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Cross-presentation of cell-associated antigens (Ag) plays an important role in the induction
of anti-tumor responses, autoimmune diseases, and transplant rejection. While several
dendritic cell (DC) populations can induce pro-inflammatory CD8+ T cell responses to cell-
associated Ag during infection, in the absence of infection, cross-priming of naïve CD8+ T
cells is highly restricted. Comparison of the main splenic DC populations in mice – including
the classic, cross-presenting CD8α DC and the recently described merocytic DC (mcDC) –
reveals that cross-priming DCs display a distinct phenotype in cell-associated Ag uptake,
endosomal/lysosomal trafficking, lysosomal acidification, and Ag persistence compared to
non-cross-priming DC populations. Although the CD8α DC and mcDC subsets utilize simi-
lar processing pathways to cross-present cell-associated Ag, cross-priming by CD8α DCs
is associated with IL-12 production, while the superior priming of the mcDC is critically
dependent on type I IFN production. This discussion illustrates how subtle differences in
internal processing pathways and their signaling sequelae significantly affect the duration
of Ag cross-presentation and cytokine production by DCs, thereby shaping the ensuing
CD8+ T cell response.
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INTRODUCTION
Every day millions of cells die in the human body, producing cel-
lular corpses and material that must be disposed of. Dead cells
originating from the body’s surfaces can simply be sloughed off
with little or no consequence. In contrast, cells that die within
tissues must be removed, a task typically undertaken by phago-
cytic cells of the immune system. This system has dual purpose.
If the cell death is necrotic, due to viral or bacterial infection,
the clearance of diseased cells assists in removing the insult and
activating specific immunity against the offending cell-associated
Ag. If the cell death is a part of natural tissue homeostasis, i.e.,
apoptotic cell death, the clearance of dead cells can function to
maintain peripheral tolerance and prevent autoimmune disease.
Within this context apoptotic cell death is historically considered
an immunologically silent event.

Though seemingly simple in concept, continuing research on
apoptosis and the clearance of apoptotic cells has revealed the com-
plexity of this system. As a result, a multitude of factors have been
identified that influence whether tolerance or immunity is estab-
lished against cell-associated Ag upon uptake of apoptotic cells.
These factors include, but are not limited to, the type of cell that is
dying, how death was induced, in which tissue the death occurred,
the recognition and uptake by phagocytic cells, the type of phago-
cyte involved in the uptake, and the resulting micro-environment
(Poon et al., 2010). For example, cells treated with irradiation
or chemotherapy become apoptotic but tend to be immunogenic
(Ronchetti et al., 1999; Janssen et al., 2006; Green et al., 2009;
Reboulet et al., 2010; Ferguson et al., 2011). In this context immu-
nity probably results from the irradiation or chemical induced
release of damage associated molecular proteins (DAMPS) such

as high mobility group box 1 (HMGB1), uric acid/mono-sodium
urate crystals, heat shock proteins, and nucleotide structures from
the dying cell (Green et al., 2009; Poon et al., 2010). These signals,
similar to those released during necrotic cell death, provoke immu-
nity instead of tolerance. Though important, signals released by
the dying cell do not fully explain immunologic outcome. Studies
wherein identically treated cells induce tolerance if injected intra-
venously, yet immunity if injected subcutaneously illustrated how
the location of cell death and, more importantly, the type of anti-
gen presenting cell (APC) performing the uptake crucially affect
immunity or tolerance. Subsequent studies correlated this induc-
tion of immunity or tolerance specifically with the dendritic cell
(DC) subset that took up and processed the injected cells (Belz
et al., 2002; Ferguson et al., 2002; Iyoda et al., 2002; Green et al.,
2009).

DENDRITIC CELLS AND THE PRESENTATION OF
CELL-ASSOCIATED ANTIGENS
In the evolution of the vertebrate immune system, DCs have
filled the role of premier APC. All APCs characteristically take
up, process and present exogenous antigens to CD4+ T cells
within the context of MHC class II molecules. Uniquely, DCs
are additionally able to shuttle a portion of “eaten” antigens
into the MHC class I restricted pathway, a pathway that in
all other cell types is reserved for presentation of endogenous
proteins. In DCs, this cross-presentation process allows exoge-
nous Ag, including cell-associated Ag originating from dead and
dying cells, to be effectively presented to CD8+ T cells. Semi-
nal work over the last decade addressing uptake and process-
ing of cell-associated Ag by phagocytes has elucidated common
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mechanisms utilized by cross-presenting DC subsets that influence
cross-presentation and the resulting immune response. Success-
ful cross-presentation is characterized by specific uptake, distinct
endosomal/lysosomal trafficking, delayed lysosomal acidification,
and Ag persistence compared to non-cross-priming DC popula-
tions. Also, the cytokine profile by which each DC subset responds
to uptake of dying cells influences these processes and the final
potency of the Ag-specific response.

MOUSE SPLENIC DC SUBSETS DURING STEADY STATE
As a result of ongoing research, the system by which DCs are classi-
fied continues to change. Currently, as new subsets are discovered,
characterization often places them into one of two groups: steady
state conventional DCs (cDCs) or non-conventional DCs (Kush-
wah and Hu, 2011). This initial classification is based on lineage,
function, and location, with each subset being identified by the
presence or absence of different cell surface markers. Steady state
cDCs, as the name suggests, are present and function continu-
ally, even during inflammation, and include subsets found in the
lymphoid organs as well as migratory subsets present in the tis-
sues. Non-conventional DCs are mostly comprised of monocyte-
derived DCs subsets,populations which are highly enriched during
inflammation and thus are often referred to as inflammatory DCs
(Shortman and Liu, 2002; Heath et al., 2004; Shortman and Naik,
2007; Liu et al., 2009; Kushwah and Hu, 2011). DCs found in
non-lymphoid tissue regardless of whether formally categorized as
steady state conventional or monocyte-derived non-conventional,
are typically classified by the tissue in which they are found and the
presence or absence of CD103, CD11b, langerin (for skin associ-
ated subsets), or the chemokine receptor CX3CR1 (Kushwah and
Hu, 2011). Though some of these subsets are capable of cross-
presentation, this review focuses on those subsets present in the
spleen. We refer those interested to several publications that more
completely dissect the lineages, functionality and surface expres-
sion of various markers in these other DC populations (Shortman
and Liu, 2002; Heath et al., 2004; Shortman and Naik, 2007; Liu
et al., 2009; del Rio et al., 2010; Liu and Nussenzweig, 2010; Short-
man and Heath, 2010; Kushwah and Hu, 2011). Plasmacytoid DCs
(pDCs), a subset also present in the spleen during steady state, are
functionally distinct from both cDCs and non-conventional sub-
sets, but possess a common precursor with cDCs subsets. In spite
of this connected lineage, functional differences between cDCs
and pDCs complicates the exact placement of the latter subset
and, thus, has led to controversy. As a result, some researchers
place pDCs with non-conventional DCs while others place them
within a distinct group called pre-DCs or within their own cate-
gory (Shortman and Liu, 2002; Shortman and Naik, 2007; Liu and
Nussenzweig, 2010; Kushwah and Hu, 2011).

Conventional DCs and pDCs present in spleen and lymph
nodes are distinguished by differential expression of CD11c, B220,
and PDCA-1. Splenic cDCs lack B220 and PDCA-1 (Figure 1A)
and can be further divided into four subpopulations character-
ized by the presence or lack of various markers (Table 1): (1)
CD8α DCs (CD8α+, CD4−, CD11b−); (2) CD11b DCs (CD8−,
CD4−, CD11b+); (3) CD4 DCs (CD8−, CD4+, CD11b+); or (4)
merocytic DCs (mcDCs)/CD8−, CD4−, CD11b− DC (Figure 1A;
Janssen et al., 2006; Reboulet et al., 2010; Shortman and Heath,
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FIGURE 1 | Differential uptake of dying cells and subsequent

cross-priming by splenic DC populations. (A) Live or irradiated
CFSE-labeled OVA-expressing splenocytes were injected (i.v.) into mice.
After 2 h uptake CFSE-labeled material was analyzed in indicated splenic DC
subsets. (B) Mice were i.v. injected with irradiated OVA-expressing
Kb-deficient splenocytes (Ehst et al., 2003). Cross-presentation of H-2Kb

restricted OVA257–264 was assessed by activation of an OVA257–264-specific T
cell hybridoma, B3Z (Karttunen et al., 1992). (C) Characteristic
cross-priming – as determined by CFSE dilution – of OVA257–264-specific
CD8+ T cells by purified DCs upon in vitro culture with apoptotic
OVA-expressing Kb-deficient cells.

2010; Hennies et al., 2011; Kushwah and Hu, 2011). We have
investigated, and thus will discuss in this review, the uptake of
cell-associated Ag under steady state conditions and their cross-
presentation within four splenic DC subgroups – CD8α DCs,
CD11b DCs (which includes the CD4+ subset), mcDC/CD8−,
CD4−, CD11b− DC, and pDCs.
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Table 1 | Characteristics of splenic DC subsets.

CD8+ DC CD11b+ DC CD8− CD4− mcDC pDC Reference

Itgax /CD11c +++ +++ +++ ++ Hashimoto et al. (2011)

itgam/CD11b − +++ + − Vremec et al. (2000), Vremec and Shortman (1997)

Sirpa/CD172a −/+ +++ −/+ +/− Lahoud et al. (2006)

CD4 − ++ − − Crowley et al. (1989), Vremec et al. (2000)

CD8a +++ − − − Shortman and Heath (2010)

itgae/CD103 ++ − − − Bedoui et al. (2009b), McLellan et al. (2002), Qiu et al. (2009)

CD205 ++ − −/+ − Kraal et al. (1986), Shrimpton et al. (2009)

XCR1 ++ − + − Crozat et al. (2011), Robbins et al. (2008)

IRF8 ++ − ++ ++ Aliberti et al. (2003), Schiavoni et al. (2002), Tailor et al. (2008)

IRF4 −/+ ++ −/+ −/+ Hashimoto et al. (2011)

MHC II +++ +++ +++ ++ Wilson et al. (2003)

CD80 + + + − Shortman and Heath (2010), Wilson et al. (2003)

CD86 ++ + ++ +/− Shortman and Heath (2010)

CD40 + ++ + + Shortman and Heath (2010)

TLR3 +++ + +++ − Edwards et al. (2003)

TLR7 − + − ++ Edwards et al. (2003)

TLR9 + + + ++ Edwards et al. (2003)

Clec9a +++ + +++ + Sancho et al. (2008)

CLec12a +++ + nd nd Lahoud et al. (2009)

Havcr1/tim1 − − − +++ Kobayashi et al. (2007)

Havcr2/tim3 +++ +++ +++ − Nakayama et al. (2009)

Tim 4 + +/− + + Albacker et al. (2010), Kobayashi et al. (2007)

Treml2 + + ++ +++ Hemmi et al. (2009)

Treml4 +++ ++ ++ − Hemmi et al. (2009)

CD36 +++ ++ +++ +/− Albert et al. (1998)

MR − + − − Burgdorf et al. (2006), Burgdorf et al. (2008), Sallusto et al. (1995)

Lox1 + − + − Delneste et al. (2002), Erwig and Henson (2008), Oka et al. (1998)

FcγR2b + ++ + + Amigorena (2002), Rodriguez et al. (1999)

Cystatin C ++ + ++ + El-Sukkari et al. (2003)

NOX2 gpphox91 +/− ++ + nd Savina et al. (2006)

CYTOKINE INDUCTION UPON UPTAKE OF APOPTOTIC CELLS

IL-12 − − − − Morelli et al. (2003)

IL-10 − ++ − − Hennies et al. (2011)

TGFβ +/− ++ − − Hennies et al. (2011), Yamazaki et al. (2008)

Type I IFN − − ++ − Janssen et al. (2006), Lorenzi et al. (2011)

Data compiled from indicated literature and unpublished DNA arrays.

nd, not done.

CD8α DCs
The CD8α DC, classically considered to be the major cross-
presenting DC subset in the mouse spleen, is located in the
T cell zone of the spleen and has repeatedly been shown to
effectively cross-present beads, soluble Ag, and cell-associated Ag
(Figures 1B,C; den Haan et al., 2000; Pooley et al., 2001; Heath
et al., 2004; Belz et al., 2005; Schnorrer et al., 2006). The devel-
opment of CD8α DCs is dependent on Flt3L-STAT3 signaling.
While cDC development in general requires the transcription fac-
tors Ikaros, and PU.1 (Wu et al., 1997; Anderson et al., 2000;
Guerriero et al., 2000; Allman et al., 2006; Wu and Liu, 2007), the
CD8α DC lineage commitment is also dependent on Batf3, IRF-8,
and Id2 (Schiavoni et al., 2002; Hacker et al., 2003; Hildner et al.,
2008). This DC subset, in addition to being CD8α+, also expresses
DEC205, XCR1, and Clec9a (Vremec et al., 2000; Sancho et al.,

2009; Shortman and Heath, 2010; Crozat et al., 2011). Depending
on age and strain of mouse, up to 70% of CD8α DCs co-express
CD103, which has been suggested to represent a developmental
stage or activation state within the CD8α DC population or a
CD8+ subset with distinct functionality (Pribila et al., 2004; Qiu
et al., 2009; del Rio et al., 2010; Shortman and Heath, 2010). CD8α

DCs take up dead cells more readily than other splenic DC sub-
sets (Figure 1A; Iyoda et al., 2002; Schulz and Reis e Sousa, 2002;
Schnorrer et al., 2006) and have been implicated in the induction
and maintenance of CD8+ T cell tolerance to cell-associated Ag in
models of autoimmunity and transplantation (Kurts et al., 1996,
1998; Hawiger et al., 2001; Belz et al., 2002; Bonifaz et al., 2002;
Scheinecker et al., 2002; Shortman and Heath, 2010). This subset’s
importance in the cross-presentation of cell-associated Ag is fur-
ther supported by a dramatic reduction of anti-tumor immunity
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in mice deficient in Batf3, a gene crucial for the development of
the CD8α DC precursor (Hildner et al., 2008).

CD11b DCs
Splenic CD11b DCs reside in the marginal zone of the spleen
and predominantly co-express CD4, DCIR2, and Sirp-α (Crowley
et al., 1989; Pulendran et al., 1997; Maldonado-Lopez and Moser,
2001; Lahoud et al., 2006). CD11b DC development is governed
by transcription factors IRF2/4 (Honda et al., 2004; Ichikawa et al.,
2004; Suzuki et al., 2004) and RelB (Burkly et al., 1995; Weih et al.,
1995; Wu et al., 1998).

While CD11b DCs display great potential for phagocytosis of
proteins, beads/particles, and bacteria, their capacity for cross-
presentation under steady state conditions is poor. Moreover,
CD11b DCs display weak phagocytosis of apoptotic cells and no
role has been described for these cells in cross-presentation to cell-
associated Ag under steady state conditions (Figures 1A–C; den
Haan et al., 2000; Pooley et al., 2001; Iyoda et al., 2002; Schulz and
Reis e Sousa, 2002; Morelli et al., 2003; Schnorrer et al., 2006).

PLASMACYTOID DENDRITIC CELLS
Splenic pDCs are defined by strong expression of both B220 and
PDCA-1 and are predominantly located in the T cell area and red
pulp. While there is some discussion on the exact delineation of
pDC with regard to shared precursors with other cDC, research has
shown the requirement for the transcription factors E2-2, IRF8,
and Spi-B (Schiavoni et al., 2002; Schotte et al., 2004; Cisse et al.,
2008). Although pDCs are poor at taking up cell-associated Ag,
depletion studies have shown that pDCs are critical in the induc-
tion of tolerance after intravenous injection of apoptotic cells.
Such tolerance, however, does not require direct pDC–apoptotic
cell interactions, but rather soluble mediators from marginal zone
macrophages (Bonnefoy et al., 2011).

MEROCYTIC DCs/CD8−, CD4−, CD11b− DC
Over the recent years various laboratories have identified splenic
DCs that lack the conventional markers (CD8α−, CD11b−, CD4−;
Figures 1A–C; Hochrein et al., 2001; Naik et al., 2005; Janssen et al.,
2006; Vremec et al., 2007; Bedoui et al., 2009a; Katz et al., 2010;
Reboulet et al., 2010; Hennies et al., 2011). Generally, these popula-
tions are relatively small and only comprise <1–10% of the DC in
a naïve steady state spleen. Several of these DC populations have
been shown to cross-present antigens in protein (Vremec et al.,
2007) or cell-associated form (Bedoui et al., 2009a; Reboulet et al.,
2010; Hennies et al., 2011). Flt3L treatment of mice significantly
increases the frequency of these DCs, and cells with similar features
can be generated by in vitro Flt3L bone-marrow cultures (Bedoui
et al., 2009a; Reboulet et al., 2010; Hennies et al., 2011).

During the course of our work we have named the CD8α−
CD11b− CD4− DC in the naïve spleen mcDCs due to the smaller
particles (meros = particle) characteristically taken up by these
cells (Figure 2C) and will use this name throughout this review
(Reboulet et al., 2010). Like CD8α DCs, mcDCs express XCR1,
Clec9a, and are Sirp-α negative, but in contrast are DEC205−,
CD103−, and CD11b−/dull (Table 1). It has been suggested that
this marker negative subset is a precursor to the CD8α DCs
(Janssen et al., 2006; Bedoui et al., 2009a), a hypothesis supported

by the presence of Clec9a and CD24, surface molecules shown to
be present on the immediate precursors of CD8α DCs that lack
CD8 and DEC205 expression (Sathe and Shortman, 2008; Short-
man and Heath, 2010; Kushwah and Hu, 2011). CD8α− CD11b−
CD4− DC obtained from Flt3L treated mice readily convert into
CD8α DCs upon transfer (Bedoui et al., 2009a). However, only a
small fraction of CD8α− CD11b− CD4− DC/mcDC from naïve
spleens convert to CD8α DCs (Reboulet et al., 2010) suggesting
that mcDCs are either “long-term” CD8α DC precursors that are
relatively resistant to conversion or a stable population that pos-
sesses unique functionality and marker expression compared to
other known precursors.

Merocytic DCs take up cellular material from dead and dying
cells, though be it less than CD8α DCs (Figure 1A). Though
mcDCs take up less apoptotic cell material they show extended
cross-priming of CD8+ T cells due to prolonged storage of cell-
associated Ag (Reboulet et al., 2010). Importantly, mcDCs prime
both CD4+ and CD8+ T cells to cell-associated Ag (Figures 1B,C;
Janssen et al., 2006; Reboulet et al., 2010). CD4+ T cell activation
is important in the induction of immunity against cell-associated
Ag as CD8+ T cells become tolerant without sufficient CD4+ T
cell help (Janssen et al., 2003, 2005; Griffith et al., 2007). CD8+ T
cells primed by mcDC to cell-associated Ag show greater capacity
for primary expansion, cytokine production, and memory forma-
tion on a per cell basis than those primed by CD8α DC (Janssen
et al., 2006; Katz et al., 2010; Reboulet et al., 2010; Hennies et al.,
2011).

Merocytic DC have been associated with the breaking of tol-
erance and acceleration of immune responses to cell-associated
Ags. Treatment of tumor bearing mice with mcDC previously
exposed to irradiated tumor cells, resulted in tumor suppression
and increased host survival through the activation of naïve tumor-
specific CD8+T cells as well as the reinvigoration of tumor-specific
T cells that had been rendered non-responsive by the tumor in vivo
(Reboulet et al., 2010). Dysregulation of the mcDC compartment
has also been associated with the development of autoimmunity;
mcDCs are more numerous and more biologically active in the
non-obese diabetic (NOD) mouse model of type I diabetes and
absolute numbers correlate with disease development and pro-
gression. Transfer of mcDCs – loaded with irradiated islet cells–
transferred diabetes in young NOD recipients. Moreover, when
purified from the pancreatic lymph nodes of overtly diabetic NOD
mice, mcDCs break peripheral tolerance to beta antigens in vivo
and induce the rapid onset of T cell-mediated type I diabetes in
young NOD mice (Katz et al., 2010).

RECOGNITION AND DIFFERENTIAL UPTAKE OF DEAD AND
DYING CELLS
Though little is known regarding the influence of clathrin-
mediated uptake vs. phagocytosis or macropinocytosis on cross-
presentation pathways of cell-associated Ag, uptake and cross-
presentation of cellular material is largely thought to be receptor
mediated (Erwig and Henson, 2008).

RECOGNITION THROUGH PHAGOCYTIC RECEPTORS
As a cell becomes apoptotic, the steady state “don’t eat me” sig-
nals of viable cells are lost and replaced through a series of
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FIGURE 2 | Splenic DC subsets differentially take up cellular particles

influencing particle frequency and size. (A) Transmission electron
microscopy (TEM) images characterizing uptake of irradiated splenocytes by

purified DC subsets after 4 h co-culture: N, nucleus; arrows, apoptotic
material. (B,C) ImageStream analysis of the frequency and size of internalized
CFSE-labeled particles after 20 h co-culture with CFSE-labeled irradiated cells.

morphological and biochemical changes (Elward and Gasque,
2003; Erwig and Henson, 2008; Poon et al., 2010). The most
prominent and perhaps best-characterized change is the expo-
sure of phosphatidylserine (PS) on the surface of the dying cell.
Once PS is exposed, it can be recognized by a number of bridg-
ing molecules including milk fat globular-EGF factor 8 protein
(MFG-E8; Borisenko et al., 2004; Hanayama et al., 2004), growth
arrest-specific 6 (Gas6; Ishimoto et al., 2000; Scott et al., 2001), β2-
glycoprotein I (β2-GPI; Balasubramanian et al., 1997), and serum
Protein S (Erwig and Henson, 2008; Krysko and Vandenabeele,
2008; Poon et al., 2010). Many of these bridging molecules then
facilitate recognition by receptors on the surface of the phago-
cyte, including the integrins αvβ3 or αvβ5 (Borisenko et al., 2004;
Hanayama et al., 2004; Erwig and Henson, 2008). Additionally, the
apoptotic cell and other bridging molecules like TSP-1 are recog-
nized by phagocytic receptors such as Tim-1, Tim-3, and Tim-4
(Kobayashi et al., 2007; Nakayama et al., 2009; Albacker et al.,
2010), CD36 (Albert et al., 1998), Treml2 and Treml4 (Hemmi
et al., 2009), DEC205 (Shrimpton et al., 2009), class A scavenger
receptors (Platt et al., 2000), Lox-1 (Oka et al., 1998), and various
C-type lectins including Clec9a (DNGR1; Krysko and Vanden-
abeele, 2008; Sancho et al., 2009; Poon et al., 2010; Shortman and
Heath, 2010). While the seemingly overabundance of receptors
involved in dying cell uptake stresses the importance of apop-
totic cell removal in the maintenance of immune homeostasis, it is
becoming apparent that these molecules are not merely redundant,

but may distinctly influence APC behavior,and, thus,guide specific
responses toward cell-associated antigens under various settings
(Bratton and Henson, 2008; Erwig and Henson, 2008; Krysko and
Vandenabeele, 2008).

Cross-presentation, but not necessarily cross-priming, of cell-
associated Ag is generally enhanced when uptake is mediated
by DEC205 (Bonifaz et al., 2002), Clec9a (Sancho et al., 2008,
2009), Lox-1(Delneste et al., 2002), or Fc gamma R (Regnault
et al., 1999; Rodriguez et al., 1999; Amigorena, 2002; den Haan
and Bevan, 2002; Kalergis and Ravetch, 2002; Flinsenberg et al.,
2011). Uptake via the mannose receptor has also been implicated
in cross-presentation pathways, but its relevance has thus far only
been shown within the context of soluble Ag, not cell-associated Ag
(Burgdorf et al., 2006, 2008). Comparison of the transcriptome of
the four DC subsets suggests the most similarity between mcDCs
and CD8α DCs with regard to the expression of molecules involved
in the recognition and uptake of dying cells. However, some recep-
tors are still restricted to one subset – as is the case for DEC205
and CD8α DCs – or have differential expression/different levels of
expression, resulting in unique patterns for each subset (Table 1).

Consistent with receptor-mediated uptake leading to cross-
presentation, both CD8α DCs and mcDCs appear to take up cellu-
lar material via a classical receptor-mediated phagocytic process.
Transmission electron microscopy (TEM)of CD8α DCs and
mcDCs exposed to dying cells predominantly shows the presence
of small particles of phagocytosed material tightly surrounded by
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a double membrane (Figure 2A). In contrast, CD11b DCs appear
to use a more macropinocytic mechanism resulting in the uptake
of larger particles and inclusion of extracellular solutes and fluids
(Figures 2A,C).

PARTICLE SIZE AND FREQUENCY
Our studies and the work of others indicate that the method of
uptake, i.e., receptor-mediated phagocytosis vs. macropinocytosis,
influences the particle size taken up by APCs (Rejman et al., 2004).
While particle size determines the total amount of Ag available to
the cell, a growing body of literature indicates that particle size also
affects intracellular trafficking, the kinetics of phagosomal pH, and
thereby cross-presentation (Fifis et al., 2004; Rejman et al., 2004;
Tran and Shen, 2009). Cross-presentation has been shown to be
enhanced when Ag are bound onto particles between the range of
0.5 and 3 μ (Tran and Shen, 2009). However, it is likely that the
optimal size for cross-presentation will be affected by the compo-
sition of the particle, the receptors involved in the uptake and the
nature of the cell.

Transmission electron microscopy combined with ImageStream
technology, a flow cytometric based method that allows for quan-
titative image analysis on vast number of cells, confirmed that
cross-presenting splenic DCs differentially take up material from
dead and dying cells as measured by total particles per cell and
the overall particle size. CD8α DCs and mcDCs not only take up
particles of dying cells more readily, but also preferentially take up
smaller particles than CD11b DCs (Figures 2B,C), a size differ-
ential that most likely facilitates the entrance of cell-associated Ag
into cross-presentation pathways (Fifis et al., 2004; Rejman et al.,
2004; Tran and Shen, 2009).

Interestingly, upon exposure to dead and dying cells, mcDCs
generally take up a comparable number of particles/cell to CD8α

DCs, but these particles are typically smaller in size (Figures 2B,C;
Reboulet et al., 2010). While the mcDCs takes up a lower “net
amount” of Ag, the smaller particle size might expedite the export
to the cytosol which would facilitate Ag processing (Rodriguez
et al., 1999; Rock et al., 2010).

ANTIGEN TRAFFICKING, PROCESSING, AND LOADING
ANTIGEN TRAFFICKING AND VESICLE ACIDIFICATION
Upon uptake, cellular material from dying cells is found within
early phagosomes – or sorting endosomes – characterized by the
presence of the early endosomal markers EEA-1, Rab5, PI(3)P,
syntaxin 13, transferrin, and vesicle-associated membrane protein
3(VAMP-3; Vieira et al., 2002; Peng and Elkon, 2011). The phago-
some is transformed into a phagolysosome through a progressive
maturation process that is dependent on the sequential fusion of
endosomes and lysosomes with the internalized phagosome. Most
recently this maturation process and antigen cross-presentation
was shown to be regulated by the SNARE protein Sec22b through
its control of ER-resident protein recruitment to phagosomes
(Cebrian et al., 2011). Late endosomes/late phagosomes are asso-
ciated with Rab7, Rab9, mannose 6-phosphate receptor, syntaxin7,
LAMP-1 and LAMP-2 (Vieira et al., 2002). The final product,
phagolysosomes, express LAMPs but have lost most of the ear-
lier endosomal markers. In addition, the phagolysosomes possess
a number of complementary degradative properties, including a

very low pH, hydrolytic enzymes for particle digestion, defensins
and other bactericidal peptides, and the ability to generate toxic
oxidative compounds (Amigorena and Savina, 2010; Rock et al.,
2010).

Cellular material taken up by CD11b DCs rapidly ends up
in fully matured phagolysosomes (Figures 3A–C; Savina et al.,
2006, 2009; Reboulet et al., 2010; Peng and Elkon, 2011). Colo-
calization studies show an association of phagocytosed materials
with LAMP-1+ organelles and pulse-chase experiments show
the degradation of >80% of the material in less than 20 h
(Figures 3A,B). As a result, Ag are quickly processed and either
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FIGURE 3 | Unique trafficking of phagocytosed material in

cross-presenting DCs. (A) ImageStream analysis of the colocalization
between internalized Violet labeled-irradiated cells and PE-labeled EEA-1 or
LAMP-1 at 4 h (n > 950 events/group). Colocalization was based upon Bright
Detail Similarity score between the two markers. Scores of 0–1 represent
minimal colocalization. As the markers of interest become more colocalized
the score increases to reflect this similarity. (B) ImageStream analysis of
the frequency of CFSE-containing DCs and the number of CFSE+ particles
per DC 2 h and 20 h after the removal of irradiated CFSE-labeled cells.
Decreases in particle frequency and number/cell were attributed to
acidification of the endosome and the subsequent CFSE-quenching. (C)

Differences in lysosomal acidification rate between DC populations as
determined by flow cytometric analysis of dual-labeled pH-indicating beads.
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shuttled into MHC class II restricted pathways or simply degraded
and disposed of. In contrast, cross-presenting DC subsets take up
material from dying cells and hold these particles in immature
endosomes for an extended period of time (Figures 3A–C). While
CD8α DCs have degraded most of the material after 20 h, diges-
tion is much slower than in CD11b DCs. Phagocytosed cellular
particles in mcDCs are more colocalized with EEA-1 and less with
LAMP-1 after 4 h of co-incubation with irradiated cells, indicating
slower endosomal maturation (Figure 3A). Moreover, pulse-chase
studies showed the persistence of materials over a 20-h time span
(Figure 3B; Reboulet et al., 2010). This persistence of Ag in the
mcDCs has been shown to prolong the cross-presentation of spe-
cific cell-associated Ag and thereby increase T cell priming (Savina
et al., 2006; Reboulet et al., 2010; Peng and Elkon, 2011).

As endosomal acidification causes the robust activation of
lysosomal proteases and the subsequent destruction of Ag,
acidification is considered to be poorly compatible with cross-
presentation. Forced lysosomal acidification dramatically reduces
cross-presentation while prevention of acidification has been
shown to enhance cross-presentation (Savina et al., 2006;
Amigorena and Savina, 2010; Reboulet et al., 2010). Though it
was previously described that DCs have relative ineffective acid-
ification of their lysosomes, the mechanism under pinning the
sustained phagosome alkalinization was only recently unraveled.
Studies by laboratory of Mellman and Amigorena indicate that
this results from an incomplete assembly of V-ATPase in DC
lysosomes and the Rab27-mediated recruitment of the NADPH
NOX2. The NOX2-mediated generation of reactive oxygen species
(ROS) in endocytic compartments causes the consumption of pro-
tons, followed by the active alkalinization of these compartments
(Trombetta et al., 2003; Savina and Amigorena, 2007; Savina et al.,
2009; Rock et al., 2010).

Acidification studies indicate that endosomes with cell-
associated material in both CD8α DCs and mcDCs maintain a
similar high/neutral pH for several hours post uptake of cell-
associated antigens, which correlates with Ag persistence. Com-
pared to CD8α DCs, mcDCs show decreased lysosomal acidifi-
cation over a prolonged period of time, resulting in a less acidic
endosomal compartment after 20 h (Figures 3B,C; Reboulet et al.,
2010).

In both populations the treatment with diphenylene iodo-
nium (DPI) – an inhibitor of flavin-containing enzymes such as
NOX2 – accelerates lysosomal acidification, prevents Ag persis-
tence, and rapidly decreases the cross-presenting capacity of both
CD8α DCs and mcDCs, emphasizing the importance of endo-
somal acidification in their cross-presentation (Reboulet et al.,
2010).

The mechanisms that govern the prolonged Ag persistence in
mcDC remain unclear as the biogenesis of phagolysosomes still
involves many poorly understood processes. Transcriptome analy-
sis of CD8α DCs and mcDCs showed ≈20-fold higher expression
of Cybb (NOX2) in mcDCs. In addition, differential expres-
sion of various R- and Q-SNAREs (soluble N -ethyl maleimide
sensitive-factor attachment protein receptors), sorting nexins, and
V-ATPases that have been suggested to play a role in vesicle trans-
port and fusion are seen (Vieira et al., 2002; Cebrian et al., 2011).
However, as most of these processes depend on active recruitment

of these proteins to endosomal/lysosomal membranes, differences
in expression levels might not be indicative of their degree of
involvement. It is more likely that the nature of the phagocy-
tosed particle – including size – and the receptors involved in
their uptake dictate phagosome maturation (Peng and Elkon,
2011).

PROCESSING AND MHC I LOADING
As intact internalized Ag fill the cell, there are two proposed path-
ways by which they are cross-presented: the vacuolar and cytosolic
pathways. The vacuolar pathway hypothesizes that cross-presented
Ag are fully processed within the endosomes. The aminopeptidase
IRAP facilitates the production of MHC class I-specific peptides
that bind to the MHC molecule within the endosome. This path-
way appears to be cathepsin S dependent and TAP independent
(Shen et al., 2004; Chen and Jondal, 2008; Rock et al., 2010). In con-
trast, the cytosolic pathway requires minimally processed antigen
to escape into the cytosol. Once in the cytosol, the Ag is processed
by the proteasome, and generated peptides are shuttled into the
lumen of the ER via sec61 or into phagosomes that have recruited
ER components. The ER associated aminopeptidase ERAP actively
clips the peptides to the proper length and TAP facilitates the
loading into MHC class I (Rock et al., 2010).

Multiple studies indicate a dominant role for the cytosolic path-
way in the processing of cell-associated Ag by cross-presenting
DC subsets (Figure 4; Shen et al., 2004; Rock et al., 2010).
Smaller particles, like those taken up by mcDCs and CD8α DCs
(Figure 2C), are more rapidly and efficiently exported to the
cytosol, a process that would drive the cytosolic pathway of
cross-presentation (Rodriguez et al., 1999). Also, lactacystin and
brefeldin A, inhibitors of the proteasome and Golgi transport,
respectively, completely inhibit the ability of both CD8α DCs and
mcDCs to activate Ag-specific CD8+ T cells against cell-associated
Ag (Figure 4). A recent report by Cebrian et al. (2011) impli-
cates the SNARE protein Sec22b as an essential element of the
cytosolic pathway. Depletion of Sec22b inhibits the recruitment
of ER-resident proteins to the phagosome and phagolysosomal
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fusion was enhanced. As a result, antigens are rapidly degraded
instead of being transported to the cytosol. These combined
effects of Sec22b loss drastically reduce the cross-presentation
of soluble and surface bound OVA as well as parasite and bac-
terial associated antigens. Interestingly, the presentation of both
MHC class II and endogenous MHC class I restricted peptides
is unaffected demonstrating significant separation between these
processing pathways (Cebrian et al., 2011). Taken together, these
data support the hypothesis that Ag must reach the cytosol, and
eventually become associated with ER-derived proteins, to be
cross-presented.

The maintenance of a more neutral pH correlates with delayed
or reduced lysosomal protease activation. Cross-presenting DCs
characteristically express lower levels of proteases and higher lev-
els of protease inhibitors as compared to other APCs (Lennon-
Dumenil et al., 2002; Trombetta et al., 2003). Pepstatin A, an
inhibitor of acid proteases involved in lysosomal maturation
and acidification, has no effect on the DCs capacity to cross-
present. This demonstrates that protease mediated peptide pro-
duction plays a minimal role in cross-presentation (Figure 4;
Rock et al., 2010). Interestingly, leupeptin, an inhibitor of cysteine
proteases essential for the vacuolar pathway, partially inhibits
cross-presentation, but affected the mcDCs more than the CD8α

DC subset. This suggests that mcDCs may utilize the vacuolar
pathway for the processing of cell-associated Ag more than other
subsets. In support of this, removal of either ERAP or IRAP results
in only a 50% reduction in cross-presentation, suggesting the uti-
lization of both pathways by cross-presenting DCs (Firat et al.,
2007; Blanchard et al., 2008; Saveanu et al., 2009; Rock et al.,
2010).

EFFECT OF AUTOCRINE CYTOKINE PRODUCTION
The cytokines produced by DCs in the context of cellular death
and clearance drastically influence Ag processing, presentation
and, subsequently, the capacity of the DC to prime T cells against
cell-associated Ag (Voll et al., 1997; Fadok et al., 1998; Janssen
et al., 2006; Chung et al., 2007; Green et al., 2009). While the
induction of anti-inflammatory cytokines – including IL-10 and
TGF-β-upon uptake of apoptotic cells is relatively poor, various
studies indicate that DC concurrently reduce their capacity to
produce pro inflammatory cytokines (IL-1α/β, IL-6, IL-12, TNFα;
Stuart et al., 2002; Morelli et al., 2003). This altered cytokine pro-
duction profile has been suggested to become entrenched in the
APC and to affect subsequent spontaneous and induced cytokine
production (Stuart et al., 2002; Morelli et al., 2003; Kim et al.,
2004).

Upon exposure to apoptotic cells, CD11b DCs induce the anti-
inflammatory cytokines IL-10 and TGF-β (Hennies et al., 2011).
CD8α DCs readily express the pro-inflammatory cytokines IL-12
and Type I IFN under inflammatory conditions (Hochrein et al.,
2001; Heath et al., 2004; Naik et al., 2005), but demonstrate min-
imal induction of these and other cytokines, including IL-10 and
TGF-β, in response to apoptotic cells (Morelli et al., 2003; Hennies
et al., 2011; Janssen, unpublished). This is particularly interesting
as CD8α DCs produce TGF-βduring steady state (Yamazaki et al.,
2008), a cytokine heavily implicated in the induction and main-
tenance of peripheral tolerance (Erwig and Henson, 2007; Green

et al., 2009). In contrast, mcDCs express the pro-inflammatory
cytokines IL-1β and type I IFN upon exposure to dying cells
(Table 1; Hennies et al., 2011).

IL-10 and TGF-β have potent immunosuppressive properties
and promote the induction of tolerance. Both have been shown
to reduce Ag presentation by regulating the transcription of the
class I heavy chain, β2M, tapasin, TAP, and components of the
proteasome (Geiser et al., 1993; Ma and Niederkorn, 1995; Kop-
pelman et al., 1997; Nandan and Reiner, 1997; Salazar-Onfray et al.,
1997; Zeidler et al., 1997; Strobl and Knapp, 1999; Francois et al.,
2009). The pro-inflammatory cytokine IL-12 is a critical medi-
ator of CD8+ T cell activation as it drives the necessary help of
CD4+ T cells toward a Th1 phenotype (Trinchieri, 2003; Trinchieri
et al., 2003; Chang et al., 2004; Del Vecchio et al., 2007; Lee et al.,
2007). In spite of this, IL-12 seems to have little autocrine effect
on Ag processing by CD8α DCs (Grohmann et al., 1999; Janssen,
unpublished) and its induction has been suggested to require addi-
tional signals, including TLR engagement, CD40L, IL-4 or IFN-γ
(Hochrein et al., 2000; Hochrein et al., 2001; Reis e Sousa et al.,
1997; Schulz et al., 2000). These additional stimuli – or their seque-
lae – positively affect the expression of the proteasomal subunits,
TAP1 and TAP2, calnexin, calreticulin, tapasin, NOX2, and MHC
class I.

Merocytic DCs produce pro-inflammatory cytokines in
response to apoptotic cells without the apparent need for
additional signals. While IL-1β is traditionally incorporated in
maturation cocktails in the generation of human DCs, its does not
significantly affect cross-presentation or cross-priming by mcDCs.
mcDCs lacking IL-1RI or MyD88 display CD8+ T cell priming
capacity similar to WT mcDCs (Janssen,unpublished). In contrast,
type I IFN production by the mcDCs, and resulting autocrine sig-
naling, is critical for this subset’s enhanced cross-presentation and
activation of CD8+ T cells against cell-associated Ag (Reboulet
et al., 2010). Type I IFNs have been shown to affect the expres-
sion of various components of the Ag processing and loading
machinery, including proteasome subunits, TAP, tapasin, calretic-
ulin, NOX2, MHC, and various SNAREs (Cho et al., 2002; Tosello
et al., 2009; Lattanzi et al., 2011). The importance of autocrine
type I IFN production was illustrated in experiments where trans-
fer of apoptotic cell-exposed mcDCs that lacked the type I IFN
receptor (ifnar) showed significantly reduced priming of endoge-
nous CD8+ T cells to cell-associated Ag compared to WT mcDCs.
As CD8α DCs do not produce type I IFN upon apoptotic cell
uptake (Hennies et al., 2011), the presence or absence of the type
I IFNα/βR on CD8α DCs did not affect their priming capacity
(Figure 5A). Further in vitro experiments showed that the reduc-
tion in priming correlated with reduced expression of the specific
MHC-peptide complexes on the ifnar-mcDCs. No significant dif-
ferences were observed in total MHC class I levels, suggesting
that type I IFNs interfered relatively early in the process of Ag
presentation.

Image stream analysis of WT and ifnar−/− CD8α DCs and
mcDCs exposed to dying cells in vitro indicated that type I IFN
sensing did not affect the capacity for phagocytosis by either
subset with regard to the frequency of phagocytosing cells, the
number of particles per cell, or particle size (Figures 5B,C). How-
ever, pulse-chase studies indicated the absence of type I IFN
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FIGURE 5 | Autocrine type I IFN signaling by mcDC affects CFSE loss on

phagocytosed cellular particles suggesting changes in the lysosomal

acidification rate. (A) CD8α DCs and mcDCs from indicated strains were
exposed to irradiated actmOVA cells in vitro, purified and transferred into
WT recipients. Seven days later the endogenous CD8+ T cell response was
analyzed. (B,C) ImageStream analysis comparing the frequency and size of
internalized CFSE-labeled particles in CD8α DCs and mcDCs from WT and
ifnar−/− mice. (D) Loss of delayed acidification in ifnar−/− mcDC as
determined by ImageStream analysis using CFSE-labeled irradiated cells
and a pulse-chase approach.

sensing accelerated CFSE loss, suggesting increased endosomal
acidification, and significantly increased degradation of endo-
somal materials in mcDCs (Figure 5D). This is in line with
recent findings of Lorenzi et al. (2011), who showed that pre-
treatment of CD8α DCs with recombinant type I IFN, which
is otherwise absent in these cultures, significantly increased Ag
retention after engulfment of apoptotic cells. Increased retention
correlated with decreased endosomal acidification and resulted
in enhanced cross-presentation of cell-associated Ag (Lorenzi
et al., 2011). Interestingly, two recent in vivo studies demon-
strated a critical role for type I IFN sensing in DC in tumor
rejection models. The authors showed that mice lacking ifnar
in DC failed to reject highly immunogenic tumor cells and that
CD8α DCs from these mice displayed defects in antigen cross-
presentation to CD8+ T cells (Diamond et al., 2011; Fuertes et al.,
2011).

The concept of type I IFNs affecting endosomal pH and reg-
ulating Ag retention provides an intriguing concept that could
explain why so many DC populations that fail to cross-present
under steady state conditions are capable of doing so under inflam-
matory conditions associated with type I IFNs (Di Pucchio et al.,
2008; Segura et al., 2009; Kamphorst et al., 2010; de Brito et al.,
2011).

OF MICE AND MEN
While it is possible to perform extensive analysis on mouse DCs
through the use of transgenic mice and the ability to remove
specific organs, human DC studies are hampered by the lim-
ited availability of human lymphoid tissue and differences in DC
surface markers. However, recent research indicates the existence
of various human counterparts that – albeit phenotypically dif-
ferent – have functional similarities to mouse DCs. While the
details on cross-presentation by human DCs are addressed else-
where in this issue, it is noteworthy that cross-priming has been
observed by human pDCs and the “CD8α DC”-like DCs that
expresses BDCA3, XCR1, DNGR1/Clec9A (Hoeffel et al., 2007;
Dorner et al., 2009; Bachem et al., 2010; Henri et al., 2010; Crozat
et al., 2011). Both cell types seem to have the capacity to actively
internalize small particles of dead cell material. In addition, human
DCs – like mouse DCs – require the regulation of phagosomal and
endosomal pH for efficient cross-priming (Hoeffel et al., 2007;
Amigorena and Savina, 2010). Whether these human DCs also
encompass the counterpart of the human mcDCs is unclear. If
human mcDCs would behave like mouse mcDCs, they would be
associated with lymphoid tissue and very rare in blood. In this
case it is interesting to note that most experiments using blood-
derived or in vitro generated pDCs/BDCA3-DCs required inclu-
sion of type I IFN inducing ligands to reveal their cross-priming
ability.

CONCLUDING REMARKS
Under steady state conditions, cross-presentation of cell-
associated Ag is a continuous process that is imperative for the
maintenance of peripheral tolerance. While great strides have been
made in the elucidation of the mechanisms that govern cross-
presentation and subsequent cross-priming, there are still many
questions to be answered. Little is known about the proteins
that orchestrate vesicle composition and trafficking or the sig-
nals involved in the recruitment of these proteins. It is likely that
these processes are influenced by the composition and “state of
decay” of the dying cells, the receptors involved in uptake, and the
nature and maturation state of the DC. Moreover, in vivo, signals in
trans provided by bystander cells can significantly affect intrinsic
mechanisms of cross-presentation by DCs. Although elucidation
of these processes may be a daunting task, increased mechanis-
tic insight into these pathways will have tremendous therapeutic
potential in the fields of autoimmune disease, transplantation, and
cancer.
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