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Abstract: Sepsis is a life-threatening condition that occurs when the body responds to an infection that
damages it is own tissues. The major problem in sepsis is rapid, vital status deterioration in patients,
which can progress to septic shock with multiple organ failure if not properly treated. As there are
no specific treatments, early diagnosis is mandatory to reduce high mortality. Despite more than
170 different biomarkers being postulated, early sepsis diagnosis and prognosis remain a challenge
for clinicians. Recent findings propose that circular RNAs (circRNAs) may play a prominent role in
regulating the patients’ immune system against different pathogens, including bacteria and viruses.
Mounting evidence also suggests that the misregulation of circRNAs is an early event in a wide range
of diseases, including sepsis. Despite circRNA levels being altered in sepsis, the specific mechanisms
controlling the dysregulation of these noncoding RNAs are not completely elucidated, although many
factors are known to affect circRNA biogenesis. Therefore, there is a need to explore the molecular
pathways that lead to this disorder. This review describes the role of this new class of regulatory
RNAs in sepsis and the feasibility of using circRNAs as diagnostic biomarkers for sepsis, opening up
new avenues for circRNA-based medicine.

Keywords: circular RNAs (circRNAs); alternative splicing; transcription; biomarker;
epigenetics; sepsis

1. Introduction

Sepsis is a syndrome caused by the altered regulation of the host’s immune response to infection,
which can quickly evolve into a syndrome of multi-organ dysfunction, and finally death, if effective
treatments are not immediately applied. In the Third International Consensus on Sepsis and Septic
Shock (SS), it was defined as “a life-threatening condition that arises when the body’s response to
infection damages the host’s own tissues.” SS is “a subset of sepsis in which particularly profound
circulatory, cellular, and metabolic abnormalities are associated with a higher risk of mortality than
sepsis” [1].

Sepsis is one of the most common illnesses worldwide. Its incidence was 677.5 (535.7–876.1)
cases per 100,000 in the world in 2017 [2], and it is increasing at a rate of 9% per year. Approximately
2% of hospitalized patients and up to 75% of patients in intensive care units (ICU) develop sepsis,
of which around 30% enter into SS [3]. Despite advances in antibiotic therapy and treatments applied
in ICU, sepsis has become a global problem, and is the leading cause of death in all ICUs worldwide.
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Rudd et al. recently reported that there are 50 million annual cases of sepsis globally, with approximately
11 million deaths, exceeding even acute myocardial infarction [2]. Moreover, sepsis has been proposed
as a complication in critical patients infected by SARS-CoV-2. Specifically, two recent articles by
Huang C et al. and Yang X have shown that patients with COVID-19 admitted to ICU presented
lymphopenia associated with high levels of plasma cytokines [4,5], which are common characteristics
in septic patients. Therefore, it has been suggested that almost all critically ill patients suffering from
COVID-19 are at risk of dying from sepsis [6].

Currently, it is a priority to find biomarkers to diagnose sepsis and to identify patients who
could benefit from specific therapies to lower the high mortality rates. In addition, patients who
survive sepsis develop immunosuppression, which makes them more sensitive to new infections in
the short term, with increased long-term morbidity and mortality [7,8]. Methods to improve early
sepsis identification provide opportunities to reduce sepsis severity and deaths, as well as morbidities
in survivors and the economic burden of sepsis [9].

Circular RNAs (circRNAs) are a group of endogenous RNA, with different full-length sequences,
characterized by a covalently closed-loop structure that lacks poly-adenylated tails, formed by a
back-splicing event; unlike linear RNAs (i.e., mRNAs), circRNAs do not have a 5′ cap and a 3′ tail
structure [10–12].

CircRNAs were discovered in the 1970s in viruses, thanks to electron microscopy [10]. It was
initially thought that this type of RNA would have a low abundance [13]. However, thanks to
high-throughput sequencing and bioinformatic analysis, it is now well-known that circRNAs are
common and substantial within transcriptomes [11], where they are expressed in thousands of human
genes, and in some cases, demonstrate higher expression than their cognate linear isoforms [14–16].
The use of specific powerful bioinformatic tools based on the split mapping of RNA-seq reads has
enabled the resourceful prediction of circular RNAs from RNA-seq data [15,17–20]. Recent studies have
described their peculiar properties and involvement in physiological and pathological processes [21–24],
and how specific patterns of circRNAs are expressed in specific tissues and development stages [10,11,15].
Moreover, circRNAs are especially highly expressed in the human brain. They are also present in most
mammalian tissues [25–27].

Nowadays, given their role in gene regulation, high abundance, conservation in mammalian
cells, and stability, circRNAs are considered very relevant molecules, with relevant functions in a
wide range of pathologies [28]. In fact, RNA-seq analysis data have demonstrated the significant
amount of circRNA in eukaryotic cells and their evolutionary conservation [29], and more than 15,000
human circRNA sequences have been detected in rat and mouse genomes [25,30]. Their stability was
demonstrated by Enuka et al. in HeLa cells, who revealed that circRNAs have a half-life of 18.8–23.7 h,
approximately 2.5-fold longer than their linear homologs [31]. Furthermore, this type of RNA is
protected from common degradation pathways, which are catalyzed by nuclear and cytoplasmic
exonucleases, known to control RNA abundance in cells [32]. Other studies suggest that circRNAs can
regulate gene expression, by acting as miRNA sponges, interacting with RNA binding proteins (RBPs)
and translational regulators [33–35]. In particular, the interaction of circRNAs with RBPs is considered
an important part of circRNA function, in which RBPs can serve as an essential element underlying
the functions of circRNAs, including their own biogenesis, and the translation and transcriptional
regulation of target genes [36]. CircRNAs can also be translated in vitro and in vivo [37].

Currently, circRNAs are considered a hot research topic, because they are associated with the
onset, development, and progression of a wide range of diseases [10], including neurological and
cardiovascular diseases and some cancers [38–40]. In fact, in 2018, Zhao Z et al. demonstrated the
relation between 330 circRNAs and 48 different diseases [41]. For all these reasons, and given their
properties, such as enhanced stability and a high abundance in body fluids, circRNAs have been
proposed as good biomarkers of various diseases, including sepsis [42]. However, the direct role that
circRNAs may play in sepsis is still unknown.
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This review analyzes how these regulatory RNAs play an important role in the pathophysiology
of sepsis, and we propose some circRNAs as feasible clinical biomarkers. Furthermore, circRNAs have
a dual role, acting as therapeutic agents and as therapeutic targets. The multimodal functioning of
circRNAs opens new avenues to improve diagnosis and prognosis and increase therapeutic strategies
against sepsis, thereby reducing the high sepsis-associated mortality.

2. CircRNAs Biogenesis

CircRNAs are produced mainly by the transcription of protein-coding gene’ exons by RNA
polymerase II (RNA-pol II) [22,43], but they can also contain introns [44,45]. This kind of RNA is
not usually generated by the same canonical RNA splicing as linear RNA [43,46–49]. CircRNAs are
produced by a pre-mRNA back-splicing process, which is mediated by a spliceosome, and is able to link
an upstream acceptor splice site (3′ splice site) to a downstream splice donor site (5′ splice site) on the
same exon or others [12,15,29,43,49–51] (Figure 1). CircRNAs biogenesis is typically done at the expense
of canonical mRNA isoforms, which suggests that circRNAs compete with the maturation of their
linear counterparts. So, circRNAs appear to be important regulators of mRNA production [29,43,51].
In addition, a single gene locus is able to generate many circRNAs through alternative back-splice
site selection, compared to canonical RNA splicing [18]. This fact contributes to producing lower
concentrations of linear RNAs with the original function (“parental linear RNA”). Therefore, due to
the back-splicing process, a different molecule of linear RNA forms with a changing function that has a
substantial biological impact [20,52,53]. Jeck et al. have shown this to be the case in human fibroblasts,
which express 10-fold more circRNAs than their linear RNA counterparts [14].
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Figure 1. Alternative-splicing scheme for circRNA formation. (Left) The back-splicing process in which
circRNAs are formed from covalently closed linear RNA. Triangles indicate the donor site located at
the 5′ splice site. (Right) The canonical splicing process in which pre-mRNA gives rise to linear RNA.

There are three classes of circRNAs, depending on the pre-mRNA material from which circRNAs
are made: (1) exonic circRNA, which derives from back-spliced exons (ecircRNA); (2) circular intronic
RNA (ciRNA), which originates from spliced introns; and (3) exon-intron circRNA (EIciRNA), which
come from circRNA containing both exons and introns [54]. It has been reported that ecircRNAs are
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exported to the cytoplasm (where they are most often detected), while some ciRNA and EIciRNA are
retained in the nucleus [47,55,56]. Jeck et al. proposed that circRNAs can be produced through two
different pathways. The first is called lariat-driven circularization (Figure 2a), and is associated with an
“exon skipping” process, which consists of a covalent splice from the 5′ end site (donor) to the 3′ end site
(acceptor) [14,15,29,43,49,50,57]. Afterwards, the lariat is joined to the spliceosome by removing introns
and forming an exonic circle [10]. The second pathway proposed by Jeck et al. is known as intron-pairing
driven circularization (Figure 2b), and is based on pairing complementary motifs in transcripts.
Alu elements are suggested as important regulators of circRNA biogenesis, but other inversed
repetitive sequences are also adequate to drive RNA circularization [10,14,49]. Some studies indicate
that the intron-pairing-driven model might occur more frequently than lariat-driven circularization [44].
Another process exists and is able to form circRNAs by joining RNA molecules flanking introns through
RBPs. Among these proteins are, for example, Quaking protein (QKI) and Muscleblind protein
(MBL) [28,43] (Figure 2c). Thus, the QKI protein is responsible for regulating circRNA abundance in
human cells, through the binding of the 3′ and 5′ ends of circularized exons, and is also responsible for
facilitating dimerization and mediating their splicing [28]. Other studies in human cells have shown
that circRNAs can be formed by intron flanking joining mechanisms because of debranching failure [58]
(Figure 2d). It has been demonstrated that during sepsis, there is an alteration in the alternative
RNA splicing patterns, which results in the disturbance of the patient’s immune response, mainly
due to the attenuation of B and T lymphocytes [59], contributing to critical phenotypes. Although
it is not very clear how the alteration in the alternative splicing process occurs during sepsis, it is
known that alternative splicing is a key process in the generation of circRNAs. Moreover, it has been
shown that small changes in the process critically affect their biogenesis, affecting the concentration
of some circRNAs by modulating their expression [60]. Furthermore, changes in alternative splicing
patterns can also give rise to different circRNAs, modulating a wide range of molecular mechanisms
and altering their physiological state [43,61].

Due to the role that circRNAs play in the modulation of different cytokines and immune
proteins [62,63], altered states of alternative splicing in sepsis may alter the expression of circRNAs,
which could partially explain the changes in the immune response of septic patients. However, this is
still an unexplored field, so, although it has been attracting a lot of interest in recent years, more studies
are required to demonstrate how the alteration of the alternative splicing may affect the biogenesis of
circRNA during sepsis. In this regard, the fact that global transcription and translation profiles are
altered during sepsis [64] lends support to the idea that changes in alternative splicing patterns may
play a key role in sepsis, perhaps by modulating circRNAs biogenesis.

Interestingly, circRNAs are aberrantly expressed in many diseases and exhibit roles, such as
miRNA sponges, protein decoys, transcription regulators, and regulators of translation. Despite
the specific mechanisms involved in the dysregulation of circRNAs in different pathologies like
sepsis, they are not completely understood, because distinct factors contribute to this dysregulation,
such as their biogenesis from parental genes, export from the nucleus to the cytoplasm, and cell
removal, among others. In line with this, aberrant cis-elements seem to be important regulatory
components in circRNAs production, especially in humans [43]. Abnormal spliceosomal machinery
and aberrant transactivating factors have also been postulated as central players in the biogenesis of
circRNAs [28,43,65]. In this regard, despite the initial research concluding that splicing events occur
co-transcriptionally in most cells and tissues [66,67], recent research demonstrates that the majority
of circularizations occur post-transcriptionally [18,68], and splicing and transcription elongation are
mutually dependent [69]. Furthermore, several mechanisms have been put forward to explain the role
of the epigenetic aberrations involved in the dysregulation of circRNAs. Accordingly, DNA methylation,
chromatin remodeling, and post-translational modifications of histones directly impact circRNAs
production [18,68], for example by controlling different alternative splicing events during circRNAs
biogenesis [12].
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Figure 2. RNA circulation biogenesis processes all produce a linear molecule and different circRNA
structures. (a) Lariat-driven circularization. This process results in ecircRNA or EIciRNA development;
(b) Intron pairing-driven circularization. This occurs with the making of an intronic base pairing
composed of complementary sequences (i.e., Alu elements). The intron-pairing process is followed
by back-splicing and exon circularization; (c) RNA binding proteins (RBPs)-driven circularization.
Proteins able to join the two intronic flanking sequences to facilitate the RNA circularization process;
(d) Circular intronic RNA.

The biogenesis process of circRNAs inherently lowers parental RNA levels, which may lead to
a reduction in mRNA and, in turn, to low levels of translated proteins [59], thereby producing the
deregulation of a wide range of cellular processes. Finally, circRNAs can also be produced from
intronic sequences with no clearly defined function, which may not lead to the physiological worsening
associated with low specific linear RNA levels, but then again, may do so, because it is extremely
uncommon, and this biogenesis type is expected to occur in a lower proportion than others.
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As some of the above-described mechanisms are altered in sepsis, it is plausible to hypothesize
that abnormal levels of circRNAs and low levels of linear RNAs concentrations due to the inherent
biogenesis process of circRNAs may affect the abundance of the various immune mediators and
transcriptional factors involved in the inflammation and immune response. We will consider this below.

3. Technologies Available to Analyze CircRNAs as Biomarkers

One of the main reasons for the late discovery of circRNAs lies in the extreme difficulty in
finding them, mainly because it is hard to distinguish them from other small RNAs, such as miRNAs.
Fortunately, RNA-seq and bioinformatics may help us to understand the pathways that produce
circRNAs and how these pathways modulate the different molecular responses in a wide range of
diseases [14,15,22,53].

Current detection methodologies require circRNAs to lose their circularity in order to detect them.
Since circRNAs were discovered, several tools have been developed to analyze their expression, and to
validate that circRNAs indeed exist [70]. In parallel to molecular strategies, bioinformatic tools have
also been developed to identify new circRNAs and to quantify their expression with high fidelity.

Jeck et al. published a new protocol in Nat Biotechnol [44] called Circle-Seq, which consists of
using the RNase R enzyme to process linear RNAs, while circRNAs remain intact. It has recently been
shown that it is very difficult to determine the circularity of an RNA transcript by using only this
treatment, because some circRNAs are sensitive to this enzyme [33], which could cause false-negatives
and lead to biases. The use of other, additional methodologies to isolate circRNAs has also been
proposed, such as 2D (two-dimensional) denaturing polyacrylamide gel electrophoresis or ribosomal
RNA (rRNA) depletion and poly(A) depletion, to increase the amount of circRNAs in samples for
RNA-seq [53]. Nonetheless, their actual efficacy in clinical practice is unknown.

The most widely used method to validate and quantify circRNAs is reverse transcription-PCR
(RT-qPCR). This method is implemented by using, for example, a strategy based on RNA treatment
with and without RNase R, followed by a step of reverse transcription to cDNA. The cDNAs from RNA
with or without RNase R treatment are then analyzed by PCR amplification, with primers specifically
designed for each isoform by a PCR reaction to detect the presence of both circRNAs and specific
circRNAs through the design of specific primers, which are not generated by the normal splicing
occurring during mRNA and other small regulatory RNAs processing [71]. The great advantage of
this method is that it may be widely used in clinical practice, and its implementation as a diagnostic
biomarker detection tool is simple and cheap.

The use of a microarray as a diagnostic method is also possible, thanks to its sensitivity and
specificity. However, there is some concern about this approach, as only the circRNAs included in
the array can be evaluated, which means that newly discovered circRNAs cannot be included with
microarray technology. Thus, it is extremely difficult to determine the absolute amount of circRNAs.
Hence, microarrays are a good approach for determining the relative expression levels of circRNAs in
comparisons made of different exploratory groups.

RNA-sequencing (RNA-Seq), coupled with directed bioinformatic analysis, has notably
contributed to discovering and characterizing circRNAs. In fact, RNA-Seq has yielded many
circRNAs and contributed to the discovery of the intrinsic characteristics of circRNAs [14,29,44,72,73].
More importantly, disease-relevant circRNAs can be detected in human peripheral whole blood by
RNA-Seq [74,75].

In order to overcome the challenge of discovering new circRNAs that contribute to comprehend
and diagnose sepsis, a number of bioinformatic and statistical methods have been described. Moreover,
many tools have been designed to decipher whether resulting circRNAs are exonic, intergenic, intronic,
or UTR [15,29,76]. The results have been deposited in specialized databases like circBase [77] and
CIRCpedia [18].

Some currently used bioinformatic tools are designed to process RNA-seq data and to identify
circRNAs [78,79]. However, despite the central role that different predictive software and algorithms
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can play in discovering circRNAs, their implementation in clinical practice is still a distant solution.
However, their vast potential is undeniable, and they are expected to be implemented in clinical
routine in the coming years, with the support of the latest technological advances. Moreover, several
tools and databases are appearing which contribute to the understanding of the different functions
of circRNAs and the role they can play in different diseases [80]. These tools help to identify the
circRNAs that competitively sequester miRNAs, by preventing them from interacting with their natural
targets. This process is highly relevant in sepsis, because miRNAs are key regulators in inflammation,
endothelial dysfunction, and immunosuppression during sepsis [81,82].

Furthermore, there is an evident need to understand the role that circRNAs play in sepsis. Future
research is required to uncover not only the molecular role of different circRNAs related directly and
indirectly to sepsis, but also the new circRNAs that modulate the great heterogeneity of sepsis, which
can then be used as biomarkers of diagnosis, prognosis, and/or theragnosis.

4. CircRNAs Function in Sepsis

Very little information is available about the role of circRNAs in sepsis, because the elucidation
of the role that these molecules play in human diseases has become relevant only in recent years.
However, circRNAs may play a key role in sepsis because of their ability to modulate different molecular
mechanisms [10], including inflammation [83] and immune response [62], and to control multiple
biological processes in metabolic organs (i.e., liver, pancreas [84]) (Figure 3 and Table 1). Moreover,
the identification of the mechanism by which host circRNAs can bind viral mRNAs merits special
attention, because it indicates that circRNAs are likely to resist viral infection [85] (Figure 3). Therefore,
circRNAs may play a key role in host defense against viruses.
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Figure 3. CircRNAs controlling several molecular mechanisms in sepsis. During sepsis, different
molecules induce the activation of circRNAs biogenesis. (a) CircRNAs are able to bind to miRNAs
and modulate their expression by inhibiting their functioning. (b) CircRNAs regulate inflammation by
controlling the expression of inflammatory mediators and pro-inflammatory and anti-inflammatory
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cytokines. (c) Immunosuppression is also mediated by circRNAs, for example by mediating the control
of immunosuppression mediators such as S100A8, or of macrophages or other immune cells. Notably,
when macrophages bind LPS or INFγ, they produce circRNAs, which can act directly or through
miRNA binding. (d) CircRNAs during sepsis participate in endothelial dysfunction and alter vascular
homeostasis by producing a thrombus. (e) Specific circRNAs compete with viral mRNA to help host
defense. (f) Finally, circRNAs have the capacity to increase DNMTs production, thereby altering
transcription in immune cells. LPS: lipopolysaccharide; INFγ: interferon gamma; TLRs: toll-like
receptors; mRNA: messenger RNA; lnc-RNA: long non-coding RNA; miRNA: microRNA; CircRNAs:
circular RNAs; DNMTs: DNA methyl-transferases. Blue arrows indicate the processes activated by
circRNA and red arrows denote signaling or activated processes. The red “x” inside viruses indicates
virus neutralization.

4.1. Role of CircRNAs in Inflammation

It is known that one of the first molecular responses in sepsis is the “cytokine storm”. During
sepsis, the “cytokine storm” mediates the initial pro-inflammatory phase by releasing proinflammatory
cytokines, such as IL-1α, IL-1β, tumor necrosis factor-α (TNF-α), IL-6, and interferon gamma (IFN-γ),
among others [86]. Nevertheless, during a septic process, anti-inflammatory cytokines (i.e., IL-10, IL-30,
transforming growth factor-β (TGF-β), etc.) are also produced and continuously released, strongly
influencing the sepsis progression and outcome [87].

The importance of miRNAs in controlling sepsis pathophysiology has been demonstrated. In fact,
both host miRNAs and DNA virus-encoded miRNAs are involved in the sepsis-induced cytokine
storm, leading to increased inflammation, and even to subsequent immunosuppression. In fact,
it has been widely demonstrated that miRNAs are able to regulate different key cytokines expressed
during sepsis and significantly mediate their expression as TNF-α [88–90], IL-6 [91,92], NFκB [93–95],
IL-10 [87], IL-18 [96,97], IL-27 [98,99], and other pro-inflammatory and anti-inflammatory cytokines
with differential expressions in sepsis.

Although very little information exists about circRNAs in sepsis, it may be hypothesized that the
regulation exerted by circRNAs plays a fundamental role in different sepsis stages (Figure 3). In fact,
circRNAs control the expression of the key proteins and cytokines that participate in sepsis (Figure 3,
Table 1). For example, circ-4099 is induced by inflammatory mediators, such as TNF-α [100] and
circRNA_0038644, and has been demonstrated to regulate the expression of NF-κB in sepsis [101],
while IL-6 is regulated by circ_007893 [102]. Moreover, circRNA_0005105 facilitates the expression
of inflammatory cytokines [103], thereby mediating a pro-inflammatory phenotype which is critical
in sepsis pathophysiology. The findings of Zhang et al. support the role of circRNAs in mediating
inflammation, by showing how circ_0012919 was abnormally up-regulated in CD4+ T cells in patients
with a hyper-inflammatory syndrome, such as systemic lupus erythematosus (SLE). circ_0012919 also
increases the expression of DNA methyl-transferase 1 (DNMT1), modulating the immune response by
reducing the expression of CD70 and CD11 in CD4+ T [104].

Interestingly, circRNAs may function as “molecular sponges”, by controlling the expression of
different types of non-coding RNAs, such as miRNAS, involved in regulating different processes in
sepsis [105–108]. One of the best characterized miRNAs in sepsis is inflamma-miR miR-223, which
participates in the regulation of innate immunity by controlling the activation and differentiation of
neutrophils and macrophages [109]. The down-regulation of miR-223-3p induces the expression of IL-6,
IL-1β, and TNF-α, which supports the key role played by miR-223 in innate immunity regulation [110].
Interestingly, circ_0003159 has recently been shown to be able to regulate the expression of miR-223 [111],
providing a new mechanism to explain the low levels of this miRNA in sepsis patients [112].

Another inflamma-miR described in sepsis is miR-146a, which is involved in several key processes
in sepsis, such as the control of innate immunity, endotoxin tolerance and immunosuppression,
inflammatory response, antiviral pathways, toll-like receptors (TLRs), and cytokine signaling [113].
Importantly, miR-146a has proven its ability to predict 30-day mortality in septic patients [114].
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In this scenario, two circRNAs, namely circ-102685 and circ-RSF1, modulate the expression of
miR-146a [115,116]. The two circRNAs may be postulated to be modulators of inflamma-miRs, thereby
suggesting their role in inflammation during sepsis.

Chen J. et al. have demonstrated that circ-PVT1 binds miR-125 family miRNAs to inhibit their
function [117]. This family is especially interesting in sepsis, because miR-125b correlates with sepsis
severity, inflammation, and increased mortality in septic patients [118]. In fact, circ-GLI2 is a circRNA
that specifically targets miR-125b-5p [119].

miR-192-5p, miR-26a, and miR-191-5p have been postulated as key biomarkers in sepsis, for
their ability to discriminate between sepsis and other severe inflammatory cases, for instance severe
systemic inflammatory response syndrome (SIRS) [120].

Zhongrong Z. et al. revealed that in intervertebral disc degeneration, circ-MSR regulates the
expression of miR-27 [121], which is up-regulated and promotes an inflammatory response in
sepsis [122].

4.2. Role of CircRNAs in Immunosuppression

Different non-coding RNAs have been postulated as key mediators of sepsis, for their ability to
control the innate and adaptive immune system, in addition to simultaneous pro- and anti-inflammatory
phenotypes (Figure 3 and Table 1).

Besides the role of some circRNAs in regulating inflammation, other miRNAs may also regulate
the immune system. For example, circ_0005075 is involved in the regulation of miR-23a-5p and
miR-23b-5p, which control key events in sepsis pathophysiology. Moreover, miR-23a-5p is up-regulated
in sepsis, contributing to acute respiratory distress syndrome induced by lipopolysaccharide
(LPS) [123]. Furthermore, miR-23b-5p up-regulation controls T-cell apoptosis through NF-κB signaling,
as demonstrated in a mouse model of sepsis [124]. Interestingly, the inhibition of miR-23b-5p causes
down-regulation in programmed death ligand 1 (PD-L1) expression in splenic T-lymphocytes from
septic mice, by reducing late-sepsis-induced immunosuppression and improving survival [124]. These
results suggest that circ_0005075 could be used in a possible therapeutic approach in sepsis, as suggested
previously for cancer therapy [125].

A recent study explored the expression of circRNAs in macrophages under two different
polarization conditions: M1 macrophages induced by IFN-γ and LPS, and M2 macrophages induced by
interleukin-4 (IL-4). The results showed 189 circRNAs with differential expression in the M1 compared
to M2 macrophages, which have a relevant role in producing anti-inflammatory cytokines such as IL-10
and IL-13. Of the 189 identified circRNAs, circ-010231 was the most overexpressed circRNA in M1
after LPS stimulation [126], which contributed to M1 to M2 polarization of macrophages and suggests
that this circRNA is a good candidate to be explored in human sepsis. Therefore, knowledge of the
entire molecular process contributing to M1 to M2 transition is extremely important, because it opens
new therapeutic possibilities by controlling immune responses and immunosuppression. Another
circRNA, circ_0005785, can bind to miR-181a and miR-181b—two miRNAs which have been previously
postulated as promoters of immunosuppression in late sepsis [127].

Finally, circ_MAN2B2 regulates S100A8, which is another important protein involved in
immunosuppressive states in sepsis [128].

4.3. Role of CircRNAs in Endothelium Dysfunction

Impairment of the endothelial function is one of the most important physiopathological hallmarks
of sepsis [129–131]. Endothelial function is critical for maintaining vascular homeostasis and activating
different processes, such as thrombosis, inflammation, and vascular remodeling [132]. Hence, it has
been shown that the outcome of sepsis substantially improves when endothelial dysfunction is
avoided [133–135].

Regarding inflammatory phenotypes and the endothelium, Liu et al. found that the expression of
circ-CER was up-regulated in chondrocyte with catabolic stimulators like IL-1 and TNF-α [136].
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Moreover, Wu et al. observed how circ-0005105 stimulated the expression of nicotinamide
phosphoribosyltransferase (NAMPT), and the generation of IL-6, IL-8 and prostaglandin E2, due to
the down-regulation of miR-26a expression [103], while IL-1β promotes circ-0005105 expression in a
chondrocyte extracellular matrix degradation model [103] (Figure 3 and Table 1).

In a recent study, Tie-Ning et al. counted 11 circRNAs with associated differential expressions in
an LPS-induced rat SS model with septic myocardial depression [137], one of the main causes of death
associated with sepsis when the endothelium plays a key role.

One of the most plausible biomarkers for sepsis is mcircRasGEF1B. This circRNA regulates
the stability of mature ICAM1 mRNA and can protect cells against microbial infection (Figure 3).
In fact, a recent study revealed that mcircRasGEF1B is induced after LPS stimulus during microbial
infection [138]. The mechanisms in endothelial cells may be similar to those in LPS-stimulated mouse
macrophages, in which Ng et al. observed that only mcircRasGEF1B was regulated by the TLR4
pathway [138].

Table 1. Key circRNAs controlling the main underlying mechanisms in sepsis.

CircRNA Mechanism Role Reference

mcircRASGEF1B
Inducible with LPS stimuli
during microbial infection

through TLR4

Protects cells against microbial
infection by regulating the stability

of mature ICAM-1 mRNAs
[138]

Circ-010231 Regulates different
immune responses to virus

Plays an important role in host
defense to virus by inducing

competitive binding between host
circRNAs and viral mRNAs

[126]

Circ_0005105
Interacts with the mRNA

of pro-inflammatory
cytokines

Induces a pro-inflammatory
phenotype [103]

Circ RNA-CER Induced in chondrocytes
by IL-1 and TNFα

Mediates an inflammatory response
through interaction with IL-1 and

TNFα
[136]

Circ_0028644 Regulates the expression of
NF-κB

Modulates different
pro-inflammatory phenotypes [101]

Circ_4099 Modulates the expression
of miR-616-5p

Closely related to inflammatory
phenotypes through TNF- α [100]

Circ_0003159 Regulates miR-223
Induces an inflammatory response
due to increased expression of IL-6,

IL-1β, and TNF-α
[111]

Circ_RSF1 Regulates the expression of
inflammatory cytokines

Represses the interactions of
miR-146a with RAC1 by eliminating

its inhibitory effect on the RAC1
pathway

[115]

Circ_102685 Modulates the expression
of miR-146a

Plays a role in endotoxin tolerance,
immunosuppression, inflammatory

response, and antiviral pathways
[116]

Circ_0005075 Regulates miR-23a-5p and
miR-23b-5p

Suppresses the expression of
miR-23b-5p in cancer and is related

to immune response
[123–125]

Circ-PVT1 Interacts with the miR-125
family

Exhibits a possible correlation with
sepsis severity, inflammation,

and increased mortality
[117]

Circ-GLI2 Negatively regulates the
expression of miR-125b-5p

Involved in inflammation and
immune response pathways [119]

Circ-MYLK and
Circ_CTDP1 Regulates miR-29a-3p

Feasible predictive biomarker for
assessing 28-day mortality of sepsis

patients
[139,140]
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Table 1. Cont.

CircRNA Mechanism Role Reference

Circ_HIAT1

Regulates miR-29a-3p and
miR-29c-3p, and matrix

metrix metalloproteinases
MMP-9 and MMP-2

Increases miRNAs stability [141]

Circ_NSD2
Regulates different

processes through sponge
miR-199b

Related to the low miR-199b-5p
levels found in sepsis patients [142]

Circ_0005785 Regulates miR-181a and
miR-181b

Possible role in sepsis by promoting
immunosuppression in late sepsis [127]

Circ_0000096 Regulates the expression of
miR-224 and miR-200a

Modulates the immune response
through cyclin D1, CDK6, MMP-2,

and MMP-9
[143]

Circ_001569 Modulates the expression
of miR-145

Involved in the immune response of
host to pathogens [139,140]

Circ_HIPK3 Modulates the expression
of miR-193a-3 and miR-124

Mediates a pro-inflammatory state
by modeling the inflammatory

response through sponge miR-124
(inhibitor of IL-6)

[144]

Circ_0003528,
Circ_0007196 and

Circ_0078738
Interacts with miR-192-5p Related to the low levels found in

sepsis patients [145]

Circ RNA-9119 Modulates miR-26a
Increases the expression of PTGS2

by modulating the response of
endothelium

[146]

Circ_TRIM33 and
Circ_FOXO3

Modulates the expression
of miR-191 and induces the

expression of TET1

Induces proliferation, migration,
and immune regulation [147–149]

Circ RNA_007893 Regulates the expression of
IL-6

Regulates the expression of IL-6,
through sponging and endogenous

miR-485-5p
[102]

Circ MAN2B2 Regulates the expression of
S1000A8

Modulates immunosuppressive
states [128]

Circ RNA-MSR Modulates miR-27 Induces pro-inflammatory
phenotype [121]

Circ_0012919 Increases the expression of
DNMT1

Modulates immune response by
reducing the expression of CD70

and CD11a in CD4+ T cells
[104,150]

5. Clinical Significance

Infections are very common in young and old people worldwide. In most people, the host’s
immune response suffices to deal with a potential threat, but in some cases, infection may be
associated with an inadequate or inappropriate host response, by mediating the development of
sepsis [1,148,151,152].

As there is no specific treatment for septic patients, their management is based on attempting
to control infection and supporting the different organs whose functions may be compromised [153].
In fact, one of the biggest problems is that patients deteriorate quickly, progressing to SS and multiorgan
failure if not treated promptly and effectively. It is noteworthy that early treatment has been shown
to improve patient outcomes [153–155], but early treatment depends on promptly recognizing and
diagnosing sepsis, which may contribute to rapidly starting the appropriate therapy [153]. Nevertheless,
the early diagnosis of septic patients remains a challenge for clinicians and researchers around the world.

Because of all the aforementioned difficulties in making a correct early sepsis diagnosis,
the availability of precise biomarkers would be extremely useful to allow proper and timely treatment
to start, thus maximizing the possibilities of patient survival. To date, more than 170 biomarkers have
been proposed and clinically evaluated [7], including various cytokines, receptors, cell surface markers,
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coagulation factors, complement factors, and acute phase reactants, among many others [156–158],
but none offer anything near 100% specificity for sepsis.

Apparently, circRNA modulates a wide range of molecular responses related with immune system
control, inflammation, and endothelial function, which are relevant biological processes altered in
sepsis. In this regard, the dysregulation of specific circRNAs has been related to the development
and progression of sepsis [126,137,138]. A number of studies report associations between circRNAs
and almost all the miRNAs are postulated as biomarkers in sepsis, most notably with the different
cytokines that have an abnormal expression in sepsis, inducing the characteristic “cytokine storm”
which contributes to multiorgan failure. In light of this, circ_001569 directly inhibits the transcription
of miR-145 [140], thereby controlling TGFBR2 levels in lung tissues [159] and playing a direct role in
the molecular signaling responsible for sepsis-induced acute lung injury.

Other circRNAs, such as circ_HIAT1, bind to miR-29a-3p and miR-29c-3p. In this case, circ-HIAT1,
also known as circ_0000096, performs a “miR reservoir” function by increasing miR stability in
human atherosclerosis and some cancers [141], unlike the classic function of circRNAs that act as an
“miR sponge”. Interestingly, circ-HIAT1 also targets matrix metalloproteinase (MPP)-2, and MMP-9
in solid tumors [160], which are elevated in the plasma [161] and lung tissue [162] of patients with
severe sepsis.

Notably, circ-MYLK and circ-CTDP1 are also able to target miR-29a-3p [163,164]. The targeting
of miR-29a-3p is of the utmost importance, because high serum levels of this miRNA produced by
immune cells have a good predictive value when assessing the 28-day mortality of sepsis patients
(Table 1).

Circ_NSD2 is another interesting circRNA to be explored in sepsis, because it regulates different
processes through the sponging of miR-199b [142], a miRNA with higher levels found in total serum
and blood cells (leukocytes, erythrocytes, platelets), and previously demonstrated to possess the early
ability to discriminate SS from sepsis patients [165].

Another important point to consider is that sepsis is usually associated with bacterial infections,
but it can also be induced by viral and fungal infections, although the inflammatory response is
generally less marked in these cases. In particular, viral sepsis lacks a definite diagnostic criterion [166].
So, circRNAs could represent a major achievement in viral sepsis diagnosis and offer several advantages
over other biomarkers. For example, circRNAs remain stable in the presence of viral infections. In fact,
competitive binding has been demonstrated between host circRNA and viral mRNAs, which indicates
that circRNAs participate in the host defense against viral infections [85]. These findings seem to
indicate that specific circRNAs are expressed in the presence of viral infections by postulating circRNA
as good biomarkers to diagnose the origin of sepsis and establish a prognosis for septic patients.

Moreover, circRNAs are both tissue-specific and developmental stage-specific; their expression has
been related to the initiation and progression of many disease types, such as neurological, cardiovascular,
and cancer [38–40]. Given their structural conformation (covalently closed loop that lacks free 3′ and
5′ ends), circRNAs are very stable in blood [74] and resistant to exonucleases. Indeed, circRNAs RNAs
show an average half-life of about 48 h compared to the 10 h of linear RNAs in plasma [15,31,44].
This confers upon them the capacity, not only to be feasible biomarkers, but also to act as theranostic
tools, which means that circRNAs may serve as circRNA-based diagnostic and therapeutic agents in
sepsis patients.

Nevertheless, sepsis pathophysiology is very complex, and understanding the molecular
mechanisms that guide disease complications and fatal outcomes is still a prerequisite to finding
effective biomarkers and promising treatments to reduce the high morbidities and mortality in sepsis
survivors. Obviously, the identification of circRNAs opens new avenues to understanding sepsis
and learning about other septic-associated complications, such as immunosuppression, and vascular
and cardiac damage. Therefore, circRNAs are set to be appealing for research in sepsis in the near
future, and we envision a promising future in the diagnosis, prognosis, and theragnosis of this
life-threatening condition.
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