 4(b) shows the averaged radial 

1-D NPS. As shown in Fig. 4 (a) and (b), the U-Net not only 

suppressed the noise, but also removed the textures from the 

liver regions. In comparison, for both 2-D and 1-D NPS, the 

results of the DDPM predictions were much closer to those 

of the FVCT, providing further evidence that the proposed 

DDPM is capable of restoring a higher degree of textures. 

Input LabelDDPMU-Net

MAE: 12.39, SNR: 32.36, SSIM: 0.969
HC: 0.953 , LBP: 0.012

MAE: 14.02, SNR: 31.61, SSIM: 0.962
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MAE: 26.36, SNR: 25.82, SSIM: 0.867
HC: 0.906, LBP: 0.038

MAE: 26.36, SNR: 26.59, SSIM: 0.863
HC: 0.964, LBP: 0.022

MAE: 15.84, SNR: 31.26, SSIM: 0.94
HC: 0.909, LBP: 0.016
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Fig 4. NPS results. (a) 2-D NPS results and the corresponding absolute 

difference images with respect to the FVCT reference 2-D NPS. From 

the left to right, results from SVCT images, U-Net predictions, DDPM 

predictions and FVCT images (reference), respectively. (b) 1-D radial 

NPS curves and corresponding mean squared perccentage error, blue: 

SVCT, orange: U-Net, purple: DDPM, and red:FVCT. 

 

4 Discussion 

The most challenging aspect of the SVCT image 

enhancement was the texture restoration task. Due to the 

angular under-sampling and blurring, the textures were 

obscured by streaky artifacts and rotational smoothness. U-

Nets, limited by the properties of CNNs and pixel-wise loss 

functions, faced significant difficulties in restoring these 

textures, which led to over-smooth predictions, as 

demonstrated by the results shown in Figs. 3 and 4. In 

contrast, DDPMs were specifically designed to learn the 

underlying probability distribution of the training dataset 

and therefore had a more significant advantages in 

recovering the textures of FVCT images, as evidenced by 

the NPS comparison in Fig. 4. 

 

As indicated in Table 1, U-Net outperforms DDPM in 

conventional metrics such as MAE and SNR. This can be 

attributed to the fact that U-Net tends to generate smooth 

images, while DDPM prioritizes matching the image style 

and imitating the textures. Since most of the textures are 

randomly distributed, DDPM aims to reproduce the random 

distributions, which leads to larger pixel-wise differences, 

instead of predicting the exact same pixels as in the label. 

 

The main limitation of DDPM is the computational time 

required for deployment. Predicting a 512×512 CT slice 

took approximately 2 minutes on an NVidia A100 GPU. In 

future studies, we plan to reduce the root feature size and 

the number of time steps and further simplify the models to 

decrease the deployment time. 

 

5 Conclusion 

This study investigated the potential of using DDPM to 

enhance the SVCT images. The findings of this study 

suggest that DDPM has the potential to be a valuable tool 

to effectively suppress the noise, remove artifacts, and 

preserve fine structures in the SVCT images while restoring 

the textures. Further research is needed to validate these 

results using larger datasets.  
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Abstract The sparse-view computed tomography (CT) is one of the 

effective ways to decrease the patient dose. However, the decreased 

sampling rate often causes aliasing artifacts in the reconstructed image. 

In recent, the view-by-view backprojection (VVBP) network [] was 

introduced for low mAs and sparse-view CT image reconstruction. The 

VVBP tensor has some unique characteristics that it has a structure self-

similarity and a predictable artifact distribution which could helpful for 

reducing artifacts. However, the VVBP required a heavy computational 

load due to its high dimensional feature and diverse data distribution. In 

this study, we introduced a ‘Folded-VVBP’ algorithm that compresses 

the original signal while enhancing the structure self-similarity. The 

proposed folding technique could decrease the computational burden of 

the VVBP tensor for a network application and also it was able to 

increase the performance of the network. Furthermore, we introduced 

squeeze and excitation implemented residual-encoder-decoder 

convolutional neural network (SE-RED-CNN) for the network 

architecture to properly utilize the Folded-VVBP. Our proposed 

algorithm was compared with the vanilla VVBP tensor and single image-

domain network with quantitative evaluation. As a result, our algorithm 

shows better results in terms of artifact removal and generalization 

performance. 

1 Introduction 

The sparse-view computed tomography (CT) is one of the 

effective ways for low-dose x-ray imaging. However, due 

to the decreased sampling rate, severe streaks occur in 

reconstructed images which are called aliasing artifacts. 

The aliasing artifact usually occurs in the reconstructed 

image when the sampling condition unmet the Nyquist 

sampling criterion. The criterion explains twice the highest 

spatial frequency as a minimum required sampling rate to 

avoid spectral overlap. But the gantry type CT scanner (3rd 

generation CT) cannot achieve this criterion since the 

measurement cannot be closer than the detector width. To 

combat aliasing, there have been lots of studies to alleviate 

the artifact. The interpolation-based method [1] has been 

introduced that utilizes artificially synthesized views using 

neighbors through linear or directional interpolation. In 

another way, iterative reconstruction-based approaches 

have been introduced with total variation terms such as 

SART-TV [2, 3]. The reconstructed image from the 

algorithm was quite good, however, the heavy 

computational cost that sacrifices reconstruction speed was 

the main issue for a practical application.  

In recent, many network-based deep-learning approaches 

have been introduced for reducing aliasing artifacts. As a 

projection-domain approach, Lee et al introduced an 

interpolation network that generates view information [4]. 

The generative adversarial network (GAN) method which 

utilizes a discriminator also has been widely studied due to 

its realistic image representation and robust performance 

for artifact reduction [5]. In the image domain application, 

Zhang et al introduced a streak removal network using a 

dense net architecture with a deconvolution layer [6]. In 

further, to fully utilize co-domain knowledge for artifact 

removal, the hybrid network that utilizes both domains [7, 

8] was introduced. Wu et al proposed a dual-domain 

residual-based optimization network (DRONE) that utilizes 

the additional GAN-based image-domain network to 

compensate for image defects that originated from the 

initial projection domain network. The results were superior 

to the compared single-domain-based network except for 

the additional computational cost and the network 

complexity. The image reconstruction network also has 

been introduced for low-dose CT imaging. The deep-image-

prior (DIP) based method has shown promising results for 

the sparse acquisition and limited angle cases [10]. It makes 

the network predict the original image from a latent random 

vector by using an explicitly known forward model. 

However, the DIP-based method has to re-trained the 

network when a new input is given due to its unique training 

method.  

Meanwhile, Tao et al proposed a view-by-view 

backprojection network (VVBP) [14], which utilizes a 

sorted backprojection tensor by inspiring from the 

intermediate process of FBP. The VVBP tensor has some 

unique characteristics it as structure self-similarity, 

predictable noise, and artifact distribution. The network 

shows promising results in the comparison between existing 

single-domain and hybrid-domain networks for noise and 

aliasing artifact reduction in their study. However, the 

VVBP required a heavy computational load due to its high 

dimensional feature and diverse data distribution in the 

view direction. Therefore, they suggested a down-sampling 

technique to compromise the required computational load. 

In this study, we introduced a ‘Folded-VVBP’ algorithm 

that compresses the original signal twice while enhancing 

the structure self-similarity. The proposed folding 

technique could decrease the computational burden of the 

VVBP tensor for a network application and also it was able 

to increase the performance of the network. In further, we 

introduced squeeze and excitation implemented residual-

encoder-decoder convolutional neural network (SE-RED-

CNN) for the network architecture. In results section, our 

proposed algorithm was compared with the vanilla VVBP 

tensor and single image-domain approach with quantitative 

evaluation. 

2 Materials and Methods 

A. View-by-view backprojection (VVBP) tensor 

The view-by-view backprojection tensor is an image-stack 

that composed of a respective view backprojection. If the 
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tensor is averaged along the view-direction, we could regard 

the image as a FBP image. Tao et al [] was firstly sorted this 

VVBP tensor and studied its unique characteristics. In their 

observation, the structure self-similarity, sparsity, and 

predictable gaussian forms of noise statistics were observed. 

The structure self-similarity explain the group of similar 

value of backprojection signal could be visualized as an 

image structure (in Fig. 1). In aspects of the FBP pixel value 

is a mean of the total view-signal, it is explainable that the 

structure self-similarity is stronger near the median slice of 

VVBP tensor. Also, due to the sorting process, the highest 

and the lowest signals are located at the top and bottom of 

the tensor, meaning that the lowest structure self-similarity 

and artifact-related signal (such as noise and streaks) are 

observed at those indices. 

 

 
Figure 1. The illustration of the VVBP tensor. After the sorting, the tensor 

has a structure self-similarity near the median indices of the image stack. 

The image is referred to Tao et al. [14], "VVBP-Tensor in the FBP 

Algorithm: Its Properties and Application in Low-Dose CT 

Reconstruction," 

 

B. Folded-VVBP tensor 

Although the VVBP tensor has useful characteristics that 

are potentially helpful for artifact removal, the high 

dimensional data space causes a high computational burden. 

In addition, the useful signals as well as artifact-related 

signals are still located at the top and bottom of the tensor 

in the form of a streak or pattern. To deal with this problem, 

we proposed the ‘folding’ technique. The technique firstly 

performs sequential min-max summation to the tensor and 

re-scaling by considering the contributed number of pixels. 

Then, it re-sorts the signals again. By doing so, the signals 

at the view direction are compressed and have a reduced 

range of value which is near the mean of all signals (in Fig. 

2). Therefore, it was able to make the VVBP tensor more 

efficient and have stronger structure self-similarity than 

before (in Fig. 3). Furthermore, we were still able to observe 

artifact-related signals at the top and bottom of the tensor 

while useful signals are structured due to their assembly 

with the counter-part signal.  
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Figure 2. The box chart graph of a center pixel signal in the VVBP tensor. 

The left is the original VVBP and the right is the folded-VVBP. After the 

folding, the data range is shrinked to near the mean value of all signals 

 

 
Figure 3. The image comparison between the original VVBP and the 

proposed folded-VVBP. The first low indicates the respective highest 

signal image of the tensor, the second indicates the median and the last 

indicates the lowest signal image 

 

C. Network model 

Our proposed network is based on a residual encoder-

decoder convolutional neural network (RED-CNN) [15] 

that is famous architecture for low-dose CT image 

denoising. We attached squeeze and excitation modules at 

each layer thereby the network may choose useful features 

in the VVBP tensor. The squeeze and excitation module 

consists of learnable weight function (ex) sigmoid) which 

multiplied in the channel direction of the tensor for efficient 

feature selection during the network training. 
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(a) (b) (c) (d) (e)
 

Figure 4. (a) Original FBP images, (b) output images of a single image-domain network, (c) sorted VVBP network, (d) folded-VVBP network (the 

proposed method), (e) Ground-truth images. The window level is [0.013 0.034] and residual artifacts are highlighted. 

 

The Adam optimizer with step learning rate schedular was 

used ( lr: 0.002, step size: 10 epoch, gamma:0.86) for the 

network optimization. Due to the channel multiplication in 

encoder layers, we fixed the output channel size of the first 

encoder layer as 64 to consider the memory consumption. 

 
Figure 5. The proposed network architecture. A squeeze and excitation 

module was implemented at each layer. A total 5 encoder and decoder 

layers were used to consist the network and also 2 residual connections 

were utilized.  

 

D. Perceptual loss for network optimization 

In the training step, we used the VGG-16 perceptual loss in 

order to carry out high-contrast image recovery. This 

perceptual loss has been shown to significantly improve 

visual quality and structure details more than mean-squared 

error loss (MSE) because its multiple feature loss terms 

encourage the network carefully be aware of the spectral 

components of the image. The conjugated feature loss terms 

from four blocks of a pre-trained VGG-16 network were 

used in our study. 
4

1
1 1

1
Loss  ( ( )) ( )

R

p i j i j

j i

F
R

 
= =

= − x y  

where i  is extracted feature maps from a block i , 

( ) HW

jF x and HW

j y  is the network output and target 

image of thj (1,2,...,R) training sample pair corresponding 

to image size H W . 

 

E. Materials 

The 8 clinical patient CT volume data from the Mayo Clinic 

(AAPM low-dose CT challenge dataset [13]) were used for 

the study. We used fan-beam scan geometry that has 

835mm SDD and 480mm SOD. The sparse sinogram was 

generated as an input which consists of 128 views using a 

forward projection operator. Considering the memory size 

that was consumed during the training, we determined the 

voxel size as 256×256. For target data, 800 view sinogram 

data were used to generate an aliasing-free image. Among 

the total 1497 paired data, 901 pairs of data were used for 

the training set, 387 pairs of data were used for the 

validation, and 208 pairs of data were used for the test.  

3 Results 

In Fig. 4, the original FBP, network output, and ground-

truth images are illustrated for comparison. As we can see, 

the residual streak artifacts are often observed in the single 
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image-domain network (a). For the results of sorted VVBP 

net, it quite reduces artifacts well, however, sometimes it 

generates unreliable reconstructed images like the first-row 

image in (c) due to the poor generalization performance. 

The images of our method in (d) show the best image 

quality in terms of residual artifacts and recovered structure 

similarity. For the quantitative analysis, we evaluated root-

mean-squared error (RMSE), and the structural similarity 

index (SSIM) value. The results of the quantitative analysis 

are presented in Table 1. In aspects of the computational 

cost, our proposed algorithm consumes 15.82GB VRAM 

during the network training while the original VVBP 

network consumes 17.24GB VRAM. Furthermore, our 

proposed method shows more efficient parameter 

utilization than the compared network (in Table 2). This gap 

will increase as the image size and initial number of views 

increase (current image size: 256×256, current number of 

views: 128). 
TABLE 1 

QUANTITATIVE ANALYSIS 

 FBP Single image Sorted VVBP Folded VVBP 

RMSE 1.30e-4 4.17e-5 4.13e-5 3.58e-5 

SSIM 0.36 0.71 0.69 0.72 

 

TABLE 2 

QUANTITATIVE ANALYSIS 

 Sorted VVBP Folded VVBP 

Consumed memory size 17.24 GB 15.82 GB 

# of parameters 12,755,761 12,792,625 

 

4 Discussion 

The main idea of our algorithm is to utilize folded-VVBP 

tensor rather than simply sorted-VVBP.  By doing that, it 

was able to enhance the structure self-similarity of the 

tensor potentially beneficial to understand image context 

from the network point of view. Moreover, the decreased 

channel number of the tensor through the folding technique 

drastically decreases the required computational load for 

network utilization. Also, an important thing is that the 

artifact-related signals are still well presented at the top and 

bottom of the tensor which gives significant prior 

knowledge to the network. Based on the above advantages, 

the proposed network was able to successfully learn the CT 

image reconstruction without aliasing artifacts. Meanwhile, 

the compared sorted-VVBP network also shows quite good 

results than single image-domain network output, however, 

the poor generalization performance was observed in test 

sets since it can still generate good quality images for the 

training sets. This seems to be an overfitting issue which is 

often caused by weak correlations between the given data 

and the network model. In the future study, we will validate 

the proposed network and other compared networks in 

various data sets.  

5 Conclusion 

In this study, we proposed a folded-VVBP network to 

reduce the aliasing artifact in sparse-view computed 

tomography. The promises of the proposed network have 

been successfully shown. Experimental validation of the 

proposed method is under our research and will be 

presented in the near future. 
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Abstract Artifact reduction or removal is a challenging task when the 

artifact creation physics are not well modeled mathematically. One of 

such situations is metal artifacts in X-ray CT when the metallic material 

is unknown and the X-ray spectrum is wide. In this paper, a neural 

network is used to act as the objective function for iterative artifact 

reduction when the artifact model is unknown. A hypothetical 

unpredictable projection data distortion model is used to illustrate the 

proposed approach. The model is unpredictable, because is controlled by 

a random variable. A convolutional neural network is trained to recognize 

the artifacts. The trained network is then used to compute the objective 

function for an iterative algorithm, which tries to reduce the artifacts in a 

computed tomography (CT) task. The objective function is evaluated in 

the image domain. The iterative algorithm for artifact reduction is in the 

projection domain. A gradient descent algorithm is used for the objective 

function optimization. The associated gradient is calculated with the 

chain rule. The images after the iterative treatment show the reduction of 

artifacts. The methodology of using a neural network as an objective 

function has potential value for situations where a human developed 

model is difficult to describe the underlying physics. Applications in 

medical imaging are expected to be benefit from this methodology. 

1 Introduction 
The classical image processing is frequency-component 

based. For example, the high frequency components beyond 

a certain frequency threshold are considered as noise. Then 

a low-pass filter is designed to remove the noise. However, 

the artifacts are not just random high frequency noise, but 

contain certain patterns. The artifacts are difficult to 

characterize by frequencies. 

In recent years, neural networks, especially deep neural 

networks, are excellent tools in object classification. 

Therefore, neural networks are good candidates for the 

artifact detection task with two outcomes: artifact present 

and artifact absent.  The main goal of this paper is to use the 

continuous output value of a neural network as the objective 

function. The final binary decision making is not used. 

The algorithm to be developed in this paper is for artifact 

reduction. There is no restriction on the types of the 

artifacts. We focus on X-ray computed cosmography (CT) 

metal artifacts, with a twist, in this paper. The CT metal 

artifacts appear as bright and dark streaking, radiating from 

the metals. 

Iterative algorithms are designed to optimize objective 

functions. One objective function that can indirectly 

measure the artifacts is the total variation (TV) norm of the 

reconstructed image. The TV norm minimization is able to 

reduce the unnecessary variation in the reconstruction, and 

some of the unnecessary variation is caused by the large 

sinogram errors [1, 2]. This method is not effective, because 

the TV norm tends to smooth out image details.   

Another iterative reconstruction method is to treat the 

errors in the projections as ‘noise’ and to use small weights 

to the projections affected by metals. This method 

essentially tries to smooth out streaks, and the resultant 

images look blurry. A more successful method is referred to 

as sinogram inpainting. The inpainting method iteratively 

replaces the metal-affected sinogram by estimated metal-

less projection values, as if the metals are absent. One 

simple way of inpainting is first to remove the metal-

affected measurements and to assume that there is no metal 

in the object. Next, estimation methods such as 

interpolation, lowpass filtration, or some non-linear 

approaches are used to replace the original measurements 

by the estimated measurements. The drawback of the 

inpainting method is that the estimates are not accurate. 

Another version of inpainting is more successful [3-5]. 

This version is different from the previous version in that 

the newer version estimate the projections with the metals 

in the object. It does not average the neighboring values. In 

[3], the objective function is the image-domain TV norm of 

the reconstructed image. In [4], the objective function is the 

energy of the negative pixel values in the reconstructed 

image. In [5], the objective function is a weighted 

combination of the objective functions in [3] and [4]. This 

current paper is in the category of the newer version, but its 

objective function is neural network generated.  

In this paper, we borrow the term ‘metal artifact’ for a 

hypothetical situation where the distortion in the sinogram 

cannot be exactly modeled. Therefore, any model-based 

image reconstruction algorithm will not work for this 

hypothetical situation. 

2 Materials and Methods 
A. A hypothetical unpredictable artifact model 

This paper presents an exemplary case in tomography, 

where some projection measurements are distorted in an 

unpredictable manner. Here, we distinguish distortion from 

noise. The magnitude of the distortion is much larger than 

the magnitude of noise. The noise is mainly in the high 

frequency range. In x-ray computed tomography (CT), the 

beam hardening and scattering effects make the projections 

through the metal deviate from the ideal line-integral model, 

and thus the effects are distortions. Due to the wide 

spectrum of the x-rays and the complicated metallic 

materials, the deviation (i.e., distortion) is not easy to 

exactly model mathematically. In this paper, some ‘metals’ 

are implanted in the computer simulated phantoms. The 

image values of the metal are much larger than the rest of 

the image, and the locations of the metals are assumed to be 

known. For the illustrative purposes, a hypothetical 

‘unpredictable’ distortion is introduced by an exponential 

factor 

𝑓𝑎𝑐𝑡𝑜𝑟 = exp(−0.05 × 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 × 𝑟𝑎𝑛𝑑) , (1) 
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where ‘projection’ is the true line-integral projection value, 

and ‘rand’ is a uniform random variable on [0, 1]. When the 

projection ray passes through the metals, the factor f defined 

in (1) is applied to the measured line-integral value. The 

random variable ‘rand’ in (1) makes the distorted 

measurement unpredictable. The value of ‘rand’ varies 

randomly from ray to ray. The exponential factor is not used 

if the projection ray does not pass through the metals.  

The well-known filtered backprojection (FBP) 

algorithm is used to reconstruct the image using the 

distorted sinograms. When the image contains metals, the 

FBP reconstruction contains severe artifacts. In this paper, 

we refer to the artifacts caused by the hypothetical 

unpredictable distortion as ‘metal’ artifacts for 

convenience. We do not imply that the actual metal artifacts 

have a mathematical model expressed in (1). 

B. A neural network model to recognize the artifacts 

The modern neural networks have excellent capabilities 

to classify objects. We use a convolutional neural network 

to determine whether the FBP reconstruction contains 

‘metal artifacts.’  

We do not use a neural network as a filter to remove the 

artifacts, because such a neural network requires a large 

number of image pairs to train: with and without metal 

artifacts. Those image pairs are difficult to obtain. It is 

easier to label the FBP reconstructions as ‘with metal 

artifacts’ (i.e., 1) and ‘without metal artifacts’ (i.e., 0). In 

other words, the task of ‘recognizing the artifacts’ is easier 

than the task of ‘removing/reducing the artifacts.’ Our 

strategy is to use a neural network to recognize the artifacts 

and then to use a sinogram-domain iterative algorithm to 

reduce the artifacts. 

Without loss of generality, let us consider a 3-layer 

convolutional neural network as shown in Fig. 1. During 

training, the output f is quantified as ‘1’ and ‘0.’ The input 

layer of the neural network accepts an FBP reconstructed 

image, X. In our computer simulations in this paper, the 

images are two-dimensional (2D) and have the dimension 

of 64 × 64.  

 
Figure 1. A neural network to recognize the ‘metal’ artifacts. Images as 

functions of (x, y): 𝑋, 𝑌𝑗
(1), 𝑌𝑖

(2). 2D kernels as functions of (x, y): 

𝑊𝑗
(1),𝑊𝑗,𝑖

(2)
. Scalars: 𝑦𝑖

(3), 𝑓. Scalar weights: 𝑤𝑖
(4)

.  The input is the FBP 

reconstructed image X. The output is the objective function value f. 

This neural network assigns a numerical value, f, 

between (0, 1) to an image, X. If this value is closer to 1, the 

image X is likely to contain severer metal artifacts. If this 

value is closer to 0, the image X is likely to contain less 

severe metal artifacts. Therefore, the value f can be used as 

an objective function in an iterative algorithm that tries to 

reduce the artifacts. 

C. An iterative gradient descent algorithm in the 

sinogram domain 

An iterative gradient descent algorithm to reduce the 

metal artifacts in the sinogram domain is in the form of 

𝑃(𝑘+1) = 𝑃(𝑘) − 𝛼∇𝑓𝑃, (2) 

where 𝑃(𝑘) is the estimated sinogram at the kth iteration of 

the gradient descent algorithm, and ∇𝑓𝑃 is the gradient of 

the objective function f in terms of the variables that are the 

projections in the sinogram. The function f is a composed 

function of the sinogram P through the following functions: 

𝑃
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑋

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑌𝑖

(1) 𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑌𝑗

(2) 𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑦𝑗

(3) 𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑔

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑓 

Step 1: The sinogram P is transformed into the image X by 

the FBP image reconstruction algorithm, which first applies 

the one-dimensional (1D) ramp filter in the view-by-view 

manner and performs the backprojection. This step can be 

expressed as  

𝑋 = 𝐵𝑇𝐷𝑃, (3) 
where BT represents the backprojector in the form of a 

matrix and D is the 1D ramp filter in the form of a diagonal 

matrix. 

Step 2: The image X propagates through the 1st 

convolutional layer and results in M1 images 𝑌𝑖
(1)
.  

Step 3: The M1 images 𝑌𝑖
(1)
 propagate through the 2nd 

convolutional layer and results in M2 images 𝑌𝑗
(2)
.  

Step 4: The M2 images 𝑌𝑗
(2)
 propagate through the 

averaging layer and results in M2 scalars 𝑦𝑗
(3)
.  

Step 5: The M2 scalars 𝑦𝑗
(3)
 propagate through the 

perceptron layer and results in one scalar 𝑓. The output layer 

contains a sigmoid function. 

The gradient ∇𝑓𝑃 can be evaluated by the chain rule 

going through the above five steps. Each step has a Jacobian 

matrix and is presented as follows. 

Step 1: The partial derivative of P with respect to X is a 

Jacobian matrix given as  
𝜕𝑃

𝜕𝑋
= 𝐷𝐵, (4) 

where B is the forward projection matrix.  

Step 2: The partial derivative of X with respect 𝑌𝑖
(1)

 is a 

Jacobian matrix, whose ith element is given as 

�̂̂�𝑖
(1)(𝑥, 𝑦) =

𝜕𝑋

𝜕𝑌𝑖
(1)
= 𝑊𝑖

(1)
∗ �̂�𝑖

(1)
(𝑥, 𝑦), (5) 

𝑖 = 1, 2, … ,𝑀1, 

where * represents the 2D convolution, and �̂�𝑖
(1)

 is defined 

as 

�̂�𝑖
(1)(𝑥, 𝑦) = {1, if 𝑌𝑖

(1)(𝑥, 𝑦) > 0 

0, otherwise.  
 (6) 

𝑌1
(1)

 

𝑌2
(1) 𝑦1

(3) 

f 

avg 𝑌𝑀1
(1) 

𝑌1
(2) 

𝑌2
(2) 

𝑌𝑀2
(2) 

𝑊1
(1) 

𝑊2
(1) 

𝑊𝑀1
(1) 

𝑊1,1
(2) 

𝑊1,2
(2) 

𝑊3,𝑀2
(2)  

𝑊3,𝑀1
(2)  

𝑊3,2
(2) 

𝑊3,1
(2) 

𝑊2,𝑀2
(2)  

𝑤1
(4) 

𝑊2,1
(2) 

𝑊2,2
(2) 

𝑊1,𝑀2
(2)  

𝑦2
(3) 

𝑦𝑀2
(3) 

avg 

avg 

𝑤2
(4) 

𝑤𝑀2
(4) 

X 
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Step 3: The partial derivative of 𝑌𝑖
(1)

 with respect 𝑌𝑗
(2)

 is a 

Jacobian matrix, whose (i, j)th element is given as 

�̂̂�𝑖,𝑗
(2)(𝑥, 𝑦) =

𝜕𝑌𝑖
(1)

𝜕𝑌𝑗
(2)
= 𝑊𝑖,𝑗

(2)
∗ �̂�𝑗

(2)
(𝑥, 𝑦), (7) 

𝑖 = 1, 2, … ,𝑀1;   𝑗 = 1, 2, … ,𝑀2,  

where �̂�𝑗
(2)

 is defined as 

�̂�𝑗
(2)(𝑥, 𝑦) = {

1, if 𝑌𝑗
(2)(𝑥, 𝑦) > 0 

0, otherwise.  
 (8) 

Step 4: The partial derivative of 𝑌𝑗
(2)
 with respective to 𝑦𝑗

(3)
 

is a positive constant, which can be assumed to be 1. 

Step 5: The derivative of 𝑦𝑗
(3)
 with respective to 𝑔 (before 

the application of the sigmoid function) is 

𝑑𝑦𝑗
(3)

𝑑𝑔
= 𝑤𝑗

(4)
. (9)

The final output is the sigmoid function (8) with the input 

g. Its derivative is a scalar given as follows 

𝑆′(𝑔) = (
1

1 + exp(−𝑔)
)
′

= 𝑓(1 − 𝑓). (10) 

The overall gradient for each image pixel (x, y), used in the 

gradient descent algorithm, is the combination of (4)-(10) 

as 
∇𝑓𝑋 =

𝑓(1 − 𝑓)[𝑤1
(4)

… 𝑤𝑀2
(4)] [

�̂̂�1,1
(2)

⋯ �̂̂�1,𝑀1
(2)

⋮ ⋱ ⋮

�̂̂�𝑀2,1
(2)

⋯ �̂̂�𝑀2,𝑀1
(2)

] [

�̂̂�1
(1)

⋮

�̂̂�𝑀1
(1)
] . (11)

 

Here ∇𝑓𝑋(𝑥, 𝑦) is a gradient image in the image domain as 

a function of (x, y). This gradient image can be mapped into 

the sinogram domain, obtaining 

∇𝑓𝑃(𝑡, 𝜃) = 𝐷𝐵∇𝑓𝑋 . (12) 
In other words, the gradient sinogram is obtained by 

forward projecting the gradient image with the operator B 

and by applying the ramp filter D. 

D. Network training 

The proposed neural network (shown in Fig. 1) is, in 

fact, a binary classifier if appended with quantizer. The 

output of the classifier has two values: 0 and 1, where 1 

indicates artifact present and 0 indicates artifact absent. 

These two values are generated by quantizing the 

continuous output value f in the interval (0, 1) with a 

threshold value of 0.5. 

In order to train this network, we generated 1000 

random 64 × 64 images and their associated sinograms. 

These 1000 sinograms contained random unpredictable 

distortions, and the FBP reconstructed images from them 

were labelled as 1. We generated another set of 1000 

random 64 × 64 images and their associated sinograms. 

These 1000 sinograms did not contain any distortions, and 

the FBP reconstructed images from them were labelled as 

0. 

The first convolutional layer had M1 = 40 channels, the 

convolution kernel size was 3 × 3, the strides were set as (1, 

1), and the activation function was the ReLU function. This 

layer had 1 input image and 40 output images. There were 

M1 = 40 convolution kernels, which resulted in 40 × 3 × 3 = 

360 parameters to be trained at this first convolutional layer. 

The biases were set to 0. 

The second convolutional layer had M2 = 20 channels, 

the convolution kernel size was 3 × 3, the strides were set 

as (1, 1), and the activation function was the ReLU function. 

This layer had 40 input images and 20 output images. There 

were M1 × M2 = 40 × 20 = 800 convolution kernels, which 

resulted in 800 × 3 × 3 = 7200 parameters to be trained at 

this second convolutional layer. These two convolutional 

layers were implemented by ‘Conv2D.’ 

The averaging layer was implemented by 

‘GlobalAveragePooling2D.’ There were no parameters to 

train at this layer. The M2 = 20 scalar outputs of this layer 

was then formatted as a 1D array by ‘Flatten.’ 

The output layer was a dense layer with the ‘sigmoid’ 

activation function (8). There were M2 = 20 scalar weights 

to be trained at this final layer. The bias parameter was not 

used (that is, set to 0). 

The network was trained by the ‘adam’ optimizer, the 

loss function as the ‘binary_crossentropy,’ with the metrics 

set as ‘accuracy.’ We used epochs = 200, batch_size = 64, 

validation_split = 0.1, shuffle = True. 

After the network was trained, the trained parameters 

were saved as a file on the computer.  

E. Artifact reduction computer simulations 

This part generates a new random phantom, creates its 

associated sinogram, incorporates random distortion (1) to 

the sinogram, and finds the FBP reconstruction X. This 

image X contains artifacts and is the input of our proposed 

iterative gradient descent algorithm. This iterative 

algorithm uses a pre-trained neural network to calculate the 

objective function f and to minimize this objective function 

by adjusting the ‘metal’ affected projections. 

The computer simulations of the iterative gradient 

descent algorithm in this paper used 1000 iterations, and the 

step size  was set to 0.001. The number of output channels 

in the first convolutional layer was M1 = 40, and the number 

of output channels in the first convolutional layer was M2 = 

20. 

F. Evaluation 

Visual inspection such as human observer studies is the 

most effective way to determine whether the artifacts are 

reduced. A quantitative method can also be used. A 

quantitative metric adopted in this paper is the Sum Square 

Difference (SSD), defined as 

𝑆𝑆𝐷 =
∑ [𝑋𝑡𝑟𝑢𝑒(𝑥, 𝑦) − 𝑋(𝑥, 𝑦)]

2
𝑥,𝑦

√∑ [𝑋𝑡𝑟𝑢𝑒(𝑥, 𝑦)]
2∑ [𝑋(𝑥, 𝑦)]2𝑖,𝑗𝑥,𝑦

, (13)
 

where 𝑋𝑡𝑢𝑟𝑒 is the true image, which is the originally 

generated noiseless and undistorted phantom, and X is an 

FBP reconstructed image. The SSD essentially is the 

normalized distance between two images 𝑋𝑡𝑟𝑢𝑒  and X.  The 

image X can be the raw FBP reconstruction from the distorted 

sinogram and can also be the final FBP reconstruction from 

the processed sinogram by the proposed iterative algorithm. 
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3 Results 
Computer simulation results of four random phantoms 

are shown in this section. The three true random phantoms 

are shown in Figs. 2(left), 3(left) and 4(left), respectively. 

The raw FBP reconstructions corresponding to the four true 

random phantoms are shown in Figs. 2(mid), 3(mid) and 

4(mid), respectively.  Severe artifacts are observed in these 

raw reconstructions. After the application of the proposed 

iterative algorithm on these raw FBP reconstructions, the 

corresponding final images are shown in Figs. 2(right), 

3(right) and 4(right), respectively.  

A ‘learning curve’ is defined as the objective function 

value  at each iteration. The learning curves (not shown) 

indicate that at early iterations, the objective function 

values, f , are close to 1, which implies that the neural 

network classifies the images as artifact presented. At later 

iterations, the objective function values, f, are close to 0, 

which implies that the neural network classifies the images 

as artifact free, even though there are still artifacts remained 

and visible. 

All images displayed in this section are in the display 

window of [0, 2] using a linear gray scale. It is visually 

observed from the images that the severity of the artifacts 

has been reduced by the proposed iterative algorithm. The 

quantitative SSD values are provided in Table 1, showing 

that the final images are closer to the true images than the 

raw FBP images to the true images.  

 
Figure 2. Study 1. Left: True image. Middle: FBP reconstruction 

with distorted sinogram. Right: FBP reconstruction with 

proposed method. 

 
Figure 3. Study 2. Left: True image. Middle: FBP reconstruction 

with distorted sinogram. Right: FBP reconstruction with 

proposed method. 

 
Figure 4. Study 3. Left: True image. Middle: FBP reconstruction 

with distorted sinogram. Right: FBP reconstruction with 

proposed method. 

 
Table 1. The Sum Square Difference (SSD) between the FBP 

reconstruction and the true image 

Study SSD of the raw 

FBP 

SSD of the final 

FBP 

#1 0.0729 0.0345 

#2 0.0587 0.0375 

#3 0.0488 0.0234 

4 Conclusion 
In many applications, the image artifacts are severe, and 

the measurement errors are difficult or almost impossible to 

derive a mathematical model for them.  For this difficult 

situation, we suggest the use of a neural network to compute 

the objective function, which characterizes the severeness 

of the artifacts. In contract to common objective functions 

used in an iterative algorithm, our objective function is 

NOT human designed, but automatically learned by a 

neural network. 

A large number of artifact-present and artifact-absent 

computer simulated images are fed to the neural network 

along with their binary labels. After training and removing 

the very last quantization layer, the sigmoid function output 

gives a continuous function, f, in the range of [0, 1]. This 

function, f, is the objective function of our proposed 

iterative algorithm. In each iteration, the current 

reconstruction is fed to the trained network, and then the 

trained network computes a continuous numerical value in 

[0, 1], which is the objective function value associated with 

the current reconstruction image.  

In general, this objective function is not convex due to 

the nonlinear activation function ReLU in the neural 

network. Therefore, it is likely that the proposed iterative 

algorithm only converges to a local minimum, instead of the 

global minimum. It is observed from the learning curves 

that the objective function decreases as the iteration number 

increases. By comparing the images before and after the 

application of the proposed iterative algorithm, the artifacts 

in the images after the application of the iterative algorithm 

are less severe, although not completely removed. It is our 

goal in the further research investigation to improve the 

performance of the proposed neural network objective 

function methodology so that the artifacts are completely 

removed. After the methodology achieves a satisfactory 

level, it will be deployed to real-world applications. 
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Abstract From time to time, it is necessary to determine whether there 

are sufficient measurements for the image reconstruction task especially 

when a non-standard scanning geometry is used. When the imaging 

system can be approximately modeled as a system of linear equations, 

the condition number of the system matrix indicates whether the entire 

system can be stably solved as a whole. When the system as a whole 

cannot be stably solved, the Moore-Penrose pseudo inverse matrix can 

be evaluated through the singular value decomposition (SVD) and then a 

generalized solution can be obtained. However, these methods are not 

practical because they require the computer memory to store the whole 

system matrix, which is often too large to store. Also, we do not know if 

the generalized solution is good enough for the application in mind. This 

paper proposes a practical image solvability map, which can be 

obtained for any practical image reconstruction algorithm in 

medical imaging. This image solvability map measures the 

reconstruction errors for each location using a large number of computer-

simulated random phantoms. In other words, the map is generated by a 

Monte Carlo approach. 

1 Introduction 

Data sufficiency conditions for continuous measurements 

were developed for many imaging geometries. For example, 

Orlov’s condition uses the great-circle criterion to 

determine whether a positron emission tomography (PET) 

system measures a complete data set for analytical three-

dimensional (3D) image reconstruction [1]. In Orlov’s 

condition, the PET detector size is assumed to be infinity, 

and the sampling is assumed to be continuous. If the normal 

direction trajectory of the PET detector contains a great 

circle, the data set is sufficient. Orlov’s condition considers 

the 3D parallel line integral measurements. Tuy’s condition, 

on the other hand, considers the 3D cone-beam line integral 

measurements [2]. Tuy’s condition is able to verify if a 3D 

cone-beam imaging system acquires a complete data set. 

Tuy’s condition states that if every plane that cuts through 

the object intersects the cone-beam focal-point trajectory, 

the data set is sufficient for the reconstruction of the object. 

Once again, the detector is assumed to be infinite, and the 

sampling is continuous. A more general data sufficiency 

condition in the n-dimensional complex space is proposed 

by Kirokov [4].  

For discrete sampling, the detector takes discrete finite 

number of positions, and the detector consists of discrete 

finite number of detection cells. The detector size is finite, 

which may lead to data truncation, where the detector does 

not cover the entire object. The common practice in 

processing discrete measurements is to use a linear model, 

which formulates the imaging process as a system of linear 

equations AX = P. The unknowns (i.e., the variables), X, of 

the system are the image pixels or voxels. The coefficient 

matrix (also known as the system matrix), A, is assumed to 

be known. The measurements, P, are the constant terms. 

The condition number analysis is a classic approach to 

investigate whether the normal equations ATAX = ATP is 

stably solvable [5]. Singular value decomposition (SVD) 

analysis is able to diagnose invertibility and noise 

sensitivity of systems of linear equations. In [5], the 

condition number (i.e., the ratio of maximal and minimal 

singular values of matrix A) was calculated using the 

Lanczos iterative method [6] for image volumes of 65 × 65 

× 128. Some cone-beam imaging trajectories were analyzed 

and compared using the condition number analysis; a 

circular sine-wave trajectory was determined to be the most 

stable sampling scheme among the orbits investigated [5]. 

One drawback of the condition number analysis is that it 

does not work in region-of-interest (ROI) reconstruction 

with truncated data, because the system of equations is 

under-determined, and the associated condition number is 

essentially infinity. In this case the inverse matrix of ATA 

does not exist. 

In situations where ATA is singular, the Moore-Penrose 

pseudo inverse matrix, A+, can help [6]. If A is an n × m 

matrix, then A+ is an m × n matrix. In general, A+A ≠ I, where 

I is the m × m identity matrix. A method in [6] was proposed 

to identify the solvable subset of the unknowns. The method 

in [6] used the diagonal elements of A+A as a map. Each 

diagonal element of A+A corresponded to an image pixel. If 

a diagonal element is one, the corresponding image pixel 

can be reconstructed. A drawback of this method is that the 

Moore-Penrose pseudo inverse matrix A+ is not easy to 

compute for a large imaging system, because the singular 

value decomposition (SVD) is required to perform on a 

large matrix [7], which requires a huge amount of computer 

memory. 

This paper proposes a method to overcome the drawback 

in [6] so that the SVD computation is not required. This new 

method is Monte Carlo based and is described in Section 2 

of this paper. The computer simulation results are presented 

in Section 3. 

2 Materials and Methods 

A. Region-of-interest (ROI) image reconstruction 

One of the following situations can happen when an object 

is not completely measured. The first situation is due to the 

limited detector size, and only a portion of the object can be 

seen by the detector. The second situation is due to the lack 

of angular coverage. When the measurements are 

insufficient, it is likely that we are unable to have a stable 

reconstruction of the entire object. However, we may be able 

to have a stable reconstruction of a subset of the knowns. The 

aim of this paper is to determine such a subset if it exists. 

B. Proposed method 

Let us consider a generic image reconstruction algorithm, 

G; it can be an iterative or non-iterative algorithm; it can be 

a linear or nonlinear algorithm. For example, this generic 
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image reconstruction algorithm, G, can be the iterative 

gradient descent (GD) algorithm, or a variate of the GD 

algorithm tailored for the data truncation, or a maximum-

likelihood expectation-maximization (MLEM) algorithm, 

and so on. 

We use computer simulation to create a large number of 

random objects, generate their projection measurements, add 

noise to the measurements, reconstruct the images, and 

compute the error between the reconstructed images and the 

true images. Finally, calculate the average error image for 

these large number of random objects. This average error 

image is our proposed image solvability map. 

C. Avoiding the inverse crime 

When a physical continuous system is modeled as a 

discrete system, modelling errors exist [8]. It is an inverse 

problem crime when these errors are ignored in developing 

and analyzing an inverse solution. For example, a typical 

inverse crime during computer simulations is to use the same 

generator to create the measurements and to be used in the 

reconstruction algorithm. To avoid inverse crime, in our case, 

if G is used to creating computer simulated measurements, G 

is not allowed to be used as the forward projection operator 

in the reconstruction algorithm.  

In the computer simulations in this paper, the measurement 

generation uses random phantoms with the size of 384 × 384, 

and after projections are computed, the three adjacent 

projection bins are combined. Some Poisson noise is then 

incorporated in the combined measurements. In the image 

reconstruction, the image size is 128 × 128. 

D. Imaging geometry 

A hypothetical parallel-beam imaging system was 

simulated. The detector was asymmetric about the axis of 

rotation as shown in Fig. 1. The detector rotated 180° with 

180 stops. In other words, the angular interval was 1°. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 1. A hypothetical parallel-beam imaging system. 

 

 

 

 

 

 

 

 
FIGURE 2. The points in the ROI have 180° angular measurements. 

In 2D tomography, according to Kirokov’s criterion [3], 

a point is fully measured if all lines passing through that 

point are measured. In Fig. 2, the ROI indicates the region 

of points that are fully measured. If an object is completely 

contained in the ROI, the object can be stably reconstructed, 

under the conditions that the projections are not truncated, 

and the number of views is sufficient. 

E. Image reconstruction algorithms 

In this paper, the iterative gradient descent (GD) 

algorithm is considered to test the feasibility of the proposed 

method [9]. The GD algorithm is expressed in (1). 

 𝐺𝐷: 𝑥𝑖
(𝑘+1)

= 𝑥𝑖
(𝑘)

− 𝛼 ∑ 𝑎𝑖𝑗(∑ 𝑎𝑛𝑗𝑥𝑛
(𝑘)

𝑛

− 𝑝𝑗)

𝑗

 (1) 

where 𝑥𝑖
(𝑘)

 is an element in image X and is the ith image 

pixel value at the kth iteration; 𝑎𝑖𝑗 is an element in the 

system matrix A and is the contribution from the ith image 

pixel to the jth projection bin; 𝑝𝑗 is an element in projections 

P and is the jth projection value; k is the iteration number; 

 is the step size for the GD algorithm. 

When the object is larger than the detector and the 

projections are truncated at both ends of the detector, the 

image reconstruction problem is referred to as the internal 

problem [10]. It is known that the internal problem is 

unsolvable [10]. A support of an object is an image, whose 

pixel value is non-zero (say, value one) if the corresponding 

object value is non-zero at the same location. If the support 

of the object is known, using the support information can 

improve the reconstruction in an internal problem [11]. An 

internal problem is illustrated in right part of Fig. 3. 

 
FIGURE 3. Left: Every point in the object is fully measured when the detector rotates 
180°. Right: An internal problem is shown where the detector is too small to cover the 
entire object and truncation happens at both sides of the detector. 

 

For the GD algorithm, we enforce the finite support at 

every iteration as 

𝑥𝑖
(𝑘+1)

= 0 if pixel 𝑥𝑖 is not in the support. (2) 

It is recommended that whenever using truncated 

projections in an iterative algorithm, the image array be 

large enough to contain the entire object even though the 

detector is not large enough to see the entire object [11]. 

For the truncated data, a simple modified method can be 

used to reduce the artifacts [12]. This modified method 

assumes that if pj is not measured, pj is assigned to the 

forward projection value ∑ 𝑎𝑛𝑗𝑥𝑛
(𝑘)

𝑛  at each iteration k, i.e., 

𝑝𝑗 = ∑ 𝑎𝑛𝑗𝑥𝑛
(𝑘)

𝑛

, if 𝑝𝑗  is not measured. (3) 

F. Computer simulations 

In this paper, each of the computer-generated phantoms 

consisted of four ellipses with random sizes, locations, and 

Detector 

ROI 

Detector 

Center of 

Rotation 

ROI 
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intensities. The phantom size was 384 × 384. A narrow 

Gaussian lowpass filter with a standard deviation of one was 

applied to smooth out the sharp edges a little. Next, the 

image was normalized to the range of [0, 1].  

Line integrals were calculated using the parallel-beam 

imaging geometry shown in Fig. 1, where the detector was 

asymmetric, and the number of views was 180 over 180°. 

After the line integrals were calculated, Poisson noise was 

incorporated into the simulated line-integrals. Then, the 

three adjacent detector bins were combined into one 

detector bin. In other words, the new detector’s bin-size was 

three times larger than the original detector’s bin-size. The 

binned-down measurements were ready for image 

reconstruction into an image array with the size of 128 × 

128.  

There were two sets of simulated measurements. The first 

set consisted of 1000 random phantoms and was described 

in the paragraphs above. The second set contained the same 

1000 random phantoms as in the first set; the only thing 

different from the first set was that the detector was large 

enough to see the entire phantom as indicated in left 

diagram in left part of Fig. 3. The detector in the first set 

was asymmetric and had 107 detection bins. The detector in 

the second set was symmetric and had 185 detection bins. 

The detector bin size was the same as the image pixel size. 

The following six algorithms were used to reconstruct the 

images and were compared: 

• Iterative gradient descent (GD) algorithm (1); 

• Iterative GD algorithm with the finite support 

enforcement (2); 

• Iterative GD algorithm with the truncation modification 

enforcement (3); 

• Iterative GD algorithm with the finite support (2) and 

truncation modification (3) enforcements. 

G. Image solvability map 

For each reconstructed image X, a squared-error image 

E(X) is calculated as  

𝑒𝑖 = (𝑥𝑖 − 𝑥𝑖
𝑡𝑟𝑢𝑒)2, (4) 

where 𝑒𝑖 is the ith pixel in the squared-error image E(X),  

𝑥𝑖
𝑡𝑟𝑢𝑒 is the ith pixel in the true image Xtrue, and 𝑥𝑖 is the ith 

pixel in the reconstructed image X. 

If n is the total number of random phantoms in the 

computer simulation (we had n = 1000 in this paper), the 

image solvability map is the average image of the squared-

error images, that is 
Image Solvability Map =

 
1

𝑛
∑ 𝐸(the 𝑚th phantom′s reconstruction)

𝑛

𝑚=1

. (5)
 

All image values in the image solvability map are non-

negative. A smaller value in the map indicates that the 

corresponding pixel is more solvable. Due to the random 

noise and the determinist discrepancies introduced to fight 

the inverse problem crime, the minimum value in the image 

solvability map is not zero. 
 

3 Results 
Fig. 5 shows one representative of the 1000 random phantoms. 

The image reconstruction results from the first data set using 

truncated data are shown in Fig. 6  for the representative phantom 

shown in Fig. 5. The reconstruction algorithms are listed in the Part 

F of Section 2. The images in Fig. 6 are obtained from the gradient 

descent (GD) algorithms.     

For the representative random phantom shown in Fig. 5, the 

squared-error images associated with the reconstructed images are 

shown in Fig. (7)  for the GD algorithms. After finding the average 

of the 1000 squared-error images, an image solvability map is 

obtained. The image solvability maps for the four reconstruction 

algorithms are shown in Fig. 8.  

In this paper, all phantom images (Fig. 5, (A) and (B) of Fig. 6) 

are displayed in the linear grayscale window of [0, 1]. All squared-

error images and image solvability maps are displayed from zero to 

the maximum pixel value in the image. The image solvability maps 

are displayed with a non-linear transformation to emphasize the 

small values. The minimum and maximum values for the image 

solvability maps are listed in Table 1. 

 

 
FIGURE 5. One of the 1000 random phantoms used in the computer simulations.  

 (A)  (B) 

 (C)  (D) 
FIGURE 6. The images reconstructed with the GD algorithms using truncated data. 
(A) With formulas (1), (3), and (5); (B) With formulas (1) and (3); (C) With formulas (1) 
and (5); (D) With formula (1). 

 (A)  (B) 

 (C)  (D) 
FIGURE 7. The squared-error images for the reconstructions with the GD algorithms 
using truncated data. (A) With formulas (1), (3), and (5); (B) With formulas (1) and 
(3); (C) With formulas (1) and (5); (D) With formula (1). 
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 (A)  (B) 

 (C)  (D) 
FIGURE 8. The image solvability maps for the reconstructions with the GD algorithms 
using truncated data. (A) With formulas (1), (3), and (5); (B) With formulas (1) and 
(3); (C) With formulas (1) and (5); (D) With formula (1). 
TABLE 1. Maximum and minimum values in the image solvability map for the GD 
algorithms (see Fig. 10) using the truncated data 
 

Algorithm Minimum value Maximum value 

GD (1) with support (3) and 
truncation modification (5) 

4.0035 × 10-04 0.0307 

GD (1) with support (3) 0.0022 20.7523 

GD (1) with truncation 
modification (5) 

0.0022 0.0537 

GD (1) 0.0034 20.9302 

 
4 Conclusion 

It has been a desire to develop a tool that can identify which 

regions can be stably reconstructed if the projection measurements 

are not complete. It is clear that the condition number is 

disqualified, because the condition number only tells whether the 

entire system can be stably solved as a whole. Even one pixel (i.e., 

one unknown) is unsolvable, the condition number is extremely 

large or infinity. If the condition number is infinity and not all pixels 

can be solved, we ask a further question: “Are there any pixels that 

can be stably solved?” 

The Moore-Penrose pseudo inverse matrix method is SVD based 

and is a powerful tool to use when some singular values of the 

system matrix are zero. However, the SVD method requires that the 

entire system matrix be stored in the computer memory during 

computation. In reality, the system matrices are too large to store. 

The SVD methods are not practical. 

This paper proposed a practical tool that maps out the stably 

solvable regions in the image. The basic idea of the tool is to 

reconstruct a large number of random images and compute their 

errors with respect to their associated true images. In other words, 

this is a Monte Carlo based method, The errors are location 

dependent. The regions that have large errors are not solvable. This 

idea is similar to machine learning. Here we use a large number of 

phantoms to ‘train’ the image solvability map. The map is imaging-

geometry dependent. If the imaging geometry is altered, we need to 

‘re-train’ a new map for the new geometry. We must point out that 

the image solvability map is also reconstruction algorithm 

dependent. 

One important application of the proposed image solvability map 

is in C-arm cone-beam imaging trajectory design [13, 14]. Another 

important application is in region-of-interest (ROI) imaging system 

design [15, 16]. 
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Abstract Simulation tools are crucial for efficient development of X-

ray/CT imaging systems, but sophisticated and well-characterized 

simulators are proprietary to imaging equipment manufacturers. An 

open-source version of CatSim is now available as part of XCIST. We 

believe this is the first open-source X-ray/CT simulator that includes 

sophisticated modeling capability for all critical system components and 

physical processes. Once validated, this simulator will allow academic 

groups and small commercial companies to evaluate new CT 

technologies with minimal investment. 

Detailed evaluation of CatSim is currently ongoing. Spatial resolution is 

one of the most important system performance characteristics to model 

correctly, and accurate simulation requires sophisticated models for focal 

spot and detector geometry and detector physics. We have now 

developed such models and have evaluated agreement between empirical 

measurements and analogous simulations in the projection and image 

domains. We constructed physical and analogous virtual phantoms for 

each domain. 

We achieved good agreement in both domains, with average errors <5% 

and worst-case errors <10%. This represents a strong step toward full 

validation of CatSim’s simulation performance. 

1 Introduction 

Simulation tools are crucial for efficient development of X-

ray/CT imaging systems. CatSim is a proprietary simulator 

that has been in development for nearly two decades1; an 

open-source version is now available as the underlying 

simulator for the X-ray-based Cancer Imaging Simulation 

Toolkit (XCIST)2. 

Spatial resolution is one of the most important system 

performance characteristics to model correctly. In this 

work, we evaluate agreement between empirical results 

from a 64-slice scanner and simulated results when 

modeling the same scanner. We evaluate the spatial 

resolution obtained in the projection and image domains 

using previously developed approaches.3 In each domain, 

we report the full width at half maximum (FWHM) of the 

point spread function (PSF), designated PSF50_proj and 

PSF50_image. We also report the image-domain frequency 

at which the modulation transfer function (MTF) reaches 

50% and 10% modulation, designated MTF50 and MTF10. 

Importantly, we focus on agreement between empirical and 

simulated results, not on absolute performance of the 

modeled system, because that is affected by multiple factors 

that are controlled but not optimized in this work. 

2 Materials and Methods 

All empirical data were acquired using a LightspeedTM VCT 

scanner (GE Healthcare, Chicago, IL). Data in empirical 

projections were converted to post-log p-values, but all 

standard corrections for non-ideal effects (e.g., afterglow, 

low signal) were disabled. All simulated data were 

computed using CatSim within the XCIST package 

(https://github.com/xcist). 

We developed new models for the X-ray source focal spots 

using photos of the scanner’s focal spot made with a 

pinhole camera, and we developed a model for the 

detector’s afterglow behavior using a preiously reported 

method4. 

We constructed two 

physical phantoms, one for 

the projection-domain (PD) 

and one for the image-

domain (ID) experiments 

(Figure 1). 

2.1 Projection domain. 

For the PD phantom we 

used a 0.7-mm diameter 

stainless steel (SS) wire, 

placed approximately 218 mm from the axis of rotation 

(AR) and approximately parallel to the AR. We then 

scanned the wire cantilevered in air from a 45-cm-diameter 

cylindrical foam phantom, using 120 kV, the small focal 

spot, and 300 mA. We reconstructed images only to 

measure the distance of the wire from the AR; we then 

created a virtual phantom for simulations using that wire 

position. We performed simulations using the same kV, 

focal spot, and mA as the empirical scans. We analyzed the 

empirical and simulated results as follows. For each of the 

984 projections, we used the data from detector row 32 to 

measure the width of the pulse at half the peak height to 

determine PSF50_proj. 

Note that, when scanned 

(Figure 2), the wire is 

sometimes close to the 

source (position S), close 

to the detector (position 

D), or tangential to the 

trajectory of the wire 

relative to the source and 

detector (position T). At 

each projection, we 

normalized the measured 

PSF50_proj by the 

magnification factor of the 

wire at that position, and 

converted from detector 

columns to mm. We next 

plotted the PSF50_proj 

values for all projections 

and applied a third-order 

spline fit to the data (Figure 

Figure 1. Phantoms. 

(A) Projection-domain phantom. 

(B) Image-domain phantom. 

Figure 2. Critical wire positions 

for the projection-domain 

experiments. The PSF of the wire 

was analyzed at 984 views angles 

during a complete 360° rotation, 

but the most interesting view 

angles are when the wire is 

closest to the source (S), the 

detector (D), and tangential to 

the wire trajectory (T).  
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3). Finally, for each projection, we calculated the difference 

beteen the fitted curves for empirical and simulated data. 

2.2 Image domain. For the ID phantom, we drilled nineteen 

~10-mm holes in the foam ~0 to ~225 mm from the 

phantom center, in ~12.5-mm increments. We fastened the 

ends of 0.1-mm tungsten wires at the faces of the foam, 

attempting to keep the wires taut and centered in the hole. 

We scanned the phantom (Figure 4), measured the wire 

positions in the images, and created a virtual phantom using 

the measured wire positions. When analyzing the empirical 

scans, we found that five wires were misaligned in the holes 

and the data were unusable; these wires were excluded for 

both empirical and simulated experiments. 

Using XCIST’s Feldkamp-based reconstruction tool with 

the Bone kernel, we reconstructed a 10-mm ROI around 

each wire, then we corrected for wires potentially non-

parallel to the AR by aligning the images at the maximum 

value, and averaged the shifted images. We applied a 2D 

weighting function to mask out the foam. We determined 

the line from the AR to each wire, and measured the PSF50 

along that line for the radial response (PSF50_img_rad) and 

perpendicular to the line for the azimuthal response 

(PSF50_img_azim). We then applied a 2D FFT to the image 

and, for each of these orientations, we averaged pixel values 

over a ±15º range and measured the modulation transfer 

function (MTF) at 50% and 10% modulation (MTF50 and 

MTF10). 

In total, seven parameters were reported: PSF50_proj, 

PSF50_img_rad, PSF50_img_azim, MTF50_rad, 

MTF50_azim, MTF10_rad, and MTF10_azim. As a metric 

for each parameter’s “goodness of agreement” between 

empirical and simulated results, we averaged the percent 

errors across all samples for each metric. 

3 Results 

3.1 Projection 

domain. Selected 

PD results are 

shown in Figure 5. 

The general 

characteristics of 

the empirical PSFs 

were reproduced 

by the simulation, 

as follows. The 

PSFs at positions S 

and D showed 

asymmetry. The T 

position produced 

the narrowest PSF. 

The S position had 

a broad PSF and 

had the largest 

apparent AUC. 

The D position had 

the smallest 

apparent AUC. 

PD results are 

summarized in 

Table 1. The mean 

error from all 984 

projections was 

about 2%, and the 

maximum error 

was about 4%. 

Figure 3. PSF50_proj. The projection-domain PSF is shown for 

984 projections during a complete 360° rotation, for both 

empirical and simulated data. The approximate positions S, D, 

and T are indicated.  

Figure 4. Image-domain analysis. One slice of a reconstructed 

image is shown (background) from the empirical scan of the 19-

wire phantom. Five wires (yellow circles) were excluded due to 

alignment issues. Five examples of high-resolution region-of-

interest reconstructions are shown (inset images); these are 

displayed at W/L = 900/-600 HU. The red line denotes the radius 

from the AR to a selected wire; the red and orange regions in the 

corresponding inset image designate the angular ranges from 

which the radial and azimuthal PSF curves were determined. 

 

Figure 5. PD PSFs at selected wire 

positions. PSFs are shown at position S 

(A), position D (B) and position T (C). 

Vertical axes are equal and horizontal 

axis widths are equal. 
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 Table 1. Projection-domain results 

Wire 
position 

Parameter Value Units 

S 
PSF50_proj_emp 2.08 mm 
PSF50_proj_sim 2.14 mm 
Error 3.12 % 

D 
PSF50_proj_emp 2.21 mm 
PSF50_proj_sim 2.25 mm 
Error 1.78 % 

T 
PSF50_proj_emp 1.08 mm 
PSF50_proj_sim 1.05 mm 
Error 3.02 % 

  Maximum error (a) 4.27 % 
  Mean error (a, b) 2.12 % 

(a) Determined from errors at all 984 projections 
shown in Figure 3 

(b) Mean error = RMSE/mean(all PSF50_proj_emp) 

3.2 Image domain. The shape, asymmetry, and widths of 

ID PSFs (Figure 8) show excellent qualitative and 

quantitative agreement between empirical and simulation 

results. The azimuthal PSFs at the center are not shown 

because they were nearly identical to the radial (Figure 8A). 

The predominant characteristics of the positional 

dependence of the ID 

PSFs and MTFs are in 

good agreement (Figure 

6). As the distance from 

center increases, the 

radial PSF increases 

slightly until a distance 

of about 100 mm from 

the AR (Figure 6A), and 

then remains at about 1 

mm all the way to the 

edge (Figure 8B). The 

azimuthal PSF increases 

with the radial but 

continues increasing all 

the way to the edge 

(Figure 6A) to about 2.5 

mm (Figure 8C), where 

the simulation 

disagreement becomes 

larger above 50% of 

maximum but PSF50 is 

still in close agreement. 

Notably, the trend as the 

wire position gets closer 

to center is not 

monotonic at the 

centermost point (Figure 

6A); this characteristic 

in the empirical result is 

faithfully predicted by 

the simulation.  

The positional 

dependence of the 

MTFs at 50% and 10% 

modulation (Figure 6B 

and Figure 6C) also 

show similar close 

agreement, 

qualitatively and 

quantitatively, between 

empirical and 

simulated results.  

Exemplary MTF curves 

(Figure 7) generally 

show good agreement 

but there are some 

notable discrepancies. 

The radial response at 

the edge (Figure 7A, 

blue and pink squares) 

is in disagreement over 

the range of about 1 to 

3 lp/cm, but this doesn’t 

affect the MTF50 or 

MTF10. The radial 

response at the center 

(Figure 7A, blue and 

pink trianges) and the 

azimuthal response at 

the center (Figure 7B, 

blue and pink circles) 

are in disagreement over 

the range of about 5 to 

10 lp/cm, which affects 

MTF50 and MTF10. 

The azimuthal response 

at the edge (Figure 7B, 

blue and pink 

diamonds) are in 

disagreement over the 

range of about 5 to 10 

lp/cm, but this doesn’t 

affect the MTF50 or 

MTF10. 

ID results are 

summarized in Table 2. 

For PSF50_img, the mean(maximum) errors from all 

fourteen included wire positions were about 3%(6%) 

radially and about 2%(5%) azimuthally. For MTF50_img, 

the errors were about 3%(7%) radially and about 4%(10%) 

azimuthally. For MTF10_img, the errors were about 

2%(5%) radially and about 2%(5%) azimuthally.

Figure 8. Selected ID PSFs. Radial 

PSFs are shown at the (A) center 

and (B) edge positions; Azimuthal 

PSFs are shown at the (C) edge 

position. Vertical axes are unequal 

and horizontal axes are equal. 

Figure 6. ID results versus wire 

position. (A) PSF50, (B) MTF50, 

and (C) MTF10. 

Figure 7. Center and edge MTF 

curves. (A) Radial (B) Azimuthal. 
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Table 2. Image-domain results. 

Wire Measured    PSF50_img   MTF50_img   MTF10_img 
position orientation   Value Units   Value Units   Value Units 

Center 

Radial 
Empirical 0.67 mm   8.76 lp/cm   11.59 lp/cm 
Simulated 0.69 mm  8.19 lp/cm  11.37 lp/cm 
Error 2.40 %   6.54 %   1.97 % 

Azimuthal 
Empirical 0.68 mm   8.56 lp/cm   11.52 lp/cm 
Simulated 0.69 mm  8.10 lp/cm  11.34 lp/cm 
Error 1.37 %   5.34 %   1.57 % 

Edge 

Radial 
Empirical 1.07 mm   4.42 lp/cm   7.39 lp/cm 
Simulated 1.01 mm  4.37 lp/cm  7.62 lp/cm 
Error 5.61 %   1.05 %   3.14 % 

Azimuthal 
Empirical 2.45 mm   1.93 lp/cm   3.53 lp/cm 
Simulated 2.48 mm  1.79 lp/cm  3.52 lp/cm 
Error 1.24 %   7.07 %   0.24 % 

    Maximum error, radial (a) 5.92 %   6.54 %   4.65 % 
  Mean error, radial (a, b) 2.97 %  2.96 %  2.43 % 
  Maximum error, azimuthal (a) 4.81 %  9.45 %  4.35 % 

    Mean error, azimuthal (a, b) 2.27 %   4.14 %   2.07 % 

(a) Determined from errors at all fourteen included wires 
(b) Mean error = RMSE/mean(all <parameter>_img_emp) 

4 Discussion 

The purpose of this work is to compare the results from 

simulation with ground-truth empirical results, and not to 

characterize the performance of the VCT system. 

Therefore, we focus on the question of agreement. 

The models that determine the ability to accurately simulate 

the spatial resolution of a CT system include the X-ray 

source focal spot (FS), detector cell size, detector afterglow, 

and gantry rotation (the latter two resulting in azimuthal 

blur). Detector cell size and gantry rotation are 

straightforward to model, leaving the FS and afterglow as 

the most challenging models. At position S, PSF width is 

dominated by the FS convolved by azimuthal blur, and the 

asymmetry is produced by afterglow. At position D, PSF 

width is dominated by detector cell size and azimuthal blur. 

At position T, there is minimal effect from azimuthal blur 

and FS; detector cell size dominates. The close agreement 

in the characteristics of the PSF curves and the quantitative 

results suggests that our critical models are valid. 

Interestingly, there is one finding in the empirical results 

that is unexplained but was faithfully predicted by the 

simulated results. Specifically, the azimuthal PSF and MTF 

curves show fluctuation in the range of about 60 mm to 150 

mm from the AR in both empirical and simulated results. 

Conversely, there were some characteristics in the results 

that were not in close agreement but were not captured by 

our metrics. For example, there is positional disagreement 

in the PSF_proj curves at positions S and T. Also, the MTF 

curves of the edge wire disagree at low frequencies in the 

radial direction and at higher frequencies in the azimuthal 

direction; these errors are undetected by our metrics. 

One limitation of this study was the need to exclude some 

of the wires in the image-domain phantom due to alignment 

issues. The primary limitation is that only one focal spot 

model and X-ray technique was used, and only in-plane 

resolution was reported. 

5 Conclusion 

This work represent a strong first step toward validation of 

CatSim’s phyics models that determine the ability to 

accurately simulate the spatial resolution of a typical CT 

system. The focal spot shape/size and detector afterglow 

models that have been implemented produced simulations 

that were in excellent agreement with empirical 

measurements, resulting in mean errors <5% and maximum 

errors <10% for all measured parameters. This study was 

limited to a small focal spot operated at 120 kV and 300 mA 

and all standard corrections for physical effects were 

disabled. In future work, we will extend this to the entire 

range of conditions used for clinical CT exams. 
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Abstract In this work, an algorithm for limited angular range scan-
ning is developed based on data discrepancy constrained, weighted
anisotropic total variation (WATV) minimization. The constraint on the
data discrepancy allows for mismatch between the projection data and
its estimate, and a weighting parameter controls the relative strength of
ATV regularization in directions parallel and perpendicular to the scan-
ning arc. Standard unweighted ATV is a special case of the considered
optimization problem. The algorithm is demonstrated on noiseless
projection data in order to investigate the accuracy of the proposed
inverse problem solution as a function of the weighting parameter.
The results show that the optimal recovery is found for a weighting
parameter that imposes greater directional TV regularization along the
direction parallel to the scan arc.

1 Introduction

Limited angular range scanning in CT is a classic image
reconstruction problem, which is relevant for developing
scanners for surgical or radiation therapy interventions. For
such applications, it may not be practical to acquire transmis-
sion data over a complete scanning arc that admits accurate
reconstruction by filtered backprojection (FBP). Recently,
we have been investigating an optimization based image re-
construction for this problem by imposing two constraints on
the directional TV of the image while minimizing the data
discrepancy[1]. We have found that imposing two directional
TV constraints admits exact reconstruction for angular ranges
far smaller than use of a single TV constraint. Exact recovery,
however, depends on the knowledge of the scanned object’s
directional TV values.
In this work, we seek an optimization based approach that
takes advantage of different directional TV regularization
strengths and that does not require prior knowledge of the
object directional TV values. The use of directional weight-
ing for TV-based regularization is a strategy that has been
exploited for X-ray based tomographic imaging for under-
sampled scan configurations [2, 3]. The new optimization
based framework is motivated and developed in Sec. 2 and
preliminary results are shown in Sec. 3.

2 Methods

The data model for the limited angular range problem is
formulated as an under-determined linear system

Au = g, (1)

where A represents a discrete projection operator, applying
line integrations over the attenuation coefficients of the un-
known image vector u, with g being the resultant vector of

Figure 1: Limited Angle Setup

projections. The general setup for our model is shown in
Fig. 1. The precise form of the fan-beam projection ma-
trix is specified in Sec. 3. We consider convex optimization
problems that impose various constraints that are used to
select an unique solution out of the null space of Eq. (1). We
take advantage of the convex prototyping capability of the
Chambolle-Pock (CP)[4, 5] algorithm to provide an algo-
rithm instance that can solve the problems of interest.
For investigating image reconstruction from data that has
insufficient sampling, exploiting gradient sparsity, it is conve-
nient to formulate the imaging model as a data discrepancy
minimization problem with a constraint on the image ATV

min
u

∥Au−g∥2
2 such that ∥∇u∥1 ≤ γ, (2)

where ∥∇u∥1 is anisotropic total variation (ATV) and γ is
the constraint parameter. For an inverse problems type study,
where exact recovery from noiseless data is being tested, γ is
set to the object ATV value, γ0. A criticism of this approach
is that it requires fore-knowledge of γ0. This criticism is
addressed by switching to a data discrepancy constraint and
minimizing ATV

min
u

∥∇u∥1 such that Au = g, (3)

which does not require knowledge of the object ATV ahead
of time. For noiseless data, this latter optimization problem
is actually equivalent to Eq. (2) through the Lagrangian for-
malism. For example, one could solve Eq. (3) first and use
the ATV of the solution as the constraint value γ for Eq. (2).

495 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Figure 2: Left: ground truth image. Right: FBP reconstruction
from a limited angular scan over a 90◦ arc.

If solving Eq. (3) yields the exact test object, then Eq. (2)
will also yield the same with this procedure.
The case where Eq. (2) is generalized to having two direc-
tional TV constraints is more complicated. We consider
limited angular range scanning where the scanning arc is bi-
sected by the y-axis of a 2D coordinate system. The x-axis is
then considered to be "parallel" to the scanning arc. The dou-
bly constrained optimization problem considered in Ref. [1]
is

min
u

∥Au−g∥2
2 such that ∥∇xu∥1 ≤ γx and ∥∇yu∥1 ≤ γy, (4)

where ∇x and ∇y are the x and y-directional derivatives, re-
spectively. For exact reconstruction from noiseless data, the
directional TV values γ0,x and γ0,y of the scanned object are
assumed to be known.
Because there are two directional TV constraints, it is not pos-
sible to convert this optimization problem into a parameter-
free analogue to Eq. (3). Instead, the number of parameters
can be reduced from two to one by converting Eq. (4) to
constrained, weighted ATV minimization

min
u

{α∥∇xu∥1 +(2−α)∥∇yu∥1} such that Au = g, (5)

where the α weighting parameter can be tuned for optimal
recovery of the scanned object. The case where α = 1 is
equivalent to Eq. (3). For image recovery from noiseless
data, it is possible that exact recovery can be obtained for any
value of α since the data equality constraint is being enforced.
Furthermore, there is an optimal value α0 that will yield the
same result as Eq. (4) with knowledge of the true directional
TV values γ0,x and γ0,y. The optimal combination parameter
α0 is object dependent. Still, in principle, a “best” value
of α can be defined as the one that yields the lowest root-
mean-square-error (RMSE) for an ensemble of test objects
when reconstructing images from noiseless data. Solving
Eq. (5) with this value of α will not be as optimal as as
solving Eq. (4) with knowledge of γ0,x and γ0,y, but it may
yield better image recovery than Eq. (3), i.e. setting α = 1.
For this preliminary study, we consider image reconstruction
from a single test object and the data equality constraint

Figure 3: A graph of α values vs. image error at 2000 iterations.

is loosened to an inequality constraint governed by a data
discrepancy parameter ε .

min
u

{α∥∇xu∥1 +(2−α)∥∇yu∥1} such that ∥Au−g∥2 ≤ ε.

(6)
By setting ε to a small positive value, accuracy and stability
of the image reconstruction model is tested.

3 Results

For the system of interest we consider scanning over a 90◦

arc with one degree spacing. As stated before, the center
of the arc is bisected by the y-axis of a 2D coordinate sys-
tem. In this way, the x-axis parallel to the tangent of the
scanning arc at its midpoint, and the directional derivatives
in the objective function of Eq. (5) are parallel and perpen-
dicular to the the mid-arc tangent. The detector is taken to
be a linear array consisting of 512 detection elements and
it rotates along with the source as in a standard CT set-up.
The scanning arc radius is 50 cm and the source-to-detector
distance is 100 cm. The 18cm × 18cm image array consists
of 512×512 pixels. Given that there are only 91 projections
over a 90◦ arc, the reconstruction problem is challenging due
to undersampling and limiting angular range scanning. The
difficulty of this problem is demonstrated by Fig. 2 where
image reconstruction from this scan configuration is shown
for filtered backprojection (FBP).
For the results of this experiment, noiseless data is recon-
structed by solving Eq. (6) varying α and fixing the data
discrepancy to an ε corresponding to an RMSE of 0.001.
The CP algorithm is run for 2000 iterations for each α value,
at which point the data discrepancy constraint value has been
met. The corresponding image RMSEs are plotted in Fig. 3.
As expected there is variation in the RMSE values as a func-
tion of α , and the minimum image RMSE is obtained at
approximately α = 1.6. Accordingly, there is some potential
advantage to use of WATV over the unweighted case (α = 1).
A few representative images are shown in Fig. 4 and corre-
sponding regions of interest (ROIs) are shown in Fig. 5. All
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Figure 4: Reconstructed images for α values of 0.5,1.0,1.6, and
the original phantom

Figure 5: ROIs of the images shown in Fig. 4, zooming in on the
top edge of the test phantom.
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Figure 6: Image RSME versus iteration number for different
values of the weigting parameter α .

of the reconstructed images show a high degree of accuracy.
We note that exact reconstruction is not expected because ε is
not zero. Allowing this small data discrepancy reveals which
aspects of the image can be stably reconstructed. For all of
the images, it is clear that the hardest parts of the phantom to
recover are the top and bottom edges of the phantom. This
result is expected because the scanning arc is above the test
object and rays tangent to the object at the top and bottom
are not measured [6].
Use of ATV (α = 1) has already been shown to yield higher
degree of accuracy in the reconstructed images than FBP for
limited angular range scanning. Optimizing the weighting
parameter α , leads to even further improvement as evidenced
by the drop in image RMSE by approximately 5% when
increasing α from 1 to 1.6. Looking at the images, the ROI
corresponding to α = 1.6 does show the best recovery of
the top boundary of the phantom even though there is still
obvious discrepancy when compared with the ground truth.
Decreasing α to 0.5 results in a worsened erosion of the top
edge.
Finally, in order to provide a sense of convergence of CP
applied to Eq. (6) the image RMSE is shown as a function of
iteration number in Fig. 6. It is clear from the figure that the
image RMSE is starting to level off at 2000 iterations, but
there is still a slight downward trend in all graphs, which is
the largest for α = 1.6.

4 Conclusion

This abstract presents an optimization-based framework for
solving the inverse problem corresponding to limited angular
range scanning. The proposed constrained, WATV mini-
mization algorithm does not require prior knowledge of any
aspects of the scanned object for accurate image reconstruc-
tion, and it is found that the use of weighted anisotropic
TV can lead to better accuracy than the unweighted case.
Further studies will include investigation into both α and ε

dependence. In conjunction with these studies, use of incon-

sistent data due to noise and other physical factors will also
be studied.
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Abstract Three-dimensional digital subtraction angiography (3D-DSA) 

is a widely adopted technique for clinical evaluation of contrast-

enhanced vasculatures. The distribution of a contrast agent such as 

iodine is often estimated via temporal subtraction. Advancements 

in spectral imaging technologies such as photon counting detectors 

offer new opportunities to improve DSA image quality. In this 

work, we propose a novel joint processing strategy to achieve an 

iodine image using two-bin spectral measurements from a photon 

counting detector acquired both the pre- and post-contrast 

injection. Simulation studies were performed using a digital 

phantom with iodine-enhanced vessels. The proposed method was 

compared with temporal subtraction and conventional spectral 

imaging using just the post-contrast measurements. Imaging 

performance was evaluated in terms of noise-resolution tradeoffs. 

Preliminary findings have shown measurably improved image 

quality given by joint processing, reducing noise by 40% and 70% 

compared to temporal subtraction and conventional spectral 

imaging using an energy-integrating detector, respectively. 

1 Introduction 

Three-dimensional digital subtraction angiography 

(3D-DSA) has been widely used for the diagnosis of 

vascular diseases in a range of clinical applications.1,2 

Conventionally, 3D-DSA relies on temporal subtraction, 

where cone-beam CT (CBCT) acquisitions pre- and post-

contrast injection are subtracted to isolate iodine 

distribution in the vasculature.  

With the increasing availability of spectral hardware, 

efforts to introduce spectral imaging for interventional 

applications are quickly emerging.3 Spectral imaging has 

been previously proposed for 2D DSA as an alternative to 

temporal subtraction to mitigate patient motion. A post-

contrast only acquisition using spectral measurements allow 

iodine distribution to be computed using material 

decomposition algorithms. However, significant noise 

amplification from material decomposition impeded 

clinical adoption.  

Recent work4 has proposed a joint processing strategy 

using spectral measurements acquired both pre- and post-

contrast injection to improve the noise performance 2D 

DSA image estimates. Such strategy leverages both the 

temporal and spectral information and can yield DSA 

images that outperform conventional temporal-only and 

spectral-only processing. This work seeks to apply similar 

strategies to 3D-DSA imaging. We focus on spectral 

measurements using a photon counting detector (PCD) due 

to its superior spectral separability and spatial resolution 

compared to other spectral technologies. We envision that 

the low image noise and high spatial resolution enabled by 

this strategy can bring the most benefit to the visualization 

of small, low contrast targets like small vessels.  

2 Methods 

2.1. Theoretical methods 

We propose a novel joint processing strategy for 3D-

DSA which leverages both temporal and energy 

information for image quality improvement. Projection data 

are acquired using a spectral imaging system before and 

after contrast injection. Measurements in two spectral 

channels are obtained for each acquisition, yielding a total 

of four measurements. Under the assumption of minimal 

patient motion (valid for intubated patients in anatomical 

sites without involuntary motion like cardiac and 

breathing), we can formulate a general forward model that 

relates a three-material object (water, bone/calcium, iodine) 

to the four measurements as follows: 

�̅�1(𝑙) = 𝐒1 exp(−𝐐𝐻2𝑂𝐀𝜌𝐻2𝑂 − 𝐐𝐶𝑎𝐀𝜌𝐶𝑎) (1) 

�̅�2(𝑙) = 𝐒2 exp(−𝐐𝐻2𝑂𝐀𝜌𝐻2𝑂 − 𝐐𝐶𝑎𝐀𝜌𝐶𝑎) (2) 

�̅�3(𝑙) = 𝐒1 exp(−𝐐𝐻2𝑂𝐀𝜌𝐻2𝑂 − 𝐐𝐶𝑎𝐀𝜌𝐶𝑎 − 𝐐𝐼𝐀𝜌𝐼) (3) 

�̅�4(𝑙) = 𝐒2 exp(−𝐐𝐻2𝑂𝐀𝜌𝐻2𝑂 − 𝐐𝐶𝑎𝐀𝜌𝐶𝑎 − 𝐐𝐼𝐀𝜌𝐼) (4) 

where {�̅�1, �̅�2} denotes the pre-contrast mean measurements 

containing water and bone/calcium, {�̅�3, �̅�4} denotes the 

post-contrast mean measurements containing water, 

calcium, and iodine, 𝐒1 and 𝐒2 models the spectral 

sensitivities of each spectral channel, 𝐐 contains the mass 

attenuation coefficients for each basis material, A denotes 

the system matrix, and 𝜌 represents material densities. We 

can alternatively combine the four equations into a single 

equation to facilitate joint estimation: 

[

�̅�1

�̅�2

�̅�3

�̅�4

] = [ 

𝑺1  𝟎
𝟎  𝑺2

𝑺1  𝟎
𝟎  𝑺2

] exp

(

  
 

− [
 𝐐 
𝐐

]

[
 
 
 
 
 
𝐈 𝟎 𝟎
𝟎 𝐈 𝟎
𝟎 𝟎 𝟎
𝐈 𝟎 𝟎
𝟎 𝐈 𝟎
𝟎 𝟎 𝐈 ]

 
 
 
 
 

[
𝐀𝟎𝟎
𝟎𝐀𝟎
𝟎𝟎𝐀

] [

𝜌𝐻2𝑂

𝜌𝐶𝑎

𝜌𝐼

]

)

  
 

 (5) 

Here, a masking matrix composed of identity matrices and 

zeros selectively zero out the pre-contrast measurements 

associated with iodine.  
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2.1.1. Model-based one-step decomposition/reconstruction 

This form of forward model (linear-exponential-linear) 

can be solved by an optimization algorithm using a 

separable paraboloidal surrogate approach previously 

developed by the authors.5 Assuming the measurements 

follow a multivariate Gaussian distribution, 𝑦~𝒩(�̅�, 𝚺), the 

material density, 𝜌, can be solved using a nonlinear 

weighted least squares objective:    

�̂� = arg min
𝜌

Φ(𝜌, 𝑦), where (6) 

Φ(𝜌, 𝑦) = (𝑦 − �̅�(𝜌))
𝑇
𝚺𝑦

−1(𝑦 − �̅�(𝜌)) + 𝛽𝑅(𝜌) (7) 

A quadratic  penalty, 𝑅, is adopted in this work. We refer to 

this algorithm as the model-based one-step decpomposition 

(MB-OSD). The densities of water, calcium, and iodine 

were initialized with zeros and iteratively solved using 600 

iterations of the separable quadratic surrogate algorithm 

with 10 ordered subsets6 and Nesterov’s acceleration.7 

 

2.1.2. Model-based projection-domain decomposition 

Alternatively, a more memory efficient and faster 

algorithm involves performing a projection-domain 

decomposition followed by an analytic or model-based 

reconstruction (MB-PDD). Instead of physical density 𝜌, 

we now estimate the material density line integral, 𝑙 = 𝐀𝜌. 

The forward model in Eq. (5) can be modified to: 

[

�̅�1

�̅�2

�̅�3

�̅�4

] =

[
 
 
 
 

𝑺1  𝟎
𝟎  𝑺2

𝑺1  𝟎
𝟎  𝑺2]

 
 
 
exp

(

  
 
− [

 𝐐 
𝐐

]

[
 
 
 
 
 
𝐈 𝟎 𝟎
𝟎 𝐈 𝟎
𝟎 𝟎 𝟎
𝐈 𝟎 𝟎
𝟎 𝐈 𝟎
𝟎 𝟎 𝐈 ]

 
 
 
 
 

[
𝑙𝐻2𝑂

𝑙𝐶𝑎

𝑙𝐼
]

)

  
 

 (8) 

We can write down a similar objective function as 

above based on 𝑙: 

Φ(𝑙, 𝑦) = (𝑦 − �̅�(𝑙))
𝑇
𝚺𝑦

−1(𝑦 − �̅�(𝑙)) (9) 

𝑙 = arg min
𝑙

Φ(𝑙, 𝑦) (10) 

Note that no additional regularization is included in this 

objective. We instead rely on smoothing in the volumetric 

reconstruction (e.g., apodization filter in FDK or 

regularization in model-based iterative reconstruction).  

We adopted a modified Newton’s method to solve this 

objective, where a proximal regularization term was added 

to the diagonal of the Hessian to improve conditioning of 

the inversion process. We adoped zero initialization and 

applied 50 iterations of optimizer. Volumetric 

reconstruction of the estimated material density line 

integrals may be performed using either analytical or 

iterative algoirthms. In this work, we adopted filtered back-

projeciton (FBP) with a Hann apodization filter with 

different cutoff frequencies.  

 

2.2. Experimental methods 

2.2.1. Phantom 

A digital phantom (Figure 1) was constructed for data 

generation, which includes a 1000 mg/mL water 

background, a 4.0 mm-thick 200 mg/mL Calcium ring, and 

10 mg/mL iodine-enhanced vessels of diameter ranging 

from 0.3 mm to 4.0 mm. The phantom is intended for 

evaluation of high-resolution imaging of small targets such 

as intracranial vessels. Pre-contrast imaging involved only 

the water background and the calcium ring, while post-

contrast imaging included the enhanced vessels.  

 

 
Figure 1. Digital phantom with a water background, a calcium ring, and 

iodine-enhanced, cylindrical vessels of varying diameters. 

 

2.2.2. Comparison studies 

We simulated four 3D-DSA techniques for comparison: 

(1) Pre- and post-contrast measurements generated 

using an energy integrating detector (EID) with a 600-μm 

CsI scintillator. These measurements emulate data from the 

current standard DSA using temporal subtraction and what 

might be used in a 3D-DSA interventional imaging system 

(e.g., C-arm); 

(2) Pre- and post-contrast measurements generated 

using a single energy bin (10–150 keV) from a photon 

counting detector with 750-μm CdTe. This dataset was used 

to evaluate performance of temporal subtraction with a 

PCD; 

(3) Post-contrast measurements only from a PCD. Two 

energy thresholds were applied (40 keV and 60 keV) to 

obtain data from three energy bins. The PCD was modeled 

with “perfect” energy resolution. This data provided an 

example of “conventional” spectral imaging in 3D-DSA, 

where only energy information was leveraged for material 

decomposition. This technique is evaluated at both 1x and 

2x the total dose for a fair comparison to techniques using 

both the pre- and post- measurements; and 

(4) Pre- and post-contrast measurements from the PCD 

with two energy bins. This dataset contained both temporal 
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and energy information and was used to evaluate the 

proposed joint processing strategy. The energy threshold is 

set to 50 keV. 

 

2.2.3. Simulation 

Projection data for 3D imaging (1080 × 5 pixels, 0.154 

mm pixel pitch, 360 views uniformly distributed over 360°) 

were generated for a system geometry with a source-to-axis 

distance of 800 mm and a source-to-detector distance of 

1100 mm. The x-ray spectrum was generated calculated 

using Spektr8 at 100 kVp with 0.25 mm Aluminum as the 

intrinsic filtration. The nominal tube current-time product 

was set to 1.0 mAs per projection. Poisson noise was added 

to all measurements, and detector blur measured from a 

physical energy integrating detector was applied to data 

from the EID. Blur was assumed to be negligible for the 

PCD. Volumetric images were reconstructed at 0.1 mm 

isotropic voxel size. 

In temporal subtraction, the iodine distribution was 

obtained by subtracting two single energy reconstructions. 

The scale and units are therefore mismatched from physical 

density obtained from spectral decomposition. To enable 

direct quantitative comparisons, an “oracle” scaling factor 

computed from noiseless measurements was applied to 

convert attenuation coefficient differences to iodine density. 

In conventional spectral imaging, the density line integrals 

were estimated via model-based projection domain 

decomposition considering three energy sensitive channels 

and only post-contrast measurements. 

For quantitative comparison of methods, the noise-

resolution trade-off in the iodine basis image was evaluated 

by varying the cutoff frequency of the Hann filter. A similar 

curve can be generated by tuning the regularization strength 

for the one-step decomposition and will be the subject of 

future work. Resolution was characterized by the full width 

at half maximum (FWHM) of the 0.3 mm diameter vessel 

measured in a noiseless reconstruction. Noise was measured 

within a 21 × 21 × 1 region of interest at the center of the 

4.0 mm diameter vessel over 10 repeated reconstructions 

with different noise realizations. 

3 Results 

Figure 2 shows the noise-resolution curves for 

conventional spectral imaging, temporal subtraction, and 

joint processing with model-based projection domain 

decomposition. Across all resolutions, conventional 

spectral imaging exhibits higher noise levels, even when the 

exposure is increased by a factor of two. Temporal 

subtraction using the EID provides reduced noise but also 

exhibits a limited improvement in spatial resolution 

compared to other methods – i.e., the resolution 

improvement stopped around 0.45 mm and increasing 

cutoff frequency did not improve resolution. In comparison, 

temporal subtraction using the PCD offers further 

opportunity to improve resolution, as well as ~25% 

reduction in noise at matched resolution. Joint processing 

with MB-PDD exhibited the best noise-resolution trade-off 

overall, permitting a ~12% noise reduction compared to 

temporal subtraction using the same PCD.  

Figures 3(a-e) shows example decomposed iodine 

images of the 0.3 mm diameter vessel at a matched 

resolution as indicated by the black dotted vertical line in 

Figure 2. A high level of noise is present in Figures 3(a-b), 

obscuring the small vessel target. By contrast, the vessel can 

be easily differentiated from background noise in Figures 

3(c-e), while the magnitude of noise is noticeably lower in 

(d) and (e).  

Figure 3(f) demonstrates a preliminary model-based 

one-step decomposition result, which exhibits higher 

resolution (~0.3 mm) and markedly reduced noise 

compared to other methods. We conjecture that is due to the 

nonnegativity constraint clipping the noise at 0. While the 

strong noise suppression may be desirable for angiography 

applications, the images tend to appear “patchy” and low 

contrast features may be suppressed. Further investigation 

is underway where non-negativity constraint is turned off.   

 

 
Figure 2. Noise-resolution characterization in iodine basis images 

estimated through conventional spectral imaging, temporal subtraction, 

and joint processing with varying cutoff frequencies for FBP 

reconstruction. Example images at matched resolution (dotted vertical 

line) are shown in Figure 3. 

4 Discussion and Conclusion 

This work demonstrated the capability of a joint 

processing strategy for improved noise and resolution 

performance in 3D-DSA. Leveraging both temporal and 

energy information, model-based decomposition 

approaches was shown to yield better noise-resolution 

tradeoffs compared to temporal subtraction or material 

decomposition based solely on multi-energy data.  

Ongoing work includes spectral system optimization of 

the joint processing strategy. Material decomposition 

algorithms will be further optimized, including a 

comprehensive regularization parameter sweep of the one-

step method and investigations of the behaviors of the 

nonnegativity constraint. Modeling of non-ideal effects in 
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PCD including charge sharing and pulse pileup, and 

integration of registration algorithms to account for tissue 

deformation during image acquisition are also subjects of 

future work. 

 

 
Figure 3. Example axial slice of the iodine basis images of the 0.3 mm 

diameter vessel estimated through (a-b) conventional spectral imaging at 

two dose levels, (c-d) temporal subtraction using the EID and the PCD, 

and (e-f) joint processing with MB-PDD and MB-OSD. The resolution 

was matched at 0.465 mm for (a-e) (dotted vertical line in Figure 2), and 

the examples were given by the mean noise level of 10 repeats. The same 

display window setting was applied to all images. 

 

 

 

 

 

 

 

 

References 
 

1. Silvennoinen, H. M., Ikonen, S., Soinne, L., Railo, M. & Valanne, 

L. CT Angiographic Analysis of Carotid Artery Stenosis: 

Comparison of Manual Assessment, Semiautomatic Vessel 

Analysis, and Digital Subtraction Angiography. www.ajnr.org. 

2. van Rooij, W. J., Sprengers, M. E., de Gast, A. N., Peluso, J. P. P. 

& Sluzewski, M. 3D rotational angiography: The new gold 

standard in the detection of additional intracranial aneurysms. in 

American Journal of Neuroradiology vol. 29 976–979 (2008). 

3. Ji, X., Feng, M., Zhang, R., Chen, G.-H. & Li, K. Photon counting 

CT in a C-arm interventional system: hardware development and 

artifact corrections. in Medical Imaging 2021: Physics of Medical 

Imaging 6 (SPIE, 2021). doi:10.1117/12.2581087. 

4. Gang, G. J. & Stayman, J. W. Three-material decomposition using 

a dual-layer flat panel detector in the presence of soft tissue motion. 

in Medical Imaging 2023: Physics of Medical Imaging (2023). 

5. Tilley, S., Zbijewski, W. & Stayman, J. W. Model-based material 

decomposition with a penalized nonlinear least-squares CT 

reconstruction algorithm. Phys Med Biol 64, (2019). 

6. Erdoˇgan, H. & Fessler, J. A. Ordered subsets algorithms for 

transmission tomography. Physics in Medicine & Biology vol. 44 

(1999). 

7. Nesterov, Y. Smooth minimization of non-smooth functions. Math 

Program 103, 127–152 (2005). 

8. Siewerdsen, J. H., Waese, A. M., Moseley, D. J., Richard, S. & 

Jaffray, D. A. Spektr: A computational tool for x-ray spectral 

analysis and imaging system optimization. Med Phys 31, 3057–

3067 (2004). 

 

 

 

 

 

 

502 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

Asymmetrical  Dual-Cycle Adversarial Network for Material  
Decomposition and  Synthesis of Dual-energy CT Images 

 

Xinrui Zhang1, AiLong Cai1, Shaoyu Wang1, Ningning Liang1, Yizhong Wang1, Junru Ren1, Lei Li1 and Bin Yan1 

1 Department of Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, 

Zhengzhou, China 

 

Abstract Dual-energy computed tomography (DECT) can identify the 

material properties with its excellent material quantitative analysis ability. 

However, the application of DECT is restricted by the problems of 

inaccuracy of energy spectrum estimation, non-linearity and 

inconsistency of imaging geometry, which will lead to the degradation of 

material distribution images. Hence, deep learning (DL)-based methods 

have become the state-of-the-art technique in DECT rely on its excellent 

feature recognition performance in the case of few spectrum prior. In this 

work, we propose an asymmetrical Dual-Cycle adversarial network 

(ADCNet) for both material decomposition and synthesis of dual-energy 

CT images, which has certain advantages in spectral CT multi-task 

parallel, improvement of image quality and radiation dose reduction. The 

experimental results show that the cycle framework achieves the 

adversarial learning of dual networks, and promotes the quality of 

generated images by introducing multiple mechanisms. Compared with 

the traditional DL-based methods, the proposed method has outstanding 

qualitative and quantitative indicators. 

1 Introduction 

 

Dual-energy computed tomography (DECT) utilizes the 

potential information in energy spectrum to achieve 

quantitative analysis of substances, which is highly 

promising for clinical applications. Although DECT has 

certain preponderance over conventional CT, a tiny 

disturbance in spectrum-imaging would bring out an 

inestimable impact on the material decomposition. 

Meanwhile, the radiation accumulation of DECT scanning 

is another question worthy of attention in clinical 

application. Exploring methods of reducing the radiation 

dose of DECT is also a key issue in the research field.  

In order to effectively extract the intrinsic feature of the 

spectral CT images and improve the quality of decomposed 

images, deep learning (DL)-based methods have become 

the state-of-the-art technique in DECT. In 2019, Zhang et 

al [1] exploited the characteristics of DECT to optimize the 

traditional U-Net architecture and build a dual U-Net with 

butterfly structure. It shows that the dual U-Net architecture 

with information interaction has presented great potential in 

DECT material decomposition. To further improve the 

network performance, Shi et al [2] adopted the General 

Adversary Network (GAN) [3] to the dual U-Net structure 

and compared different GAN variants，creating a network 

called interactive Wasserstein GAN (DIWGAN). Based on 

this method, the effect of material decomposition has been 

further promoted. In 2022, Zhou et al [4] analysed the 

requirements of tradeoffs between the level of radiation and 

the quality of spectral CT images,  

and proposed a cycle adversarial network with multi-

strategy to synthesize high-energy images from low- energy 

images. The bidirectional loop structure based on 

CycleGAN [5] have achieved promising results in the 

synthesis task of spectral CT images. 

In this paper, we combine the two tasks: base material 

decomposition and synthesis of dual-energy CT images 

with an asymmetrical dual-cycle adversarial network 

(denoted ADCNet). In practical application, our method can 

use conventional CT image to synthetize dual-energy 

images to further reduce the radiation dose of CT scanning, 

and achieve accurate material decomposition at the same 

time, which is conducive to shorten the time of clinical 

diagnosis and promotes the practical application of DECT. 

2 Materials and Methods 

 

2.1 Dual-Cycle Adversarial Framework 

 

Here, we first describe the composition of the dual-cycle 

generation adversarial network framework. To realize one-

time conversion of multi-task in a integral framework, we 

design a double-entry and double-out architecture based on 

CycleGAN. The material decomposition module (Module I) 

and the image synthesis module (Module II) have been 

contained in the circle framework, as illustrated in Fig. 1.  

Different from the traditional CycleGAN, the proposed 

ADCNet has been improved and innovated in network 

architecture, loss function and training methods. 

 

2.2 Loss Function 

 

The input high- and low-energy images r

HX , r

LX are 

generated as truth data to provide dual-energy spectrum 

information for the material decomposition. On the other 

side, we have prepared bone and tissue images separated 

from the head data of patients, which are presented as r

BX ,
r

SX . To distinguish the real material images from the fake 

style images converted by generator G , and the real high- 

and low-energy images from the fake style images 

converted by the other generator F , we define the follwing 

loss functions: 

 

( ) ( )( )
, ,

1

, , , , , , ,, , , log ( ) log 1 ( )  
B S H L

r r

GAN B S H L B S x B S B S x B S H LG D X X E D x E D G x  = + −   
(1) 

( ) ( )( )
, ,

2

, , , , , , ,, , , log ( ) log 1 ( )  
H L B S

r r

GAN H L B S H L x H L H L x H L B SF D X X E D x E D F x  = + −   
(2) 

503 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

Encoder Decoder

Encoder Decoder

r r f f
H L B S

G X X Y Y：
,r r

H L
X X

f f
B S

Y Y,

Encoder

Decoder

Decoder

f f c c
B S H L

F Y Y X X：
c c
H L

X X,

EncoderDecoder

EncoderDecoder

f f c c
H L B S

G Y Y X X：
c c
B S

X X, f f
H L

Y Y,

Encoder

Decoder

Decoder

r r f f
B S H L

F X X Y Y：
r r
B S

X X,

Predict X Predict Y Predict X Predict Y

1

2

2

2

:  
BS B S

D X X Is True:  
HL H L

D X X Is True

r r
H L

P P, f f
B S

P P,

f f
H L

P P, r r
B S

P P,

Projection domainImage domain

Dloss+Label Loss

Cycle Consistency Loss

Dloss+Label Loss
1 2

GAN loss

GAN loss

1

F: Identity Loss 1

G: Identity Loss

Cycle Consistency Loss

Projection Loss 1
Projection Loss 2

 
Figure 1: Dual-Cycle Adversarial Framework architecture. 1st line : Module I of material decomposition. 2nd line: Module II of synthesis 

of dual-energy CT images. From left to right are the loss functions in the image domain and projection domain. 
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H L B SCycle x H L H L x B S B SG F E F G x x E G F x x= − + −           (3)     
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 ( )
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2 2
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            (5) 

 

where 1

GAN
 and 2

GAN
represent the loss of GAN at 

BSD and 

HLD  respectively; ,H Lx and
,B Sx  represent 2 spectral CT 

images and base materials. measuring the distance between 

the generated fake images and the real images and giving 

judgement. Cycle  aims to make the output images c

HX  and 

c

LX  (or ,c c

B SX X ) consistent with r

HX and r

LX (or ,c c

H LX X ) in 

style. The identity loss
Idt

 is also an indispensible link to 

maintain grey scale information of the materials. In addition, 

we introduce edge loss 
edge

to restore the texture and edge 

features of images. , ,f f f

H L BY Y Y and f

SY represent the output 

of generators. Meanwhile, to further improve the quality of 

images, we try to excavate the projection information of the 

image from the projection domain as a loss function to 

constrain. We assume the projection of label images are r

HP ,
r

LP , r

BP and r

SP respectively. The generated images should 

be as close as possible to the label images. Therefore, the 

projection loss can be described by  

 

( ) ( ) ( )
, ,, , , ,

1 1
, ( ) ( ) ( ) ( )

B S H Lproj x B S B S x H L H LG F E P F x P x E P G x P x   = − + −
   

 (6) 

 

The whole loss function is given by 

 
1 2

1 2 3 4 5 6     SUM GAN GAN Cycle Idt edge proj= + + + + +           (7) 

 

where  ,  1,2,...,6i i = represents the balance parameters 

of different loss functions. 

2.3 ADCNet Architecture 

 

In this paper, we proposed ADCNet which integrates 

multiple mechanisms to achieve the decomposition of bone 

and tissue from high- and low-energy CT images. The 

double-entry and double-out network with information 

interaction between the two paths can effectively acquire 

the internal characteristics of base materials from spectral 

CT images. On the contrast, to achieve the task of synthesis 

of DECT images, we design a single-entry and double-out 

network architecture to generate high- and low- energy 

images from fused images. Fig. 1 shows the structure of 

generator G , generator F and discriminator D . Moreover, 

we also introduce DANet module [6] which combines 

spatial attention and channel attention to enlarge the 

receptive field and restore the texture details of bones and 

tissues. In particular, we add butterfly architecture [1] to the 

deepest downsampling of ADCNet in generator G , in order 

to collect high-level abstract semantic information of high- 

and low-energy spectral images. In generator F , we also 

introduce multi-information interaction mechanism, and 

merge the two kinds of materials before entering the 

network to assist effective feature extraction. 

 

2.4 Data Preparation & Parameter Setting 

 

The data set comes from cranial cavity slice images of 7 

patients with size 512 by 512. In experiments, we prepared 

1505 actual data of bone and tissue and added 120 kVp and 

80 kVp spectrum to the original slice images as our 

simulation dual-energy data. In the training, we selected 

1400 pairs of high- and low-energy images as the training 

dataset to train the model, and 105 pairs of images as the 

test dataset to validate the network performance. As for 

parameters of ADCNet, each downsampling path of G and

F includes 7 convolutional layers. the number of filters is 

504 



17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine          16 - 21 July 2023, Stony Brook, NY, USA 
  

128, 256, 512, 512, 512 and 512, respectively. Two paths 

are connected by 2 cascaded residual blocks. In the process 

of training, the initial learning rate for adam was set to 

0.0002 (momentum term: 0.5, 
1 : 0.5 ,

2 : 0.999). To 

ensure that the training process did not produce over fitting, 

we set the maximum epoch to 15. The training duration of 

the proposed model was about 20 hours.  

3 Results 

 

To evaluate the performance of different modules in 

ADCNet, we design ablation experiments on 20 typical test 

data. The experiment is divided into 2 independent parts. 

Part I verifies the performance of information interaction, 

residual block, butterfly structure and DANet attention 

module on the original Dual-CycleGAN. As is shown in 

Table 1, the PSNR of decomposed Bone and Tissue 

increased by 5.06dB and 6.67dB respectively after adding 

all of the modules. We can see that ADCNet with four 

hybrid modules has better quantitative indicators inTo 

evaluate the performance of different modules in the feature 

extraction of bone and tissue texture. Part II verifies the 

improvement effect of generator F using fused inputs. As is 

shown in Fig. 2, the symmetrical dual-cycle network with 2 

same generators (SDCNet) is compared with the ADCNet 

of 2 fused inputs in spatial dimension (ADCNet-SF) and in 

channel dimension (ADCNet-CF). Obviously, these two 

forms of ADCNet have shorter training time than SDCNet, 

due to the fused architecture sharing the parameters in 

downsampling path (the number of parameters of SDCNet 

and ADCNet is 387M and 329M, respectively). Especially, 

the quantitative indicators of PSNR and RMSE also 

illustrate that the ADCNet-CF has better performance far 

beyond than the other two networks in the synthesis of dual-

energy CT images, due to the high similarity of fused 

material images with spectral CT images.  

In addition, we select a group of head data to evaluate the 

qualitative performance of different networks. Fig. 3 

demonstrates the comparison of four state-of-the-art 

networks on material decomposition including FCN, 

Pix2Pix [7], DIWGAN and the proposed ADCNet. The ROI 

(Region of Interest) of bone shows the structure of the 

cochlea and frontal lobe, and the ROI of tissue shows the 

structure of the lateral ventricle and cerebellar. Fig.4 shows 

the residual images of the results with the label images. 

Compared with the conventional FCN, the SSIM and 

RMSE of bone images are greatly improved by 0.3246 and 

0.0188, and tissue images by 0.072 and 0.0508, which 

means the proposed ADCNet has marvel performance in 

material decomposition. Although we find that there still 

exists salt and pepper noise in the material images, the later 

operation of median filtering can also help us to further 

improve the quality of images. At the same time, ADCNet 

also achieves the synthesis of dual-energy CT images owing 

to its special dual-cycle architecture, even better beyond the 

SDCNet and ADCNet-SF. Fig.5 shows the pixel values of 

a certain section of 120kVp and 80kVp synthetic spectral 

CT images. The expected result is closer to the ground truth 

from the structure of the dual-energy images. In Fig.3, we 

also discussed the accuracy of synthetic dual-energy images 

from a quantitative perspective, which reached 45.85dB and 

45.93dB in PSNR, and over 0.99 in SSIM. To sum up, 

ADCNet has achieved good results in both tasks of base 

material decomposition and synthesis of dual-energy CT 

images.  

 
Tabel 1: Ablation experiments of Part I. From left to right are 

information interaction, residual block, butterfly structure and 

DANet attention module.  

ID Interac Res Butterfly DANet 
PSNR- 

Bone 

PSNR- 

Tissue 

1 √    37.36 29.17 

2 √ √   39.58 31.58 

3 √ √ √  41.10 32.92 

4 √ √  √ 41.43 34.30 

5 √ √ √ √ 42.42 35.84 

 

 

Figure 2: Ablation experiments of Part II. (1)SDCNet: the 

symmetrical dual-cycle network with 2 same generators G 

(2)ADCNet-SF: the asymmetrical dual-cycle network of 2 fused 

inputs in spatial dimension. (3)ADCNet-CF: the asymmetrical 

dual-cycle network of 2 fused inputs in channel dimension. Note: 

Bar chart represents PSNR, and line chart represents RMSE. 

4 Conclusion 

 

In this work, we proposed a new dual-cycle network 

architecture (ADCNet), which can achieve dual tasks in 

material decomposition and synthesis of dual-energy CT 

images. Compared with the other four typicall networks in 

terms of quantitative and qualitative indicators, our method 

demonstrated outstanding ability in material identification 

and accurate generation of energy spectrum images under 

the none-spectral prior condition, which can assist multi-

functional integrated spectral CT imaging more efficiently 

and accurately. Additionally, Our method can achieve 

lower dose as the DECT images can be totally synthetic. In 

the future, we will further carry out relevant experiments 

based on the actual problems in medical diagnosis. 
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Figure 3: Networks on material decomposition. From left to right are FCN, Pix2Pix, DIWGAN and the proposed ADCNet. From top 

to bottom are bone and tissue. The 1st line represents the decomposed bone images, and the 2nd line represents the decomposed tissue 

images.The SSIM and RMSE values are written at the top.  

 

b2 b3 b4

a1 a2 a3 a4

b1

 
 Figure 4: The residual images of the results of FCN, Pix2Pix, 

DIWGAN and ADCNet with label images. We use absolute error
*y y = −  to express the residual images.  (a1)-(a4): The 

residual images of  bone. (b1)-(b4): The residual images of           

Tissue. Note: The range of colorbox is [0.05, 0.4] g/mm3 and [0.1, 

0.9] g/mm3, respectively. 

 

  
(a)                                                (b) 

  
(c)                                                (d) 

 

Figure 5: Profile plots of synthetic dual-energy CT images with 

different networks including SDCNet, ADCNet-SF and  

ADCNet-CF. (a), (b): Horizontal profile plots of 120kVp and 

80kVp synthetic images. (c), (d): Vertical profile plots of 120kVp 

and 80kVp synthetic images. 
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Abstract Non-uniform angular sampling for CT imaging has the
ability to select the most informative projection angles such that better
images could be reconstructed. In this paper, a non-uniform angular
sampling technique is proposed for limited-angle CT reconstruction
which allocates more projections close to the start and end of the
angular range. Numerical experiments show that, compared with
conventional uniform sampling, the proposed non-uniform sampling
technique achieves better reconstruction quality consistently.

1 Introduction

Computed tomography (CT) is an imaging technique to dis-
cover the inner structure of scanned objects using X-ray
projections. Conventionally, these projections are acquired
equiangularly. However, uniform sampling cannot ensure the
projections with the highest information content are acquired,
especially when the number of projections is limited. It is
known that the choice of the projection angles can have a
crucial influence on the reconstruction quality [1, 2].
To achieve the “most informative” projection angle set, vari-
ous non-uniform angular sampling methods have been pro-
posed in the past decades. Based on the information obtained
in projections that have already been measured on surrogate
solutions, Batenburg et al. [3, 4] selected a new angle by
maximizing the information gained by adding this projection
to the set of measurements. Similarly, by applying sequen-
tial feature selection methods based on a blueprint image,
Peter et al. [5] proposed several offline projection selection
algorithms to sequentially find projection angles with high
information content. These two methods suffer from severe
computational burdens, since they have to run the reconstruc-
tion algorithms many times for determining the next best
angle. Placidi et al. [6] proposed an adaptive method for
selecting the projections based on the “entropy” principle
with initial four projections at angles 0◦, 45◦, 90◦, 135◦. If
the image is smooth or has internal symmetries, this adap-
tive scheme works well. Based on the spectral richness of
the acquired projections and the amount of new information
added by successive projections, Haque et al [7] developed
two approaches that adjust the step size to adaptively select
the projection angles.
Inspired by the flexibility of reinforcement learning setting,
Shen et al. [8] used modern reinforcement learning meth-
ods to select projection angles and specify their doses for
personalized scanning, where the CT scanning process is for-

mulated as a Markov Decision Process. Then, a unified deep
learning framework was proposed in [9] which can not only
select the important projection angles but also learn a high
performance reconstruction network, i.e. a pair of sampler
and reconstructor is learned.

In certain CT applications, due to the restrictions on the
scanning condition or the geometrical shapes of scanning ob-
jects, the projection data could be only acquired in a limited
angular range which leads to the challenging limited-angle
reconstruction problem. Applying classical reconstruction
algorithms such as filtered backprojection (FBP) and (simul-
taneous) algebraic reconstruction technique ((S)ART) for
limited-angle reconstruction often causes severe streak and
blurring artifacts in the reconstructed images. The limited-
angle reconstruction problem has been extensively studied
for decades, and many methods have been proposed in the
literature by utilizing priors existing in image domain or
projection domain. These priors are represented either con-
ventionally in terms of wavelet [10], total variation [11, 12],
K-SVD [13] etc. or by deep learning based neural networks
[14, 15].

As stated earlier, the angular sampling pattern could have
a strong influence on the reconstruction quality. However,
much less researcher’s efforts have been put on designing
the angular sampling pattern for limited-angle reconstruc-
tion. It turns out that direct translation of the non-uniform
sampling methods for sparse-view CT into limited-angle CT
reconstruction seems inappropriate. In [16], Zheng et al.
analysed the impact of angular sampling interval on image re-
construction accuracy from limited angular range data with a
scan configuration containing two orthogonal arcs. However,
the non-uniform sampling strategy about how to determine
non-uniform intervals is not discussed.

In this paper, we propose a non-uniform angular sampling
strategy for limited-angle CT scanning and study its impact
on the reconstruction quality. The remainder of this paper is
organized as follows. In Section 2, a brief introduction to the
directional total variation (DTV) algorithm for limited-angle
reconstruction is provided, then the non-uniform sampling
strategy is described. Section 3 presents experimental results
on simulated phantoms and conclusions and remarks are
given in Section 4.
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2 Materials and Methods

In our tests comparing the non-uniform sampling against the
uniformed ones, the DTV method is utilized as the recon-
struction algorithm. So, in this section, the DTV model shall
be briefly introduced, and a non-uniform angular sampling
strategy is then proposed.

2.1 The DTV method for limited-angle CT recon-
struction

Recently, an method named DTV is proposed in [12], which
shows very promising reconstructions, especially for very
small scanning angular ranges. The DTV model reads

−→u ? = min
u

1
2
‖A−→u −

−→
b ‖2

2

s.t.‖∇x
−→u ‖1 ≤ tx, ‖∇y

−→u ‖1 ≤ ty,−→u ≥ 0,

where A ∈ RI×J is the system matrix,
−→
b is a vector of length

I = V ×D which represents the acquired projection data,
and V and D denote the number of projection views and
the number of detector cells, respectively. The symbols ∇x

and ∇y correspond to the discrete x-direction and y-direction
gradient operators, respectively, and tx and ty control the
allowed total variations along the x-direction and y-direction,
respectively. In [17], the Chambolle-Pock (CP) algorithm is
used to solve this convex problem optimization model with
guaranteed convergence.

2.2 The non-uniform angular sampling strategy

Since uniform sampling scheme cannot ensure the acquired
projections with highest information content, especially when
dealing with limited projection data set, a non-uniform pro-
jection angle selection strategy based on the characteristics
of limited-angle CT imaging problem is proposed to achieve
a more informative projection angle set. For the image ar-
eas located near the rotation center, the number of received
photons is relatively large, and for the projections located
close to the middle of the scanning angular range, their in-
formation can be complemented by the projections on both
sides, which could be sparsely sampled. However, for image
areas away from the rotation center, the number of received
photons is smaller, and for the projections far away from the
middle of the scanning range, their information can only be
complemented by one side, requiring dense sampling. Based
on such a hypothesis, we employ a projection angle sampling
density that decreases as it moves away from the start and
end angles of limited-angle CT scan, i.e. sample more projec-
tions near the start and end of the angular range, while fewer
projections are sampled near the middle of the angular range,
to make the most of the limited projections. The proposed
non-uniform projection angle distribution is illustrated in Fig.
1, where Fig.1 (a) illustrates the uniform angular sampling
scanning while Fig. 1 (b) shows the non-uniform one.

Following the above principle, we conducted a preliminary
attempt to design the non-uniform sampling angle distribu-
tion, and there are two approaches: 1. varying ∆θ uniform
sampling in different scanning range, i.e. a smaller ∆θ1
for limited angular range of [θ1,θN ] and [θV−1−N ,θV ] and a
larger ∆θ2 for limited angular range [θN+1,θV−2−N ]; 2. tak-
ing ∆θi value according to geometrical series, for example,
when V is even,

θi =

{
θi−1 + ri−2 ∗h i = 2, · · · , V

2
θi+1− rV−1−i ∗h i =V −1, · · · , V

2 +1
,

where h = Vmid−V1

1−r
V
2 −1
∗ (1− r), Vmid is the median of 1,2, · · · ,V

and r is the common ratio of geometrical series. Both of them
performed better than uniform distribution projection angles.
To make ∆θ vary smoothly and achieve better results, in this
paper, the non-uniform angular sampling interval ∆θi, i =
1,2, · · · ,V −2 are sampled from a certain normal distribution
N(0,σ2), which are generated as follows

∆θi =

∫ xi+1
xi

1√
2πσ

exp
(
− x2

2σ2

)
dx∫ xV−2

x1
1√

2πσ
exp
(
− x2

2σ2

)
dx
∗ (θV −θ1),

where x is a vector of size V − 2, which is [−a, · · · ,−a+
2a

V−3 ∗ i, · · · ,a], a little misuse of symbol [·]. Both a and σ

control the sampling density. Either a smaller value of a or
a larger value of σ leads to a denser sampling of projection
angle density close to the scanning boundary. The values of
a and σ are set to 3 and 1.5 in the experiments, respectively.

SourceSource

𝛩

(a) Conventional uniform sam-
pling

SourceSource

𝛩

(b) Nonuniform sampling

Figure 1: The configuration of non-uniform sampling strategy for
the limited-angle CT imaging (θ ∈ [45◦,135◦]).

3 Experiments and results

In this section, first, we verify that the choice of projec-
tion angles has a significant impact on the reconstructed
image quality from limited-angle CT data. Then, to validate
the effectiveness of proposed non-uniform angular sampling
strategy on limited-angle CT reconstruction, numerical ex-
periments with different scan ranges are carried out, that is,
[30◦,150◦] and [45◦,135◦] and [60◦,120◦]. Both noise-free
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(a) FBP (b) Uniform sam-
pling

(c) Added angle
pair {75◦+0.05◦,
105◦−0.05◦}

(d) Added angle
pair {75◦ + 0.4◦,
105◦−0.4◦}

Figure 2: The reconstructions from projections of scanning angu-
lar range ([75◦,105◦]) added with different projection pairs.

and noisy projection data are tested. For noisy projection
data, Poisson noise with incidence intensity I0 = 1×107 is
added to the projection data. The display window is set to
[0.1, 0.5].

3.1 Angle-dependent reconstruction quality test

In this subsection, we will verify that the limited-angle CT
image reconstruction accuracy depends on the selection of
projection angles. Take noise-free limited-angle projection
data from 30 degree range for example, 20 different pairs
of symmetric projection angles are added to the original
30 uniform distributed projections, which are [75◦+0.05◦ ∗
i,105◦−0.05◦∗ i], i= 0,1,2, · · · ,19. i= 0 means the uniform
sampling angles. The plots of PSNR and SSIM of the results
reconstructed from 20 projection angle sets of size 32 of 30
degree data are shown in Fig. 3. It could be clearly notified
that different 32 projection angle sets from the same angular
range produce reconstructions with varying PSNR and SSIM
values, i. e. the reconstruction results are projection angle-
dependent. The best and worst ones of 20 reconstructions are
shown in Fig. 2c and Fig. 2d, respectively. And Table 1 lists
their corresponding PSNR and SSIM values.
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Figure 3: The PSNR and SSIM values of different reconstructions
from 30 degree angular range data ([75◦,105◦]) added with 20
different projection pairs, respectively.

Table 1: PSNR (dB) and SSIM for reconstructions in Fig. 2.

Added angle pair PSNR SSIM
∅ 29.7229 0.9623

{75◦+0.05◦, 105◦−0.05◦} 29.3852 0.95945
{75◦+0.4◦, 105◦−0.4◦} 31.3831 0.9735

3.2 Non-uniform angular sampling test

As results of Fig. 4 shown for projections of scanning angular
range [30◦,150◦] and [45◦,135◦], we can clearly observe that
more accurate image is achieved from non-uniform angular
sampling projections, when using same number of projection
angles. Streak artifacts could be recognized in reconstructed
images from projection data of uniform distributing angles, as
indicated by the red arrows in the third column in Fig. 4. And
more steak artifacts could be identified on the left and right
sides of the results than in the middle. After redistributing
the angles non-uniformly with more projections near the start
and end of the angular range, streak artifacts are reduced on
the left and right sides of the reconstructions, while edges in
the middle are well preserved.
Similarly, as shown in the last row of Fig. 4, streak and
blurring artifacts could be clearly seen in the reconstruction
from projection data with 110 evenly distributed angles in
60 degree angle, especially on the top right part indicated
by the red frame. When reconstructing image with 110 non-
uniform distributed angles selected by the proposed strategy,
image distortions on the top right-hand corner part are greatly
alleviated. This is because that the missing information is
supplemented by densely distributed projections located near
the scanning boundary. Furthermore, to produce similar
high quality reconstructed images, 191 uniform distributed
angles are needed for projections of scanning angular range
[60◦,120◦]. Table 2 lists the PSNR and SSIM values for the
reconstruction results by FBP, DTV with uniform sampling
projections and non-uniform sampling ones, respectively.
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Figure 4: Reconstructions from projections of scanning angular
ranges [30◦,150◦], [45◦,135◦] and [60◦,120◦], respectively.

4 Conclusion

To achieve the most informative projection angle set for
limited-angle CT reconstruction, a non-uniform angular sam-
pling strategy is proposed, which is based on the charac-
teristics of the limited-angle CT scanning. The projection
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Table 2: PSNR (dB) and SSIM for the reconstructions in Fig. 4.

Angular range Index FBP Uniform 1 Uniform 2 Non-uniform

[30◦,150◦]
PSNR 14.1241 56.0174 45.5145 47.7178
SSIM 0.2396 0.9999 0.9986 0.9988

[45◦,135◦]
PSNR 12.8975 56.0154 35.4262 56.0094
SSIM 0.2199 0.9999 0.9890 0.9998

[60◦,120◦]
PSNR 11.5596 56.0090 32.4521 56.0126
SSIM 0.2369 0.9998 0.9764 0.9998

angle distribution follows the rule that more projection angles
are acquired close to the start and end of the angular range.
Experimental results show that, the proposed non-uniform
sampling strategy could produce better reconstructions com-
pared with the classical uniform sampling method.
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Abstract Continuous-wave (CW) electron paramagnetic resonance
imaging (EPRI) provides information about both the spatial distribu-
tion and spectral shape of unpaired electrons. Its signal-to-noise ratio
can be enhanced by employing a Zeeman-modulation (ZM) scheme.
Limited angular range (LAR) scans can decrease the strength of the
magnetic field gradient or scanning time in CW-ZM EPRI, but they
often lead to artifacts or biases in images reconstructed using con-
ventional algorithms, such as filtered back projection (FBP). In this
study, an optimization-based algorithm was developed to accurately
reconstruct three-dimensional (3D) spatial-spectral (SS) images di-
rectly from LAR data in CW-ZM EPRI. The reconstruction was for-
mulated as an image directional-total-variation (DTV) constrained,
data-`2-minimization problem, and a corresponding DTV algorithm
was devised to solve this problem. The DTV algorithm was applied
to simulated data involving various LAR scans, and its performance
was evaluated using both visualization and quantitative metrics. The
results indicate that SS images can be directly reconstructed from LAR
data, exhibiting comparable outcomes to those obtained from standard
full-angular-range scans in CW-ZM EPRI. The DTV algorithm holds
the potential to enable and optimize CW-ZM EPRI with minimal imag-
ing time and reduced artifacts through the acquisition of data in LAR
scans.

1 Introduction

Electron paramagnetic resonance imaging (EPRI) provides
information about the spatial distribution and spectral proper-
ties of unpaired electrons in an object, making it a promising
tool for functional imaging, such as measuring tissue oxygen
concentration [1, 2]. Commonly used for observing the dis-
tribution of unpaired electrons, continuous-wave (CW) EPRI
techniques can be enhanced using the Zeeman modulation
(ZM) scheme [2, 3] to further improve the signal-to-noise
ratio (SNR). However, current CW-ZM EPRI faces several
challenges. For example, the finite maximum strength of
the magnetic field gradient results in a limited achievable
angular range for image reconstruction. Additionally, current
CW-ZM EPRI often suffers from long imaging time. One
approach for reducing imaging time is collecting data from re-
duced angular ranges, known as limited-angular range (LAR).
However, existing image reconstruction algorithms, such as
FBP, require data collected over a full angular range, and their
reconstructions from LAR data often contain streak artifacts
that can lead to estimation errors of spectral parameters.
The imaging model for CW-ZM EPRI can be formulated as
the Radon transform, making its image reconstruction similar
to that of computed tomography (CT). Recent advances in
iterative reconstruction methods with image directional total

variation (DTV) constraints [4, 5] have demonstrated signifi-
cant improvements in reconstruction accuracy for CT imag-
ing with LAR configurations. Therefore, in this study, we
incorporate the DTV constraints into a convex optimization
program for CW-ZM EPRI image reconstruction. We employ
a primal-dual-based algorithm [6, 7], referred to as the DTV
algorithm, to solve the optimization program and perform
image reconstruction [4]. We conduct simulated data studies
and collect data using various LAR scan schemes. Subse-
quently, we use the DTV algorithm to reconstruct images
from LAR data and evaluate the reconstruction performance
through both visualization and quantitative metrics.

2 Materials and methods

2.1 Imaging model in CW-ZM EPRI

In this study, we consider a three-dimensional (3D) CW-ZM
EPRI model with one spectral and two spatial dimensions.
The imaging model and algorithms can readily be generalized
to 4D CW-ZM EPRI model with one spectral and three spatial
dimensions. Specifically, the imaging model for CW-ZM
EPRI based upon continuous image and data space can be
written as [2]

g(ξ , α̂) = cosγ

∫
d~r

∂ f (~r)
∂B

δ (ξ −~r · α̂)

= cosγ R
[

∂ f (~r)
∂B

]
, (1)

where f (~r) denotes a continuous 3D spatial-spectral (SS)
image as 3D variable~r = (x,y,B)>, (x,y) are two orthogonal
axes in the spatial space and B the spectral dimension; R
denotes the 3D-Radon transform; g(ξ , α̂) is a continuous
3D-data function in a 3D space formed by scalar variable ξ

and 3D-unit-vector α̂ , ξ is the distance of a hyperplane of
orientation α̂ to the origin in the 3D-image space, and α̂ =
(cosφ sinγ,sinφ sinγ,cosγ)>; γ depicts the angle between the
B-axis and vector α̂ , and φ the angle between x-axis and the
projection of α̂ in the x-y plane, as illustrated in Fig. 1.
Based upon the continuous imaging model presented in Eq.
(1), we have developed a discrete-to-discrete (DD)-imaging
model as

g = C RDBf, (2)
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Figure 1: (a) The 3D spectral-spatial coordinate system with angles γ and φ defined, along with a unit vector α̂; (b) Type I LAR scan
scheme with γ ∈ [−60◦,60◦] and φ ∈ [30◦,90◦]; and (c) Type II LAR scan scheme with γ ∈ [−60◦,60◦] and φ ∈ [−30◦,30◦].
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Figure 2: (a) Truth SS image in the slice specified by B = 0 G, display windows: [0.5, 1.0] arbitrary unit (AU); and (b) the truth spectral
profiles at points within tubes 1-4, respectively, in the SS image in (a).

where vector f of size I denotes the discrete 3D-SS image;
g of size J is the discrete model data; C a diagonal matrix
of size J× J in which diagonal element c j j = cosγα̂ j ; γα̂ j the
angle between the B-axis and vector α̂ j; matrix R of size
J× I denotes the 3D-Radon transform in a discrete form in
which element ri j is chosen to be the intersection hyperarea
of hyperplane j with voxel i in the 3D-spatial-spectral space;
and DB denotes two-point difference along the B-axis. In a
CW-ZM EPRI scan, γ ∈ [−π/2,π/2] and φ ∈ [−π/2,π/2].
In this study, we examine two LAR scan configurations:
type I and type II. Let the values of total angular ranges
along γ and τ directions be γτ and φτ , which are constrained
within γτ < π and φτ ≤ π , respectively. Type I configura-
tions result from setting γ within [−γτ/2,γτ/2] and φ within
[−φτ/2,φτ/2], while type II configurations are achieved by
restricting γ to [−γτ/2,γτ/2] and φ to [π/2−φτ ,π/2]. These
configurations are illustrated in Figs. 1(b)-(c) for better visu-
alization.

2.2 Constrained optimization program

We formulate the reconstruction problem in CW-ZM EPRI
as a convex, constrained optimization program [4] given by

f? = argmin
f

Φ(g,g[M ]) s.t. Ψ(f) (3)

where Φ(g,g[M ]) denotes the `2 data norm between measured
data g[M ] and model data g in Eq. (2); Ψ(f) is the image-
constraint term which includes two image directional total
variations (DTVs) and one non-negativity of the image. Each
DTV is defined as the `1-norm of an image calculated as the
two-point differences along the x-, y-, or B-axis. The non-
negativity enforces each pixel in the reconstructed image to
be greater than or equal to zero. We develop a DTV algorithm
for solving the optimization program in Eq. (3) based upon
a primal-dual framework [4, 6, 7]. For comparison, we also
reconstruct the SS image by using the FBP algorithm.

2.3 Reconstruction evaluation and quantitative met-
rics

We first conduct visual inspection of the DTV reconstructions
in the simulated-data study. Subsequently, we compare the
spectral profiles in the reconstructions with those present
in the truth image. In addition, we assess the images using
quantitative metric Pearson-correlation-coefficient (PCC),
defined as

PCC(f?) =
|Cov(f?, f[ref])|
σ(f?)σ(f[ref])

, (4)

where Cov(f?, f[ref]) denotes the covariance between SS im-
age f? reconstructed and reference SS image f[ref]; σ2(f) =
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Cov(f, f) the variances of f. In the simulation study, the ref-
erence image is the truth numerical phantom. We note that
PCC(f?)→ 1, if f?→ f[ref].

2.4 Data acquisition

In the simulated study, we design a numerical phantom with
dimensions 100× 100× 100, encompassing a 3D physical
size of 1× 1× 300 cm2mG, as depicted in Fig. 2(a). The
digital phantom comprises four tubes embedded within the
2D spatial space against a zero background. These four
tubes contain contrast materials characterized by Voigt func-
tions, defined as Vk(B) = Ak,Nσ (B)~Lτk(B), where Nσ (B)
represents a Gaussian function with a zero mean and a stan-
dard deviation of σ , Lτk(B) =

0.5τk
B2+(0.5τk)2 corresponds to the

Lorentzian function with width τk, k = 1,2, ...,K, and K is
the total number of material types within the imaged subject.
The Voigt functions within the four tubes are specified with
σ = 30 mG for Nσ (B), and τk = 40, 60, 80, and 100 mG for
k = 1, 2, 3, and 4, respectively, as illustrated in Fig. 2(b). The
sampling along γ follows a uniform angular interval of 4.3◦,
while an equal-solid-angle (ESA) sampling scheme is applied
for angles φ in the spatial domain. For the full-angular-range
(FAR) scan configuration, γτ = 175.7◦ and φτ = 180◦, and
a total of 1128 projections are gathered. The detector en-
compasses 200 bins. We first generate 6 distinct noiseless
datasets, each covering a different angular range, as indicated
in Table 1. Subsequently, we generate noisy data by introduc-
ing Gaussian noise, yielding a signal-to-noise ratio (SNR) of
30 dB.

3 Results

3.1 Reconstructions from noiseless data

We first conduct a verification study using noiseless data
obtained through the FAR configuration. In Fig. 3, we dis-
play the DTV reconstructions derived from the noiseless
FAR data, accompanied by the difference image between the
DTV reconstruction and the truth image. Additionally, we
numerically calculate and confirm the convergence condi-
tions, as outlined in [4], thereby demonstrating the accurate
implementation of the DTV algorithm.
Having verified the correctness of the DTV algorithm, we
proceed with image reconstructions using noiseless data and
the LAR configurations listed in Table 1. We observe that for
the considered LAR configurations, the DTV reconstructions
closely resemble the true phantom image. Due to this close
similarity, we omit presenting the LAR DTV reconstructions
within the context of the noiseless-data study.

3.2 Reconstructions from noisy data

Subsequently, we employ the DTV algorithm to reconstruct
SS images from noisy data acquired through LAR scans, as

detailed in Table 1. We present the reconstructed SS images
within the x-y plane, determined by B = 0 G, as illustrated in
Fig. 4. For reference, the corresponding FBP reconstructions
are also displayed in the bottom row of Fig. 4. It is evident
that the DTV algorithm achieves accurate SS image recon-
structions from LAR scan data, as the DTV reconstructions
are visually comparable to the true SS image. Conversely, the
FBP images reconstructed from LAR data exhibit significant
artifacts that distort the anatomical structure and introduce
biases to the SS images.

Furthermore, in Fig. 5, we depict the spectral profile for
a specific spatial point within tube 1 in the SS images re-
constructed from LAR data. The spectral profiles in DTV
reconstructions exhibit a close agreement with those present
in the true SS image, while those in the FBP reconstructions
differ notably from the true SS image’s profile. Additionally,
we quantitatively assess the reconstruction accuracy of SS
images by calculating PCC defined in Eq. (4). The corre-
sponding plots for different LAR scans listed in Table 1 are
illustrated in Fig. 6. It is evident that the DTV algorithm
yields more accurate reconstructions compared to FBP. Fur-
thermore, as the angular range of the LAR scan decreases,
the PCC also decreases.

4 Discussion

In this study, we have conducted investigations into 3D SS
image reconstruction directly from LAR data in CW-ZM
EPRI. We have formulated the reconstruction as an opti-
mization problem involving data-`2-minimization fidelity
and SS-image DTV constraints. Subsequently, we developed
a dedicated DTV algorithm to effectively reconstruct the SS
image by solving the optimization program. Our initial focus
was on noiseless-data studies using a numerical phantom
to showcase the efficacy of the DTV algorithm in precisely
reconstructing 3D SS images from LAR data. These studies
provided insights into the upper-bound performance of the
DTV algorithm for LAR CW-ZM EPRI scan setups. Subse-
quently, we conducted experiments with noisy data, obtained
over a range of LARs. The outcomes revealed that DTV
reconstructions outperform their FBP counterparts, under-
scoring the robustness of the DTV algorithm in practical
scenarios. Furthermore, we quantitatively evaluated the qual-
ity of DTV reconstructions. Results suggest that the DTV
algorithm can offer valuable guidance for devising innova-
tive LAR scan strategies aimed at reducing scanning time in
CW-ZM EPRI.

For future studies, it would be intriguing to explore alterna-
tive designs of optimization programs, involving different
data fidelity terms. Additionally, evaluating image reconstruc-
tion from sparse-view data in CW-ZM EPRI holds potential
for future investigations.
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Table 1: LAR scans considered in the simulated-data study.

Type
(γτ , φτ )

(150◦, 150◦) (120◦, 150◦) (120◦, 150◦)

I LAR1 LAR2 LAR3
II LAR4 LAR5 LAR6

a b c

Figure 3: Truth numerical phantom (a) and DTV reconstruction (b) from noiseless FAR data, along with their difference image (c).
Display window: [0, 1.] AU for (a) and (b), and [-0.05, 0.05] AU for (c).

Figure 4: DTV (top) and FBP (bottom) reconstructions from simulated noisy data with configurations LAR1 (column 1), LAR2 (column
2), LAR3 (column 3), LAR4 (column 4), LAR5 (column 5), and LAR6 (column 6) specified in Table 1. Display window: [0, 1.] AU.

Figure 5: Spectral profiles (at a spatial point in tube 1) of the truth SS image (solid), and SS images reconstructed by use of the DTV
(dashed) and FBP (dotted) algorithms from the simulated noisy data over LAR1 (a), LAR2 (b), LAR3 (c), LAR4 (d), LAR5 (e), and
LAR6 (f) specified in Table 1.
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Figure 6: Quantitative metrics PCC of the SS images reconstructed by use of the DTV (black, dashed) and FBP (red, dotted) algorithms
from simulated noisy data of LAR scans specified in Table 1.
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Abstract Photon counting detectors (PCDs) offer significant advantages 
in capturing spectral information in computed tomography (CT). 
Nevertheless, their application faces limitations due to charge sharing 
and pile-up. In this abstract, we proposed a new analysis about how 
charge sharing affected the detected counts of photons pixel by pixel. By 
assuming uniform charge sharing probabilities across all detector pixels, 
our model addressed diverse charge sharing events based on their sources 
and destinations, and established relationships between the numbers of 
incident photons and detected photon counts. Our analysis reveals that 
the charge sharing compensation problem was always ill-posed for 
conventional detectors. However, MEICC detectors provide a well-
determined solution to this issue by providing coincidence counts of 
photons in more channels. We preliminarily applied Levenberg-
Marquarelt algorithm to solve the inverse problem. Utilizing data 
obtained from a MEICC detector, we achieved stable and physically 
meaningful solutions while conventional detectors could not achieve. 
The results demonstrated that the impact of charge sharing has been 
effectively mitigated. 
Key words PCD, spectral CT, charge sharing, analytical model  

1 Introduction 
In recent years, Spectral CT has been studied widely for its 
capacity to take good use of attenuation at different energies 
and provide two or more material maps, which is very 
beneficial to distinguish object materials. In spectral CT, 
PCDs have great application prospects due to their ability 
of capturing both the number and energy information of 
incident photons. However, several physical effects such as 
charge sharing and pile up can distort recorded counts and 
energies, consequently limiting their applications.  
In this paper, we focused on charge sharing. Dut to various 
factors, the charges generated by incident photons cannot 
be constrained in a single detector pixel and end up being 
detected by several adjacent pixels. As shown in Fig. 1(b), 
there are two types of charge sharing, spill-in and spill-out 
[1]. In the case of spill-in sharing, photons reach the 
neighboring pixels surrounding the pixel-of-interest (POI), 
leading to the POI collecting some charges and producing 
false counts. In spill-out sharing, although photons are 
incident on POI, the recorded counts and energies might be 
lower than the ground truth due to the charge escape. 
In order to solve this problem and enhance the performance 
of PCDs, many software and hardware methods have been 
proposed. Lee et al introduced a correction method for 
spectral distortion based on a charge sharing model [2]. 
Some detectors were designed to establish communication 
between adjacent pixels and deal with their signals together 
[3,4]. Hsieh et al designed a special detector which could 
record charge sharing information and deal with them after 

 
1 This work is supported by National Natural Science Foundation of China (No.62031020, No. 12275151) and NIH R21 EB029739, U.S.A. 
Corresponding author: Xing, Yuxiang (xingyx@mail.tsinghua.edu.cn) 

the detection [5]. These methods addressed the charge 
sharing problem partially, but also had some disadvantages 
including extended processing time, limited accuracy and 
complexities in data processing. In 2020, Taguchi proposed 
a new MEICC detector providing additional information 
about charge sharing counts and directions to help correct 
detected spectra as well as reduce noise level [1,6]. 
Inspired by the MEICC detector, we proposed a new 
analytical model aimed at describing charge sharing process 
by analyzing how various types of charge sharing events 
affect photon counts in adjacent pixels. The model 
formulates the differences of conventional and MEICC 
detectors, which could be utilized to compensate for charge 
sharing. This approach gives a clear route to take advantage 
of MEICC data. 

2 Methods 
In this work, we simply assumed that the detection 
efficiency of the detectors was always 100% so that all 
photons including secondary photons could be fully 
detected. Besides, the model consider charge sharing only, 
not including other potential distortion factors like pile-up. 
Generally speaking, charge sharing happens between two, 
three or four adjacent detector pixels [7], denoted as double-
shared, triple-shared and quadruple-shared events in this 
paper. Only if photons are incident on the corner of pixels, 
triple-shared and quadruple-shared events are considerable. 
Therefore, these two multiple-shared events are of only a 
small portion and double-shared events are predominant in 
all charge sharing events. We conducted our analysis by 
initially considering charge sharing with only double-
shared events. Later, we expanded the model to incorporate 
triple-shared events. The investigation was carried out for 
conventional and MEICC detectors, respectively.  
Before introducing the model, we address charge sharing 
utilizing a small patch as shown in Fig. 1 for demonstration. 
Firstly, charge sharing happens between adjacent pixels as 
the orange POI and blue pixels in Fig. 1(a). The black 
arrows denote charge sharing directions. It is necessary to 
gain the numbers of incident photon in the blue pixels to 
estimate the charge sharing events in the POI. However, a 
conventional detector only provides photon counts in blue 
ones, which are mixed with charge sharing events from the 
green pixels. As a result, precise compensation for counts 
and spectrum of the POI requires data from all the detector 
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pixels. Secondly, all charge sharing events can be 
categorized into two types, spill-in ones and spill-out ones 
focusing on one pixel. As shown in Fig. 1(b), a spill-in event 
of a pixel (#5) from another pixel (#6) is equivalent to a 
spill-out event in the reverse direction, i. e. from pixel #6 to 
pixel #5 in this case. Therefore, addressing spill-out events 
only is sufficient to handle all charge sharing events 
effectively. 
 

 
Figure 1. (a) A 5 × 5 patch to show the relationship of charge sharing 

for its central pixel. (b) The relationship of spill-in and spill-out sharing. 

2.1 Analytical model with double-shared events 
Charge sharing happens in the detection process and causes 
distortions on incident spectrum. Therefore, we defined two 
sets of variables to characterize photon counts before and 
after such distortions, 

𝑁𝑁𝑐𝑐,𝑖𝑖 = �̅�𝑁𝑐𝑐,𝑖𝑖 + 𝜖𝜖𝑐𝑐,𝑖𝑖, (1) 

𝑁𝑁𝑐𝑐,𝑖𝑖
0 = �̅�𝑁𝑐𝑐,𝑖𝑖

0 + 𝜖𝜖𝑐𝑐,𝑖𝑖
0 . (2) 

Here, 𝑁𝑁𝑐𝑐,𝑖𝑖
0  and 𝑁𝑁𝑐𝑐,𝑖𝑖 are the incident and detected counts of 

photons in detector channel 𝑐𝑐 of the 𝑖𝑖th detector pixel. The 
bar on top denotes expectation. 𝜖𝜖𝑐𝑐,𝑖𝑖  and 𝜖𝜖𝑐𝑐,𝑖𝑖

0  are additional 
noise terms that are commonly Poisson. Thus, charge 
sharing can be regarded as functions 𝑓𝑓𝑐𝑐  to link 𝑁𝑁𝑐𝑐,𝑖𝑖 and 𝑁𝑁𝑐𝑐,𝑖𝑖

0 , 

𝑁𝑁𝑐𝑐,𝑖𝑖 = 𝑁𝑁𝑐𝑐,𝑖𝑖
0 + 𝑓𝑓𝑐𝑐 and �̅�𝑁𝑐𝑐,𝑖𝑖 = �̅�𝑁𝑐𝑐,𝑖𝑖

0 + 𝑓𝑓�̅�𝑐. (3) 
Here, we assume the principles of charge sharing i.e. the 
functions 𝑓𝑓𝑐𝑐  and 𝑓𝑓�̅�𝑐  are uniform for all detector pixels.  
When focusing solely on double-shared events, we listed all 
possible charge sharing events in Tab. 1 and defined the 
probabilities of charge sharing (ProbCS) in order to build 
our model. The subscript “∗→∗∗, (𝑖𝑖, 𝑗𝑗)” denotes different 
types of double-shared event. The index “ 𝑗𝑗 ” with an 
underline means pixel #𝑗𝑗 receives shared charges from its 
neighboring pixel #𝑖𝑖. Meanwhile, the shared charges are 
recorded as a count in one energy bin of pixel #𝑗𝑗, marked 
by “∗”. For example, “L → LL, (𝑖𝑖, 𝑗𝑗)” represents a low 
energy photon injected on pixel #𝑖𝑖 is charge shared to be 
two low energy photons detected by pixel # 𝑖𝑖  and its 
neighboring pixel # 𝑗𝑗 . With the assumption of uniform 
charge sharing response, we have 𝑃𝑃∗→∗∗,(𝑖𝑖,𝑗𝑗) = 𝑃𝑃∗→∗∗,(𝑗𝑗,𝑖𝑖).  
Considered spatial symmetry, we have much less ProbCS 
terms. Choosing pixel #5 in Fig. 1(b) as example, we have, 

𝑃𝑃∗→∗∗,�5,2� = 𝑃𝑃∗→∗∗,�5,4� = 𝑃𝑃∗→∗∗,�5,6� = 𝑃𝑃∗→∗∗,�5,8�, (4) 
𝑃𝑃∗→∗∗,�5,1� = 𝑃𝑃∗→∗∗,�5,3� = 𝑃𝑃∗→∗∗,�5,7� = 𝑃𝑃∗→∗∗,�5,9�. (5) 

for direct and diagonal neighboring pixels, respectively. In 
total, there are ten probabilities for five types of sharing and 
two types of neighborhoods. 

Table 1. The types of charge sharing for double-shared events. “+” “−” 
“None” mean count increase, decrease, and no change. 

pixel & 
channels 

pixel #𝑖𝑖 pixel #𝑗𝑗 
   L    H    L    H 

𝑃𝑃L→LL,(𝑖𝑖,𝑗𝑗) None None    + None 
𝑃𝑃H→LL,(𝑖𝑖,𝑗𝑗)    +    −    + None 
𝑃𝑃H→LH,(𝑖𝑖,𝑗𝑗)    +    − None    + 
𝑃𝑃H→HL,(𝑖𝑖,𝑗𝑗) None None    + None 
𝑃𝑃H→HH,(𝑖𝑖,𝑗𝑗) None None None    + 

In the sense of mean, the detected counts �̅�𝑁L,𝑖𝑖 and �̅�𝑁H,𝑖𝑖 in 
pixel #𝑖𝑖 i.e. the POI are the sum of multiple processes, 
�̅�𝑁L,𝑖𝑖 = �̅�𝑁L,𝑖𝑖

0 + �̅�𝑁L→LL̃
 + �̅�𝑁H→L̃L

 + �̅�𝑁H→LL̃
 + �̅�𝑁H→L̃H

 + �̅�𝑁H→HL̃
 , (6) 

�̅�𝑁H,𝑖𝑖 = �̅�𝑁H,𝑖𝑖
0 − �̅�𝑁H→L�L

 
− �̅�𝑁H→L�H

 
+ �̅�𝑁H→LH�

 
+ �̅�𝑁H→HH�

 
, (7) 

where the processes can be expressed as, 
�̅�𝑁L→LL̃

 = � �̅�𝑁L,𝑗𝑗
0 𝑃𝑃L→LL,(𝑗𝑗,𝑖𝑖)

𝑗𝑗∈Ω(𝑖𝑖)
, (8) 

�̅�𝑁H→L̃L
 = �̅�𝑁H,𝑖𝑖

0
� 𝑃𝑃H→LL,(𝑖𝑖,𝑗𝑗)

𝑗𝑗∈Ω(𝑖𝑖)
, (9) 

�̅�𝑁H→LL̃
 = � �̅�𝑁H,𝑗𝑗

0 𝑃𝑃H→LL,(𝑗𝑗,𝑖𝑖)
𝑗𝑗∈Ω(𝑖𝑖)

, (10) 

�̅�𝑁H→L̃H
 = �̅�𝑁H,𝑖𝑖

0
� 𝑃𝑃H→LH,(𝑖𝑖,𝑗𝑗)

𝑗𝑗∈Ω(𝑖𝑖)
, (11) 

�̅�𝑁H→HL̃
 = � �̅�𝑁H,𝑗𝑗

0 𝑃𝑃H→HL,(𝑗𝑗,𝑖𝑖)
𝑗𝑗∈Ω(𝑖𝑖)

, (12) 

�̅�𝑁H→L̃L
 = �̅�𝑁H,𝑖𝑖

0
� 𝑃𝑃H→LL,(𝑖𝑖,𝑗𝑗)

𝑗𝑗∈Ω(𝑖𝑖)
, (13) 

�̅�𝑁H→LH�
 = � �̅�𝑁H,𝑗𝑗

0 𝑃𝑃H→LH,(𝑗𝑗,𝑖𝑖)
𝑗𝑗∈Ω(𝑖𝑖)

, (14) 

�̅�𝑁H→HH�
 = � �̅�𝑁H,𝑗𝑗

0 𝑃𝑃H→HH,(𝑗𝑗,𝑖𝑖)
𝑗𝑗∈Ω(𝑖𝑖)

. (15) 

Here, Ω(𝑖𝑖) is the set of neighboring pixels of pixel #𝑖𝑖. The 
top “~” means the channel belongs to the POI. Besides, we 
can get equations for noisy conditions by simply adding 
noisy terms in Eqs. (6)–(15).  
Generally speaking, charge sharing compensation is to 
recover numbers of incident photons �̅�𝑁L,𝑖𝑖

0  and �̅�𝑁H,𝑖𝑖
0  based 

on detected photon counts. However, in real situation, only 
�̅�𝑁𝑐𝑐,𝑖𝑖 could be available and it is almost impossible to gain 
�̅�𝑁𝑐𝑐,𝑗𝑗

0 , 𝑗𝑗 ∈ Ω(𝑖𝑖)  in Eqs. (6)–(15). Therefore, we have to 
estimate �̅�𝑁𝑐𝑐,𝑖𝑖

0 , �̅�𝑁𝑐𝑐,𝑗𝑗
0  and all the ProbCS jointly. It is worth 

mentioning that, because all the ProbCS are independent on 
numbers of incident photons �̅�𝑁𝑐𝑐,𝑖𝑖

0  and  �̅�𝑁𝑐𝑐,𝑗𝑗
0 , it is possible to 

pre-estimate the ProbCS by some special calibration 
experiments and later the estimated ProbCS can be used 
directly to recover �̅�𝑁𝑐𝑐,𝑖𝑖

0  in photon counting CT imaging. 
Unfortunately, there is no direct close-form solution in the 
field to estimate these probability values currently. 
Now we analyze the difficulty of the problem by counting 
all unknown variables jointly without any other extra 
experiments and we start from a single pixel. The pixel #5 
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in Fig. 1(b) provides equations containing the numbers of 
incident photons of pixel # 𝑗𝑗, 𝑗𝑗 ∈ Ω(5)  as unknowns. 
Expanding further, we have 2�𝑛𝑛p + 2�

2 + 10 unknowns and 
2𝑛𝑛p

2 known detected counts for an 𝑛𝑛p × 𝑛𝑛p detector patch of 
conventional detectors. Obviously, it is always an 
undetermined problem no matter what 𝑛𝑛𝑝𝑝  is. However, 
lim

𝑛𝑛p→∞
2𝑛𝑛p

2 �2�𝑛𝑛p + 2�
2 + 10�� = 1 , which means the 

condition will be improved by using a larger detector patch. 
MEICC detectors record the numbers of charge sharing 
events based on several extra detector channels named 
coincidence counters. The corresponding counts are, 
�̅�𝑁LL,𝑖𝑖 = �̅�𝑁L,𝑖𝑖

0

� 𝑃𝑃L→LL,(𝑖𝑖,𝑗𝑗) 
𝑗𝑗∈Ω(𝑖𝑖)

+ �̅�𝑁L→LL�
 

+ �̅�𝑁H→L�L
 

+ �̅�𝑁H→LL�
 (16) 

�̅�𝑁LH,𝑖𝑖 = �̅�𝑁H→HL̃
 + �̅�𝑁H→L̃H

 (17) 

�̅�𝑁HL,𝑖𝑖 = �̅�𝑁H,𝑖𝑖
0

� 𝑃𝑃H→HL,(𝑖𝑖,𝑗𝑗)
𝑗𝑗∈Ω(𝑖𝑖)

+ � �̅�𝑁H,𝑗𝑗
0 𝑃𝑃H→LH,(𝑗𝑗,𝑖𝑖)

𝑗𝑗∈Ω(𝑖𝑖)
(18) 

�̅�𝑁HH,𝑖𝑖 = �̅�𝑁H,𝑖𝑖
0

� 𝑃𝑃H→HH,(𝑖𝑖,𝑗𝑗)
𝑗𝑗∈Ω(𝑖𝑖)

+ �̅�𝑁H→HH�
 (19) 

In total, the number of equations for MEICC detectors is 
6𝑛𝑛p

2 . When 𝑛𝑛p ≥ 4 , we could have a well-determined 
problem by assuming that all these equations are not fully 
linearly dependent. By comparison, it is easier to get better 
performance on catching the principles of charge sharing 
with MEICC data than conventional ones because of extra 
information. If ProbCS determined, the situation of 
estimating �̅�𝑁𝑐𝑐,𝑖𝑖

0  is similar that it is ill-posed for conventional 
detectors but well-determined for MEICC detectors. 
In practice, it is crucial to ensure that all the above equations 
are of low co-linearity. To give a negative example, if all 
pixels in the 3 × 4  patch in Fig. 1(b) receive the same 
photons, pixels #5 and #6 will provide the same equations. 
Such a patch is inefficient in importing information due to 
strong co-linearity of the equations. To keep low co-
linearity, the received photons of 3 × 3 patches need to be 
of great variety. 
Despite successfully establishing the model, the direct 
solution of the problem remains challenging. There are no 
straight-forward close-form solutions for these non-linear 
equations generally. Hence, we settle for an alternative 
approach, aiming to obtain its numerical solution.  
 
2.2 Taking triple-shared events into account 
In this section, we consider triple-shared events. Similarly, 
we also define a series of 𝑃𝑃∗→∗∗∗,(𝑖𝑖,𝑗𝑗,𝑘𝑘)  and because of 
symmetry, we have 𝑃𝑃∗→∗∗∗,(𝑖𝑖,𝑗𝑗,𝑘𝑘) = 𝑃𝑃∗→∗∗∗,(𝑗𝑗,𝑖𝑖,𝑘𝑘). Due to the 
limit of photon energy, it’s highly improbable for one high 
energy photon to be charge shared to three photons with two 
or more of high energy. Therefore, we ignore these “H →
HHH” and “H → HHL” events to simplify the model. We 
also import terms in Eqs. (6)–(15) to make the equations 
concise. For conventional detectors, the photon counts are, 

�̅�𝑁L,𝑖𝑖,tri = �̅�𝑁L,𝑖𝑖 + �̅�𝑁L→LL̃L
 + �̅�𝑁H→L̃LL

 + �̅�𝑁H→LL̃L
 

+�̅�𝑁H→HL̃L
 + �̅�𝑁H→L̃HL

 + �̅�𝑁H→LL̃H
 , (20)

 

�̅�𝑁H,𝑖𝑖,tri = �̅�𝑁H,𝑖𝑖 − �̅�𝑁H→L̃LL
 − �̅�𝑁H→L̃HL

 + �̅�𝑁H→LH�L
 . (21) 

All the processes can be expressed as, 
�̅�𝑁L→LL̃L

 = � �̅�𝑁L,𝑗𝑗
0

� 𝑃𝑃L→LLL,(𝑗𝑗,𝑖𝑖,𝑘𝑘)
𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)𝑗𝑗∈Ω(𝑖𝑖)

, (22) 

�̅�𝑁H→L�LL
 = 1

2
�̅�𝑁H,𝑖𝑖

0
� � 𝑃𝑃H→LLL,(𝑖𝑖,𝑗𝑗,𝑘𝑘)

𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)𝑗𝑗∈Ω(𝑖𝑖)
, (23) 

�̅�𝑁H→LL�L
 = � �̅�𝑁H,𝑗𝑗

0
� 𝑃𝑃H→LLL,(𝑗𝑗,𝑖𝑖,𝑘𝑘)

𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)𝑗𝑗∈Ω(𝑖𝑖)
, (24) 

�̅�𝑁H→HL�L
 = � �̅�𝑁H,𝑗𝑗

0
� 𝑃𝑃H→HLL,(𝑗𝑗,𝑖𝑖,𝑘𝑘)

𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)𝑗𝑗∈Ω(𝑖𝑖)
, (25) 

�̅�𝑁H→L̃HL
 = �̅�𝑁H,𝑖𝑖

0
� � 𝑃𝑃H→LHL,�𝑖𝑖,𝑗𝑗,𝑘𝑘�𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)𝑗𝑗∈Ω(𝑖𝑖)

, (26) 

�̅�𝑁H→LL̃H
 = � �̅�𝑁H,𝑗𝑗

0
� 𝑃𝑃H→LLH,(𝑗𝑗,𝑖𝑖,𝑘𝑘)

𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)𝑗𝑗∈Ω(𝑖𝑖)
, (27) 

�̅�𝑁H→LH�L
 = � �̅�𝑁H,𝑗𝑗

0
� 𝑃𝑃H→LHL,(𝑗𝑗,𝑖𝑖,𝑘𝑘)

𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)𝑗𝑗∈Ω(𝑖𝑖)
. (28) 

Here, Π(𝑖𝑖, 𝑗𝑗)  denotes the set of pixels forming L-shaped 
areas with pixels #𝑖𝑖 and #𝑗𝑗 as shown in Fig. 2.  
 

 
Figure 2. An example of Π(𝑖𝑖, 𝑗𝑗). Π(𝑖𝑖, 𝑗𝑗) = {𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3, 𝑘𝑘4}. 

For MEICC detectors, we also have extra four equations, 

�̅�𝑁LL,𝑖𝑖,tri = �̅�𝑁LL,𝑖𝑖 + 1
2

�̅�𝑁L,𝑖𝑖
0

� 𝑃𝑃L→LLL,(𝑖𝑖,𝑗𝑗,𝑘𝑘)
𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)

+ �̅�𝑁L→LL̃L
 

+�̅�𝑁H→L̃LL
 + �̅�𝑁H→LL̃L

 + �̅�𝑁H→HL̃L
 + �̅�𝑁H→L̃HL

 + �̅�𝑁H→LL̃H
 , (29)

 

�̅�𝑁LH,𝑖𝑖,tri = �̅�𝑁LH,𝑖𝑖 + �̅�𝑁H→HL̃L
 + �̅�𝑁H→L̃HL

 + �̅�𝑁H→LL̃H
 , (30) 

�̅�𝑁HL,𝑖𝑖,tri = �̅�𝑁HL,𝑖𝑖 + �̅�𝑁H,𝑖𝑖
0

� � 𝑃𝑃H→HLL,(𝑖𝑖,𝑗𝑗,𝑘𝑘)
𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)𝑗𝑗∈Ω(𝑖𝑖)

+ � �̅�𝑁H,𝑗𝑗
0

� 𝑃𝑃H→LHL,(𝑗𝑗,𝑖𝑖,𝑘𝑘)
𝑘𝑘∈Π(𝑖𝑖,𝑗𝑗)𝑗𝑗∈Ω(𝑖𝑖)

, (31)
 

�̅�𝑁HH,𝑖𝑖,tri = �̅�𝑁HH,𝑖𝑖. (32) 
There are ten probabilities for triple-shared events. For an 
𝑛𝑛p × 𝑛𝑛p detector patch, we have 2�𝑛𝑛p + 2�

2 + 20 unknowns 
and still 2𝑛𝑛p

2  known detected counts for conventional 
detectors, so it’s still undetermined. Larger patches can also 
make the condition better. For MEICC detectors, we still 
have a well-determined problem when 𝑛𝑛p ≥ 4  with the 
assumption that all these equations are not fully linearly 
dependent. 

3 Experimental studies 
We validated our proposed method utilizing simulated data 
through the Monte Carlo simulation program developed by 
[1,6,8] that we would like to refer readers to for the details. 
We simulated a CdTe detector with the pixel size of 
225 × 225 μm2, the thickness of 1.6mm and the density of 
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5.85g/cm3. The energy windows were set to [20, 65] keV 
and [65, 120] keV. The X-ray source was at 120kVp with a 
2mm aluminum filter. Pile-up events were avoided with 
impulse pulse shape. 
We employed Levenberg-Marquarelt (LM) algorithm to 
iteratively solve the equations, focusing solely on double-
shared events i.e. Eqs. (6)–(19). The patch size 𝑛𝑛p was set 
to five, resulting in 98 unknown numbers of incident 
photons for each patch. Randomly generated data for 50 
patches are utilized to solve the problem. With the 
assumption of uniform detector response, 10 probabilities 
are shared unknowns for all patches. 
In fact, the equations for conventional detectors have a 
trivial solution that all the probabilities 𝑃𝑃∗→∗∗,(𝑖𝑖,𝑗𝑗) are equal 

to zero and �̅�𝑁𝑐𝑐,𝑖𝑖 is equal to �̅�𝑁𝑐𝑐,𝑖𝑖
0 , which does not make sense 

physically. 
LM algorithm was run 30 times with random initial values 
for the same detected data. We randomly selected four 
patches to show the results in Fig. 3 focusing on the 
numbers of photons in the low energy bin of the central 
pixels compared with the ground truth of incident photon 
number without charge sharing. For conventional detectors, 
the estimated numbers of incident photons are close to 
detected counts, close to the trivial solution mentioned 
above. Moreover, they have significant standard deviations 
indicating poor stability. In contrast, the estimated numbers 
of incident photons are close to ground truths for MEICC 
detectors with almost negligible standard deviations, 
indicating strong stability. 
 

 
Figure 3. Four patches to demonstrate the results. The solid blue bars 
are detected counts in the low energy bin of their central pixels. The 
solid yellow bars are the numbers of incident photons without charge 
sharing. The striped blue bars are the results from conventional data, 

while striped yellow bars from MEICC data, with the error bars 
indicating their standard deviation. 

We define a metric 𝜂𝜂 = 𝑁𝑁−𝑁𝑁ideal
∗

𝑁𝑁ideal
∗  to measure the residual 

impact of charge sharing in the low energy bin. 𝑁𝑁  is the 
result obtained from our iterative LM algorithm. 𝑁𝑁ideal

∗  is 
the ground truth number of incident photons. We also define 

𝜂𝜂0 = 𝑁𝑁det−𝑁𝑁ideal
∗   

𝑁𝑁ideal
∗  as references and 𝑁𝑁det  is detected photon 

counts without any processing. For the results obtained 
from conventional detectors, 𝜂𝜂 is in the range of 0.3348 to 
1.9489 and similar with 𝜂𝜂0, indicating that charge sharing is 
only weakly compensated. For MEICC, 𝜂𝜂 is in the range of 
0.014 to 0.6489, significantly smaller than 𝜂𝜂0 , indicating 
that charge sharing is effectively compensated.  

4 Discussion and Conclusion 
In this work, we constructed an analytical model to address 
charge sharing in PCDs. The model was designed to explore 
relationships between adjacent pixels based on charge 
sharing probabilities. We analyzed the conditions of charge 
sharing compensation problem for conventional and 
MEICC detectors, respectively. Notably, the MEICC data 
exhibited more promising results in charge shairng 
compensation, owing to its better conditions than 
conventional data. An LM iteration method was utilized to 
conducted preliminary validation of our model to 
compensate for charge sharing. It exhibits theoritical 
advantages of MEICC detectors and confirmed through a 
simulated experimental study. In future work, we are to 
enhance our method to obtain more valuable and acurate 
results for practical usage. 
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Abstract The advent of simultaneous PET/MRI enables the 
possibility of using MRI to guide PET image 
reconstruction/recovery. Deep-learning approaches have been 
explored in low-count PET recovery, with current approaches 
focusing on supervised learning, which requires a large 
amount of paired low-count and full-count training data. A 
recently proposed unsupervised learning image-recovery 
approach does not require such data sets but relies on the 
optimal loss function. In this work, we developed an 
unsupervised learning-based PET image recovery approach 
using anatomical MRI as input and a novel loss function. Our 
method achieved better image recovery in both global image 
similarity metrics and regional standard uptake value (SUV) 
accuracy on FDG scans. 

1 Introduction 
 
Positron Emission Tomography (PET) is a sensitive and 
quantitative tool for clinicians and researchers to investigate 
a range of pathologies, such as heart disease and brain 
disorders [1,2]. However, conventional PET suffers from an 
undesirable, fundamental tradeoff between the radiation 
dose and signal-to-noise ratio (SNR). High SNR in PET 
images is beneficial for many applications, including 
detecting small lesions and diagnosing neurological 
diseases. However, obtaining a high SNR image requires a 
high radiation dose and/or increased scan time. Low-count 
PET can reduce the injected dose and/or reduce acquisition 
time. However, the image quality of low-count PET can be 
too low for clinical use if reconstructed using conventional 
reconstruction approaches. [3]. 
To solve this problem, deep learning techniques have been 
proposed to recover high-count-like images from low-
count. Multiple deep learning models have been developed 
in recent years to enhance low-count PET scans; some were 
even approved by the FDA [4–6]. Most current techniques 
utilize supervised learning, where a large amount of high-
count and low-count PET image pairs are needed for the 
network to learn. However, such data sets are hard to obtain, 
especially for newly developed traces, and could potentially 
be disease dependent.  
Unsupervised learning has been proposed for this task 
utilizing help from anatomical MRI images. Unsupervised 
learning does not require low-count and high-count image 
pairs. However, it relies on the loss function to obtain good 
results without overfitting and find the best network 
weighting. A recent study used the L2 norm as the loss 

function [7]. In this work, we proposed an improved loss 
function for this novel approach that can be used in general 
studies with improved global image similarity and accurate 
regional uptake values. 

2 Materials and Methods 

2.1 PET/MRI data 
 
A total of 28 18F-FDG brain PET/MRI studies were gathered 
from our previously acquired research studies. None of 
these patients had brain tumors or neurological diseases. All 
data sets used listmode acquisition with a 20-channel PET-
compatible MRI head coil on a Siemens Biograph mMR 
PET/MRI scanner. T1-weight MRI images were acquired 
using MPRAGE sequence (TE/TR/TI = 3.24/2300/900 MS, 
flip angle = 9, voxel size = 0.870.87 0.87mm3). 
Attenuation maps were generated using an established 
MPRAGE-based algorithm incorporating bone 
compartment [8,9].  

2.2 PET image reconstruction 
 
Static PET images were reconstructed from 10-minute 
emission data (50-60 minutes after injection) using 
Siemens' E7tools with ordered subset expectation 
maximization (OSEM). The reconstructed image was used 
as the reference standard full-count PET image. Low-count 
PET data (10% count) were generated through Poisson 
thinning of the listmode data and reconstructed in the same 
method as the full-count PET image. 

Figure 1 U-NET architecture used. 
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2.3 Unsupervised learning image recovery 
 
The network architecture used was a U-Net, as shown in 
Figure 1. Similar to the previous unsupervised learning 
framework, anatomical MPRAGE images were used as the 
input to the network and were trained to output low-count 
PET images [10].   
In this work, we proposed a custom loss function (as shown 
below) using the structural similarity index measure (SSIM) 
between the recovered PET images and anatomical MRI 
and the mean absolute error (MAE) between the recovered 
PET images and the low-count PET images:  
𝐿(𝑥) = 𝜆 1 − 𝑆𝑆𝐼𝑀(𝑥, 𝑀𝑅𝐼) + (1 − 𝜆)𝑀𝐴𝐸(𝑥, 𝑃𝐸𝑇 ) 

[Eq. 1] 
where 𝑥 is the denoised PET image. 
Each subject was trained individually. One subject was 
picked randomly to tune the model and optimize the loss 
function. The optimal iteration for the best result was 
chosen empirically using the training subject. Once the 
optimal setup was found, the same setting was applied to 
the rest of the data set. 

2.4 Evaluation 
 
Results from the unsupervised learning U-Net framework 
were compared to full-count data to assess the best setup 
using the following quantitative metrics: 1) Peak Signal to 
Noise Ratio (PSNR), 2) SSIM, 3) Root Mean Square Error 
(RMSE), all with respect to the full-count image.  
The model's performance was also compared with Gaussian 
denoising. The optimal Gaussian denoising filter parameter 
was chosen using the same subject that was used to tune our 
model, and the optimal parameter was used on the rest of 
the dataset.  
In addition to the quantitative image metrics, standard 
uptake value (SUV) was also calculated from low-count 
PET, unsupervised learning denoised PET, and the 
Gaussian denoised PET. The mean SUV (SUVmean) values 
were calculated for the hippocampus and amygdala. The 
percentage mean SUV difference was computed between 

low-count to full-count PET, between the unsupervised 
learning denoised PET and full-count PET, and between 
Gaussian denoise PET and full-count PET. This comparison 
allows us to evaluate if the setup can be used for future 
quantitative PET analysis. 

3 Results 
 
Using the single training subject, the optimal 𝜆 was 0.75, 
and the optimal iteration number was 640 with a learning 
rate of 3.33×10-3. The network layers are shown in Figure 
1. 
The full-count PET, low-count PET, Gaussian denoised 
PET, and the unsupervised learning denoised PET of one 
representative subject are shown in Figure 2. Both 
Gaussian denoised PET and unsupervised learning denoised 
PET show good results compared to low-count. 
The distribution of the PSNR, SSIM, and RMSE of the low-
count PET, Gaussian denoised PET, and our unsupervised 
denoising network output for the subjects, as compared to 
full-count PET, are shown in Figure 3. The unsupervised 
learning denoised PET yielded the best result visible as 
shown in Figure 3. The result from the paired student t-test 
are also shown in Figure 3, indicated by asterisks, and 
confirms the visual finding. The unsupervised learning 
results achieved a significant better results with p<0.0001 
for all three metrics when comparing to low-count PET, and 
it also outperformed Gaussian denoised results with 
statistical significance.  
The calculated SUVmean difference percentages between 
each output against full-count PET for the ROIs are shown 
in Tables 1. No significant differences were found between 
Gaussian denoised PET and low-count PET in amygdala 
and hippocampus. Our unsupervised denoised PET for the 
FDG scan has improved SUV accuracy in terms of mean 
and standard deviation. The paired student t-test showed 
that there are significant different (p<0.05) between the 
unsupervised learning denoised PET and  the Gaussian 

Figure 2 Example of the full-count PET, low-count PET, Gaussian denoised PET and unsupervised-learning denoised PET.  
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denoised PET and between the unsupervised learning 
denoised PET and the low-count PET. The total error was 
calculated and is shown in Table 2. It follows the 
observation in Figure 3 and Table 1 and confirms that 
unsupervised denoising PET did perform better when 
compared to the low-count PET and Gaussian denoised 
PET. 

 

 

4 Discussion  
 
Our unsupervised denoising method shows statistically 
significant improvement of PSNR, SSIM, and MSE when 

compared to low-count PET and Gaussian denoised PET. 
The Gaussian denoised also showed improvement over the 
low-count PET but is outperformed by the unsupervised 
learning denoised PET. 

 

The SUVmean calculation shows significant differences 
when comparing unsupervised learning denoised PET with 
low-count and Gaussian denoised PET. In contrast, the 
Gaussian denoised PET shows no significant improvement 
when compared to the low-count PET. This improvement 
suggests that unsupervised denoised PET not only provides 
more visually appealing images, it also yields more 
quantitatively accurate results, which could be used for 
further kinetic modeling analysis.  
In this work, only FDG results were presented. Our group 
is working on applying this approach to other tracers. It is 
expected that the loss function might need to be optimized 
for each tracer, depending on the nature of the tracers.  

% Difference 
Mean (SD) 

Amygdala Hippocampus 
Left Right Left Right 

Low-Count 
FDG 

-7.04 
(7.53) 

-12.25 
(12.96) 

-10.69 
(9.34) 

-3.11 
(9.55) 

Gaussian 
denoised FDG 

-7.42 
(8.22) 

-12.25 
(13.51) 

-10.82 
(9.13) 

-3.33 
(8.61) 

Unsupervised 
learning 

denoised FDG 

-6.58 
(7.10) 

-8.10 
(5.37) 

-8.79 
(4.88) 

-1.81 
(8.31) 

Total Error 
Low-
Count 
PET 

Gaussian 
denoised 

PET 

Unsupervised 
learning 

denoised PET 
FDG- 

Amygdala 
Left 21.80 23.54 20.49 

Right 37.65 38.73 18.61 
FDG- 

Hippocampus 
Left 28.99 28.72 18.36 

Right 21.83 29.21 18.08 

Table 1 The mean and standard deviation of the percent difference 
between gull-count PET and the low-count PET, Gaussian denoised 
PET, and unsupervised learning denoised PET for FDG scans in both 
side of amygdala and hippocampus. 

Table 2 The total error of the percent difference between full-count 
PET and low-count PET, Gaussian denoised PET, and unsupervised 

Figure 3 The violin plot of PSNR, SSIM, and RMSE for the low-count PET, Gaussian denoised PET, and unsupervised learning 
denoised PET. The p-value calculated using paired student t-test was indicated by the asterisk. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 

0.001, **** p ≤ 0.0001, black line in the violine plot indicates the mean, red line indicates the median. 
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5 Conclusion 
 
Our result showed that our novel loss function for this 
unsupervised learning denoising network outperformed 
conventional Gaussian denoising and improved the quality 
of low-count PET in all global image similarity metrics with 
statistical significance.  
The SUV value also confirmed this conclusion and 
suggested that this method could be used for quantitative 
PET analysis. We will further improve our novel loss 
function together with our denoising network to allow it to 
optimize automatically for each subject. Further research on 
adjusting the loss function for other PET tracers utilizing 
simultaneous PET/MRI acquisition will be done. 
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