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Abstract: Compounds from the N-benzylphenethylamine (NBPEA) class of novel psychoactive
substances are being increasingly utilized in neurobiological and clinical research, as diagnostic
tools, or for recreational purposes. To understand the pharmacology, safety, or potential toxicity
of these substances, elucidating their metabolic fate is therefore of the utmost interest. Several
studies on NBPEA metabolism have emerged, but scarce information about substances with a
tetrahydrobenzodifuran (“Fly”) moiety is available. Here, we investigated the metabolism of 2-(8-
bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)-N-(2-methoxybenzyl)ethan-1-amine (2C-
B-Fly-NBOMe) in three different systems: isolated human liver microsomes, Cunninghamella elegans
mycelium, and in rats in vivo. Phase I and II metabolites of 2C-B-Fly-NBOMe were first detected in
an untargeted screening and identified by liquid chromatography–tandem mass spectrometry (LC–
MS/MS). Several hypothesized metabolites were then synthesized as reference standards; knowledge
of their fragmentation patterns was utilized for confirmation or tentative identification of isomers.
Altogether, thirty-five phase I and nine phase II 2C-B-Fly-NBOMe metabolites were detected. Major
detected metabolic pathways were mono- and poly-hydroxylation, O-demethylation, oxidative
debromination, and to a lesser extent also N-demethoxybenzylation, followed by glucuronidation
and/or N-acetylation. Differences were observed for the three used media. The highest number of
metabolites and at highest concentration were found in human liver microsomes. In vivo metabolites
detected from rat urine included two poly-hydroxylated metabolites found only in this media.
Mycelium matrix contained several dehydrogenated, N-oxygenated, and dibrominated metabolites.

Keywords: 2C-B-Fly-NBOMe; LC–MS; metabolite synthesis; metabolomics; human liver microsomes;
Cunninghamella elegans; in vivo experiment (rats)

1. Introduction

New Psychoactive Substances (NPS) are novel analogues of already legally regulated
psychoactive substances. NPS represent a very diverse set of compounds, which are divided
into nine different groups based on their chemical structure [1]. One of these groups are
N-benzylphenethylamines (NBPEAs, Scheme 1), highly potent agonists of the serotonin
2A receptor (5-HT2AR), originating from the phenethylamines by functionalization of the
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free amino group by a substituted benzyl moiety [2,3]. NBPEAs represent an extensive,
diverse, and widespread group of psychedelic compounds that have gained large attention
for recreational, therapeutic, and scientific uses [3]. Understanding the metabolism of these
substances is of high interest from both pharmacological and toxicological perspectives.

Scheme 1. The chemical structure of NBPEAs and 2C-B-Fly-NBOMe (1).

2-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)-N-(2-methoxybenzyl)ethan-
1-amine (2C-B-Fly-NBOMe, compound 1; Scheme 1), a substance belonging to the NBPEAs,
was first reported in a 1999 poster presenting the results of a search for potent and stere-
oselective 5-HT2AR antagonists and its new agonists as tools for the study of 5-HT2AR-
mediated functions [4]. The substitution of amine by a benzyl group with a methoxy
(NBOMe) or hydroxy (NBOH) substituent in the ortho position leading to an extreme
increase in potency at the 5-HT2 receptors was found to be generalizable [5,6]. This scaffold
was further investigated by Ralf Heim, developing and analyzing the plethora of novel N-
benzylphenethylamine analogues [7]. N-benzyl substitution of the phenethylamine exerts
not only high binding affinity at the 5-HT2AR and serotonin 2C receptor (5-HT2CR) [2,3,8],
but often also high selectivity over other serotonin receptor subtypes, that make these
compounds intriguing potential tools to study 5-HT2AR-mediated functions. Compound 1
exhibits subnanomolar affinity and high activation efficacy of the 5-HT2AR in a neuronal
GF62 cell line (Ki = 0.16± 0.04 nM with antagonist [3H]MDL100907; ED50 = 1.06 ± 0.19 nM
assessed as effect on phosphoinositide (PI) hydrolysis; intrinsic activity 83% compared
to the activation by 10 µM 5-HT) [9]. However, examination of in vivo biodistribution of
compound 1 in pig brain indicated faster kinetics and reversibility of binding, therefore,
it was not further examined as a suitable diagnostic tool [9]. Regardless of the inconve-
nient properties for pharmacy, such a high compound potency on these receptors may
arouse the interest of psychonauts who explore the altered state of consciousness using
psychedelic drugs.

In addition to the cardiotoxic [10] and neurotoxic [11,12] effects on cell lines, NBOMes
can affect the cardiovascular system through inhibition of the human Ether-à-go-related
Gene (hERG) potassium channel [10] and are further associated with intoxications with
numerous seizures. In more severe cases these seizures may result in fatalities with
symptoms such as acute kidney or even multiorgan failure [13]. Due to the high potency
of these substances and relatively frequently occurring acute intoxications, which is in
contrast with other psychedelics, these substances pose a serious health risk to the user.
Their danger may be further exacerbated by their presence in counterfeit ecstasy or lysergic
acid diethylamide (LSD) products [14–16]. Although an NBOMe intoxication is usually
treated with symptomatic treatment, in many cases it is necessary to know the causes of
individual poisoning and, therefore, it is necessary to have appropriate methodologies for
non-target screening available. Such methods need to be sensitive enough due to the low
concentrations of the parent substance in body fluids, which in some cases may already be
below the limit of detection [17]. In such cases, the analysis must rely on the identification
of metabolites, which may be responsible even for some of the toxic effects [18]. Knowledge
of the metabolism of these substances and synthetic approaches for the preparation of these
standards thus become relatively essential for laboratories focused on forensic toxicology.

Since no data for 2C-B-Fly-NBOMe activity in humans are currently available,
Richter et al. [19] studied the metabolism of 2C-B-Fly-NBOMe in terminally differenti-
ated human cells from hepatocellular carcinoma (HepaRG), identifying in a total of five
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phase I metabolites and one phase II metabolite. Two mono-hydroxylated isomers, one
O-demethylated and one O-demethylated-mono-hydroxylated metabolites were tentatively
identified (see Scheme 2). The 2C-B-Fly-NBOH metabolite further undergoes conjugation
with glucuronic acid, providing 2C-B-Fly-NBOH glucuronide, which is the only phase
II metabolite identified in this study [19]. However, since no standards were used in the
metabolic study, the exact positions of the hydroxy moieties of the described hydroxylated
metabolites remain unclear.

Scheme 2. Tentative metabolites of compound 1 as reported by Richter et al. [19].

Because only five metabolites of 2C-B-Fly-NBOMe were known, we aimed to identify
other metabolites of this compound. In the present study, we focused on the comparison of
the metabolism of 2C-B-Fly-NBOMe in human liver microsomes (HLM), in the mycelium of
Cunninghamella elegans (C. elegans), and in vivo in rats. Pooled HLM are both a verified and
cheap system for studies of the metabolism of compounds. Not only do they well represent
a true population sample, but also are fully characterized for cytochrome P450 activities and
selected phase II enzymes. C. elegans is also a cheap and reliable system that can be used
for metabolism studies as it can facilitate reactions such as N-dealkylation, hydroxylation,
or dehydrohalogenation. Rat urine is often used as a golden standard in forensic science
for metabolism studies. We aimed to compare the differences between our in vitro and
in vivo models, as well as confirm or exclude proposed metabolites by comparison with
synthesized standards. First, a non-targeted screening was performed using HPLC with
a high-resolution mass detector. We synthesized and fully characterized standards of
several proposed metabolites and deuterium-labeled standards 2C-B-Fly-NBOMe-d3 and
2C-H-Fly-NBOMe-d3 and used them to confirm or disprove their occurrence.

2. Results
2.1. Untargeted Analysis and Synthesis of Reference Standards

For the identification of metabolites, an untargeted screening approach was applied.
First, high-performance liquid chromatography (HPLC) on a reversed-phase was em-
ployed for the separation of HLM, C. elegans growth medium, and rat urine samples. A
hybrid triple quadrupole time-of-flight mass spectrometer was utilized for high-resolution
measurements. The obtained data were screened for exact precursor ion masses (PMs) of
presumable metabolites. High-resolution tandem mass spectrometry (HR-MS/MS) data
were recorded as well (Table S1 in Supplementary Data). For unambiguous identification
of the formed metabolites and a better understanding of their fragmentation patterns,
we opted to synthesize tentative metabolites formed by hydroxylation, O-demethylation,
debromination, N-demethoxybenzylation, and combinations thereof.

A key intermediate in the synthesis of “Fly” compounds is the heterocyclic nucleus,
tetrahydrobenzo[1,2-b;4,5-b’]difuran (4), which was synthesized by previously published
procedures [20,21] starting from commercially available 1,4-bis(2-hydroxyethoxy)-benzene.
Formylation, Henry condensation to nitroalkene, its reduction to phenethylamine by
lithium aluminum hydride provided 2C-H-Fly (10; Scheme 3), and lastly, aromatic bromi-
nation provided 2C-B-Fly (11). Metabolites bearing hydroxy group on the N-benzyl moiety
(12–15) were prepared by reductive alkylation of compound 2 with commercially available
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methoxy-hydroxybenzaldehydes. β-hydroxy derivative (8; Scheme 3) was prepared as
depicted in Scheme 4. Hydroxynitrile 6 was formed by cyanohydrin reaction and sep-
arated from the aldehyde 5 by column chromatography, subsequently reduced to the
β-hydroxy-phenethylamine (7) by lithium aluminum hydride and finally brominated by
elemental bromine in acetic acid. Due to synthetic difficulty, standards for metabolites
bearing hydroxy groups on the furan rings were not attempted. Debrominated metabolite
(16) was prepared by reductive alkylation of 10.

Scheme 3. Synthesized metabolites 8, 10–15.

Scheme 4. Synthesis of β-hydroxy-2C-B-Fly (8). (a) DCMME, SnCl4; (b) KCN, H2SO4; (c) LiAlH4; (d) Br2, AcOH.

2.2. LC–MS Analysis of the Synthesized Standards of Proposed Metabolites

All authentic standards of the proposed metabolites prepared by organic synthesis
were subjected to a thorough analysis of first- and second-order fragmentation. The
acquired data are summarized in Table 1 and the origin of characteristic fragment ions (FIs)
is clarified below.

2.3. Detection of Metabolites

Both HR-MS only and HR-MS/MS data were assessed concerning the observed
fragmentation patterns of in-house synthesized reference standards. Identification of
2C-B-Fly-NBOMe metabolites was based on the recorded exact masses of precursor ions
(PMs) and their characteristic fragment ions (FIs) in high-res-MS2. Table 2 summarizes all
detected metabolites.
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Table 1. 2C-B-Fly-NBOMe and its proposed metabolites: precursor ion masses, characteristic fragment ions in MS2 and MS3

scan modes, and retention times (RT). The first order product ions fragmented in linear ion trap are written in bold. Data
were acquired by an UltiMate 3000 LC system (Thermo Fisher Scientific, Waltham, MA, USA) combined with a QTrap 6500
mass spectrometer (Sciex).

Synthesized
Standard

Precursor Ion
[m/z]

MS2 Fragment Ions
[m/z] 1

MS3 Fragment Ions
[m/z] 1

HPLC
Method RT [min]

2C-B-Fly-NBOMe (1) 404
91 (42), 121 (100), 173 (1),
188 (2), 267 (8), 296 (8),

325 (5)

121: 77 (9), 91 (100), 93
(94), 121 (2) 267: 145 (3),

159 (7), 173 (24), 188
(100)

method I 6.0

C4’-hydroxy-2C-B-Fly-
NBOMe (15) 420 107 (15), 137 (100), 188

(5), 267 (92), 284 (34)

137: 77 (14), 79 (21), 107
(100), 109 (16), 137 (33)

284: 173 (2), 188 (12), 267
(100), 284 (40)

method I
method II

5.1
8.8

C5’-hydroxy-2C-B-Fly-
NBOMe (14) 420

77 (10), 107 (70), 137
(100), 188 (4), 203 (2), 267

(15), 312 (12), 341 (5),
420 (11)

312: 147 (16), 175 (100),
188 (11), 279 (8), 312 (47)
341: 175 (43), 203 (6), 310
(27), 312 (78), 341 (100)

method I
method II

5.2
8.8

C6’-hydroxy-2C-B-Fly-
NBOMe (13) 420

77 (5), 107 (22), 109 (14),
137 (100), 188 (8), 267

(98), 284 (78)

267: 145 (3), 159 (5), 173
(22), 188 (100), 267 (74)
284: 173 (1), 188 (7), 267

(100), 284 (4)

method II 9.3

2C-H-Fly-NBOMe-
d3 (16) 329

91 (86), 124 (100), 176 (5),
187 (13), 189 (49), 204 (8),

312 (32), 329 (27)

189: 133 (9), 161 (26), 174
(17), 187 (100), 189 (23)
312: 124 (93), 150 (53),
175 (40), 201 (73), 270

(93), 312 (100)

method I 4.2

2C-B-Fly-NBOH (12) 390
77 (3), 107 (64), 173 (1),

188 (13), 254 (1), 267
(100), 284 (40), 390 (12)

267: 145 (4), 159 (6), 173
(26), 188 (100), 267 (94)

284: 173 (1), 188 (10), 267
(100), 284 (11)

method I 5.1

2C-B-Fly (11) 284
145 (1), 159 (2), 173 (9),

188 (48), 267 (100),
284 (2)

188: 131 (5), 145 (9), 159
(20), 173 (100), 188 (23)
267: 145 (3), 159 (5), 173
(19), 188 (100), 267 (29)

method II 7.7

hydroxy-2C-B-Fly (8) 300 174 (7), 186 (11), 203
(100), 265 (6), 282 (7)

203: 174 (17), 186 (19),
203 (100) 282: 174 (3),

186 (3), 203 (100)
method II 6.8

2C-H-Fly (10) 206 91 (7), 105 (23), 133 (53),
161 (100), 189 (93)

161: 91 (2), 105 (9), 133
(27), 161 (100) 189: 105
(15), 133 (44), 161 (100),

171 (16), 189 (27)

method II 6.4

1 Relative intensity of a fragment ion is given in brackets [%].

Table 2. 2C-B-Fly-NBOMe and its detected phase I and II metabolites: precursor ion exact masses (PM), retention times (RT),
and detectability in rat urine (RU), human liver microsomes (HLM), and C. elegans culture medium (CE). Data was acquired
by an UltiMate 3000 LC system (Thermo Fisher Scientific) combined with a hybrid TripleTOF 5600 mass spectrometer (Sciex).

No. Metabolite PM [m/z] RT [min] RU HLM CE

M1 2C-B-Fly-NBOMe 404.0861 8.4 C C C
M2 C5′-hydroxy-2C-B-Fly-NBOMe 420.0810 7.8 C C
M3 hydroxy-2C-B-Fly-NBOMe isomer 2 420.0810 6.8 I I I
M4 hydroxy-2C-B-Fly-NBOMe isomer 3 420.0810 7.7 I
M5 hydroxy-2C-B-Fly-NBOMe isomer 4 420.0810 8.1 I I
M6 2C-B-Fly-NBOH 390.0705 8.0 C C
M7 2C-H-Fly-NBOMe 326.1756 7.6 D C
M8 2C-B-Fly 284.0286 6.5 D C C
M9 hydroxy-2C-B-Fly 300.0235 4.7 I I D

M10 dihydroxy-2C-B-Fly-NBOMe isomer 1 436.0760 6.1 I I
M11 dihydroxy-2C-B-Fly-NBOMe isomer 2 436.0760 6.2 I
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Table 2. Cont.

No. Metabolite PM [m/z] RT [min] RU HLM CE

M12 dihydroxy-2C-B-Fly-NBOMe isomer 3 436.0760 6.3 I
M13 dihydroxy-2C-B-Fly-NBOMe isomer 4 436.0760 6.5 D I
M14 dihydroxy-2C-B-Fly-NBOMe isomer 5 436.0760 7.1 D D
M15 dihydroxy-2C-B-Fly-NBOMe isomer 6 436.0760 7.3 I
M16 hydroxy-2C-B-Fly-NBOMe-N-oxide 436.0760 9.0 D D
M17 trihydroxy-2C-B-Fly-NBOMe isomer 1 452.0709 6.3 I D
M18 trihydroxy-2C-B-Fly-NBOMe isomer 2 452.0709 6.9 D
M19 hydroxy-2C-H-Fly-NBOMe 342.1705 6.3 I D
M20 dihydroxy-2C-H-Fly-NBOMe 358.1654 9.8 I
M21 trihydroxy-2C-H-Fly-NBOMe 374.1604 9.1 I
M22 hydroxy-2C-B-Fly-NBOH isomer 1 406.0654 6.4 I D
M23 hydroxy-2C-B-Fly-NBOH isomer 2 406.0654 7.5 I
M24 dihydroxy-2C-B-Fly-NBOH 422.0603 5.8 I
M25 trihydroxy-2C-B-Fly-NBOH 438.0552 4.9 D
M26 dehydro-2C-B-Fly-NBOMe isomer 1 402.0705 8.1 I I
M27 dehydro-2C-B-Fly-NBOMe isomer 2 402.0705 8.6 I I I
M28 dehydro-2C-B-Fly-NBOMe isomer 3 402.0705 9.0 I I
M29 dehydro-hydroxy-2C-B-Fly-NBOMe 418.0654 6.9 D I D
M30 dehydro-2C-B-Fly-NBOMe-N-oxide 418.0654 10.0 I
M31 dehydro-dihydroxy-2C-H-Fly-NBOMe 356.1498 10.0 I
M32 dehydro-2C-B-Fly-NBOH 388.0548 8.3 I D
M33 dehydro-dihydroxy-2C-H-Fly-NBOH isomer 1 342.1341 9.4 I
M34 dehydro-dihydroxy-2C-H-Fly-NBOH isomer 2 342.1341 9.8 I
M35 dihydroxy-2C-B-Fly 316.0184 4.7 D

M3-G hydroxy-2C-B-Fly-NBOMe glucuronide isomer 1 596.1131 6.1 I
M4-G hydroxy-2C-B-Fly-NBOMe glucuronide isomer 2 596.1131 6.4 I
M9-G hydroxy-2C-B-Fly glucuronide 476.0556 4.1 I

M11-G dihydroxy-2C-B-Fly-NBOMe glucuronide 612.1080 5.9 D
M19-G hydroxy-2C-H-Fly-NBOMe glucuronide 518.2026 5.6 D
M22-G hydroxy-2C-B-Fly-NBOH glucuronide isomer 1 582.0975 5.8 I
M22-G hydroxy-2C-B-Fly-NBOH glucuronide isomer 2 582.0975 5.9 I
M-Ac1 dehydro-2C-B-Fly acetate 324.0235 6.4 I
M-Ac2 dehydro-dihydroxy-2C-B-Fly acetate 356.0134 4.7 I

C—confirmed by comparison with synthesized reference standard; I—tentatively identified; D—detected.

Obtained information-dependent analysis (IDA) scans were evaluated in agreement
with the standard screening approaches conventions. Most abundant product ions, listed
in Supplementary Table S1, were used to propose the chemical structures of individual
metabolites. For unambiguous identification of the metabolite, the accurate mass of pre-
cursor ion must match the calculated monoisotopic mass and the underlying HR-MS/MS
spectrum must fit with a library spectrum of the reference standard. In the absence of
available reference spectra, at least the major peaks in recorded HR-MS/MS spectra were
assigned to particular fragment ions for tentative identification of metabolites, even though
it was not always possible to determine the exact positions of functional groups. For
detection, the accurate mass of precursor ion and its isotope pattern had to match with
the proposed elemental composition. Altogether, thirty-five phase I and nine phase II
metabolites of 2C-B-Fly-NBOMe were detected.

Concerning phase II metabolites, seven O-glucuronides and two N-acetylated metabo-
lites were detected. Their fragmentation patterns are in agreement with the corresponding
phase I metabolites after elimination of glucuronic acid (–C6H8O6; −176.0321 u) in the
case of glucuronides of the acetyl moiety (–C2H2O; −42.0106 u) in the case of N-acetylated
compounds. Several hydroxy metabolites (M9-G, M19-G, M22-G, and M-Ac2) lose water
(–H2O; −18.0106 u) at the same time.
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3. Discussion

The molecules were conceptually divided into two distinct parts, i.e., the 2,3,6,7-
tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)ethanamine (Fly) part and the N-(2-methoxybenzyl)
(NBOMe) part. Observed fragmentation patterns of 2C-B-Fly-NBOMe (1; M1; PM at m/z
404.0861, M + H) are in good agreement with previously published data in [9]. The major
FIs correspond to the cleavage of the methoxybenzyl moiety (at m/z 121.0653) and tropy-
lium ion (at m/z 91.0548) formed after the loss of the methoxy group (−30.0106 u), as is
the case with metabolites bearing the unchanged NBOMe part. The FI at m/z 325.1678
results from a loss of bromine as a radical. Previously undescribed FI detected at m/z
296.1412 could not be formed from the unchanged parent compound 1, instead, it prob-
ably arose from a loss of ammonia following a rearrangement reaction initiated by an
intramolecular electrophilic attack of the benzyl carbon at the tetrahydrobenzodifuran ring
system, analogous to a rearrangement postulated by Caspar et al. [22] for 2-(4-iodo-2,5-
dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25I-NBOMe). The FIs representing
the Fly part showed a low abundance of less than 8%.

The situation changes dramatically with O-demethylation at the NBOMe part, as
represented by fragmentation of 2C-B-Fly-NBOH (12; M6; PM at m/z 390.0705, M + H). FIs
formed from the Fly part were much more abundant, presumably due to a hydrogen bond
formation between the nitrogen and the hydroxy group. The FIs registered at m/z 284.0286,
267.0021, and 188.0837 correspond to protonated 2C-B-Fly (11), an ion formed by a loss of
ammonia (−17.0266 u) and by the subsequent loss of bromine as a radical, respectively.
Cleavage of hydroxybenzyl moiety resulted in the FI at m/z 107.0497.

Higher abundances of FIs representing the Fly part were also noticeable with deriva-
tives bearing an extra hydroxy group at the NBOMe part. We synthesized three tentative
monohydroxylated metabolites of 2C-B-Fly-NBOMe (PM at m/z 404.0861, M + H), the
only difference between them being the exact position of the hydroxy group attached to
the aromatic ring of NBOMe moiety. For all of them, the most abundant FIs corresponds
to the cleavage of the modified NBOMe moiety (at m/z 137.0603) and to subsequently
formed tropylium ion with the attached hydroxy group (at m/z 107.0497). We consider
the intramolecular hydrogen bridge formation between the nitrogen atom and the C6’-
hydroxy group to be the cause of increased abundance of the Fly part fragments and of
the prolonged retention time of C6′-hydroxy-2C-B-Fly-NBOMe (13) compared to other
studied isomers. In addition to the typical Fly part FIs (at m/z 284.0286, 267.0021, and
188.0837), C5’-hydroxy-2C-B-Fly-NBOMe (14) also provided fragments resulting from a
loss of bromine (FI at m/z 341.1627), and the aforementioned rearrangement followed by
the amine shift (FI at m/z 312.1362).

Fragmentation patterns of 2C-H-Fly-NBOMe (M7; PM at m/z 326.1756, M + H) were
examined using the deuterated analogue of the compound with three deuterium atoms
bound in the methoxy group (16). As the NBOMe part of the molecule remained unsub-
stituted, the major FIs correspond to the cleavage of the methoxybenzyl group (at m/z
121.0653) and subsequently formed tropylium ion (at m/z 91.0548). The FI at m/z 309.1491
resulted from a loss of ammonia (−17.0266 u) following the same rearrangement reaction
described for 2C-B-Fly-NBOMe (1). The Fly part was represented by the iminium ion
(at m/z 204.1025) formed by benzyl cleavage, and the FI at m/z 189.0916 formed by the
subsequent loss of NH (−15.0109 u). Indeed, the only difference between the latter ion and
the Fly part FI (at m/z 188.0837) typical for 2C-B-Fly (M8; PM at m/z 284.0286, M + H) and
other brominated Fly compounds is the presence of a hydrogen atom at position 8 of the
2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran ring system.

One monohydroxylated 2C-B-Fly isomer (8, PM at m/z 300.0235, M + H) carrying the
hydroxy group in benzylic position was synthesized and used to study the fragmentation
fate of such compounds hydroxylated at the Fly part of the molecule. The major FI (at
m/z 203.0946), also formed from FI (at m/z 282.0130) representing dehydrated (–H2O;
−18.0106 u) parent compound 8, corresponds to unsaturated ammonium ion arising from a
loss of bromine. The presence of a double bond resulting from water elimination is evident
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in other registered FIs (at m/z 264.9864 and 186.0684) as well. However, these fragments
cannot be used to determine the exact position of the hydroxy group within the Fly part.

From the synthesized metabolites, 2C-B-Fly-NBOMe (1; M1), 2C-B-Fly-NBOH (12;
M6), 2C-H-Fly-NBOMe (16; M7), 2C-B-Fly (11; M8), and C5’-hydroxy-2C-B-Fly-NBOMe
(14; M2) were confirmed in experimental samples. The other three monohydroxylated
metabolites (M3–M5) have the unchanged methoxyarene ring (typical FIs at m/z 121.0653
and 91.0548) and bear the hydroxy group at sp3 hybridized carbon atom either in the
Fly part (unsaturated FI at m/z 264.9864) or in the benzylic position of NBOMe part
of the molecule (FI at m/z 267.0021 suggests intact Fly part). Although we proposed
and synthesized an N-demethoxybenzylated-monohydroxylated metabolite (8), it was
not the isomer found in our analysis. The detected metabolite is hydroxylated at the
2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran; however, the exact position remains unknown.
Characteristic Fly and NBOMe part FIs recognized in preceding fragmentation analysis
were searched for in HR-MS/MS data to determine the structure of the preliminarily
identified metabolites as accurately as possible.

Among polyhydroxylated substances, dihydroxylation of the Fly part could be distin-
guished by FIs at m/z 279.9973 and 262.9708 representing protonated Fly part with two
double bonds and the compound formed by a subsequent loss of ammonia (−17.0266 u),
respectively. Several dehydrogenated metabolites were also tentatively identified. How-
ever, if both a hydroxy group and a double bond are present in the metabolite’s structure,
it is virtually impossible to propose the exact position of these functional groups without
comparison with a reference standard, as the same FIs (at m/z 282.0130 and 264.9864)
indicate the presence of both of these structural features in the Fly part. Oxidative de-
bromination provides phenolic compounds bearing the hydroxy group at position 8 of
the 2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran ring system. These substances form the FI
at m/z 151.0759 corresponding to the core heterocyclic nucleus still carrying the phenolic
hydroxy group after the cleavage of one of the tetrahydrofuran rings with only a methyl
group remaining at the benzene ring.

3.1. Comparison of 2C-B-Fly-NBOMe Metabolism in Different Species

Diverse results of metabolic transformations in vivo in rats and in vitro in C. elegans
mycelium and HLM were observed. Incubation of microsomes was generally rich in phase
I metabolites with twenty-nine metabolites detected. The concentration levels of confirmed
metabolites were also the highest in this matrix.

Directly after subcutaneous application of a relatively high dose (50 mg·kg−1) of 2C-
B-Fly-NBOMe (1) into the rats, their urine was continuously collected in a metabolic cage.
Two portions of urine were collected after 6 h and subsequently after 24 h to identify early
phase and late phase metabolites. The dose was selected according to the potency of related
compounds after it was proven in-house to be safe for in vivo experiments using Modified
Acute Toxicity assessment (OECD no. 423, 2001; unpublished data). Rat urine samples con-
tained fifteen phase I metabolites. Three of them—one isomer of dihydroxylated metabolite
(M12) and two demethylated compounds hydroxylated to higher degrees (M24, M25)—were
identified as urinary metabolites only, as they were not formed in in vitro protocols. On
the other hand, the overall number and concentration level of urinary metabolites were
lower compared to incubation of HLM. Altogether, nine phase II metabolites were also
excreted in rat urine, of which seven were conjugates of glucuronic acid.

C. elegans released to the medium seventeen metabolites. Apart from those formed
by the most widespread transformations of NBPEAs (hydroxylation, O-demethylation,
N-demethoxybenzylation), several dehydrogenated metabolites (M26–M30 and M32) and
even two N-oxides were produced by the mycelium. The extent of debromination leading
to 2C-H-Fly-NBOMe (M7) was highest in this matrix. In one case, C. elegans generated an
isomer hydroxylated in a different position (M18) compared to that found in rat urine and
microsomal incubation.
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3.2. Proposed Metabolic Pathways

The metabolic pathways of 2C-B-Fly-NBOMe (M1) are depicted in Figure 1. They
were propounded based on the metabolites observed either in rat urine, HLM, or C. elegans
mycelium. The parent drug M1 undergoes the same major metabolic transformations de-
scribed for structurally related N-benzylphenethylamines, for example, 2C-B-NBOMe [23].
The heterocyclic tetrahydrobenzo[1,2-b;4,5-b’]difuran core remains unopened but rep-
resents the preeminent site for hydroxylation and subsequent dehydration leading to
restoration of aromaticity of the furan ring. The same metabolic fate of the core heterocyclic
structure has been described for several unsubstituted Fly compounds including 2C-B-Fly,
2C-E-FLY, 2C-EF-FLY, and 2C-T-7-FLY [24,25]. In good agreement with previously reported
data [19], the most abundant metabolites are the result of hydroxylation, dihydroxylation,
O-demethylation, and a combination thereof. N-Demethoxybenzylation represents only
a minor metabolic pathway.

Figure 1. Metabolic pathways of 2C-B-Fly-NBOMe.

The following transformations were found to give rise to phase I metabolites: hydroxy-
lation (M2, M3, M4, M5), dihydroxylation (M10, M11, M12, M13, M14, M15), and trihydrox-
ylation (M17, M18), demethylation (M6), N-demethoxybenzylation (M8), debromination
(M7), a combination of demethylation with monohydroxylation or polyhydroxylation
(M22, M23, M24, M25), and combination of N-demethoxybenzylation with hydroxylation
or dihydroxylation (M9, M35).

Even though the debrominated metabolite M7 was found in C. elegans culture media
and also in HLM samples in a limited amount, it seems that the preferred way of bromine
cleavage is oxidative debromination resulting in corresponding phenolic compound (M19,
M20, M21, M31, M33, and M34). Furthermore, if the Fly part is substituted with an extra
hydroxy group, the retention time of such a phenolic analyte is usually high, probably
due to intramolecular hydrogen bridge bond formation between the two hydroxy groups,
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although the eventuality of oxidation to N-oxide cannot be completely ruled out without
comparison with an authentic standard.

Several dehydrogenated metabolites (M26–M34) were observed predominantly in
HLM samples. Dehydrogenation was described as a CYP-catalyzed reaction for the 2C-
NBOMe drug family [26]. According to our study, the compounds with newly formed
double bonds could further be metabolized by hydroxylation (M29), hydroxylation and
oxidative debromination (M31), O-demethylation (M32), and combination thereof (M33,
M34). On the other hand, we bring evidence that a dehydrogenated metabolite could also
be formed by artificial dehydration of the corresponding metabolite hydroxylated at the
α-position to the nitrogen, as the unstable hemiaminal eliminates water in the ion source
of the mass spectrometer. The formation of such an artificial metabolite was predicted by
Caspar et al. [23] and is supported by our observation that metabolite M26 accompanies
its hydrated counterpart—hydroxylated metabolite M5, at the same retention time, and is
present in the same experimental samples.

In rat urine samples, several phase II metabolites were formed by glucuronidation
(G) of the corresponding phase I metabolites (M3-G, M4-G, M9-G, M11-G, M19-G, M22-
G1, M22-G2). Two N-acetylated metabolites (M-Ac1, M-Ac2) were detected only in their
conjugated forms.

4. Materials and Methods
4.1. Human Liver Microsomes

To study the 2C-B-Fly-NBOMe metabolism, isolated HLM pooled from fifty donors
(Thermo Fisher Scientific, Waltham, MA, USA) were chosen [19]. Upon delivery, the HLM
were kept at −140 ◦C in the dark. For the experiment, HLM were thawed slowly on
ice, which was followed by reaction mixture preparation. The mixture consisted of 2 µL
of 2C-B-Fly-NBOMe (final concentration of 10 µM), 25 µL of HLM (20 mg·mL−1), and
163 µL of 100 mM phosphate-buffered saline. The reaction mixture was preincubated at
37 ◦C for 10 min in a water bath. Then, reaction initiation was started by the addition of
10 µL of 20 mM freshly prepared nicotinamide adenine dinucleotide phosphate (NADPH)
dissolved in 0.1 M phosphate-buffered saline. After that, the reactions proceeded for 0, 15,
30, 45, and 60 min at 37 ◦C with gentle agitation. The reaction termination was performed
using the addition of 200 µL of ice-cold acetonitrile at each time point. Directly after the
reactions were quenched, the samples were frozen at−80 ◦C and kept until the MS analysis.
As negative controls, we used: a no 2C-B-Fly-NBOMe sample, a no HLM sample, a no
NADPH sample, and a heat-inactivated microsome sample (45 ◦C, 30 min pretreatment).
Further, to verify unaffected HLM metabolism, as a positive control, 10 µM testosterone
was used. The experiment was performed in two independent replicates.

4.2. Cunninghamella elegans

C. elegans mycelium (Cunninghamella elegans Lendner 10028b™) was maintained on
potato dextrose (PD) agar plates (12 g·L−1 PD medium, 5 g·L−1 agar, both Formedium, UK) at
24 ◦C in the dark. For the experiment, a modified procedure according to Grafinger et al. [27]
was used. Approx. 1 cm2 of the mycelium was scraped from a plate and inoculated onto a
fresh PD agar plate, on which it was grown for 9 days at 24 ◦C in the dark. Then, approx.
1 cm2 of the freshly grown culture was inoculated (i) onto a fresh PD agar plate and (ii)
into 35 mL of liquid PD medium in a 500 mL Erlenmeyer flask. PD agar plates with the
inoculated mycelia were grown at 24 ◦C in the dark; PD medium with the inoculated
mycelia was grown at 28 ◦C in the dark on a rotary shaker at 100 rpm. After 4 days of
growth, the reaction with 2C-B-Fly-NBOMe was set up. First, 50 mg 2C-B-Fly-NBOMe was
dissolved in 4 mL of distilled water and 2 mL of methanol and vortexed until the solution
was clear. Then, 5 mL of this solution was mixed with 5 mL of PD medium and the mixture
was filtered through a 0.22 µm polyvinylidene difluoride membrane filter to ascertain
sterility. In a 50 mL sterile tube, 35 mL of liquid PD medium, 2 mL of the 2C-B-Fly-NBOMe
+ PD medium filtered mixture (or 2 mL of distilled water/methanol 2:1 mixture in the case
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of a control sample), and C. elegans mycelium scraped from the 4-day old PD agar plate
were homogenized by vortexing for 1 min. The contents of the 50 mL tube were added
to the 500 mL Erlenmeyer flask with the 4-day old mycelium, the flask was briefly mixed
by swirling and 2 mL of the medium was sampled as the starting point of the reaction.
Further samples were taken at 24, 48, 72, and 168 h. The samples were stored at −80 ◦C
until the analysis. The total amount of 2C-B-Fly-NBOMe per reaction was 8.32 mg, i.e., the
final concentration was 0.12 mg·mL−1. Control reactions with no 2C-B-Fly-NBOMe and
with no mycelia were set up.

4.3. Animals

Urine samples of laboratory rats were obtained using an adapted method described
earlier [28–31]. All used animals were Wistar rats (n = 7) acquired from VELAZ (Prague,
Czech Republic), approximately 11 weeks old and weighing 300–375 g. Since oestrous
cycle may affect metabolism in rats [28], only males were used. Animals were housed
in pairs in a 12/12 h light/dark cycle with ad libitum water and food pellets. Both
temperature (22 ± 2 ◦C) and humidity (30–70%) were controlled. 2C-B-Fly-NBOMe (1)
was dissolved in deionized water and 20 µL of Tween-20 using an ultrasonic homogenizer.
The compound was injected in a dose of 50 mg·kg−1 subcutaneously (s.c.) in a volume
of 2 mL·kg−1. Urine samples were collected using metabolic chambers equipped with a
pre-cooled collector maintaining the temperature of −4 ◦C for the following 24 h. The
samples were subsequently frozen and kept at −80 ◦C until the analyses.

All experiments were conducted according to the principles of animal welfare of the
National Committee for the Care and Use of Laboratory Animals (Prague, Czech Republic),
and Guidelines of the European Union (86/609/EU). The protocol was approved by the
National Committee for the Care and Use of Laboratory Animals (Prague, Czech Republic)
under the number MZDR 48237/2017-3/OVZ on 9 October 2017.

4.4. Chemistry

Chemicals for the synthesis were purchased from Sigma-Aldrich. Air-sensitive oper-
ations were performed in dried solvents, which were dried using molecular sieves, and
under an atmosphere of dry argon. The thin-layer chromatography (TLC Silica gel 60 F254)
was used to monitor the reactions. Melting points were determined using a melting point
apparatus (PGH Rundfunk-Fernsehen, Niederdorf, Germany) and are uncorrected. NMR
spectroscopy was performed on Agilent 400 MR DDR2 (1H NMR 400 MHz, 13C NMR
100 MHz) at room temperature and the spectra were referenced on the residual peak of
the solvents (CD3OD, CDCl3, or DMSO-d6). Flash Chromatography was performed on
Combliflash Rf200 UV/VIS (Teledyne Technologies, California) using an in-house-made
column that was filled with polar silica (Merck, Darmstadt, Germany).

1,4-Bis(2-chloroethoxy)benzene (2)

Synthesized as previously reported [20], 1H and 13C NMR spectra are in agreement
with the literature [20].

1,4-Bis(2-chloroethoxy)-2,5-dibromobenzene (3),

2,3,6,7-Tetrahydrobenzo[1,2-b:4,5-b’]difuran (4),

4-Formyl-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran (5)

Synthesized as previously reported [21], 1H and 13C NMR spectra in accordance with
literature [21].

2-Hydroxy-2-(2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)acetonitrile (6)

To an ice-water bath cooled solution of aldehyde 5 (1.66 g, 8.73 mmol) and KCN
(3.4 g, 52.63 mmol) in MeOH (200 mL), H2SO4 was carefully added dropwise until pH ~ 4.
The reaction was then removed from cooling and stirred at room temperature overnight.
The solvent was evaporated under reduced pressure, diluted in water, and extracted
with DCM (2x). Organic phases were washed with NaHCO3, brine, dried over Na2SO4,
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filtered, and evaporated under reduced pressure to a yellow oil, that was purified by flash
column chromatography on silica gel with a gradient elution of DCM to DCM with 5%
EtOAc, recovering starting material 5 (0.26 g, 1.39 mmol, 16%) and the title product (1.59 g,
7.32 mmol, 84%).

m.p. 93–94.5 ◦C; 1H NMR (400 MHz, CDCl3) δ 6.69 (s, 1H), 5.50 (d, J = 8.6 Hz, 1H),
4.71–4.62 (m, 2H), 4.60 (t, J = 8.7 Hz, 2H), 3.59 (d, J = 8.6 Hz, 1H), 3.35–3.18 (m, 2H), 3.17 (t,
J = 8.6 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 154.21 (s), 152.02 (s), 126.18 (s), 125.57 (s),
124.58 (s), 118.89 (s), 105.37 (s), 71.71 (s), 59.00 (s), 30.37 (s), 30.23 (s), 28.71 (s).

2-Amino-1-(2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)ethan-1-ol (7)

To an ice-water bath cooled suspension of LiAlH4 (700 mg, 18.41 mmol) in dry
THF (8 mL) under a flow of argon was dropwise added a solution of cyanohydrin 6
(400 mg, 1.84 mmol) in dry THF (4 mL). The reaction was then removed from cooling
and stirred at room temperature until full consumption of the starting material (TLC;
DCM/MeOH/NH4OH 10:1:0.01, Rf(7) = 0.25). The reaction was thereafter cooled by an
ice-water bath and quenched by the subsequent addition of a 1:1 mixture of THF and
chilled water (0.8 mL), 15% NaOH (0.8 mL), and water (2.4 mL). Anhydrous MgSO4 was
then added, and the reaction mixture was warmed up to room temperature. After stirring
for 15 min, the suspension was suction filtered, filter washed thoroughly with THF, and the
filtrate evaporated under reduced pressure. The residue was diluted in 1M HCl, washed
with Et2O (2x), the aqueous phase was basified with 2 M NaOH to pH ~ 9 and extracted
with DCM (5x). Combined DCM extracts were dried over Na2SO4 and evaporated under
reduced pressure to crude white solid. The crude was purified by flash column chromatog-
raphy using silica gel as the stationary phase and a gradual elution of DCM with 0.5%
NH4OH to 10% MeOH in DCM with 2% NH4OH, providing the title compound as a white
solid (238 mg, 1.07 mmol, 58%).

1H NMR (400 MHz, CDCl3, free base) δ 6.55 (s, 1H), 4.94 (t, J = 5.4 Hz, 1H),
4.57–4.46 (m, 4H), 3.53–3.46 (m, 1H), 3.28–3.21 (m, 2H), 3.18 (t, J = 7.6 Hz, 1H), 3.12 (t,
J = 4.8 Hz, 2H), 2.95–2.90 (m, 1H). 13C NMR (101 MHz, CDCl3, free base) δ 154.60 (s),
151.11 (s), 126.65 (s), 123.73 (s), 120.58 (s), 105.12 (s), 72.60 (s), 71.97 (s), 71.74 (s), 47.61 (s),
30.08 (s), 29.45 (s).

2-Amino-1-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)ethan-1-ol (8)

To a solution of amine 7 (177 mg, 0.8 mmol) in AcOH (4 mL), covered in aluminum
foil, was added a solution of bromine (128 mg, 0.8 mmol) in AcOH (4 mL) dropwise and
the reaction was stirred at room temperature for 2.5 h until full conversion of starting
material (TLC; DCM/MeOH/NH4OH 10:1:0.01, Rf(8) = 0.2)). The reaction was quenched
by Na2S2O3, diluted with DCM, and extracted with 1M HCl (3x). The aqueous phase was
basified by 2M NaOH, extracted with DCM (5x), organic fractions dried over Na2SO4, and
evaporated under reduced pressure to a white solid (137 mg, 0.45 mmol, 57%). The title
compound was stored as the hydrochloride salt crystallized from MeOH/Et2O.

m.p. (HCl salt) 244–245 ◦C; 1H NMR (400 MHz, CDCl3, free base) δ 4.73–4.65 (m, 1H),
4.66–4.56 (m, 4H), 3.67–3.62 (m, 1H), 3.29 (t, J = 8.7 Hz, 2H), 3.15 (t, J = 8.7 Hz, 2H), 2.94 (d,
J = 6.2 Hz, 2H).

4-(2-Nitro-1-ethenyl)-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran (9),

1-(2,3,6,7-Tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)-2-aminoethane (10),

1-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)-2-aminoethane (11)

Synthesized as previously reported [21], 1H and 13C NMR spectra in agreement with
the literature [21].

2-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)-N-(2-methoxybenzyl)ethan-
1-amine (1)

To a solution of 11 (242 mg, 0.85 mmol) in EtOH (10 mL) under argon atmosphere,
2-methoxybenzaldehyde (127.3 mg, 0.94 mmol) was added. Upon the formation of imine
(TLC) the solution was cooled with an ice-water bath and NaBH4 (161 mg, 4.25 mmol) was
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added in portions. Progress of the reaction was monitored by TLC (DCM/MeOH/NH4OH
10:1:0.01). After full conversion, the reaction was quenched by a dropwise addition of
water, let to stir for at least 15 min., and concentrated under reduced pressure. The residue
was dissolved in Et2O (15 mL), acidified by 1 M HCl, and extracted with water (3 × 15 mL).
The aqueous phase was basified with 2 M NaOH, and extracted by DCM (5 × 15 mL). The
organic phases were dried over Na2SO4 and evaporated under reduced pressure yielding
the crude title compound. The substance was collected as the hydrochloride salt (311 mg,
0.71 mmol, 83%) recrystallized from MeOH/Et2O.

1H and 13C NMR spectra are in agreement with the literature [7].

2-(((2-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)ethyl)amino)methyl)-
phenol (12)

Synthesized as (1) using salicylaldehyde, except using NH4OH instead of NaOH for
basification during the workup. The hydrochloride salt of the title compound was collected
as white solid (75 mg, 55%).

m.p. (HCl salt) 232–234 ◦C; 1H NMR (400 MHz, CD3OD, HCl salt) δ 7.29–7.23 (m, 2H),
6.90–6.84 (m, 2H), 4.56 (q, J = 8.6 Hz, 4H), 4.21 (s, 2H), 3.24–3.16 (m, 4H), 3.13 (t, J = 8.7 Hz,
2H), 2.88 (t, J = 7.6 Hz, 2H); 13C NMR (101 MHz, CD3OD, HCl salt) δ 157.46 (s), 152.80 (s),
132.55 (s), 132.39 (s), 128.24 (s), 127.99 (s), 121.04 (s), 118.66 (s), 116.22 (s), 114.85 (s), 99.30 (s),
72.84 (s), 72.52 (s), 48.79 (s), 48.34 (s), 46.76 (s), 32.51 (s), 30.62 (s), 25.49 (s).

2-(((2-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)ethyl)amino)methyl)-
3-methoxyphenol (13)

Synthesized as (1) using 2-hydroxy-6-methoxybenzaldehyde, except using NH4OH
instead of NaOH for basification during the workup. The hydrochloride salt of the title
compound was collected as a white solid (157 mg, 44%).

m.p. (HCl salt) decomposed; 1H NMR (400 MHz, DMSO-d6, HCl salt) δ 10.30 (s,
1H), 8.69 (s, 2H), 7.21 (t, J = 8.3 Hz, 1H), 6.59 (d, J = 8.1 Hz, 1H), 6.55 (d, J = 8.2 Hz, 1H),
4.63–4.46 (m, 4H), 4.07 (t, J = 5.0 Hz, 2H), 3.79 (s, 3H), 3.21 (t, J = 8.6 Hz, 2H), 3.10 (t,
J = 8.7 Hz, 2H), 3.04–2.94 (m, 2H), 2.87–2.77 (m, 2H); 13C NMR (101 MHz, DMSO-d6, HCl
salt) δ 158.86 (s), 157.15 (s), 152.11 (s), 150.61 (s), 130.92 (s), 127.11 (s), 126.29 (s), 114.33 (s),
108.24 (s), 105.85 (s), 101.96 (s), 97.12 (s), 71.52 (s), 70.97 (s), 55.82 (s), 44.96 (s), 40.19 (s),
31.13 (s), 29.34 (s), 24.04 (s).

3-(((2-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)ethyl)amino)methyl)-
4-methoxyphenol (14)

Synthesized as (1) using 2-methoxy-5-hydroxybenzaldehyde, except using NH4OH
instead of NaOH for basification during the workup. The hydrochloride salt of the title
compound was collected as a white solid (113 mg, 45%).

m.p. (HCl salt) 244.2–245.7 ◦C; 1H NMR (400 MHz, DMSO-d6, HCl salt) δ 9.23 (s, 1H),
8.90 (s, 2H), 6.91 (d, J = 8.9 Hz, 1H), 6.86 (d, J = 2.8 Hz, 1H), 6.80 (dd, J = 8.8, 2.9 Hz, 1H),
4.63–4.50 (m, 4H), 4.05 (s, 2H), 3.74 (s, 3H), 3.22 (t, J = 8.7 Hz, 2H), 3.11 (t, J = 8.6 Hz, 2H),
3.05–2.96 (m, 2H), 2.86–2.78 (m, 2H); 13C NMR (101 MHz, DMSO-d6, HCl salt) δ 152.11 (s),
150.89 (s), 150.61 (s), 150.27 (s), 127.14 (s), 126.28 (s), 120.25 (s), 118.21 (s), 116.52 (s), 114.34
(s), 112.17 (s), 97.12 (s), 71.53 (s), 70.95 (s), 55.92 (s), 45.00 (s), 44.90 (s), 31.14 (s), 29.39 (s),
24.10 (s).

4-(((2-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)ethyl)amino)methyl)-
3-methoxyphenol (15)

Synthesized as (1) using 2-methoxy-4-hydroxybenzaldehyde, except using NH4OH
instead of NaOH for basification during the workup. The hydrochloride salt of the title
compound was collected as a white solid (32 mg, 22%).

m.p. (HCl salt) decomposed; 1H NMR (400 MHz, CD3OD, HCl salt) δ 7.17 (d,
J = 8.2 Hz, 1H), 6.50 (d, J = 5.2 Hz, 1H), 6.43 (dd, J = 8.2, 2.2 Hz, 1H), 4.64–4.53 (m, 4H),
4.12 (s, 2H), 3.83 (s, 3H), 3.28–3.10 (m, 6H), 2.93–2.81 (m, 2H); 13C NMR (101 MHz, DMSO-
d6, HCl salt) δ 159.99 (s), 158.75 (s), 152.11 (s), 150.61 (s), 132.54 (s), 127.12 (s), 126.27 (s),
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114.36 (s), 109.79 (s), 107.02 (s), 98.97 (s), 71.53 (s), 70.95 (s), 55.46 (s), 44.79 (s), 44.55 (s),
31.13 (s), 29.39 (s), 25.62 (s), 24.09 (s).

N-(2-(methoxy-d3)benzyl)-2-(2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)ethan-
1-amine (16)

Synthesized as (1) using 2-(methoxy-d3)benzaldehyde, 2C-H-Fly hydrochloride, and
1 mol. eq. of triethylamine (to form a free base in situ). The obtained free base of crude
product (yellowish oil) was diluted with methanol and converted to hydrochloride by
addition of concentrated aq. solution of HCl. The solution was evaporated to dryness and
the resulting solid was recrystallized from EtOAc yielding white crystals in 35% yield.

m.p. (HCl salt) 203–204 ◦C; 1H NMR (400 MHz, CD3OD, HCl salt) δ 7.52–7.33 (m, 2H),
7.14–6.97 (m, 2H), 6.55 (s, 1H), 4.51 (td, J = 8.5; 5.6 Hz, 4H), 4.26 (s, 2H), 3.24 (dd, J = 8.6,
6.8 Hz, 2H), 3.18–3.06 (m, 4H), 2.95 (dd, J = 8.6, 6.8 Hz, 2H); 13C NMR (101 MHz, CD3OD,
HCl salt) δ 159.3 (s), 155.8 (s), 153.5 (s), 132.7 (s), 132.7 (s), 127.7 (s), 126.6 (s), 122.1 (s),
120.2 (s), 115.4 (s), 112.1 (s), 106.0 (s), 79.5 (s), 72.6 (s), 72.5 (s), 55.6–55.2 (m), 48.0 (s), 47.0 (s),
31.3 (s), 29.6 (s), 25.7 (s). HRMS-ESI: m/z [M + H]+ calculated for C20H20D3NO3 + H+

(329.1939), found (329.1920).

2-(8-Bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)-N-(2-(methoxy-d3)benzyl)
ethan-1-amine (17)

Synthesized as (1) using 2-(methoxy-d3)benzaldehyde. The hydrochloride salt of the
title compound was collected as a white solid (155 mg, 0.35 mmol, 70%).

m.p. (HCl salt) 214.0–217.0 ◦C; 1H NMR (400 MHz, CD3OD, HCl salt) δ 9.10 (s, 2H),
7.46 (dd, J = 7.5, 1.6 Hz, 1H), 7.42 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.09 (dd, J = 8.3, 0.9 Hz, 1H),
7.00 (td, J = 7.4, 1.0 Hz, 1H), 4.56 (dt, J = 12.4, 8.7 Hz, 4H), 4.12 (s, 2H), 3.22 (t, J = 8.7 Hz,
2H), 3.09 (dd, J = 17.3, 8.6 Hz, 2H), 3.06–2.97 (s, 2H), 2.90–2.81 (m, 2H); 13C NMR (101 MHz,
DMSO-d6, HCl salt) δ 157.47 (s), 152.11 (s), 150.61 (s), 131.44 (s), 130.86 (s), 127.14 (s),
126.28 (s), 120.39 (s), 119.65 (s), 114.33 (s), 111.13 (s), 97.11 (s), 71.53 (s), 70.95 (s), 44.96 (s),
44.91 (s), 40.20 (s), 31.13 (s), 29.40 (s), 24.08 (s).

4.5. Sample Preparation
4.5.1. Human Liver Microsomes

The microsomal membranes were disrupted by three consecutive freeze-thaw cycles.
Then, the solid residues were separated by centrifugation (Eppendorf 5415; 13,200 rpm,
10 min, 4 ◦C) and filtered off. An amount of 200 µL of the liquid supernatant was transferred
to an Eppendorf tube before the internal standard was added (20 µL of 1 µg·mL−1 solution
of 2C-B-Fly-NBOMe-d3 (17)). Subsequently, acetonitrile was evaporated using vacuum
concentrator Hanil Modul 4080C and the pH value of the samples was adjusted by the
addition of NH4HCO3 solution. The resulting aqueous phase was shaken with ether
(2 × 400 µL). The obtained organic extracts were combined and evaporated. The dry
residue was reconstituted in 200 µL of a solvent mixture containing methanol and 0.1%
aqueous formic acid in a ratio of 5:95 (v/v). The clear solution was injected from a vial
equipped with an appropriate insert to LC-MS/MS system.

4.5.2. C. elegans Culture Medium

C. elegans culture media were processed as described in our previous study [29]. The
amount of 200 µL of the liquid medium was transferred to an Eppendorf tube before
the IS was added (20 µL of 1 µg·mL−1 solution of 2C-B-Fly-NBOMe-d3 (17)). Solution
of NH4HCO3 was used to adjust the pH value of the samples to approximately 8.4. The
aqueous phase was shaken with ether (2 × 400 µL), and the resulting organic extracts
were combined and evaporated. The dry residue was reconstituted in 200 µL of a solvent
mixture of methanol and 0.1% aqueous formic acid in the ratio of 5:95 (v/v). The clear
solution was automatically injected from a vial equipped with an appropriate insert to
LC-MS/MS system.
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4.5.3. Rat Urine

Rat urine was processed using an adapted method for metabolomics studies of NPS
described in our previous work [29]. An amount of 200 µL of collected urine was diluted
with 200 µL of a solvent mixture of methanol and 0.1% aqueous formic acid in a ratio of 9:91
(v/v) containing IS (200 ng·mL−1 of 2C-B-Fly-NBOMe-d3 (17)). The solution was shortly
vortexed before the formed precipitate was separated by centrifugation (Eppendorf 5415 R;
13,200 rpm, 10 min, 4 ◦C). The resulting clear supernatant was automatically injected from
a vial equipped with an appropriate insert to LC-MS/MS system.

4.6. LC-MS Analysis
4.6.1. Untargeted Screening

The information-dependent acquisition (IDA) analysis was performed on the UltiMate
3000 HPLC system (Thermo Fisher Scientific, Waltham, MA, USA) connected to the hybrid
mass spectrometer TripleTOF 5600 (AB Sciex, Framingham, MA, USA). Ionization of
analytes was achieved by the electrospray technique. Chromatographic separation was
performed on a Kinetex C18 analytical column (Phenomenex, Torrance, CA, USA) with the
following dimensions: 3 × 50 mm and particle size 1.7 µm. Solvent A consisted of 0.1%
aqueous formic acid with 5 mM NH4HCO2 and solvent B was 0.1% methanolic solution of
formic acid. The flow rate of the mobile phase was set at 200 µL/min and the following
gradient elution program was applied: 0–0.3 min: 2% B, 0.3–0.4 min: 2% to 4% B, 0.4–1 min:
4% to 10% B, 1–12 min: 10% to 100% B, 12–17.6 min: 100% to 10% B, 17.6–18 min: 10% to
2% B, 18–20 min: 2% B.

All data were acquired in positive, high sensitivity mode. The setup of the apparatus
was as follows: ion spray voltage floating (ISVF) 4 kV, source temperature 350 ◦C, curtain
gas 35 psi, nebulizer (GS1) gas 30 psi, and heater (GS2) gas 40 psi. Sciex OS-Q software
was used to evaluate both HR-MS and HR-MS/MS spectra acquired in the information-
dependent acquisition (IDA) experiments. Both a survey and a dependent scan were
measured over a mass range from 50 to 800 m/z, with collision-induced dissociation
triggered by rolling collision energy.

4.6.2. Fragmentation in MS3

The fragmentation analysis was performed on the UltiMate 3000 HPLC system
(Thermo Fisher Scientific) connected to the triple quadrupole mass spectrometer QTrap
6500 (AB Sciex). Ionization of analytes was achieved by electrospray technique using a
Turbo V ion source. One of the following optimized HPLC methods was chosen based
on the analyte polarity. Chromatographic separation of highly non-polar standards was
performed on a Poroshell 120 EC-CN analytical column (Agilent, Santa Clara, CA, USA)
with the following dimensions: 2.1 × 50 mm and particle size 2.7 µm. Solvent A consisted
of 0.1% aqueous formic acid with 5 mM NH4HCO2 and solvent B was acetonitrile. The
flow rate of the mobile phase was set at 600 µL/min and the following gradient elution
program was applied: 0–1 min: 2% B, 1–8 min: 2% to 30% B, 8–9.5 min: 30% to 50% B,
9.5–11 min: 50% to 98% B, 11–13 min: 98% B, 13–13.5 min: 98% to 2% B, 13.5–15 min:
2% B. Chromatographic separation of more polar standards was performed on a Luna
Omega Polar C18 analytical column (Phenomenex, Torrance, CA, USA) with the following
dimensions: 2.1 × 100 mm and particle size 3 µm. Solvent A consisted of 0.1% aqueous
formic acid with 5 mM NH4HCO2 and solvent B was methanol. The flow rate of the mobile
phase was set at 400 µL/min and the following gradient elution program was applied:
0–2 min: 2% B, 2–12 min: 2% to 98% B, 12–14.5 min: 98% B, 14.5–15 min: 98% to 2% B,
15–20 min: 2% B.

All data were acquired in positive ion mode. The setup of the apparatus was as
follows: ion spray voltage 5350 V, source temperature 450 ◦C, curtain gas 20 psi, nebulizer
(GS1) and heater (GS2) gases 30 psi. For data acquisition, Analyst software version 1.63 was
utilized (AB Sciex).
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5. Conclusions

In this study, the chemical structures of phase I and phase II metabolites of 2C-B-Fly-
NBOMe in HLM, rat urine, and C. elegans mycelium were proposed based on detected HR-
MS/MS spectra and their comparison with synthesized reference standards was performed.
Major metabolic pathways of 2C-B-Fly-NBOMe are mono- and poly-hydroxylation, O-
demethylation, and oxidative debromination, with several differences between the media.
HLM matrix provided the highest amounts of phase I metabolites. Lesser amounts were
detected in the rat urine, including two demethylated metabolites hydroxylated to higher
degrees that were found only in this in vivo model. Compared to the other two media, the
extent of debromination was highest in the mycelium matrix, and several dehydrogenated
and N-oxygenated metabolites were produced. The possible differences between species
should be considered in studies of the metabolism of novel substances.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/
10.3390/metabo11110775/s1, Table S1: List of 2C-B-Fly-NBOMe phase I and phase II metabolites
with recorded precursor ion exact mass, the corresponding characteristic fragment ions with the
calculated exact masses, elemental compositions, deviations of the measured from the calculated
masses, and relative abundances of the fragment ions in HR-MS/MS.

Author Contributions: J.N. and A.Š. contributed equally to this paper. Conceptualization, A.Š., J.N.
and M.K.; methodology and investigation, J.N., A.Š., S.R., P.P., H.Č., T.L., K.Š. and K.H.; formal
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nor-mephedrone conjugates with dicarboxylic acids as a new type of xenobiotic phase II metabolites. Toxicol. Lett. 2016, 240,
114–121. [CrossRef]

31. Zeng, X.; Yao, H.; Zheng, Y.; Chen, T.; Peng, W.; Wu, H.; Su, W. Metabolite Profiling of Naringin in Rat Urine and Feces Using
Stable Isotope-Labeling-Based Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2020, 68, 409–417. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.toxlet.2015.10.025
http://doi.org/10.1021/acs.jafc.9b06494
http://www.ncbi.nlm.nih.gov/pubmed/31833363

	Introduction 
	Results 
	Untargeted Analysis and Synthesis of Reference Standards 
	LC–MS Analysis of the Synthesized Standards of Proposed Metabolites 
	Detection of Metabolites 

	Discussion 
	Comparison of 2C-B-Fly-NBOMe Metabolism in Different Species 
	Proposed Metabolic Pathways 

	Materials and Methods 
	Human Liver Microsomes 
	Cunninghamella elegans 
	Animals 
	Chemistry 
	Sample Preparation 
	Human Liver Microsomes 
	C. elegans Culture Medium 
	Rat Urine 

	LC-MS Analysis 
	Untargeted Screening 
	Fragmentation in MS3 


	Conclusions 
	References

