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Abstract: The use of nano-additives is widely recognized as a cheap and effective pathway to improve
the performance of lubrication by minimizing the energy loss from friction and wear, especially in
diesel engines. In this work, a simple and scalable protocol was proposed to fabricate a graphene
additive to improve the engine lubricant oil. Graphene nanoplates (GNPs) were obtained by a
one-step chemical exfoliation of natural graphite and were successfully modified with a surfactant
and an organic compound to obtain a modified GNP additive, that can be facilely dispersed in
lubricant oil. The GNPs and modified GNP additive were characterized using scanning electron
microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and Fourier-transform
infrared spectroscopy. The prepared GNPs had wrinkled and crumpled structures with a diameter of
10–30 µm and a thickness of less than 15 nm. After modification, the GNP surfaces were uniformly
covered with the organic compound. The addition of the modified GNP additive to the engine
lubricant oil significantly enhanced the friction and antiwear performance. The highest reduction of
35% was determined for the wear scar diameter with a GNP additive concentration of approximately
0.05%. The mechanism for lubrication enhancement by graphene additives was also briefly discussed.

Keywords: modified graphene nanoplates; graphene additives; antifriction; engine lubricant oil
additives; antiwear

1. Introduction

The worldwide urgency to minimize the effect of greenhouse gases and climate change requires
new measures to improve engine efficiency [1]. The freeload and friction losses of diesel engine vehicles
account for approximately 10% of the total energy in fuel [2]. The reduction in these losses is crucial
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for energy efficiency. Techniques such as system design and handling (reducing the size, electrification,
and boosting), the addition of systems for the recovery of heating waste, the reduction in friction
in the engine, and the improvement in the combustion efficiency have been successfully utilized to
improve engine efficiency. In order to theoretically find suitable methods to enhance engine efficiency,
the open-source software framework called PERMIX can be employed [3]. Among these techniques,
friction reduction has been receiving significant attention from scientists around the world as a key and
cost-effective method to maximize the energy efficiency of diesel fuel. One of the major approaches
to reducing friction is the use of lubricants, which can be widely applied in automotive, mechanical,
and other parts. Lubricants reduce the friction between the interface of two metal parts in relative
motion [4]. Additives are commonly added to the blend of lubricants to improve the lubricating
efficiency [5–7].

Since emerging as a technique to fabricate advanced materials, nanotechnology has provided
properties superior to those of traditional bulk materials, and nanomaterials have been intensively
used as additives for enhancing lubricant performance. Many nanomaterials such as copper [8],
MoS2 [9], PbS [10], WS2 [11], Zinc borate [12], ZrS2 [13], boric acid [14,15], and SiO2 [16], have been
employed for this purpose. Carbon nanomaterials with many allotropes have remarkable lubricating
properties and have also been utilized as additives to improve the performance of lubricant oils.
These carbon nanomaterials consist of carbon nanotubes [17,18], porous carbon [19], fullerence [20,21],
and graphene [22–24].

Graphene, a two-dimensional (2D) carbon material with substantial mechanical, electrical, and
thermal properties, has been extensively used in a wide range of industrial applications in the fields of
engineering, chemistry, and physics [4,25–30]. Additionally, the 2D structures easily slide together,
making graphene an effective additive for lowering the friction in mechanical parts and vehicle
engines [31–34]. For example, Zhang et al. successfully fabricated graphene nanosheets from graphene
oxides and modified them with oleic acid to be used as additives in lubricant oil to reduce the friction
coefficient and wear scar diameter by 17% and 14%, respectively [35]. In another study, Azman et al.
blended graphene with 95 vol % synthetic based oil (PAO 10) and 15 vol % palm-oil trimethylolpropane
(TMP) ester to reduce the wear scar diameter by 15% [36]. Several works have used graphene as an
additive in engine lubricant oil; however, these works either used an expensive graphene-fabricating
method (hummer methods) or a low dispersion of graphene in the lubricant oil, which hinder the
widespread use of graphene as an additive in the lubricating industry. Furthermore, in order to
effectively employ the graphene in practical applications, the dispersion and modification of graphene
in any solution are crucial factors.

Herein, we adopt a new and facile method, continuing from our previous work, for the mass
production of graphene nanoplatelets (GNPs) by the simple one-spot chemical exfoliation of natural
graphite. The resultant GNPs are well-dispersed in water with the assistance of a surfactant. The surfaces
of the GNPs are modified to easily and homogeneously disperse the GNPs in the targeted engine
lubrication oil with a high stability over a long period of storage time. The prepared and modified GNPs
are thoroughly characterized. The enhanced lubricating performance of the GNPs additive-containing
lubricant is investigated and discussed.

2. Materials and Methods

2.1. Materials

Natural graphite flakes were purchased from VNgraphene. Dried acetone, concentrated sulfuric
acid (98%), ethanol, sodium dodecyl persulfate (SDS), sodium persulfate (Na2S2O8), and oleic acid
were obtained from the Van Minh Company Ltd., Hanoi, Vietnam. The commercial HD-50-based oil
was obtained from the petrol station. All chemicals were used as received without further purification.
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2.2. Synthesis of Graphene Nanoplatelets

The fabricating protocol for graphene nanoplatelets (GNPs) was adopted from our previous
work [37]. Natural graphite flakes were added to a 1000-mL reactor containing concentrated sulfuric
acid and stirred for 30 min. Sodium persulfate was gradually added into the reaction mixture and
further stirred for 3 h at room temperature. The resultant reaction mixture was directly filtered using
a glass sintered filter and thoroughly rinsed three times with dry acetone and water to remove any
residual reactants. The GNP powder was dried at 60 ◦C in air and stored for further processing.

2.3. GNP Modification

Figure 1 illustrates the modification procedures for the graphene nanoplatelets. The GNP powder
was first dispersed in an aqueous solution using a combined high shear mixer/probe sonicator system
with the assistance of a sodium dodecyl persulfate (SDS) surfactant for 12 h. The homogeneous GNP
dispersion in the water with a GNP content of 5% w/w was used for further modification with oleic
acid. For the modification, 15 g of oleic acid was gradually added to 300 mL of GNPs in water with a
high shear mixer at 7000 rpm and 80 ◦C for 3 h. The resultant solution was thoroughly dried at 140 ◦C,
and the oleic acid-modified GNP additive was obtained. The modified GNP additive was added to the
HD-50 lubricant base oil with various concentrations ranging from 0.005–0.1% w/w to evaluate the
effectiveness of the additive for enhancing the properties of the lubricant oil.
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Figure 1. Modification procedure of graphene nanoplatelets with surfactant and organic compound.

2.4. Characterization

Scanning electron microscopy (SEM), FEI Nova NanoSEM (Hillsboro, OR, USA), was utilized
to investigate the morphology of the GNPs obtained from the exfoliation of the graphite flakes.
The thickness of the prepared GNPs was measured with an AFM (Bruker Multimode 8 with PF TUNA,
CA, USA). Fourier transform infrared (FTIR) measurements were performed on a PerkinElmer D100
spectrometer (Ohio, USA) in attenuated total reflectance mode. Raman spectra were obtained with a
PerkinElmer Raman Station 200F (Ohio, USA). Bruker AXS D8 Discover instruments (Texas, USA) with
a general area detector diffraction system using Cu Kα source were utilized to obtain X-ray diffraction
(XRD) patterns of the prepared samples. A tribological test was performed on the four-ball tribometer
(MRS-10A, Shandong, China). The test was carried out at room temperature under a load of 400 N
with a speed of 1450 rpm.

3. Results

The graphene nanoplatelets were facilely fabricated by employing our reportedly improved
approach that obtained GNPs from the direct chemical exfoliation of graphite [37]. This method is
environment friendly and can be utilized at industrial scale, which is critical for practical applications.
The morphology of the natural graphite and prepared GNPs in this work was observed by SEM
(Figure 2). The natural graphite flakes have a thick plate structure with dense stacks of graphene layers
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(Figure 2a). After chemical exfoliation with an oxidant, the graphene layers were detached from a
thick plate of graphite flakes, as seen in Figure 2b and Figure S1. The GNPs have a wrinkled structure
and a diameter of 10–30 µm. The wrinkled and crumpled morphology indicates that the obtained
GNPs consist of a few layers of graphene in each stack, as had been demonstrated previously [38,39].
Additionally, the GNPs’ sheets are semi-transparent to the electron beam (Figure 2b), which is clear
evidence that the GNPs contain less than 30 layers of graphene [40–42].
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Figure 2. Scanning electron microscopy (SEM) images of (a) natural graphite and (b) graphene
nanoplatelets (GNPs).

The crystalline nature of natural graphite and GNPs was determined, and the X-ray-diffraction
(XRD) analysis and the results are shown in Figure 3a. The XRD pattern of graphite showed a sharp
characteristic peak at 26.9◦, which is a 002-diffraction signal [43]. Interestingly, in the XRD pattern of
the GNPs, this peak shifts to 26.4◦ with a significantly broadened and weakened intensity compared to
that of graphite, indicating a less orderly structure with multi-layered graphene [37]. This result is
consistent with the aforementioned SEM images. The continuous graphene layers as plate structures in
natural graphite flakes no longer exist [37]. The multi-layered nature of the resultant GNPs was further
investigated using Raman spectrum excited at the wavelength of 633 nm (Figure 3b). The graphite
Raman spectrum shows a characteristic G peak at 1580 cm−1 and a band at ∼2700 cm−1, which belongs
to the graphite samples [44]. The Raman spectrum of the GNPs has two characteristic peaks at 1336
(D band) and 1581 cm−1 (G band), which correspond to the defects in carbon networks and sp2 bonding
in carbon elements, respectively [45]. The intensity of the D band peak is significantly lower than that
of the G band peak, indicating that the obtained GNPs have fewer defects and a lower oxidant degree
when fabricated using this approach. Moreover, the appearance of a peak at 2658 cm−1 (assigned to
the 2D band), with an intensity significantly lower than that of the G band, indicates that the GNPs are
multilayered. The broad photo luminescent band in the Raman spectrum of the GNPs might be due to
the amorphous nature of the graphene nanoplatelets. This is consistent with SEM and XRD results.
In the Raman spectrum of the oleic-modified GNPs, it can be clearly seen that along with the presence
of characteristic bands of GNPs, the CD-stretching vibrations with maximum band intensities around
2100 and 2195 cm−1 belong to the oleic acid [46].
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Figure 3. (a) X-ray diffraction (XRD) patterns of natural graphite (black line) and graphene nanoplatelets
(red line) and (b) Raman spectrum of graphite (black curve), graphene nanoplatelets (red curve), and
oleic-modified graphenenanoplatelets (GNPs, blue curve).

The relative thickness of the GNPs can be calculated by atomic force microscopy (AFM) as
shown in Figure 4a. The GNPs are not flat because of their crumpled structure that causes the upper
graphene layers to protrude from the surface of the Si wafer (Si wafer is substrate to deposit GNPs for
AFM measurement) [37]. Figure 4b and Figure S2 exhibit the topographic AFM image of graphene
nanoplatelets the height profile derived from the AFM image. The height profile between the GNPs and
the Si substrate is utilized to relatively determine the thickness of the GNPs. The average calculated
height is approximately 15 nm, which is approximately less than 30 layers considering the gaps
between layers. This result is consistent with the aforementioned SEM, Raman, and XRD results on the
multilayer nature of the resultant GNPs.
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The successful oleic modification of the GNP surface was investigated by FTIR spectra and XRD
patterns (Figure 5). In the IR spectrum of the GNPs, the absorption peaks at 3424 and 1629 cm−1

are assigned to the vibration band of the –OH stretching group from moisture, which is physically
absorbed on the surface of the GNPs [47]. The remaining absorption peaks at 2369 and 1055 cm−1 are
attributed to the vibration of COO– and C–O stretching, respectively, which could be ascribed to the
absorbed CO2 [48]. This indicates that the prepared GNPs were virtually not oxidized during the
synthesizing process. This is also supported by the X-ray photoelectron spectrometry (XPS) spectrum
of C 1s as shown in Figure S3, which shows only one peak of binding energy at 284.5 eV (C–C bonds)
indicating that the final product is pure GNPs, and the absence of peaks at 285.5 eV or 286.6 eV is
evidence of no oxidizing species. Interestingly, all absorption peaks in the IR spectrum of the GNPs are
remarkably weaker, or almost absent, in the IR spectrum of the oleic-modified GNPs, indicating that
the surface of the GNPs is uniformly coated by oleic acid. In the IR spectrum of the oleic-modified
GNPs, the absorption peaks at 2929 and 2855 cm−1 are characteristic of the symmetric and asymmetric
vibrations of –CH2 (which belongs to the long alkyl chains of oleic acid) stretching, respectively [49].
The sharp absorption peaks at 1710 and 1285 cm−1 are assigned to the C=O and C–O stretching
vibrations of the carboxylic group, respectively [50]. The band at 1461 cm−1 is attributed to the bending
vibration of (CH2–) [51]. This result confirms that the entire surface of the GNPs was covered by
oleic acid. The bonding between the GNPs and the oleic acid is probably due to π–π interactions [52].
The XRD patterns were further employed to confirm the coverage of oleic acid on the graphene surface
(Figure 5b). The characteristic peak at 26.4◦ for graphene nanoplatelets can be clearly seen in the XRD
pattern of the GNPs. After modification with oleic acid, this peak virtually disappeared, indicating
that the modified GNP surface is uniformly covered with oleic acid.Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 13 
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Figure 5. (a) Fourier transform infrared (FTIR) spectra, (b) X-ray diffraction (XRD) patterns of graphene
nanoplatelets (red line) and oleic-modified GNPs (black line), and (c) the stability of the oleic-modified
GNP additive with 0.01% w/w in the lubricant oil.

The homogeneous dispersion stability of modified GNPs in engine lubricant oil (the oil base is
HD 50) was evaluated by observation tests to examine the time period in which graphene can remain
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in the lubricant oil after the mixing process. The concentration of GNPs in the lubricant oil is 0.01%
by weight (Figure 5c). Virtually no sediment is observed after 30 days of storage in static conditions.
Additionally, clear straight laser beams were employed to further evaluate the stability of the modified
GNPs additive in lubricant oil (Figure S4). The Tyndall effect of lubricant oil with the modified GNPs
concentration of 0.01% after one day and 30 days of storage clearly indicate that the modified GNPs
additive was well-dispersed in the lubricant oil. Therefore, the modified GNP additive is highly stable
in blended engine lubricant oil.

The wear scar diameter (WSD) is a critical parameter to determine the antiwear performance
of lubricant oil. The WSD was evaluated using a four-ball tribometer (MRS-10A, more information
about the instrument). The tribological test was performed at room temperature under a load of
400 N and a speed of 1450 rpm. An optical microscope was utilized to measure the diameter of the
wear scar on the ball (Figure 6). The WSD is significantly reduced after the addition of the modified
GNP additive with a concentration of 0.005% to 0.01% w/w, indicating that the addition of a small
amount of graphene can remarkably enhance the antiwear performance of the lubricant oils. Further
increasing the modified GNP concentration from 0.01% to 0.05% w/w reduced the WSD, which reached
a minimum diameter of 0.65 mm with an additive concentration of 0.05% w/w, representing a 35%
reduction in comparison with the WSD using controlled HD-50 base oil. The WSD of the HD-50
with the addition of the oleic-modified GNPs additive is smaller than that of previous works that
used graphene as additives for engine lubricant oils (Table 1), most likely caused by better dispersion
of the modified graphene in the lubricant oil. An additional increase in the modified GNP content
decreases the antiwear properties of the GNP additive for lubricating oil. Thus, the maximal modified
GNPs concentration with the highest antiwear properties is approximately 0.05% by weight. Thus, the
GNPs additive concentration of less than 0.05% could be selected as the optimal content inside the
lubricant oil. The enhanced antiwear performance upon the addition of small amounts of graphene
can be explained by the formation of a protective graphene layer on the steel surface. However, when
the graphene content increases, the accumulation of the discontinuous graphene film decreases the
antiwear properties and causes friction drying [35].
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Table 1. Comparison of the tribological performance between the modified GNPs and those of
previous works.

Decreased in Wear Scar Diameter (%) References

18 [53]
14 [35]

12.6 [32]
Up to 32 [54]

Up to 18.9 [55]
Up to 35 This work

In order to evaluate the thermal stability of lubricant oil upon addition of the modified GNPs
additives, the open cup flash points of fabricated oil were determined following ASTM-D92 standard.
The results showed that the open cup flash points of the lubricant oil with and without the addition of
modified GNPs were 175 ◦C and 172 ◦C, respectively, indicating that the GNPs-added lubricant oil
was highly stable under the operation condition of diesel oil.

The morphologies of the wear scars’ surfaces using lubricants with various modified GNPs
contents were investigated by optical microscopy as shown in Figure 7. It can be clearly seen from the
figure that when using only base oil, the wear scar is large and the surface is rough with deep narrow
trenches. Upon addition of a small amount of the modified GNPs (0.005%), the diameter of the wear
scar is reduced and surface becomes smoother, but there still remain deep furrows. However, when
the content of the modified GNPs additives was increased to 0.01%, the diameter of the wear scar is
significantly reduced to approximately 0.7 mm and the surface becomes much smoother (Figure 7e,f).
Further increases in additive contents witness negligible reduction in WSD and smoothness of the
wear scar surface. Thus, 0.01 wt % of the modified GNPs additive for lubricant oils was selected as an
economically optimized concentration.Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 13 
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In terms of practical application, the price of materials is essential for commercialization. In the
market, the average price of graphene nanoplatelets (analytical and industrial grades) ranges from
USD 0.6 to 140 per gram (Figure S5). Meanwhile, the GNPs fabricated from the present approach
have a price of around USD 1.2 and 15 per gram for the industrial and analytic grades, respectively,
including all the expenditures, which is comparative with available commercial GNPs on the market.
When it come to the modified GNPs additives for lubricant oils, the determined price of the additive is
approximately USD 0.9 per gram. Considering the significant WSD enhancement with only 0.05 w/w %
of the GNPs additives in the lubricant oils, the additional cost calculated for 1 kg of lubricant oil is
around USD 0.45, which is reasonable in terms of a 35% lubricating enhancement using the prepared
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GNPs additives. Compared with other available nano-additives for lubricant oils in the literature, the
modified GNPs content of 0.05 w/w % is much smaller than that of other nanoparticles (Table 2).

Table 2. Optimal concentrations of nano-additives for different lubricant oils.

Nano Additives Optimum Concentrations,
w/w % References

ZnO 0.5 [56]
CuO 1 [57]
MoS2 1 [57]
SiO2 0.05–0.5 [16]

Cu-coated carbon 0.5 [58]
ZrO2 0.5 [59]
TiO2 0.3 [60]

GNPs 0.05 This work

4. Conclusions

In conclusion, graphene nanoplatelets were successfully fabricated from natural graphite by
direct chemical exfoliation. The resultant GNPs were well-dispersed in an aqueous solution with
the assistance of a surfactant and a combination of a high shear mixer and a probe sonicator system.
The surface of the graphene was then modified with an organic compound. The as-prepared GNPs
were less than 15 nm thick and 10–30 µm in diameter. The results indicate that the modified GNP
surface was uniformly covered with oleic acid after modification. The modified GNP additive is
facilely dispersed in lubricant oil with remarkable stability, and the GNPs remained in the oil for more
than 30 days without settling. The addition of the GNP additive to lubricant oil shows a significant
improvement in the tribological performance with a maximal wear scar diameter reduction of 35% at a
modified GNP concentration of 0.05% w/w. The formation of a protective graphene layer on the steel
surface is responsible for the enhancement of antiwear performance when using the GNP additive in
lubricant oil. This remarkable enhancement of the lubricating efficiency (more than 35% enhancement)
uses small amounts of the modified GNP additive (approximately 0.05%) that are cost-effectively
fabricated and will diversify the practical applications of graphene in the reduction in energy losses
from friction and wear in mechanical processing and automotive components.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/5/877/s1,
Figure S1: SEM images of prepared graphene nanoplatelets; Figure S2: Topographic AFM image of graphene
nanoplatelets and the height profile taken across the white line on the AFM image; Figure S3: XPS spectrum of C 1s;
Figure S4: The Tyndall effect of lubricant oil with modified GNPs concentration of 0.01% after 1 day and 30 days;
Figure S5: The market price comparisons of graphene nanoplatelets from US, UK, and Chinese companies.
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