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Introduction
Protein-protein interaction (PPI) prediction revealed multiple 
roles in many important biological activities. However, an inter-
esting related research problem is whether proteins can interact 
with their partner. Self-interacting proteins (SIPs) is being con-
sidered as a special type of PPIs, which refers to more than 2 
copies of the protein can interact with each other and are the 
same copies of the protein and can be represented by the same 
gene. This might bring about the formation of homo-oligomer 
problem. Many recent studies have shown that SIPs play a vital 
role in various cellular physiological functions and the evolution 
process of protein-protein interaction networks.1,2 Therefore, 
whether a protein can self-interact for interpretation of its func-
tions is very important. The research on SIPs can provide a bet-
ter understanding of the regulation of protein function and the 
molecular mechanisms involved in biological activity and the 
underlying cellular and genetic disease mechanisms. Many 
studies have been conducted for the homo-oligomerization that 
is a vital function for biological activity and plays an essential 
role in a wide range of biological processes, such as signal trans-
duction, gene expression regulation, enzyme activation, and 
immune response.3-7 In addition, it has been demonstrated by 
many previous studies that the diversity function of proteins can 
be variously extended without increasing the length of genome 
through SIPs. Self-interacting proteins can also provide some 
help in improving the protein stability and preventing the pro-
tein denaturation by reducing its surface area.8,9 Therefore, it is 
becoming more important to develop reliable and effective 

computational approaches based on protein sequences for pre-
dicting SIPs.

Also, more research has been devoted to develop computa-
tional methods to predict PPIs. Gao et al10 proposed a novel 
computational method called RF-AC, which combined the 
Rondom Forest (RF) classifier with Autocovariance (AC) 
approach–based position-specific scoring matrix (PSSM). 
Huang et al11 presented a new computational approach, which 
used weighted sparse representation as classifier and employed 
global encoding as a feature extraction method for predicting 
PPIs. Pan et al12 proposed a novel latent Dirichlet allocation-
rondom forest (LDA-RF) model for predicting human PPIs 
based on protein primary sequences, which has strong ability 
for processing large-scale datasets by using the LDA-RF 
model. Zhang13 proposed a novel approach based on protein 
sequence that used random tree and genetic algorithm for pre-
dicting PPIs. Yang et al14 presented a new approach that used 
local descriptors to represent protein sequence and employed 
the k-nearest neighbors for performing classification. Guo 
et al15 adopted autocorrelation feature extraction technique for 
generating feature vectors and used the support vector machine 
(SVM) classifier to identify PPIs. An et al16 proposed a classi-
fication algorithm of compound kernel function RVM based 
on gray wolf optimization algorithm and k-fold cross-valida-
tion, which fully consider the special features of local and global 
of PPI position. An et  al17 proposed a feature extraction 
approach based on local protein sequence PSSM matrix cod-
ing and serial multifeature fusion. The method can capture 
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PPI information of continuous and discontinuous for protein 
sequence by using the local protein sequence PSSM matrix 
coding; much key feature information–contained protein 
sequences can be integrated through employing serial multi-
feature fusion. These methods usually explore the correlational 
information between protein pairs, such as coevolution, colo-
calization, and coexpression. However, this information is not 
enough for predicting SIPs. In addition, the PPI datasets do 
not contain the PPIs between the same protein partners. For all 
these reasons, it is not adequate for predicting SIPs by using 
these computational approaches. In a previous study, Liu et al18 
proposed a method integrating multiple representative known 
properties to create a prediction mode called as SLIPPER to 
predict SIPs. As far as we know, a number of recent studies 
have been reported about PPIs, which may also be related to 
SIPs.19-24 However, there is obviously a drawback that cannot 
deal with the proteins not covering the current human intera-
tomic by using these methods. Due to all the reasons presented, 
the development of efficient computational methods for pre-
dicting SIPs is a necessary work.

In the study, we proposed a new computational approach 
called RRN-SIFT, which combines the recurrent neural net-
work (RNN) with scale invariant feature transform (SIFT) for 
predicting SIPs based on protein evolutionary information. 
The proposed method uses SIFT to extract key features from 
PSSM that is constructed by using the Position-Specific 
Iterated BLAST (PSI-BLAST) tool and contains protein evo-
lutionary information. The RNN classifier is employed for 
executing classification based on extracted features. The RRN-
SIFT model obtained average accuracy of 94.34% and 97.12% 
on the yeast and human dataset, respectively. Compared with 
the back propagation neural network (BPNN), the state-of-
the-art SVM, and previous computational models, our method 
takes full advantage of RNN and SIFT, thereby improving the 
prediction accuracy. Therefore, the experimental results dem-
onstrated that the proposed RNN-SIFT model is a useful tool 
for predicting SIPs and is also suitable for other bioinformatics 
tasks.

Materials and Methods
Dataset

The UniProt database contains 20 199 curated human pro-
tein sequences.25 The PPI datasets can be downloaded from 
different databases, including DIP,26 BioGRID,27 IntAct,28 
InnateDB,29 and MatrixDB.30 In the article, we constructed 
the PPI data that only contain the same 2 interaction protein 
sequences and whose interaction type was defined as “direct 
interaction” in relevant databases. As a result, we acquired 2994 
human self-interaction protein sequences. To verify the perfor-
mance of the RNN-SIFT model, we constructed the experi-
mental datasets by using the following 3 steps: (1) the protein 
sequences with length less than 50 residues and longer than 
5000 residues were removed from the whole human proteome; 

(2) we selected the SIP data to create the positive dataset, 
which must satisfy with 1 of the following conditions: (a) it has 
been detected for self-interacting by at least 2 kinds of large-
scale experiments or 1 small-scale experiment, (b) the protein 
has been defined as homo-oligomer (including homodimer 
and homodimers) in UniProt, and (c) it has been reported by at 
least 2 publications for self-interacting; and (3) for construct-
ing the negative dataset, we removed all types of SIPs from the 
whole human proteome (including proteins annotated as 
“direct interaction” and more extensive “physical association”) 
and UniProt database. Consequently, we selected 15 938 non-
SIPs as negative samples and 1441 SIPs as positives samples 
for creating the human dataset.31 In addition, we also used the 
same strategy to construct the yeast dataset that contains 5511 
negative and 710 positive samples.31

Feature extraction method

Position-specif ic scoring matrix. Position-specific scoring matrix 
contains not only the position information but also the evolu-
tion information of protein sequence. As a result, the PSSM is 
used to extract the evolutionary information in the article. 
Position-Specific Iterated BLAST32 is used to convert each 
sequence into a PSSM. Assuming the length of a given protein 
sequence is L, its PSSM can be expressed as an L × 20 matrix. 
Figure 1 shows the schematic of a PSSM.
In the artwork, L represents the length of a given sequence, 20 
is the number of 20 amino acids, and Pij  represents the score 
of the jth  amino acid in the ith  position for the query 
sequence. The Pij  is a real value, where if Pij  is greater than 0, 
it means that the ith  amino acid is easily mutated into the jth  
amino acid during the evolution process, and a larger value 
indicates a higher mutation probability. Conversely, if Pij  is less 
than 0, the position is conservative and the probability of muta-
tion is small. Smaller Pij  are more conservative. To extract evo-
lutionary information from protein sequences, each SIP’s 
sequence was converted into a PSSM by using the PSI-BLAST 
tool. To obtain highly and widely homologous sequences, PSI-
BLAST’s e-value parameter was set to 0.001 and 3 iterations 
were selected.

Scale invariant feature transform. Scale invariant feature trans-
form is an image descriptor for image-based matching and rec-
ognition developed by Lowe.33,34 The original SIFT descriptor 
was calculated from the image intensities around interesting 

Figure 1. The schematic of a PSSM.
PSSM indicates position-specific scoring matrix.
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locations in the image domain which can be named interest 
points or key points. These interest points are obtained from 
scale-space extrema of difference of Gaussians (DOG) within 
a DOG pyramid. Lindeberg35,36 proposed a new method for 
finding out interest points by using the SIFT approach. This 
method can be viewed as a variation of a scale-adaptive blob 
detection approach, where blobs with associated scale levels are 
detected from scale-space extrema of the scale-normalized 
Laplacian. The scale-normalized Laplacian is normalized with 
respect to the scale level in scale space and is defined as
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For obtaining the maximum value of the DOG image under 
different scale magnifications, the smoothed image value of a 
given original image is convolved with Gaussian kernels of dif-
ferent widths by using the SIFT algorithm, a scale-variable 
Gaussian function is defined as follows
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These Gaussian blurred images are grouped according to 
their scale magnification, so the number of Gaussian blurred 
images processed in each group is the same. At this time, the 
DOG image can be obtained by subtracting 2 adjacent 
Gaussian blurred images in the same group. The DOG opera-
tor constitutes an approximation of the Laplacian operator of 
different widths, which denotes the standard deviation and the 
variance of the Gaussian kernel. The DOG operator which 
constitutes an approximation of the Laplacian operator is 
defined as follows
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Which by the implicit normalization of the DOG responses, 
as obtained by a self-similar distribution of scale levels 
σi+1  = k iσ  used by Lowe, also constitutes an approximation of 
the scale-normalized Laplacian with ∆s L k t L∇ = −( ) ∇ =2 2 21
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After the DOG image is obtained, the maximum and mini-
mum values can be found and is referred to as key points in the 
DOG images. To quickly find the key points, each pixel of the 
DOG image will be compared with 8 pixels around itself and 9 

pixels at the same position in the same group of the DOG 
images at adjacent scales. The maximum and minimum values 
of these pixels are called key points. As a result, the critical 
point detection of SIFT algorithm is actually a variant of blob 
detection, which use Laplacian to compute the maximum value 
in each magnification space. The Gaussian difference can be 
approximated as the result of Laplace operator operation. The 
SIFT employs the concept of “scale space” to capture features 
at multiple scale levels or image resolutions, which not only 
increases the number of available features but also makes the 
method highly tolerant to scale changes.

In the article, we assumed that each PSSM is an image 
matrix. As a result, we used the SIFT feature extraction method 
to generate feature vectors and its dimensional is 128. The 
technology roadmap of the proposed method is shown in 
Figure 2.

Recurrent neural network

Recurrent neural network is a machine learning method based 
on deep learning, which is used to solve binary or multiple clas-
sification problems. For tasks that involve sequential inputs, 
such as speech and language, it is often better to use RNNs. 
RNNs process an input sequence one element at a time, main-
taining in their hidden units a “state vector” that implicitly con-
tains information about the history of all the past elements of 
the sequence. The final output of the RNN model is the clas-
sification label of each feature vector.

Recurrent neural network is used to solve the problem that 
the input training sample is a continuous sequence and the 
length of the sequence is different, such as the problem based 
on time series. The basic neural network only establishes 
weight connections between layers. The biggest difference of 
RNN is that the weight connections also established between 
layers of neurons.37-39 The structure of RNN is as follows:

It can be seen from Figure 3 that the output of RNN at any 
moment is related to the current input and the previous output. 
RNN’s forward propagation is a combination of multiplication, 
addition, and set operations. It is well known that t moment of 
a given ordered sequence will lead to computation of the hidden 
layer t times. The current state of hidden layer h t( )  is deter-
mined by the current input x t( )  and the output h t( )−1  of the 
previous layer. The mathematical description is as follows

Figure 2. The technology roadmap of the proposed method.
BPNN indicates back propagation neural network; PSI-BLAST, Position-Specific 
Iterated BLAST; PSSM, position-specific scoring matrix; RNN, recurrent neural 
network; SVM, support vector machine.
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 s t Ux t Wh t b( ) = ( ) + −( ) +1  (5)

 h t s t Ux t Wh t b( ) = ( )( ) = ( ) + −( ) +( )σ σ 1  (6)

where σ  represents activation function. The output of the cur-
rent hidden layer can be calculated by using the following 
function

 σ t Vh t c( ) = ( ) +  (7)

The softmax function can be used to perform classification 
and output the final prediction probability value, which is 
shown as follow

 y o t Vh t cp = ( )( ) = ( ) +( )σ σ  (8)

Here, the loss function of y p  is different from y . In prac-
tice, we can select different loss functions according to the need 
of the different problem, such as the log loss function, the 
square loss function, and so on. The loss function of the RNN 
model at moment t can be expressed as follows

 Loss y o y ot t t t t= − ( ) + −( ) −( ) ln ln1 1  (9)

The loss function (global loss) of the RNN model at all 
moments N can be expressed as follows
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The gradient of 3 parameters U, V, and W of the global loss 
can be defined as follows
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The most commonly used method for optimization prob-
lems is the gradient descent. In the article, the gradient update 
for the 3 parameters can be expressed as follows
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The major advantage of the RNN model in learning non-
linear sequential data is well known and has been used in lan-
guage modeling and sequential labeling. In consideration of 
SIPs dataset is also a kind of nonlinear sequence data, so we 
used the RNN model to predict SIPs in the study. The predic-
tion flowchart of RNN-SIFT model is displayed in Figure 4.

Performance evaluation

In the article, we employed the following measures to assess the 
performance of RNN-SIFT

 Ac = +
+ + +
TP TN

TP FP TN FN
 (13)

 Sn =
+
TP

TP TN
 (14)

 Sp =
+
TN

FP TN
 (15)

 Pe =
+

TP
FP TP

 (16)
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TP FN TN FP
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 (17)

where Ac is the accuracy, Sn represents the sensitivity, Sp is the 
specificity, Pe represents the precision, and Mcc is Matthews’s 
correlation coefficient. TP and TN represent the number of 
true interacting and true noninteracting pairs that were cor-
rectly predicted, respectively. FP and FN are the count of true 
noninteracting pairs and true interacting pairs falsely predicted, 
respectively. In addition, we used receiver operating curve 
(ROC) to further evaluate the performance of RNN-SIFT in 
the experiment.

Results and Discussion
Performance of the proposed RNN-SIFT model

In the experiment, we used the yeast and human datasets to 
evaluate performance of the proposed RNN-SIFT model. 
Generally, overfitting will affect experimental results. Therefore, 

Figure 3. The structure of RNN.
RNN indicates recurrent neural network.
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we divided the whole datasets into the training datasets and 
independent test datasets for preventing a biased evaluation. 
Specifically, we split the yeast dataset into 6 parts and selected 
5 parts of them as the training set and the remaining dataset 
selected as independent test dataset. The human dataset was 
also processed by using the same strategy. Meanwhile, 5-fold 
cross-validation tests were also employed to evaluate prediction 
ability of the RNN-SIFT for fair comparison, and several 
parameters of the RNN model were optimized through using 
the grid search for ensuring fairness. Here, we set up the learn-
ing rate = 0.001, training step = 1000, and hidden units = 200. 
Tables 1 and 2 show the experimental results of the proposed 
RNN-SIFT model on the yeast and human datasets.

As can be seen from Table 1, the proposed RNN-SIFT 
model obtained good experimental results on yeast dataset. The 

result of average accuracy 94.34%, average sensitivity 67.12%, 
average precision 79.79%, and average Mcc 71.61% was 
achieved in the experiments on 5-fold cross-validation tests. 
Similarly, another promising finding from Table 2 was that the 
RNN-SIFT also achieved better prediction results on human 
dataset, whose average accuracy, sensitivity, precision, and Mcc 
are 97.12%, 83.70%, 85.24%, and 79.35%, respectively. As a 
result, the proposed RNN-SIFT model has high value in 
research.

The good experimental results for predicting SIPs are 
mainly attributed to use the SIFT feature extraction method 
and RNN classifier. The main advantage of the RNN-SIFT 
model is that the SIFT method can extract key evaluation fea-
tures from PSSM, and the RNN classifier has the advantage of 
processing sequence data. As discussed, this is mainly due to 

Figure 4. The prediction flowchart of RNN-SIFT.
PSI-BLAST indicates Position-Specific Iterated BLAST, PSSM, position-specific scoring matrix; RNN, recurrent neural network; SIFT, scale invariant feature transform.

Table 1. Fivefold cross-validation results shown using the RNN-SIFT model on yeast.

TESTINg SET AC (%) SN (%) PE (%) MCC (%)

1 94.11 64.29 70.79 66.31

2 94.59 70.83 80.19 73.79

3 93.15 62.40 76.47 67.51

4 94.98 65.29 88.76 74.45

5 94.88 72.80 82.73 75.97

Average 94.34 ± 0.74 67.12 ± 4.46 79.79 ± 6.73 71.61 ± 4.38

Abbreviations: Ac, accuracy; Mcc, Matthews’s correlation coefficient; Pe, precision; RNN, recurrent neural network; SIFT, scale invariant feature 
transform; Sn, sensitivity.

Table 2. Fivefold cross-validation results shown using the RNN-SIFT model on human.

TESTINg SET AC (%) SN (%) PE (%) MCC (%)

1 97.10 73.27 84.57 77.76

2 97.24 74.89 83.94 80.79

3 96.89 74.59 82.73 79.25

4 96.75 72.45 82.53 77.46

5 97.63 76.37 87.02 81.51

Average 97.12 ± 0.34 83.70 ± 1.15 85.24 ± 2.92 79.35 ±1.79

Abbreviations: Ac, accuracy; Mcc, Matthews’s correlation coefficient; Pe, precision; RNN, recurrent neural network; SIFT, scale invariant feature 
transform; Sn, sensitivity.
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the following 3 reasons: (1) PSSM contains not only the posi-
tion information but also the evolution information of protein 
sequence and retains plenty of prior information. This makes it 
possible to contain a number of key features that can be 
extracted. (2) SIFT uses the concept of “scale space” to capture 
features at multiple scale levels, which not only increases the 
number of available features but also makes the method 
highly tolerant to scale changes. This makes it possible for 
extracting the evolutionary information embedded in PSSM 
and capturing SIP information. (3) Recurrent neural network 
has some characteristics in memory, parameter sharing, and 
Turing completeness, so which provide an advantage for 
learning based on the nonlinear characteristics of sequences. 
Therefore, RNN is used to perform classification for predict-
ing SIPs. The results demonstrate 2 things. First, the SIFT 
method is very suitable for extracting SIP features. Second, 
the RNN classifier performs well for predicting SIPs, giving 
good results.

Comparison with the method of BPNN-based and 
SVM-based

It is interesting to note that the RNN-SIFT model is very 
suitable for predicting SIPs and can obtain good prediction 
results. However, to further evaluate the performance of the 

RNN-SIFT model, we compared the RNN classifier with the 
BPNN classifier and the SVM classifier by using the same 
SIFT approach on yeast and human datasets, respectively. To 
ensure fair comparison, several parameter settings of BPNN 
were optimized by employing grid search approach. Specifically, 
the epochs (the time of training), the eta (learning rate), the BS 
(the batch size of each training), and the WS (weights) of 
BPNN are set to 100, 0.006, 0.5, and 0.7. Similarly, by using 
the same strategy as described above, the RBF kernel parame-
ters of the SVM were optimized, where c is 0.5 and g is 10.8 
and other parameters should be take the default values. In 
addition, the SVM classifier used the LIBSVM tool40 to per-
form classification.

Tables 3 to 6 below show the experimental results of BPNN-
SIF and SVM-SIFT on the yeast and human datasets, respec-
tively. Meanwhile, the comparison of ROC curves on the yeast 
and human datasets between RNN, BPNN, and SVM is shown 
in Figures 5 and 6 below, respectively. As outlined in Tables 3 
and 4, the BPNN-SIFT model achieved 91.31% average accu-
racy and the SVM-SIFT model obtained 89.58% average 
accuracy on yeast dataset. Similarly, as can be seen from 
Tables 5 and 6, the results of average accuracy 93.84% and 
91.79% are obtained by the BPNN-SIFT model and the 
SVM-SIFT model on human dataset, respectively. When com-
paring our results to those of BPNN-SIFT and SVM-SIFT, it 

Table 3. Fivefold cross-validation results shown by using the BPNN-SIFT model on yeast.

TESTINg SET AC (%) SN (%) PE (%) MCC (%)

1 92.86 60.80 75.25 66.11

2 91.70 49.59 70.59 58.06

3 90.64 47.20 65.56 54.81

4 89.86 48.33 57.43 52.31

5 91.47 47.12 61.11 57.84

Average 91.31 ± 1.13 50.61 ± 5.78 65.99 ± 7.15 57.82 ± 5.20

Abbreviations: Ac, accuracy; BPNN, back propagation neural network; Mcc, Matthews’s correlation coefficient; Pe, precision; SIFT, scale invariant 
feature transform; Sn, sensitivity.

Table 4. Fivefold cross-validation results shown by using the SVM-SIFT model on yeast.

TESTINg SET AC (%) SN (%) PE (%) MCC (%)

1 89.57 31.63 81.58 49.68

2 90.05 35.33 85.19 55.48

3 89.08 30.40 79.63 48.96

4 90.02 33.88 87.23 52.62

5 89.21 30.12 71.45 46.58

Average 89.58 ± 0.45 33.27 ± 2.26 81.02 ± 6.12 50.66 ± 3.45

Abbreviations: Ac, accuracy; Mcc, Matthews’s correlation coefficient; Pe, precision; SIFT, scale invariant feature transform; Sn, sensitivity; SVM, 
support vector machine.
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must be pointed out that the performance of RNN classifier is 
significantly better than that of the other 2 classifiers. At the 
same time, from Figures 5 and 6, the ROC curves of RNN 
classifier are also significantly better than those of the other 2 
classifiers. A major reason for good prediction results is that 
SIP sequence is nonlinear sequence data, and RNN classifier 

has some characteristics in memory, parameter sharing, and 
Turing completeness and can provide an advantage for learning 
based on the nonlinear characteristics of sequences. From the 
above analysis, we conclude that the proposed RNN-SIFT 
model is a useful tool for identifying SIPs, as well as other bio-
informatics tasks.

Table 5. Fivefold cross-validation results shown by using the BPNN-SIFT model on human.

TESTINg SET AC (%) SN (%) PE (%) MCC (%)

1 94.10 51.61 83.33 68.17

2 94.41 58.30 85.80 73.43

3 93.44 50.41 81.79 66.65

4 92.51 45.28 79.55 62.22

5 94.75 54.85 89.04 68.65

Average 93.84 ± 0.89 52.09 ± 4.89 83.90 ± 3.67 67.82 ± 4.03

Abbreviations: Ac, accuracy; BPNN, back propagation neural network; Mcc, Matthews’s correlation coefficient; Pe, precision; SIFT, scale invariant 
feature transform; Sn, sensitivity.

Table 6. Fivefold cross-validation results shown by using the SVM-SIFT model on human.

TESTINg SET AC (%) SN (%) PE (%) MCC (%)

1 92.57 38.21 83.87 57.68

2 91.80 33.33 88.89 52.62

3 90.73 28.00 85.37 47.27

4 91.70 33.88 87.23 51.72

5 92.18 36.00 87.83 56.98

Average 91.79 ± 0.69 33.88 ± 3.81 86.64 ± 2.01 53.23 ± 4.22

Abbreviations: Ac, accuracy; Mcc, Matthews’s correlation coefficient; Pe, precision; SIFT, scale invariant feature transform; Sn, sensitivity;  
SVM, support vector machine.

Figure 5. Comparison of ROC curves between RNN, BPNN, and SVM 

on yeast dataset.
BPNN indicates back propagation neural network; RNN, recurrent neural 
network; ROC, receiver operating curve; SIFT, scale invariant feature transform; 
SVM, support vector machine.

Figure 6. Comparison of ROC curves between RNN, BPNN, and SVM 

on human dataset.
BPNN indicates back propagation neural network; RNN, recurrent neural 
network; ROC, receiver operating curve; SIFT, scale invariant feature transform; 
SVM, support vector machine.
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Comparison with other methods
To go a step further and validate the performance of the pro-
posed RNN-SIFT model, we compare the prediction results of 
the RNN-SIFT model with those of the previous methods, 
such as SLIPPER,18CRS,31 SPAR,31 DXECPPI, PPIevo,41 
and LocFuse.42 Tables 7 and 8 show a detailed comparison 
results on the yeast and human datasets. It can be seen from 
Table 7 that the average accuracy of RNN-SIFT is obviously 
higher than that of the other 6 approaches on yeast dataset. 
Similarity, Table 8 displays the prediction accuracy obtained by 
the RNN-SIFT model is also significantly better than that of 
the other 6 methods on human dataset. A similar conclusion 
was reached by comparing the results from Tables 7 and 8 that 
the proposed RNN-SIFT model has an excellent prediction 
capability and can be used for predicting the quality of SIPs. 
This is a result of using a robust RNN classifier and an effec-
tively SIFT feature extraction technique. These comparison 
results are further evidence that the RNN-SIFT is suitable for 
predicting SIPs.

Conclusions
In the study, we proposed a novel computational method 
called RRN-SIFT, which combines the RNN with SIFT for 
predicting SIPs based on protein evolutionary information. 

Extensive experiments show that the RRN-SIFT obtained an 
average accuracy of 94.34% and 97.12% on the yeast and 
human dataset, respectively. We also compared our perfor-
mance with that of BPNN, the state-of-the-art SVM, and 
other exiting methods. By comparing with the experimental 
results, the performance of RNN-SIFT is significantly better 
than that of the BPNN, SVM, and other previous methods in 
the domain. This is mainly due to the following 3 reasons: (1) 
PSSM contains not only the position information but also the 
evolution information of protein sequence and retains plenty 
of prior information. This makes it possible to contain a num-
ber of key features that can be extracted. (2) Scale invariant 
feature transform uses the concept of “scale space” to capture 
features at multiple scale levels, which not only increases the 
number of available features but also makes the method highly 
tolerant to scale changes. This makes it possible for extracting 
the evolutionary information embedded in PSSM and captur-
ing self-protein interaction information. (3) Self-interacting 
protein sequence is nonlinear sequence data, and RNN has 
some characteristics in memory, parameter sharing, and Turing 
completeness and can provide an advantage for learning based 
on the nonlinear characteristics of sequences. Therefore, we 
conclude that the proposed RNN-SIFT model is a useful tool 
for predicting SIPs, as well as to solve other bioinformatics 
tasks.

Table 7. Comparison results between RNN-SIFT and other methods on yeast dataset.

MODEL AC (%) SP (%) SN (%) MCC

SLIPPER18 71.90 72.18 69.72 0.2842

PPIevo41 66.28 87.46 60.14 0.1801

LocFuse42 66.66 68.10 55.49 0.1577

CRS31 72.69 74.37 59.58 0.2368

SPAR31 76.96 80.02 53.24 0.2484

Proposed method 94.34 79.79 67.12 0.7161

Abbreviations: Ac, accuracy; Mcc, Matthews’s correlation coefficient; RNN, recurrent neural network; SIFT, scale invariant feature transform;  
Sn, sensitivity; Sp, specificity.

Table 8. Comparison results between RNN-SIFT and other methods on human dataset.

MODEL AC (%) SP (%) SN (%) MCC

SLIPPER18 91.10 95.06 47.26 0.4197

PPIevo41 78.04 25.82 87.83 0.2082

LocFuse42 80.66 80.50 50.83 0.2026

CRS31 91.54 96.72 34.17 0.3633

SPAR31 92.09 97.40 33.33 0.3836

Proposed method 97.12 85.24 83.70 0.7935

Abbreviations: Ac, accuracy; Mcc, Matthews’s correlation coefficient; RNN, recurrent neural network; SIFT, scale invariant feature transform;  
Sn, sensitivity; Sp, specificity.
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