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Abstract

Social media is playing an increasingly central role in patient's decision-making pro-
cess. Advances in technology have enabled meaningful interpretation of discussions
on social media. We conducted a scoping review to assess whether Sentiment Analysis
(SA), a big data analytic tool, could be used to extract meaningful themes from social
media discussions on pharmacotherapy. A keyword search strategy was used on the
following databases: OneSearch, PubMed, Medline, EMBASE, and Cochrane. One
hundred and ninety-four titles were identified of which 10 studies were included. We
extracted themes about uses and implications of SA of social media discussions on
pharmacotherapy. Twitter was the most frequently analyzed platform. Assessment
of public sentiment about a particular medication was the most common use of SA
followed by detection of adverse drug reactions. Studies also revealed a significant
impact of news media on public sentiment. Implications for real world practice in-
clude identifying reasons for a negative sentiment, detecting adverse drug reactions
and using the impact of news media on social media sentiment to drive public health
initiatives. The lack of a consistent approach to SA between the studies reflects the
lack of a gold standard for the technology and consequently the need for future re-
search. Sentiment Analysis is a promising technology that can allow us to better un-
derstand patient opinion regarding pharmacotherapy. This knowledge can be used to
improve patient safety, patient- physician interaction, and also enhance the delivery

of public health measures.
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1 | INTRODUCTION

The development of Web 2.0 has allowed the internet to become a
more interactive platform for its users, thus allowing social media to
flourish.* Social media growth has been explosive, and its power to
shape opinion is demonstrated by its impact on mass political move-
ments including the Arab Spring, Brexit, and the American presiden-
tial election of 2016.2° The powerful impact social media can have
on users and their friends and family is being explored by more and
more industries (health care included) to gain insights into their user
base and consequently drive change.*®

While there are different methods of conducting social media
content analysis, one way to detect the aggregate opinion held to-
wards a particular treatment is to analyze the sentiment expressed
in social media posts. This can be done via a technique known as
Sentiment Analysis (SA); also termed “opinion mining”.¢ Sentiment
Analysis involves assigning an integer value to each word in a corpus
of text, depending on the sentiment being expressed in that text.
Words with negative sentiment get negative scores and vice versa.’
For example, the term “painful” might receive a negative score,
whereas “beautiful” will usually receive a positive score.

Sentiment Analysis is usually conducted by one of two meth-
ods: Lexicon Based (LB) or Machine Learning (ML). The LB method
requires the development of a “lexicon” or collection of words or
phrases with their sentiment polarity mapped and scored. These
words are then searched for in the target document and their scores
are aggregated to obtain an overall sentiment score for the docu-
ment.® The ML methods use computer programs that allow classi-
fication of text, requiring the development of a program to detect
sentiment, then training that program on a labelled, representative
corpus of text, to assess and enhance its accuracy, prior to running it
on the target document.” However, before these methods are used,
the data being analyzed is transformed from its raw format to one
that is more readable by the software. This technique is known as
“data pre-processing” and has been shown to improve the accuracy
of data analysis.*®

Each method has its own advantages and disadvantages. Lexicon
based approaches do not require labeling and training of a classi-
fier for each task, however, they are completely dependent on the
lexica being used, which might have been generically designed and
not specific for the topic being researched, thus impacting accuracy.
Machine learning approaches on the other hand might demonstrate
a high level of accuracy but require training of classifiers which can
be time and cost consuming.!

Healthcare is a frequently discussed topic in the online com-
munity, with patients using social media not only as a platform to
discuss their medical conditions and treatment, but also to seek
support.12 In 2012, 26% of internet users were using social media
for health issues, making it a rich source of information about pa-
tient beliefs.!®> A key aspect of healthcare is pharmacotherapy,
with adherence to prescribed medications being a pre-requisite
for good health. However, studies show that majority of patients

with chronic conditions are non-compliant with their prescribed

medications with up to 69% of hospital admissions being caused
by this non-compliance.** Patient's personal belief play a signifi-
cantrole in medication compliance, and recent studies have shown
that online content strongly influences health these related be-
liefs and attitudes.'® These beliefs have traditionally been studied
through qualitative, labour intensive methods; social media con-
tent analysis technique represents a novel approach to improving
our understanding of patient beliefs.?6”

The aim of this scoping review was to describe the available
evidence as it pertains to SA of Social Media specifically about
pharmacotherapy. Themes will be generated about the published
uses of SA and the real-world implications of the knowledge
generated.

2 | MATERIALS AND METHODS

Due to the novelty of the topic, we used a scoping review meth-
odology to summarize all available information from a variety of
sources. The framework outlined by Arksey and O’Malley was
followed.?®

The research question was identified as “Can sentiment analysis
be conducted on social media platforms to understand public sentiment
held towards pharmacotherapy?”

Social media is defined as “a group of Internet-based applications
that build on the ideological and technological foundations of Web 2.0,
and that allow the creation and exchange of user generated content”.*?
Pharmacotherapy was defined as the use of pharmaceutical drugs to
treat or prevent medical conditions.

Literature published between 2002 (inception of web 2.0) and
2019 was collected form OneSearch, PubMed, Medline, EMBASE,
and Cochrane. A keyword search strategy was employed using
the words Sentiment Analysis, Opinion mining, Social Media,
Medication, Pharmacotherapy, Drugs, Pharmaceutical, Medicine,
Facebook, Twitter.

Articles were eligible for inclusion in this review if their primary
aim was to conduct SA of social media posts regarding pharmaco-
therapy. Only articles published in English were included in this
study. We also excluded articles that did not contain original data (eg
letters to editor, opinion pieces). Reviews and Meta-analyses were
excluded but manually searched for potential studies.

From all the included studies, information was collected on the
following aspects on a predesigned template: authorship, year and
journal published, social media platform(s) mined, medical condi-
tion(s), pharmacotherapy, type of SA used, outcomes generated, and

potential use in clinical settings as described in the study.

3 | RESULTS

Our search strategy revealed 194 articles, 95 of which were excluded
after title and abstract review for not meeting inclusion criteria. Of

the remaining 99, 89 were excluded as they were not analysing at
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194 articles identified from
literature search

95 articles excluded after title and
abstract review

99 articles included for full
text review

Excluded:

45 — Not on pharmacotherapy
25 — Not studies

11 — Not medical

6 —Not on SA

1-Noton SM

1 - Under embargo

10 studies included in final
review

FIGURE 1 Study flow diagram

least one of the required topics of pharmacotherapy, medicine, or
social media. A total of 10 studies were finally included (Figure 1)%°??

All the studies found were published after 2013. Eight of the ten
included studies performed data mining on a single forum. Twitter
was the most common platform mined (50%). Majority of the studies
aimed to understand the sentiment being expressed towards a par-
ticular treatment, some of them also used this to explore other ave-
nues such as adverse drug reaction detection, the role of new media
in influencing social media sentiment and the sentiment dynamics on

social media forums (Table 1).

3.1 | Sentiment analysis techniques and accuracy

Seven of the studies used a LB approach, two used ML and one used
both methods. Most of the studies used a different lexicon for their
analysis, with none of them being specifically geared for medical
terminology. The studies that used ML algorithms also utilized dif-
ferent algorithms, namely AdaBoost Classifier in one and Support
Vector Machine (SVM) in the other two. Both these are types of ML
algorithms that allow stratification of data into different categories.
While AdaBoost does this by sequentially weighting the results of
weak classifiers to form a strong classifier, SVM finds the ideal mar-
gin to separate the dataset into desired categories.3%3!

The study by Ebrahimi et al was the only one that compared ML
techniques to LB and also against manually classified sentiment.
They used SVM to create a ML based algorithm and compared that
to a LB algorithm. The ML algorithm outperformed the LB algorithm
on both the primary (identifying forum posts mentioning drug side
effects) and secondary objectives (identifying posts mentioning dis-

ease symptoms).2°

BB (ASPET— () enen |2
Data pre-processing was employed by five of the stud-
jes.2021.23.2427 The methods used by the studies varied, with toke-

nization (breaking sentences into small word groups or phrases that

are more easily read by a program) being common. The other studies
did not explicitly state whether they conducted data pre-processing,
and if so then what techniques were used.

The study by Roccetti et al compared the performance of its lex-
ical SA technique to that of manual (human) coding of sentiment and
found that there was a high degree of correlation for the extremes
of sentiment (positive and negative), and less so for the neutral sen-
timents.?2 Du et al conducted a manual analysis of a small corpus of
tweets classified by their ML algorithm and found the overall accu-
racy to be a<:ceptab|e‘24

3.2 | Sentiment analysis use

The most common application of SA (seven studies) was to analyze
opinion regarding a particular medication.?224242%2% Six of these
used LB approaches and one used ML. While majority of these stud-
ies directly analyzed the cumulative polarity of the posts for each
medication, the study by Roccetti et al reversed the process to ana-
lyze which therapy generated the strongest sentiment (positive or
negative).

The next most common application of SA (three studies) was
to identify adverse drug reactions (ADR) from social media chat-
ter.2%2528 The studies differed in both the platforms that they mined
and the approach to SA. Ebrahimi et al mined an online forum (www.
drugratingz.com) using both ML and LB algorithms to assess whether
sentiment expressed in forum posts can be used to identify drug side
effects from disease symptoms. Korkontzelos et al mined forums
and tweets using five different LB methods to assess whether the
addition of a SA feature to a pre-existing adverse drug reaction de-
tection algorithm would improve its efficacy. Liu et al mined www.
webmd.com, specifically reviewing diabetic medication forums.
Their aim was to see if the addition of SA to pre-existing ADR detec-
tion algorithms would enhance detection. All three studies provided
evidence that SA can be used to detect ADR mentions from social
media posts.

One study also explored the interaction between news media

and social media through the lens of sentiment.?*

Du et al analyzed
the impact of sentiment towards Human Papilloma Virus (HPV) vac-
cination, as expressed by tweets, before and after publication of
a positive New York Times article.?* While the average number of
tweets (positive, negative and neutral) pertaining to the topic was
1245 per day, the immediate period after publication of a New York
Times article on HPV saw this number jump to 16,000 with the pro-
portion of positive sentiment tweets rising from 35% to 66%. This
was a remarkable demonstration of the impact of real-world events
on social media sentiment.

Three studies analyzed the sentiment dynamics in cancer fo-
rums.?>?” The study by Portier et al looked at how the sentiment

expressed by users in each thread influences the sentiment of the
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person who started the thread. They were able to show that dis-
cussions especially about pain and chemotherapy side effects typ-
ically started with a negative sentiment but gradually underwent
a positive sentiment shift, reflecting the power of community sup-
port in improving sentiment.?® The study by Cabling et al looked at
the sentiment of the postersin a breast cancer forum on tamoxifen
and found that the most active posters were more likely to have a
positive sentiment than those who posted less frequently.?” The
study by Cobb et al was interesting as it was perhaps the only one
to assess the direct impact of sentiment on compliance. It studied

whether.

4 | DISCUSSION

This scoping review shows that SA can be used to gauge public
perceptions regarding pharmacotherapy as expressed on social
media. The most common application that emerged was of using
SA to assess patient opinion regarding pharmacotherapy. While
there was some consistency with regards to the platform being
mined (Twitter being the most common), there was no consistent
“gold standard” approach used by the authors to conduct SA. This
likely reflects the fact that SA is still in its early stages of develop-
ment, with various methods currently being explored in order to
establish a standard.>?

Lexicon based approaches were more popular than ML based ap-
proaches, especially when the aim was to detect sentiment toward
a particular treatment, with all of them being successful in detecting
the sentiment expressed. The accuracy of this sentiment, as judged
by a manual review, however, was infrequently done.???* Roccetti
et al conducted a manual analysis of a small corpus of tweets to
judge the accuracy of their SA. This analysis was conducted by med-
ical specialist and a software engineer who individually reviewed the
posts and assigned a sentiment to each one. It was interesting to
note that while the agreement between the two manual observers
was good (kappa 0.647) it was not perfect, thus showing that even
amongst human reviewers there can be disagreement about the un-
derlying sentiment of the text being analyzed. While their algorithm
had adequate accuracy in detecting positive and negative sentiment,
it was more likely to classify those posts with less obvious sentiment
as neutral. The one study (Du et al) that used a ML algorithm to an-
alyze sentiment also conducted a manual comparison of a small cor-
pus of tweets which suggested acceptable accuracy. It appears that
SA might be unable to detect the polarity of posts with subtle senti-
ment and tends to classify them as neutral. This is a reassuring find-
ing for two reasons, firstly, it would be better to classify a post with
subtle positive or negative emotion as neutral than the opposite cat-
egory (as was seen with the human reviewers where the computer
scientist assigned more posts as either positive or negative than the
gastroenterologist), thus highlighting that SA can negate some of the
inherent experiential biases that come with human sentiment cod-
ing. Secondly, posts that describe significant ADRs are unlikely to
have subtle emotion, thus more likely to be picked up by SA.

BRITISH 7 of 9
— PHARMACOLOGICAL
SOCIETY

Three studies applied SA to improve the detection of ADRs, an

important cause of morbidity and mortality.>® While some ADRs are
detected during clinical trials, a large number only become obvious
during the post marketing surveillance phase.3* There were signifi-
cant differences between the studies in terms of both the platforms
being mined (DailyStrength forum and Twitter, www.drugratingz.
com and webmd.com) and the technique used (LB by two and both
ML and LB by the other). The study by Korkontzelos et al added
different types of lexicon-based SA to an existing adverse drug re-
action detection program (ADRMine—an algorithm-based software
designed to detect adverse drug reaction mentions in social media
posts) to assess whether identification of negative sentiment would
increase the detection rate. While ADRMine is designed to be highly
sensitive, the addition of SA slightly improved the rate of detection
of ADRs. The most successful lexica employed in this analysis were
developed from Twitter, suggesting that SA is highly domain spe-
cific.3> A similar study was conducted by Liu et al who added SA to
pre-existing ADR detection processes such as N-gram and domain
features and demonstrated that this resulted in increased detection
of ADRs. In contrast, the study by Ebrahimi et al applied both LB
and machine learning SA directly to the mined data and successfully
detected ADRs from the forum posts. This was the only study that
compared ML to LB algorithms, using manual review of the ADRs
identified. While ML based approaches were superior at picking up
ADR mentions and detection of disease effects, the authors con-
cluded that both approaches were promising and that in future per-
haps a hybrid of the two could be used for even more accuracy.?®

Another potential application of SA is understanding the inter-
action between news media and social media through the sentiment
expressed. The article by Du et al showed the remarkable positive
impact a positive news media publication can have on social media
sentiment, thus demonstrating its potential use in public health. This
is an exciting area deserving of further analysis as the relationship
between News media and social media would provide a powerful
tool to help promote and assess the efficacy of public health initia-
tives, especially relevant in the current pandemic.

Perhaps more important is the potential impact of social media
sentiment on real-world behavior. This has already been demon-
strated in other fields such as movies and stock markets, with
positive sentiment resulting in positive box-office and market
returns.®®®” Thus, the guestion arises whether social media sen-
timent might influence individual decisions related to pharmaco-
therapy. This concept was evaluated by Cobb et al who used SA to
evaluate the impact of online messages on a smoker's decision to
use a particular medication (Varenicline) to help them quit smok-
ing.2¢ They analyzed smokers who posted information about their
pharmacotherapy use on QuitNet, a forum for smokers. Users who
started or continued with varenicline were exposed to a greater
number of positive sentiment varenicline messages and had a sig-
nificantly higher ratio of positive to negative messages. While the
authors refrained from drawing concrete conclusions on causal-
ity of sentiment on medication preference and compliance, the

results certainly warrant further scrutiny with targeted studies.
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Cabling et al also looked at the sentiment dynamics on medical
forums (specifically Tamoxifen related posts on Breastcancer.org)
and found that the most active posters were much more likely to
express positive sentiment, thus perhaps explaining the positive
sentiment that persistent users from Cobb et al study were ex-
posed to.

The specifics of negative sentiment associated with certain
medications and side effects suggests SA could be used to identify
specific issues which could be addressed by individual clinicians
with their patients, to allay their fears and improve adherence. This
was demonstrated in the study by Ramagopalan et al on Multiple
Sclerosis medications. This study revealed that patients preferred
oral medications to injections and were more concerned about some
side effects (eg infections) than others. Similarly, the study by Zhang
et al was also able to demonstrate user sentiment towards specific
side effects of chemotherapy, showing some side effects generate
less negative sentiment (“nausea,” “hair loss”) as opposed to others

»u

(“Fatigue,” “neuropathy”), which generated much more negative sen-
timent. This knowledge can be used by clinicians and pharmacists
to better target medication related counselling, thus potentially im-
proving adherence.

While this review does provide preliminary evidence that SA
can be used to understand mass opinion about pharmacother-
apy, several questions remain about the overall process and the
technique of SA. We found heterogeneity between the studies
at several stages of the analytic process, especially at the key
stage of conducting the analysis but also at the earlier stage of
data pre-processing and the subsequent stage of accuracy anal-
ysis. These different approaches are however not specific to SA
of medical texts and reflect the ongoing development and evolu-
tion of the technology itself.%® There is presently no universally
accepted gold standard approach. Current evidence suggests that
the choice of method may be domain-specific (depend on the con-
dition/therapy being analyzed, the platform being mined and the
outcome that is sought). The few studies that have compared the
different approaches have generally failed to establish a gold stan-
dard, with each approach having its own set of advantages and
disadvantages.3?4°

As the technology is further refined, standardization of meth-
odology and the establishment of healthcare specific SA methods
(either ML algorithms or a medical-sentiment lexicon) may facilitate
the development of further validity regarding the application of this
technology to the health care sector.***?

This review has a few limitations. Sentiment analysis is dependent
on the domain or topic being studied, thus the lack of validated lexica
or ML algorithms of conducting SA specific to the field of healthcare
meant that the quality of the SA would be limited. Future work in this
field to establish either a standardized medical lexicon or appropriate
classifier would enhance the quality of the SA being conducted.

Our inclusion criteria were intentionally specific, thereby limit-
ing the focus of SA just to the realm of pharmacotherapy; however,
there are other applications of SA in the field of healthcare including

(but not limited to) mining opinions regarding healthcare received,

determining clinical outcomes and understanding emotions of being

unwell.*?

5 | CONCLUSION

This scoping review provides an overview of current evidence on the
multifaceted applicability of SA. While the most obvious utilization is in
the assessment of public sentiment about particular medications, the
fact that SA is also being used for other tasks such as adverse drug re-
action detection is a promising glimpse into the hitherto untapped po-
tential of this technology. The heterogeneity of approach to SA across
the studies reflects the rapid pace at which this technology continues
to evolve. While it has already found use in the fields of commerce
and marketing, its current state of clinical equipoise may be resolved
if a universally agreed standardized approach is established. This will
have far reaching consequences across various domains of healthcare,
including but not limited to patient safety and public health initiatives.
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