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Abstract: Haemoglobinopathies are common monogenic disorders with diverse clinical
manifestations, partly attributed to the influence of modifier genes. Recent years have seen enormous
growth in the amount of genetic data, instigating the need for ranking methods to identify candidate
genes with strong modifying effects. Here, we present the first evidence-based gene ranking metric
(IthaScore) for haemoglobinopathy-specific phenotypes by utilising curated data in the IthaGenes
database. IthaScore successfully reflects current knowledge for well-established disease modifiers,
while it can be dynamically updated with emerging evidence. Protein–protein interaction (PPI)
network analysis and functional enrichment analysis were employed to identify new potential disease
modifiers and to evaluate the biological profiles of selected phenotypes. The most relevant gene
ontology (GO) and pathway gene annotations for (a) haemoglobin (Hb) F levels/Hb F response to
hydroxyurea included urea cycle, arginine metabolism and vascular endothelial growth factor receptor
(VEGFR) signalling, (b) response to iron chelators included xenobiotic metabolism and glucuronidation,
and (c) stroke included cytokine signalling and inflammatory reactions. Our findings demonstrate the
capacity of IthaGenes, together with dynamic gene ranking, to expand knowledge on the genetic and
molecular basis of phenotypic variation in haemoglobinopathies and to identify additional candidate
genes to potentially inform and improve diagnosis, prognosis and therapeutic management.

Keywords: haemoglobinopathies; thalassaemia; sickle cell disease; gene modifiers; biomarkers; gene
ranking; protein network

1. Introduction

Haemoglobinopathies are inherited disorders of haemoglobin (Hb) accounting for over
330,000 annual affected births worldwide. With 5.2% of the global population estimated to carry a
potentially pathogenic gene, haemoglobinopathies are the most common monogenic disorders and a
serious global public health problem [1]. They are endemic and prevalent in former malaria regions
in the Mediterranean, sub-Saharan Africa, the Middle East and South-East Asia, but demographic
events, such as global population mobility and migration, have contributed to their spread in all parts
of the world [2,3]. As rare disorders in regions with traditionally low incidence and a growing public
health burden in resource-limited countries, haemoglobinopathies pose major challenges for health
professionals to efficiently diagnose, treat and care for patients [4].

The Hb protein complex comprises two α-like globin chains, encoded by genes in the α-globin
locus (Chromosome: 16, Accession: NG_000006), and two β-like globin chains, encoded by genes
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in the β-globin locus (Chromosome: 11, Accession: NG_000007). The molecular pathology of
haemoglobinopathies is traced to genetic defects in the two globin gene clusters, with more than
2000 different mutant alleles reported to date on the IthaGenes database of the ITHANET community
portal [5,6]. These mutations can be grouped into those that impair globin chain synthesis, causing
thalassaemia syndromes, and those that alter the structure of the Hb protein, causing structural
haemoglobinopathies [7]. The pathophysiology and clinical manifestations of haemoglobinopathies
are extremely varied with a range of acute and chronic complications that severely impair the quality
of life and survival of patients, including iron overload, cardiac siderosis, liver fibrosis, viral hepatitis
and endocrine dysfunction for transfusion-dependent thalassaemia, and painful crisis, stroke, acute
chest syndrome, pulmonary hypertension, leg ulcers and priapism for sickle cell disease (SCD) [7,8].
Notably, the clinical management and treatment of haemoglobinopathies is challenging as patients with
identical genetic defects often present different symptoms, which can even vary in severity over time.

A better understanding of genotype-phenotype correlations and the mechanisms underlying the
clinical heterogeneity of haemoglobinopathies not only can improve the management of treatment
but can also provide a better chance for the development of personalised medicine. Such knowledge
can also enable the identification of affected individuals with a risk for increased disease severity
towards early intervention with targeted and preventive care. To this end, β-thalassaemia and SCD,
as the commonest of the β-haemoglobinopathies, have been investigated extensively to uncover the
genetic determinants in interpatient phenotypic variability. The two best-characterised modifiers are
co-inheritance of α-thalassaemia [9,10] and persistence of foetal haemoglobin (Hb F) production [11].
While elevated Hb F levels have no clinical benefit to adults not affected by a haemoglobinopathy,
they have been demonstrated to ameliorate disease severity [12,13]. A large number of genome-wide
analyses across diverse ethnic populations identified three quantitative trait loci (QTL) modulating
Hb F levels: a promoter variant of the Gγ-globin gene (XmnI-HBG2), the HBS1L-MYB intergenic
region (HMIP) and BCL11A, which together explain up to 50% of the genetic variation in Hb F [14,15].
Over the past few years, large-scale genome-wide association studies (GWAS) of improved power
uncovered additional loci with modest effects on Hb F levels [16–18].

Nevertheless, these well-documented modifiers cannot explain the clinical diversity observed
among haemoglobinopathy patients. Facilitated by the advent of technology, recent studies have
identified variants associated with laboratory and clinical markers of disease severity, such as
albuminuria and elevated glomerular filtration rate (GFR) for early renal disease [19], serum lactate
dehydrogenase (LDH) for haemolysis [20], abnormal transcranial Doppler velocities for stroke [21]
and elevated tricuspid regurgitant jet velocities for cardiopulmonary complications [22,23] (for a
comprehensive review see [24]). Measurement of such markers would help risk-stratify patients to
direct care, assist with early screening and diagnosis of symptoms, adjust dosing regimens for safe
and effective drug therapy, and optimise personalised treatment prior to irreversible tissue damage
and organ failure [25,26]. The widespread use of genomic tools provided vast (and still expanding)
accumulation of data from association studies with a plethora of publications reporting on significant
associations for numerous phenotypes in β-thalassaemia and SCD.

In the past, data on genetic modifiers of haemoglobinopathies had been scattered across hundreds
of published papers, with previous efforts to collect and analyse such data restricted to comprehensive
review articles [27–30] and databases without future updating and annotation [31]. Due to the large
volume of literature and the amount of time required to screen and collect relevant data, important
information was bound to remain inaccessible to the broad scientific community. Over the past few
years, the ITHANET community portal has been curating and annotating disease-modifying genes
and variants [5,6], using rigorous literature monitoring. Gene-to-phenotype associations are manually
reviewed from the literature by individual assessment and annotated in the IthaGenes database of
the portal. With 312 modifier genes and over 600 disease-modifying variants collected from over
450 eligible publications currently annotated in IthaGenes, ITHANET is the first knowledgebase
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to provide a comprehensive, continuously updated collection of information on genetic modifiers
of haemoglobinopathies.

Although such gene-phenotype associations have been freely available on IthaGenes and elsewhere
for a few years, the utilisation and analysis of the data has been challenging, owing to the lack of a
robust measure to rank available evidence for each gene-phenotype relationship. While experimental
validation is an effective approach to deduce strong genetic modifiers from a large number of candidates,
it can be laborious and expensive. Alternatively, computational or mathematical methods for gene
ranking enable quick assessment of large gene lists to identify top candidates. In fact, several methods
have been implemented in the past to evaluate and rank the role of genes in the pathogenicity of
different diseases [32–36]. However, similar evidence-based approaches to rank disease-modifying
genes have been challenging due to the less prominent role of such genes in disease severity compared
to the well-established disease-causing genes and the fact that each modifier gene may influence
clinical manifestations for only a small fraction of patients. Moreover, functional analysis of such data
and its biological and clinical interpretation have been difficult, and strongly depend on bioinformatics
expertise [37].

The present work demonstrates how data organised in IthaGenes can be used by experimental
and computational scientists alike to unravel complex gene-phenotype relationships and to explore
their relevance in the development of new models of care and therapy for haemoglobinopathies.
Specifically, an evidence-based gene ranking algorithm is developed and implemented to study the
functional profile of genes that have been linked to modulation of the clinical manifestation and
progression of haemoglobinopathies. In addition, functional enrichment analysis, with a focus on
protein–protein interaction (PPI) networks as well as pathway and gene ontology (GO) analysis,
is utilised to provide insights into the molecular pathology of these diseases and to identify novel target
genes for further investigation. Importantly, the analysis revealed functional relationships between
curated target genes for selected phenotypes, forming well-connected networks with roles in multiple
mechanisms implicated in haemoglobinopathy-specific phenotypes.

2. Methods

2.1. Data Collection and Preprocessing

The data on disease modifiers were retrieved from the IthaGenes database, which provides
a continuously updated, publicly available collection of disease-modifying genes and variations.
The content of the IthaGenes database is collected from published peer-reviewed literature using
PubMed, through automatic weekly searches for haemoglobinopathy-specific keywords, previously
described in Kountouris et al. (2014) [5]. In brief, the titles and abstracts of retrieved publications are
screened manually by the IthaGenes Curation Team and, if relevant, the full text is thoroughly examined
to extract information on the relationships between genes, variants and phenotypes. The references from
each publication are manually filtered to expand information on previously reported gene–phenotype
relationships and to identify new disease-modifying variants and genes. Consequently, the final list of
articles utilised in IthaGenes describes studies aiming to unravel genotype-phenotype relationships
relevant to haemoglobinopathies and include GWAS, linkage, candidate gene, case-level and functional
studies. Statistically significant associations (p value <0.05) or experimental evidence are then extracted
from the articles and used for gene and/or variant annotation in IthaGenes. Each genetic modifier is
linked to at least one phenotypic term mapped with standardised annotations curated by the human
phenotype ontology (HPO) [38,39]. Those with poor phenotype definitions or terms not contained
in HPO are annotated by terms that best describe the clinical characteristics of the study population
or laboratory risk factors investigated. Moreover, genetic modifiers are linked to data from existing
public databases (e.g., National Centre for Biotechnology Information (NCBI) Gene, Online Mendelian
Inheritance in Man (OMIM), Universal Protein Resource (UniProt), Single Nucleotide Polymorphism
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Database (dbSNP)) and receive a multitude of additional manual annotations, such as gene function,
the role in disease and the effect on phenotypes.

As part of this study, the dataset retrieved from IthaGenes was further processed to identify
studies that report on the same piece of evidence, e.g., reviews reporting associations described in
original studies that had already been included in the dataset. Such duplicated evidence was removed
from the dataset, whereas the quality of each study was also further annotated and evaluated by
collecting information about the type and design of study, reported p values and confidence intervals
and use of multiple testing, if needed. The final dataset used for the current study comprises 493 unique
gene-phenotype relationships, derived from a total of 312 genes and 59 phenotypes, with data on
β-thalassaemia and SCD analysed together as pooled data for β-haemoglobinopathies.

2.2. Development of an Evidence-Based Approach for Gene Ranking

The volume of available evidence for each gene–phenotype relationship in the dataset is represented
quantitatively with three different scores, namely Association Score, Variant Score and Experimental
Score, using a point system to reflect the strength of each piece of evidence. Similar approaches have
been developed in the past to quantify existing evidence for gene-disease relationships [36,40,41], but,
to our knowledge, this is the first effort to develop an evidence-based framework for modifier genes in
a Mendelian disorder. The point system used for each individual score is shown in Table 1 and briefly
described below.

The Association Score (AS) represents the sum of points derived from statistically significant
associations for each gene-phenotype relationship. For every study in the dataset, the most significant
variant of each gene for a given phenotype was selected to represent the strength of the gene-phenotype
relationship. Three different evidence levels were considered to score each study for a given phenotype
as follows: (a) case-level studies and association studies reporting statistically significant associations
with a p value of <0.05, scored with 0.5 point, (b) association studies with at least one variant
with a p value of <0.001, scored with 1 point, and (c) association studies with at least one variant
with a p value of <10−5, scored with 1.5 points. To avoid possible bias from multiple case-level
studies (under the lowest evidence level above), a maximum of four case-level studies (i.e., a total
of 2 points, with 0.5 point awarded for each case study) were considered for each gene–phenotype
relationship. In addition, all association studies were evaluated qualitatively to detect studies with
weak methodology (e.g., lacking multiple comparison procedures and confidence intervals). Such cases
remained in the dataset to avoid reduction of the evidence pool, but their AS was reduced by a penalty
of 25%. Subsequently, the sum of all points from different independent studies was calculated for each
gene–phenotype relationship.

The Variant Score (VS) represents the number of variants identified in each gene–phenotype
pair and are curated in IthaGenes, the largest database of modifiers relevant to haemoglobinopathies.
In each gene-phenotype relationship, a single point was awarded for every variant in the database.

The Experimental Score (ES) represents the sum of all points derived from experimental evidence
available for each gene–phenotype relationship. Given that the implication of modifier genes in
the pathology of haemoglobinopathies needs to be validated by experiments that support a role
for that gene with respect to the phenotype under study, a point system similar to the work of
Strande et al. [40] was employed to divide experimental evidence into three main categories: gene
function (biochemical function, protein interaction and expression), functional alteration, and model
systems (model organisms and phenotypic rescue). Experimental studies on gene function, functional
alteration and model systems received 1, 1.5, and 2 points, respectively. The sum of all points derived
from experimental evidence was subsequently calculated for each gene–phenotype relationship.

A maximum allowed sum of points was set for each individual score in order to count for multiple
replication studies establishing a gene–phenotype, but, at the same time, to avoid overrepresentation
(i.e., very high scores) of well-established disease modifier genes in our analysis, such as BCL11A
and KLF1. The maximum allowed scores for AS, VS and ES were set to 8, 20 and 6, respectively.
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All individual scores for each gene-phenotype pair were subsequently normalised to be canonical
(from 0 to 1) by dividing the total score by the maximum allowed sum of points.

The overall score, called IthaScore, is calculated with the formula below, using a weighted sum
of all individual scores and reflects the available evidence for each gene-phenotype relationship.
The weights have been selected to represent both the strength of each evidence type, but also the
volume of available evidence in the dataset. Therefore, a stronger weight is used for association studies
that represent the overwhelming fraction of evidence in the dataset, with around 85% of scores derived
from association studies and 15% from functional studies.

IthaScore = 0.5 ∗AS + 0.2 ∗VS + 0.3 ∗ ES

2.3. Functional Enrichment Analysis

Functional enrichment analysis was performed for each phenotype in the dataset using their
corresponding gene lists. Specifically, the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database v.11.0 [42] was used for the construction of PPI networks, followed by GO term
enrichment and pathway analysis (Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome).
Only functional enrichment terms with a p value of 10–5 or lower (after false discovery rate (FDR)
correction), as provided by STRING, were considered for further investigation. The Human Genome
Organisation (HUGO) Gene Nomenclature Committee (HGNC) approved gene symbols were used as
input data, thereby excluding intergenic regions from functional enrichment and network analysis.
Connections (edges) between proteins (nodes) were predicted at a high confidence cut off of ≥0.7 using
all types of evidence available in STRING, while the top five additional interactors with the initial
gene set were also included in the analysis. High-resolution bitmaps of the PPI networks were
displayed and exported from STRING. In addition, GOnet [43] was used to investigate and visualise
relationships between specific gene lists and statistically significant GO terms. The Comparative
Toxicogenomics Database (CTD) MyVenn tool [44] was utilised to identify common genes between
different phenotype-specific gene list in the dataset, specifically “Hb F levels”, “F-cell numbers” and
“Hb F response to hydroxyurea”. The Cytoscape software, version 3.7.2 [45], was used to visualise
gene-phenotype relationships in a network format.
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Table 1. The point system used to score available evidence and to calculate the three individual scores
(Association Score, Variant Score and Experimental Score) involved in the calculation of IthaScore.
The point system was based on a similar approach described in References [40,46].

Evidence Type Description Points

A
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on

Sc
or

e
(A

S)

Association study p value
<0.05 0.5

<0.001 1

<0.00001 1.5

Maximum Allowable Sum of Points for Association Score 8

V
ar
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nt

Sc
or

e
(V

S)

Genetic variants Number of variants One point for each variant in every phenotype stored in IthaGenes. 1

Maximum Allowable Sum of Points for Variant Score 20

Ex
pe

ri
m

en
ta

lS
co

re
(E

S)

Function

Biochemical
Function

Functions are shared between gene products involved in the same disease
phenotype. 1

Protein Interaction Gene product interacts with proteins previously implicated in the disease
phenotype. Gene defect disrupting protein interactions. 1

Expression Gene is expressed in tissues relevant to the disease phenotype. Altered gene
expression in patients. 1

Functional
Alteration

Cells from affected
individual

Function of gene product is altered in individuals/engineered cells with candidate
mutations (altered expression levels, splicing or normal biochemical function).

1.5

Engineered cells 1.5

Model Systems Animal model Introduction of the variant or an engineered gene product carrying the variant in a
non-human animal model/cell-culture model displays the disease phenotype.

2
Cell culture model

system 2

Rescue

Rescue in
non-human model

organism
Addition of the wild-type gene product or specific knockdown of the variant allele

can rescue the disease phenotype in a non-human model organism/cell-culture
model/patient.

2

Rescue in cell
culture model 2

Rescue in patients 2

Maximum Allowable Sum of Points for Experimental Score 6

3. Results and Discussion

3.1. Exploratory Analysis of Modifier Gene Lists

The dataset was analysed to identify genes and genomic locations involved in several phenotypes
relevant to haemoglobinopathies, visualised in Figure 1. Although, as expected, the majority of
genes (219 out of 312 genes) were assigned to a single phenotypic term, numerous genes were
linked to multiple phenotypes. Notably, eleven genes are assigned to five or more phenotypic terms,
of which HMIP, BCL11A and NOS3 ranked top with 10, 11 and 13 phenotypic terms, respectively.
Such multiple assignments are expected due to common pathophysiological mechanisms in many
disease complications (e.g., haemolysis and vaso-occlusion), thus involving similar sets of genes.
The full list of genes ordered by the number of phenotypic annotations is shown in Supplementary
Table S1.

Figure 2 shows a summary of the 59 phenotypic terms in the dataset ordered by the number of
genes and variant annotations. The number of genes and variants differed among phenotypes, with
“Hb F levels” (82 genes, 299 variants) being the most prevalent term, followed by “Hb F response to
hydroxyurea” (42 genes, 69 variants). Other frequently assigned terms involved clinical descriptions
relevant to haemolysis and vaso-occlusion, including: ”stroke”, “osteonecrosis/avascular necrosis”,
“pulmonary arterial hypertension”, “pain”, “acute chest syndrome” and ”leg ulcers”. In addition,
36 phenotypic terms were assigned to five or fewer genes, of which thirteen were annotated with a
single gene bearing a few variants.
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Figure 2. Number of gene and variant annotations per phenotypic term. Bar plot illustrates the number of
genes (bottom x-axis, shown in blue) and variants (top x-axis, shown in red) assigned to each phenotypic term
(total of 59) stored in IthaGenes. GFR, glomerular filtration rate; RBC, red blood cell; EPO, erythropoietin.
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3.2. Evidence-Based Gene Ranking

The gene ranking analysis integrated a scoring metric, called IthaScore, where each gene-phenotype
interaction was assigned a combined score of various evidence measures (see Methods for details on
the calculation of IthaScore). Overall, 483 gene-phenotype interactions were identified and scored,
with IthaScore ranging from 0.023 to 0.875. The entire gene list as well as their scores and ranking are
shown in Supplementary Table S2. Higher gene scores indicate a greater likelihood that genes would
have an effect on the phenotypes investigated. Figure 3 shows the distribution of IthaScore for all
gene-phenotype relationships, while Table 2 shows the top scoring genes for each of the 59 phenotypic
terms in the dataset. Importantly, most of the gene-phenotype pairs have a low IthaScore, thus
highlighting that available evidence for those relationships is currently weak and that additional
studies are needed before such associations are considered reliable.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 8 of 24 
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483 gene-phenotype interactions.
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Table 2. The gene with the highest IthaScore for each phenotype. “Phenotype ID” column indicates the
identifier assigned to each phenotype throughout this work.

Phenotype ID Phenotypic Term HPO ID Gene/Intergenic Region IthaScore

2 Hb F levels HP:0011904 BCL11A 0.8750

28 Bilirubin levels − UGT1A1 0.4397

10 F-cell numbers − HBS1L-MYB 0.3169

5 Ineffective erythropoiesis HP:0010972 AHSP, SOX6 0.3000

4 Anaemia HP:0001903 CCND3 0.2938

11 Globin gene regulation − SIRT1 0.2500

9 Hb F response to
hydroxyurea − HBG2 0.2188

7 Focal segmental
glomerulosclerosis HP:0000097 APOL1 0.2175

24 Response to Hepatitis C
treatment − IFNL3 0.2175

16 Abnormal platelet count HP:0011873 HBS1L-MYB 0.1997

29 Gallstones HP:0001081 UGT1A1 0.1663

14 Acute chest syndrome − EDN1 0.1450

23 Vaso-occlusive crisis − HMOX1 0.1413

6 Osteonecrosis/Avascular
necrosis HP:0010885 KL 0.1413

3 Stroke HP:0001297 ENPP1 0.1350

22 Increased serum ferritin HP:0003281 HFE 0.1350

8 Proteinuria HP:0000093 MYH9 0.1325

19 Abnormal serum iron
concentration HP:0040130 GDF15 0.1250

18 Pain HP:0012531 GCH1 0.1184

17 Left ventricular diastolic
dysfunction HP:0025168 FUCA2 0.1100

1 Abnormal red blood cell
count HP:0020058 ABO, CCND3, PRKCE,

PARP11-CCND2 0.1038

13 Abnormal white blood
cell count HP:0011893 CDK6, LY6G5C,

PNPLA3, PSMD3-CSF3 0.1038

20 Hyperuricemia HP:0002149 HBG1-HBG2 0.1038

21 Abnormal hematocrit HP:0031850 HBS1L-MYB,
PDGFRA-KIT 0.1038

25 Increased Hb A2 levels HP:0045048 LCRB 0.1038

27 Haemolytic anaemia HP:0001878 NPRL3 0.1038

26 EPO levels − MAP2K6 0.1038

15 Osteoporosis HP:0000939 COL1A1 0.1038

12 Bacteremia HP:0031864 BMP6 0.1025

30 Oxidative stress HP:0025464 FOXO3 0.1000
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Table 2. Cont.

Phenotype ID Phenotypic Term HPO ID Gene/Intergenic Region IthaScore

31 Albuminuria HP:0012592 APOL1 0.0959

32 Pulmonary arterial
hypertension HP:0002092 NEDD4L 0.0825

33 RBC adhesion − ADCY6 0.0825

34 Delayed menarche HP:0012569 NOS3 0.0825

35 Red blood cell
alloimmunisation − CD81 0.0825

36 Reticulocytosis HP:0001923 NPRL3 0.0803

37 Abnormal neutrophil
cell number HP:0011991 NES 0.0803

38 Abnormal GFR HP:0012212 APOL1 0.0747

39 Leg ulcers − SMAD7 0.0725

40 Increased serum iron HP:0003452 HFE 0.0725

41 Cardiac iron load − GSTM1 0.0725

42 Thromboembolism HP:0001907 PROC 0.0613

43 Response to
Hydroxyurea − CD36 0.0600

44 Priapism HP:0200023 AQP1, ITGAV, TGFBR3 0.0569

45 Reticulocytopenia HP:0001896 BCL11A 0.0569

46 Recurrent respiratory
infections HP:0002205 LGALS3 0.0513

47 Increased lactate
dehydrogenase activity HP:0025435 NOS3 0.0513

48 Response to deferiprone − UGT1A6 0.0513

49 Abnormal hepcidin level HP:0031875 TMPRSS6 0.0434

50 Abnormal serum ferritin HP:0040133 GSTM1 0.0413

51 Elevated transferrin
saturation HP:0012463 HFE 0.0413

52 Decreased serum ferritin HP:0012343 TF, TFR2, TNF 0.0413

53
Abnormal circulating

homocysteine
concentration

HP:0010919 MTHFR 0.0413

54 Morphine
glucuronidation − UGT2B7 0.0413

55 Increased liver iron level HP:0012465 HAMP 0.0334

56 Response to deferasirox − CYP1A2 0.0434

57 Retinopathy HP:0000488 IL6, NOS3 0.0413

58
Recurrent upper
respiratory tract

infections
HP:0002788 NOS3 0.0413

59 Recurrent Infections HP:0002719 CCL5, MPO, TLR2 0.0313

Abbreviations: EPO, erythropoietin; GFR, glomerular filtration rate; Hb, haemoglobin; HPO, Human Phenotype
Ontology; RBC, red blood cell.
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In contrast, our approach is validated by its ability to produce a high IthaScore for well-established
disease modifiers, particularly those involved in Hb F production and modulation, such as BLC11A,
HMIP and KLF1. This is demonstrated in Table 3, which lists the ten gene-phenotype pairs with
the highest IthaScore, with nine of them involved in Hb F modulation. In addition, our method
successfully highlights, with a high IthaScore, the well-established role of UGT1A1 in bilirubin
metabolism, especially since genetic variations in UGT1A1 constitute major risk factors for unconjugated
hyperbilirubinemia [47].

Table 3. Top 10 gene-phenotype interactions with the highest IthaScore. “Phenotype ID” column
represents the identifier assigned to each phenotype throughout this work.

Phenotype ID Phenotypic Term HPO ID Gene/Intergenic Region IthaScore

2 Hb F levels HP:0011904 BCL11A 0.875

2 Hb F levels HP:0011904 HBS1L-MYB 0.825

2 Hb F levels HP:0011904 KLF1 0.711

2 Hb F levels HP:0011904 HBG2 0.600

2 Hb F levels HP:0011904 HBE1 0.462

28 Bilirubin levels − UGT1A1 0.440

2 Hb F levels HP:0011904 HBG1 0.435

2 Hb F levels HP:0011904 HBD-HBBP1 0.330

10 F-cell numbers − HBS1L-MYB 0.317

2 Hb F levels HP:0011904 LCRB 0.312

A gene-phenotype network was constructed and shown in Figure 4 depicting gene-phenotype
relationships with an IthaScore of at least 0.1 to show significant relationships and, also, allow clearer
interpretation and visualisation. The edge weights represent the strength of the relationship based
on the calculated IthaScore, while each phenotype is labelled with a unique identifier, as defined in
Table 2, for better visualisation of the network.

Naturally, phenotype “Hb F levels” (node 2 in Figure 4, Panel A) is a clear hub in the network
showing both the highest number of connected genes (with IthaScore≥0.1) and the strongest connections,
i.e., the highest IthaScore in the network. High scoring loci in the “Hb F levels” phenotype, such as
BCL11A and HMIP, have also weaker connections with other phenotypes in the network, although
this can be an indirect effect in the disease severity due to the well-established role of high Hb F as a
disease-modifying factor.

As the level of Hb F is a major predictor of survival in haemoglobinopathies, genetic markers
that modulate Hb F production have been investigated extensively. Similar to numerous studies
reported to date [16,48,49], the top-ranked genes for interaction with “Hb F levels” include BCL11A
(0.875), HMIP (0.825), KLF1 (0.711) and HBG2 (0.6). Another sensitive biological indicator of Hb F is
the abundance of Hb F-containing erythrocytes (F cells) [11]. In this analysis and in line to published
work [50], BCL11A, HMIP, KLF1 and HBG2 are ranked as the leading modifiers of “F cell numbers”
(node 10). Moreover, hydroxyurea (HU), as a potent pharmacological inducer of Hb F, is used in
the treatment of SCD, although with highly variable degrees of clinical response [51]. The search for
genetic modifiers of “Hb F response to HU” (node 9) identified associations to BCL11A and HBG2 as
the most robust [52]. Although both genes drew top scores following ranking, less prominent Hb
F-promoting loci, including SAR1A, MAP3K5, NOS1 and ARG2, emerged as promising predictors of
drug response based on the calculated IthaScore. While many of the Hb F-promoting loci are also
associated with Hb F response to HU, the absence of strong Hb F modulators, such as KLF1 and HMIP,
from loci associated with Hb F response to HU suggests that some mechanisms of HU-induced Hb F
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may differ from mechanisms of endogenous Hb F regulation (candidate mechanisms of HU-induced
Hb F are summarised in Pule et al. [53]).

Other smaller subnetworks shown in Figure 4 highlight the role of different genes in other
disease phenotypes, specifically including (a) anaemia (node 4), ineffective erythropoiesis (node 5)
and abnormal red blood cell (RBC) count (node 1), (b) bilirubin metabolism (node 28) and gallstone
formation (node 29), and (c) phenotypes/complications related to vaso-occlusion and/or haemolysis
like acute chest syndrome (ACS) (node 14) and stroke (node 3). The above phenotype groups are
highlighted in Panels B, C and D of Figure 4 respectively, and discussed below.
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Figure 4. Network diagram of gene–phenotype interactions. The network depicts relationships between
genes and phenotypes of haemoglobinopathies. Genes (red nodes) are connected to phenotypes (blue
nodes) by edges. The thickness of the edges represents the corresponding IthaScore, where a stronger
edge indicates a greater weight for the gene-phenotype relationship. Only gene–phenotype relationships
with gene scores ≥0.1 are displayed on the network for better visualisation, while gene names are
only shown for gene scores ≥0.2. The “Phenotype ID” shown in Table 2 is used to label phenotypic
nodes, as follows: (1) Abnormal red blood cell count, (2) Hb F levels, (3) Stroke, (4) Anaemia, (5)
Ineffective erythropoiesis, (6) Osteonecrosis/Avascular necrosis, (7) Focal segmental glomerulosclerosis,
(8) Proteinuria, (9) Hb F response to hydroxyurea, (10) F-cell numbers, (11) Globin gene regulation,
(12) Bacteremia, (13) Abnormal white blood cell count, (14) Acute chest syndrome, (15) Osteoporosis,
(16) Abnormal platelet count, (17) Left ventricular diastolic dysfunction, (18) Pain, (19) Abnormal
serum iron concentration, (20) Hyperuricemia, (21) Abnormal hematocrit, (22) Increased serum ferritin,
(23) Vaso-occlusive crisis, (24) Response to Hepatitis C treatment, (25) Increased Hb A2 levels, (26)
Erythropoietin (EPO) levels, (27) Haemolytic anaemia, (28) Bilirubin levels and (29) Gallstones.

Ineffective erythropoiesis is a hallmark of β-thalassaemia characterised by excess free alpha
haemoglobin (α-Hb) pool in erythroid precursors, which leads to their premature destruction within
the bone marrow, resulting in abnormal counts of RBCs in circulation and, thus, to anaemia [54].
Supported predominantly by functional evidence, SOX6 and AHSP were identified as the leading
modifiers of “ineffective erythropoiesis” (node 5), while AHSP also achieved high IthaScore for
interaction with “anaemia” (node 4). In fact, AHSP is a candidate molecular chaperone for free
α-Hb and a critical modulator of β-thalassaemia [55]. Additionally, CCND3 had a high IthaScore for
interaction with “anaemia” and “abnormal RBC counts” (node 1), which is in line with its role in
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controlling cell cycle progression and differentiation during haematopoiesis and thereby RBC size and
count [56].

One of the best-known genetic modifiers of bilirubin metabolism and cholelithiasis in
haemoglobinopathies is the UGT1A locus [27]. As expected, and illustrated in Panel C of Figure 4,
members of the UGT1A family, namely UGT1A10, UGT1A6 and UGT1A1, were among the top-ranked
genes for interactions with “bilirubin levels” (node 28) and “gallstone” formation (node 29).

Haemolysis and vaso-occlusive phenomena are fundamental features of SCD affecting a variety
of tissues and organs [57]. Here, we present candidate genes that could potentially influence
two of the most important complications of SCD: ACS (node 14) and stroke (node 3) (Panel D
of Figure 4). ACS is a vaso-occlusive crisis of the pulmonary vasculature and one of the leading
causes of hospitalisation among SCD patients [58] and has been associated with effects of endothelial
nitric oxide (eNOS) metabolism, inflammation, cell adhesion, hypoxia and endothelial damage [59].
As expected, high-scoring genes for “acute chest syndrome” (node 14) included EDN1 and NOS3,
as well as genes involved in the TGF-β signalling pathway, namely TGFBR3, SMAD1 and SMAD7.
Although stroke is one of the most disabling complications, the factors that lead to stroke remain
elusive [60]. The top-scoring genes for “stroke” (node 3) included ENPP1, TGFBR3, ADCY9, BCL11A
and BMP6.

3.3. Functional Enrichment Analysis for Selected Phenotypes

Towards understanding the biological meaning behind large lists of genes for specific phenotypes
and in search for their mechanisms of action, functional enrichment analysis focused on identification
of enriched GO terms, specifically biological process (BP) and molecular function (MF), as well as
associated pathways (from KEGG and Reactome). Only enriched GO terms and biological pathways
with an FDR <10−5 were considered. Those associated with a low gene count in the database were
more specific, thus giving a greater biological meaning. Given that a complete functional enrichment
analysis for each of the 59 phenotypes is beyond the scope of this work, we demonstrate the results of
the analysis for three selected phenotypes related to different pathophysiological mechanisms and
of different gene set sizes: (a) Hb F levels in relation with Hb F response to HU, (b) response to iron
chelators and (c) stroke.

3.3.1. Hb F Levels and Hb F Response to Hydroxyurea

The discovery of genetic markers for the upregulation of Hb F in patients with β-thalassaemia
and SCD has been a major ongoing research effort for decades, resulting in a large volume of data in
the literature. Drawing information from studies showing a positive correlation between Hb F levels
and the number of F cells [61], the gene sets of these two phenotypes were pooled for simplicity (from
here on referred to as phenotype “Hb F levels/F-cells”). Additionally, the major benefit of hydroxyurea
(HU) on disease severity is directly related to its effect on Hb F production [62]. The large number
of reported genes made it challenging to establish informative GO term and pathway rankings with
relevance to the “Hb F levels/F-cells” phenotype, instigating the need for further gene set enrichment
analysis. As to remove noisy information from the analysis and to identify candidate genes that
regulate fetal γ-globin genes and also modulate HU-induced Hb F levels, genes that were common
between phenotypes “Hb F levels/F-cells” and “Hb F response to HU” were identified (11 genes) and
used as input data for analysis. These included ARG2, ASS1, BCL11A, FLT1, HBE1, HBG2, MAP3K5,
NOS1, SAR1A, TOX and VEGFA. Five additional interactors were allowed in the network to identify
the most significant interactions to the initial protein list and achieve a meaningful size for network
analysis (16 nodes total), shown in Figure 5A. Interestingly, these interactors contained five additional
proteins without prior connotation to the above Hb F-related phenotypes, except for the VEGF receptor
KDR (kinase insert domain receptor). These new candidate proteins included ASL (argininosuccinate
lyase), OTC (ornithine carbamoyltransferase), PGF (placental growth factor) and VEGFB (vascular
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endothelial growth factor B). In addition, three of the proteins (MAP3K5, SAR1A and TOX) were not
engaged in any interactions with the high confidence interaction score 0.7 in STRING.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 13 of 24 
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Figure 5. Network and enrichment analysis for Hb F levels and Hb F response to hydroxyurea (HU).
(A) The protein–protein interaction (PPI) network contains 16 nodes (proteins; circles) connected by
edges (protein–protein interactions). The most significant gene ontology (GO) biological process (BP)
terms are shown. (B) GO BP enrichment analysis using GOnet (q value ≤0.01; p value ≤7.88 × 10–6).
Green colour intensifies as the significance level of enrichment decreases.

The PPI network and the subsequent functional enrichment analysis of the final protein list resulted
in two distinct clusters (Figure 5A). One cluster included five proteins, namely ARG2, ASL, ASS1,
NOS1 and OTC, that are annotated with GO terms and pathways involved in nitrogen metabolism,
including GO terms “urea cycle” (GO:0000050), “urea metabolic process” (GO:0019627) and “arginine
metabolic process” (GO:0006525) and pathways “urea cycle” (HSA-70635) and “arginine biosynthesis”
(hsa00220). The second cluster contained five proteins, namely FLT1, KDR, PGF, VEGFA and VEGFB,
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that are linked to functional terms related to the VEGF-VEGFR system, including “positive regulation
of angiogenesis” (GO:0045766), “vascular endothelial growth factor receptor signalling pathway”
(GO:0048010), and pathways involved in vascular endothelial growth factor (VEGF) ligand-receptor
interactions (VEGF binds to VEGFR leading to receptor dimerisation “HSA-195399” and MAPK
signalling pathway “hsa04010”). Overall, significant GO terms and pathways were consistent between
them, with Figure 5B illustrating interactions between genes and GO term enrichment analysis.

Notably, three of the query proteins (ARG2, ASS1 and NOS1) and two of the new interactors
(ASL and OTC) are involved in the urea cycle and the L-arginine biosynthesis sub-pathway (Figure 6).
Specifically, argininosuccinase (ASL) catalyses the production of arginine from arginosuccinate, while
ornithine carbamoyltransferase (OTC) catalyses the production of citrulline, an intermediate substrate
in the pathway of arginine synthesis. Drawing information from studies investigating the factors that
are implicated in a variable Hb F response to HU treatment, there is strong evidence to suggest that the
arginine-dependent nitric oxide (NO) pathway is involved in the induction of Hb F [63–65]. NO is
a signalling agent produced from the metabolism of L-arginine by the enzyme nitric oxide synthase
(NOS) [66]. The underlying mechanism involves NO-mediated activation of soluble guanylate cyclase
(sGC) and subsequent signalling via the sGC/cyclic guanosine monophosphate (cGMP)-dependent
protein kinase (PKG) pathway [67]. Considering that this effect can also be mediated by other NO donor
substrates, it is important to explore ASL and OTC as potential mechanisms by which drug-mediated
NO production could be therapeutic or prognostic of drug efficacy.
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Figure 6. Urea cycle and nitric oxide pathway. Diagram depicts enzymes and intermediates of the urea
cycle (solid lines) and the nitric oxide (NO) pathway (dashed lines, yellow nodes). Overrepresentation of
the Hb F-related gene set used in the analysis is shown in orange. The size of the orange strip increases
with the level of gene representation in the query set. The urea cycle pathway was exported from
the Reactome pathway database and edited to include and highlight the role of NO shown in yellow.
Ac-CoA, acetyl coenzyme A; AMP, adenosine monophosphate; ARG1, arginase 1; ARG2, arginase 2;
ARSUA, argininosuccinate; ASL, arginosuccinate lyase; ASS1, arginosuccinate synthase; ATP, adenosine
triphosphate; CAP, carbamoyl phosphate; CoA-SH, coenzyme A; CPS1, carbamoyl phosphate synthase
1; FUMA, fumarate; L-Arg, L-arginine; L-Asp, L-aspartate; L-Cit, L-citrulline; L-Glu, L-glutamine;
L-Orn, L-ornithine; NAcGlu, N-acetylglutamic acid; NAGS, N-acetylglutamate synthase; NOS1,2,3,
nitric oxide synthase 1 (neuronal, nNOS), 2 (inducible, iNOS), 3 (endothelial, eNOS); OTC, ornithine
transcarbamylase; Pi, inorganic phosphate; PPi, inorganic pyrophosphate.

Also associated with Hb F levels and Hb F response to HU were proteins involved in vasculogenesis
and angiogenesis, namely VEGFA (vascular endothelial growth factor A), FLT1 (vascular endothelial
growth factor receptor 1, VEGFR1) and the new interactors VEGFB (vascular endothelial growth
factor B) and PGF (placenta growth factor). The mechanism by which these genes influence Hb F
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production is still unclear, yet a growing amount of evidence implicates an effect on the process of
erythropoiesis [68–71]. Notably, additional studies will be necessary to identify the functional role
of VEGF signalling and other potent factors on erythropoiesis, as well as their effect on globin gene
transcription programs.

3.3.2. Response to Iron Chelators

Deferiprone and deferasirox are standard drugs for iron chelation therapy in transfusion-dependent
anaemias. Decreasing excess accumulation of iron through the use of chelation reduces damage to
critical organs [72]. However, patients show different rates of adherence and drug-related toxicities,
indicating that genetic factors may influence the way drugs are metabolised [73,74]. To identify
potential molecular pathways related to response to chelation therapy with deferiprone and deferasirox,
genes associated with phenotypes “response to deferiprone” and “response to deferasirox” were
pooled (ABCC2, CYP1A1, CYP1A2 and UGT1A6) and used as input for the STRING database.
Figure 7A shows the PPI network, including five additional interactors, namely UGT1A3, UGT1A4,
UGT1A8, UGT1A9 and AHR, and Figure 7B illustrates the interactions between genes and GO term
enrichment analysis.

The enriched GO BP terms indicate gene functions mainly associated with (a) xenobiotic
metabolism, including “cellular response to xenobiotic stimulus” (GO:0071466), “xenobiotic metabolic
process” (GO:0006805) and “flavonoid metabolic process” (GO:0009812), (b) glucuronidation,
such as “negative regulation of cellular glucuronidation” (GO:2001030), “negative regulation of
glucuronosyltransferase activity” (GO:1904224) and “xenobiotic glucuronidation” (GO:0052697), and (c)
fatty acid metabolism, including “monocarboxylic acid metabolic process” (GO:0032787), “negative
regulation of fatty acid metabolic process” (GO:0045922), and “omega-hydroxylase P450 pathway”
(GO:0097267). Pathways involved in “retinol metabolism” (hsa00830), “metabolism of xenobiotics
by cytochrome P450” (hsa00980) and “glucuronidation” (HSA-156588) were also deemed enriched.
Notably, only the UGT1 locus is associated with the glucuronidation pathway.

These findings are in line with published work demonstrating that deferiprone and deferasirox
are mainly metabolised by glucuronidation [73,75], a major pathway of xenobiotic biotransformation
(phase II metabolism, conjugation) catalysed by uridine 5’-diphospho-glucuronyltransferases (UGT).
Members of the UGT1 family are the most important in terms of drug metabolism and are found
primarily in the liver [76]. Cytochrome P450 (CYP) is another family of xenobiotic-metabolising
enzymes (phase I metabolism, functionalisation) [77], of which only two members (CYP1A1 and
CYP1A2) appear in the PPI network. Both CYP1 proteins interact with the aryl hydrocarbon receptor
(AHR), a xenobiotic receptor that regulates the activation of CYP1A1, CYP1A2 and several other genes,
including UGT1A4, UGT1A6 and UGT1A9 [76,78,79].

Glucuronidation of deferasirox is mainly mediated by UGT1A1 and to a lesser extent by
UGT1A3, with minor contributions from UGT1A7 and UGT1A9, and trace activities by several
other UGTs (UGT1A4, UGT1A6, UGT1A8, UGT1A10, UGT2B4, UGT2B7, UGT2B15 and UGT2B17) [80].
Oxidative metabolism by CYP enzymes (CYP1A1, CYP1A2 and CYP2D6) has a minor contribution
to the elimination process [81]. Deferasirox and its glucuronide metabolites are eliminated mainly
by hepatobiliary transport via multidrug-resistance protein 2 (MRP2) [82]. MRP2, also known as
ABCC2, is an anion transporter expressed at important pharmacological barriers, such as the canalicular
membrane of hepatocytes, with an important role in the elimination of xenobiotic substrates [83].
Moreover, glucuronidation of deferiprone is catalysed almost exclusively by the UGT1A6 in hepatic
tissues with subsequent excretion in the urine. Several other UGTs (UGT1A7, UGT1A8, UGT1A9,
UGT1A10, UGT2B7, and UGT2B15) exhibit trace activities and are not expected to impact the formation
of glucuronide metabolites [75,84,85].

The results of the functional enrichment analysis indicate that the proteins involved in the
metabolism and transport of deferiprone and deferasirox may also influence response to therapy.
Specifically, new candidate modifiers include UGT1A4, UGT1A8 and UGT1A9, which exhibited low
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metabolic clearance of these drugs with in vitro animal tissue models. As drug metabolism and
interactions are species-specific [86] and given that drug-metabolising enzymes have different rates of
maturation at different developmental stages [87,88], further studies are needed to unravel their role
in the biotransformation of iron chelators as to better serve patients. Overall, our analysis revealed
new genes as candidate pharmacogenetic biomarkers of deferiprone and deferasirox efficacy that seek
further investigation.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 15 of 24 
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Figure 7. Network and enrichment analysis for response to iron chelators. (A) The PPI network
contains nine nodes (proteins; circles) connected by edges (protein–protein interactions). The most
significant GO BP terms are shown. (B) GO BP enrichment analysis using GOnet (q value ≤0.01; p value
≤5.3 × 10–9). Green colour intensifies as the significance level of enrichment decreases.
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3.3.3. Stroke

Stroke is one of the most devastating complications of SCD affecting up to 11% of patients with
sickle cell anaemia (Hb SS) and sickleβ0-thalassaemia under 18 years of age without intervention [89–91].
Sibship studies demonstrated that stroke has an inherited component and is, therefore, genetically
modifiable [92]. However, stroke is a complex process with variability in lesion size, location and
etiology, and, thus, unlikely to be modified by a single gene [60]. Genetic susceptibility appears
to be guided by many genes with small effect sizes [93]. The dataset consisted of 28 modifiers
with diverse functions, including inflammation (TNF, TGFBR3, IL4R, BMP6, CCL2, LTC4S and
IL6), adhesion (VCAM1, TEK, SELP, CSF2, LDLR and ECE1), coagulation (ANXA2 and F5), signal
transduction (ADYC9, ADRB2 and AGT), cell survival (MET), oxidative stress (HMOX1 and PON1)
and transcriptional regulation (ERG, HDAC9 and BCL11A) [21]. The high genetic heterogeneity reflects
the complexity of stroke pathogenicity.

The enrichment analysis of the GO terms and biological pathways was carried out on 33 proteins
(Figure 8A), of which IL4 (interleukin 4), IKBKG (inhibitor of nuclear factor kappa B kinase regulatory
subunit gamma), RIPK1 (receptor interacting serine/threonine kinase 1), TRADD (TNFRSF1A associated
via death domain) and TRAF2 (TNF receptor associated factor 2) were new interactors at the confidence
interaction score ≥0.7 (Figure 8B). Interestingly, IKBKG, RIPK1, TRADD and TRAF2 formed a discreet
and distinct cluster that linked to the rest of the network via interaction with TNF (tumour necrosis
factor). TNF is a pro-inflammatory cytokine produced by brain cells with presence in all stages of
brain injury by stroke. It plays a central role during cerebral ischemia and exerts both damaging
and protective functions via interaction with the TNF receptor superfamily member 1A (TNFRSF1A,
also known as TNFR1). The DD domain of the TNFR1 binds TRADD, which in turn recruits TRAF2,
RIPK1 and Fas-associated via death domain (FADD). Binding of TRAF2 with cellular inhibitor of
apoptosis proteins (cIAPs) facilitates NF-κB activation and induction of NF-κB-regulated anti-apoptotic
factors. The protein IKBKG forms part of the IκB kinase (IKK) complex involved in the activation of
NF-κB. On the other hand, activation of RIPK1 and FADD-interacting initiator caspase [FADD-like
interleukin-1β-converting enzyme (FLICE)/caspase-8] lead to necrotic or apoptotic cell death (for
review see [94,95]). Other potent pro-inflammatory cytokines with a significant impact on stroke
pathology include interleukin 1 (IL-1), IL-4, IL-6, IL-8, IL-10 and IL-17 [96,97].

Functional enrichment analysis revealed 146 significant GO BP terms (p value <10–5), of which the
top five were annotations to general terms in GO hierarchy (e.g., “positive regulation of multicellular
organismal process”—GO:0051240, “response to organic substance”—GO:0010033 and “response
to oxygen-containing compound”—GO:1901700). Enrichment analysis of GO MF terms yielded
seven significant terms, of which the more relevant (in order of increasing FDR) were “cytokine
receptor binding” (GO:0005126), “signalling receptor binding” (GO:0005102), “cytokine activity”
(GO:0005125) and “tumour necrosis factor receptor superfamily binding” (GO:0032813). The most
prominent pathways involved “TNF signalling pathway” (hsa04668), “IL-17 signalling pathway”
(hsa04657), “NF-kappa B signalling pathway” (hsa04064), “IL-4 and IL-13 signalling” (HSA-6785807)
and “TNFR1-induced NFkappaB signalling pathway” (HSA-5357956). Overall, analysis showed that
the most relevant GO terms and biological pathways are associated with cytokine signalling and
cascade inflammatory reactions.

Moreover, results indicate that some of the candidate stroke modifiers in haemoglobinopathies
are shared by stroke victims in the general population (e.g., CCL2, F5, IL-6, SELP, TGFBR3, TNF,
and VCAM1). Large studies have been conducted to identify genes affecting stroke risk in the general
population, resulting in the development of several biomarker panels that aim to risk stratify patients
according to stroke type and to provide prognostic information for targeted interventions (biomarker
panels are summarized in [98]). As many biomarkers are not disease-specific, diagnostic sensitivity
and specificity is compromised [99–101]. The present work reveals the most prevalent biomarkers for
stroke known to date in haemoglobinopathies. The stroke phenotype in IthaGenes comprises different
stroke sub-types, such as large and small vessel types. Based on published reports of a variable genetic
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component across different types of stroke [60] and towards the development of a comprehensive
account on stroke genetics, future work will focus on investigating genetic modifiers for each type of
stroke separately. Knowledge on stroke biomarkers specific to haemoglobinopathies could serve as a
guiding tool to assess future risk and to elucidate potential stroke pathways towards more effective
personalised therapy.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 18 of 24 
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Figure 8. Network and enrichment analysis for stroke. (A) The PPI network contains 33 nodes (proteins;
circles) connected by edges (protein–protein interactions; horizontal lines). Coloured nodes highlight
proteins associated with significant molecular function (MF) terms and biological pathways. (B) GO
MF enrichment analysis using GOnet (q value ≤0.01; p value ≤1.94 × 10–5). Green colour intensifies as
the significance level of enrichment decreases.

4. Conclusions

Haemoglobinopathies are a heterogeneous group of Hb disorders characterised by diverse
phenotypic manifestations. Despite considerable progress in accumulating knowledge on the genetic
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architecture of these phenotypes, the role of modulating genes on phenotypic expression is largely
unclear. Deciphering gene–phenotype interactions is a crucial step in understanding disease pathology.
The present work aims to highlight potential genes and molecular pathways that could explain the
pathogenesis and complexity of haemoglobinopathy-specific phenotypes.

Using data from the IthaGenes database, a gene scoring algorithm (IthaScore) was developed
to assist in evidence-based ranking of genetic modifiers for disease phenotypes. Gene scores were
based on manual curation using a point system to collate and grade heterogeneous information and
replication studies for each gene–phenotype relationship, with quantitative and qualitative evaluation
of available evidence. IthaScore will be dynamically recalculated with emerging evidence for existing
or new phenotype relationships and provides a measure of the volume and quality of evidence for
such relationships. It does not provide any information about the size of the disease-modifying effect
of any gene on the corresponding phenotype but can be a useful tool for gene ranking specific to
haemoglobinopathies and their relevant phenotypes. This algorithm was validated in part by its
ability to rank well-established genetic modifiers with high scores, such as the major QTLs (BCL11A,
HMIP and HBG2) of Hb F production, one of the greatest markers and best-studied modulators of
disease severity.

To our knowledge, this is the first study integrating literature curation, gene ranking and functional
enrichment analysis to evaluate candidate genetic modifiers for haemoglobinopathies. While we
demonstrate the capacity of this approach to identify novel information, we urge caution when utilising
the presented results due to potential limitations. Several of gene-phenotype findings are reported
once without further replication, or they exhibit inconsistencies across studies due to differences in data
collection and processing approaches. This is reflected by the low IthaScore calculated for the majority
of gene-phenotype relationships. Moreover, most of published whole-genome scans do not always
identify the true disease-modifying QTLs across large genomic regions, while findings may also come
from studies with a small sample size and/or limited phenotyping, which are prone to noise [102,103].
Although IthaGenes harbours the largest collection of literature and continuously updated data on
genetic modifiers for currently 59 phenotypes, additional genes may influence phenotypes that are
not haemoglobinopathy-specific but are relatively common in the general population, such as stroke
and osteoporosis.

In conclusion, the functional enrichment analysis for three phenotypes specific to β-thalassaemia
and/or SCD provides preliminary proof that IthaGenes, as a comprehensive and scalable knowledgebase
of genetic modifiers in haemoglobinopathies, together with dynamic gene scoring, can be used to
unravel the molecular underpinnings of phenotypic diversity and identify new genes with plausible
influence on haemoglobinopathy-specific phenotypes. Our findings add to current scientific knowledge
and set the basis for future investigations. Research towards the discovery of phenotype-specific
biomarkers will inform affected individuals about their health risk and allow them to thoughtfully
consider their treatment options particularly with regards to stem cell transplantation and gene therapy,
which offer the promise of complete cure albeit at a risk. Overall, the characterisation of candidate
modifiers presents a novel and exciting opportunity to identify stratification biomarkers that help
define treatment subgroups of patients in the frame of personalised medicine, as well as new diagnostic
and therapeutic gene targets.
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