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Abstract: When thermoplastic resins such as polyethylene (PE) and polypropylene (PP) are se-
lected as wood adhesives to bond wood particles (fibers, chips, veneers) by using the hot-pressing
technique, the formaldehyde emission issue that has long existed in the wood-based panel indus-
try can be effectively solved. In this study, in general, thermoplastic-bonded wood-based panels
presented relatively higher mechanical properties and better water resistance and machinability
than the conventional urea–formaldehyde resin-bonded wood-based panels. However, the bonding
structure of the wood and thermoplastic materials was unstable at high temperatures. Compared
with the wood–plastic composites manufactured by the extruding or injection molding methods,
thermoplastic-bonded wood-based panels have the advantages of larger size, a wider raw material
range and higher production efficiency. The processing technology, bonding mechanism and the
performance of thermoplastic-bonded wood-based panels are comprehensively summarized and
reviewed in this paper. Meanwhile, the existing problems of this new kind of panel and their future
development trends are also highlighted, which can provide the wood industry with foundations and
guidelines for using thermoplastics as environmentally friendly adhesives and effectively solving
indoor pollution problems.

Keywords: thermoplastic resin; formaldehyde-free adhesive; hot-pressing technique; wood-based panels

1. Introduction

The development of the wood-based panel industry has played a prominent role
in alleviating the contradiction between the supply and demand of wood products, pro-
tecting forest resources and the ecological environment [1–3]. Plywood, fiberboard and
particleboard are the three predominant types of wood-based panels and have been widely
developed as alternative materials for furniture manufacturing, decorative panel produc-
tion, wood structure building boards and other fields because of their stable physical
properties, wide sources of raw materials and good end-use properties [4]. However,
wood adhesives, the essential components predominantly used in manufacturing wood
composites, are mainly formaldehyde-based materials, such as urea–formaldehyde (UF)
resin, phenol–formaldehyde (PF) resin and melamine urea–formaldehyde (MUF) resin [5,6].
These adhesives have the advantages of good adhesion and technological maturity, but they
release formaldehyde when producing and using the wood composites [7]. In 2004, the
International Agency for Research on Cancer reclassified formaldehyde from “probably car-
cinogenic to humans” to “carcinogenic to humans”. The European Union, the USA, China
and Japan now have legislation regulating the allowed levels of formaldehyde emission
from wood-based products [8]. These events culminated with the implementation of the
most stringent formaldehyde release standard in 2017. The new allowable emission levels
vary by product, but the limits (not to be exceeded) are in the range of 50 to 100 ppb [9],
which put forward much higher requirements regarding wood adhesives. Significant
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efforts have been dedicated to reducing synthetic (anthropogenic) CH2O emission from the
resins, principally by reducing the F/U mole ratio and modifying the formulation [10,11]
and adding CH2O scavengers [12]. However, these cannot solve the problem from the
root cause. Alternative “no-added-formaldehyde” (NAF) resins, such as those based upon
soybean, starch and lignin, have also captured great attention [13,14]. However, they only
occupy minor positions in this vast market due to their poor water resistance, mobility and
stability [15–17].

In recent years, the use of thermoplastic resins to bond wood materials has become
a promising method to manufacture wood-based panels due to its advantages of envi-
ronmental friendliness, good flexibility, water resistance and processability [18–22]. The
study of thermoplastics as wood adhesives began in the 1990s and was first proposed by
Dr. Han of Kyoto University [23]. He indicated that PP and modified PP have the merit
of unique adhesion performance when combined with wood components. The study of
the use of various thermoplastics as wood adhesives in China began in the mid-1990s
and was proposed by Wang from the Chinese Academy of Forestry [24]. In 2005, the
research results of thermoplastic-bonded plywood obtained the authorization of China’s
national invention patent, and it has completed independent intellectual property rights.
In 2006, it was awarded as China’s national key new product. The preparation methods
and performance of the thermoplastic-bonded wood-based panels have been continuously
studied and developed in recent years [25–35]. This paper aims to summarize the recent
progress in thermoplastic-bonded wood-based composites, focusing on their processing
technology, bonding mechanism and physical–mechanical performance. Meanwhile, the
existing problems and the future development trends of thermoplastics as wood adhesives
are highlighted.

2. Processing Technology of Thermoplastic-Bonded Wood-Based Panels
2.1. Raw Materials

Under certain pressure, melted thermoplastics have the merit of unique adhesion
performance when combined with wood or other plant components. Both virgin and
recycled thermoplastics can be used for compounding with wood, but the melting tem-
perature of the selected thermoplastics must be lower than the degradation tempera-
ture of wood (200 ◦C). Thermoplastic resins that have been studied included polypropy-
lene (PP), polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS) [35] and poly-β-
hydroxybutyrate (PHB) [36]. Thermoplastics are solvent-free and have various forms, such
as granules, powders, sheets, films, wires and blocks. Various forms of wood, such as
wood veneer, wood particle and wood fiber, can be directly bonded with thermoplastics. In
most of the existing studies, thermoplastic films were preferentially selected to bond wood
veneers to prepare wood–plastic plywood [29,33–35]. When bonding wood particles, both
thermoplastic films and thermoplastic powders have been popular choices [27,31,32].

2.2. Processing Technology of Wood–Plastic Plywood

Similar to the processing methods of commercially available medium-density fiber-
board (MDF), particleboard or plywood, thermoplastic-bonded wood-based panels can be
manufactured by the traditional hot-pressing technique [24]. There is no gluing stage in
the whole production process, but the panel must be cold-pressed immediately after it is
taken out of the hot press [35–38].

The manufacturing process of wood–plastic plywood is relatively simple, as shown
in Figure 1. The setup requires only plastic films between every two wood veneers, and
the material is then fabricated using combined hot pressing and cold pressing. During
the preparation of wood–plastic plywood, the thermoplastic film is heated and melted
into the porous structure of the wood veneer, and then cooled and solidified to form the
“glue nail” microstructure interface phase (Figure 2). In the heating stage, thermoplastics
experience a transition from liquid to solid, playing the role of wood adhesive. Both the
hot-pressing conditions and wood surface properties affect the bonding strength. Due to the
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characteristics of the thermoplastic film, shrinkage inevitably occurs during the formation
of the wood–plastic interface. The shrinkage residual stress must be compensated in the
cold-pressing stage; otherwise, the interfacial debonding failure of composites can easily
occur under an external load [39,40].
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2.3. Processing Technology of Wood–Plastic Particleboard

The combination of wood flour and thermoplastics by extrusion or injection methods
has become a standard practice. In wood–plastic composites (WPCs) manufactured by
these two technologies, thermoplastics serve as a continuous phase, while wood flour is
a dispersed phase to provide strength and stiffness [41]. WPCs can be made into solid
products with various shapes, sizes and colors, and their products have been widely used
in industry [42]. However, the use of the extrusion process is quite limited for large-sized
particles due to its high machinery costs [43], and multi-dimensional products can only
be prepared by injection molding [44,45]. To overcome these problems, the concept of
bonding wood particles with the use of thermoplastics by the hot-pressing technique has
been developed (as shown in Figure 3) [46–50]. Panels prepared by this method are called
wood–plastic particleboard. On the one hand, it has the advantages of higher productivity
and a lower pressing pressure requirement. The proportion of wood components can reach
up to 80% by volume using this process, and the natural wood structure can be maintained.
On the other hand, this method can obtain large-sized boards with a length of 2440 mm, a
width of 1220 mm and a thickness of 3 to 40 mm [51].
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For wood–plastic particleboard, the matrix can be ordinary wood shavings or other
shavings prepared from agricultural residues such as bamboo, straw or cotton stalk [52].
Due to the wide range of raw materials, obtaining a very uniform blend of shavings and
thermoplastic mixture has become one of the key points in the manufacturing technology of
wood–plastic particleboard [53,54]. It is very important to find the proper moisture content,
particle size and particle shape of the raw materials. A general rule for mixing is that
large pieces of wood shavings should be matched with large pieces of thermoplastic, and
small pieces of shavings matched with small pieces of thermoplastic. Increasing the fiber
aspect ratio can produce a larger contact area between the fiber and plastic matrix, which
is able to improve the composites’ performance [55,56]. Qi [31,57] prepared cotton stalk–
HDPE-oriented composites. It was found that the mechanical properties of composites
prepared with long cotton stalk bundles were 2 to 3 times higher than those prepared with
short or granular cotton stalk bundles. In the meantime, it is also necessary to focus on
the processing cost when recycled plastic is utilized. For commonly used recycled plastics,
such as PE and PP, directly sorting, cleaning and pulverizing before use is an ideal method.

Since no adhesive with initial tack is added in the manufacturing process of wood–
plastic particleboard, and wood particles and thermoplastics are only physically mixed,
their combinations are very scattered. Therefore, ensuring that the is mixture formed into a
uniform mat and effectively transported during the assembly process has become another
challenge for wood–plastic particleboard manufacturing [58]. Li et al. [59] prepared wood-
fiber-reinforced PP composites by flat hot-pressing and compression molding. Results
showed that when the wood fiber content reached 80%, the composites displayed a good
flexural modulus and impact strength for both of the methods. Compared with the flat hot-
pressing method, composites produced by the compression molding method had higher
density and a better flexural modulus. Meanwhile, the composites manufactured by the
flat hot-pressing method showed better surface wettability and impact strength. It is also
worth noting that efficient bonding of the wood–thermoplastic system can be achieved
only when the thermoplastic binder is sufficiently plasticized to be easily extruded into
the pores of the wood shavings. Therefore, a low-pressure preheating step is necessary
for the production of wood–plastic particleboard [60]. In order to utilize agricultural and
forestry wastes, He et al. [52] prepared PP wood–plastic composites filled with rice straw
powder, rice husk powder, wood powder and bamboo powder, as well as their mixture,
using mixed compression molding and layer compression molding, respectively. For the
mixed compression molding method, PP was first blended with the powders and then
molded. For the layered compression molding, the powders were directly layered on the
PP film. The results showed that the mechanical properties, water absorption and moisture
absorption performance of the PP composites prepared by mixed compression molding
were better than those of layered molding PP composites. The filler can be well-distributed
in the melted PP matrix when using the mixed compression molding. By contrast, the
wood-based panels prepared by the layered compression molding have a poor interface
between the thermoplastic and the fillers.
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3. Performance of Thermoplastic-Bonded Wood-Based Panels

Fabrication of thermoplastic-bonded wood-based panels with the hot-pressing meth-
ods in the laboratory resembles the standard procedure of composite production in industry.
Its products are closely comparable to commercial plywood, MDF and particleboard. Com-
pared with natural-based adhesive-bonded wood-based panels, this can offer improved
water resistance and relatively simple processing technology.

3.1. Environmental Performance

Thermoplastics play the role of wood adhesives in the manufacturing process of
thermoplastic-bonded wood-based composites. Since the traditional formaldehyde adhe-
sive has been completely replaced, the most remarkable feature of thermoplastic-glued
wood-based panels is their environmental friendliness. Table 1 presents the free formalde-
hyde content of wood–plastic particleboard as determined by two different test meth-
ods [58]. The values measured by these two methods are far lower than that in the
“formaldehyde release limit of wood-based decorative materials and their products” stan-
dard. It is worth noting that the presence of a small amount of formaldehyde arises from
the wood itself, and is called biogenic formaldehyde [61]. All organic wood components
contribute to biological formaldehyde’s generation and emission. A great deal of evidence
has shown that this kind of formaldehyde mainly arises from lignin. At the same time, the
total volatile organic compound (TVOC) release rate of thermoplastic resin wood-based
panels was found to be only 0.01 mg/(m2·h), which is also far below the value specified in
the relevant standards [62,63].

Table 1. Environmental performance of wood–plastic particleboard.

Test Item/Test Method Test Value Standard Value

Formaldehyde/perforator test 0.2 mg/100 g ≤9 mg/100 g
Formaldehyde/desiccator test 0.2 mg/L ≤1.5 mg/L

TVOC/72 h emission rate 0.01 mg/(m2·h) ≤0.5 mg/(m2·h)

3.2. Physical and Mechanical Properties
3.2.1. Water Resistance

Thermoplastic resins, especially polyolefin plastics, are usually hydrophobic materials.
They do not absorb water, which gives thermoplastic-bonded wood-based composites
excellent water resistance. In the bonding process, thermoplastics can not only be filled in
the porous structure of wood, but also cover part of the hygroscopic wood surface. The
speed of water entering the wood is therefore slowed down, and the moisture penetrating
into the wood is decreased accordingly [25,36,50,64]. Wang et al. [58] tested the water
resistance of several particleboards. It was found that both the 2 h and 24 h thickness
swelling (TS) of the thermoplastic-bonded particleboards were lower than 3%. After
soaking in boiling water for 2 h, the internal bonding strength (IBS) of thermoplastic-
bonded particleboards was higher than the traditional sliced veneer-decorated wood-based
panels. Fang et al. [25] found that the water resistance of plywood bonded with PE
film was much better than that of urea–formaldehyde (UF) resin-bonded panels. After
soaking for 168 h, the water absorption and thickness expansion of PE film plywood were
85.8% and 7.7%, respectively, which are 18.8% and 4.9% lower than those of UF resin
plywood. Due to their low expansion rate and good dimensional stability in a humid
environment, thermoplastic-bonded wood composites will have extensive application
prospects in cement formwork and outdoor packaging. As shown in Table 2, the larger
the amount of thermoplastic resin used, the better the water resistance of the wood-based
panel. However, it will have an adverse impact on the mechanical properties of the panel if
the usage is excessive. For wood–plastic particleboards, most authors indicated that the
panel achieves optimal resistance to bending forces when the content of wood particles is
in the range of 40% to 60%. For wood–plastic plywood, when the film thickness is greater
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than 0.1 mm (adhesive dosage is around 100 g/m2 in double glue line), it can meet the
strength requirement for interior products (type II).

Table 2. Water resistance of some thermoplastic-bonded wood-based panels [25,33,34,65].

Particleboard Type Adhesive Dosage 24 h TS/% IBS/MPa

Recycled PE-bonded poplar particleboard 30~70% 0.8~8.0 1.0~2.5
Recycled PP-bonded poplar particleboard 30~70% 1.9~12.0 1.1~2.5
Recycled PS-bonded poplar particleboard 30~70% 1.3~17.4 4.0~4.4

PE film-bonded poplar plywood 184 g/m2 5.9 Type II
PP film-bonded eucalyptus plywood 150 g/m2 6.8 Type I

PVC film-bonded eucalyptus plywood 320 g/m2 — Type II
UF resin-bonded poplar plywood 320 g/m2 6.5 Type II

UF resin-bonded eucalyptus plywood 320 g/m2 7.5 Type II

3.2.2. Mechanical Properties

Thermoplastics have the merit of unique adhesion performance when composited
with wood components [66–69]. Since there is no chemical reaction between thermoplastics
and wood, mechanical interlock is the main bonding mechanism of thermoplastic-bonded
wood composites. When a specific thermoplastic is selected as the wood adhesive, the
appropriate hot-pressing temperature must be determined [22,25,35,70]. The hot-pressing
temperature affects the thermoplastic viscosity. It is believed that the lower the viscos-
ity, the deeper the penetration depth [71]. Generally, the hot-press temperature should
be 15 to 35 ◦C higher than the melting temperature of the thermoplastic so that it can
fully flow into and between the wood cell lumens and voids, helping to form more glue
nails. Luedtke et al. [72] showed that poly(lactic acid) (PLA) bonded plywood prepared
at >160 ◦C had higher tensile strength than those formed at 140 ◦C, which was associated
with a thinner bondline and greater PLA migration away from the bondline, consistent
with lower melt viscosity under high temperatures. The deeper PLA penetration depth
contributed to the better physical interlocking of the PLA within the wood ultrastructure.
However, it should be noted that the thickness of the adhesive bondline also has a great
impact on the quality and performance of the adhesive. Over-penetration may occur if the
hot-pressing temperature is too high, which will deteriorate the strength of thermoplastic-
bonded wood composites [38,70]. Due to the high viscosity of thermoplastics, they usually
take a long time to reach the fully molten state, and then gradually spread out on the veneer
surface to complete the penetration step. Fang et al. [37] prepared formaldehyde-free
plywood using PE film as a wood adhesive and found that the hot-pressing time and
hot-pressing temperature have an interactive effect on the plywood tensile shear strength.

The properties of thermoplastic-bonded wood-based panels are closely related to
the thermoplastic type and their dosage, as shown in Table 3 [25,36,64,66,73]. PE is one
of the most widely used thermoplastic polymers and has a very simple structure. It has
been widely studied in the wood industry recently because of its low price and good
water resistance [18,25,29,30,57,70,74]. Results showed that the stiffness of thermoplastic
PE is lower than that of thermosetting UF resin, but its plasticity can give PE film-bonded
plywood stronger bending failure resistance and therefore a higher MOR value. The
bonding strength and elastic modulus the PE film-bonded poplar plywood were found to
be similar to those of UF resin-bonded poplar plywood (the difference was less than 1%). In
addition, due to the high-temperature softening property of PE and its poor compatibility
with wood, the prepared PE plywood can only meet the strength requirements of indoor
materials (type II). When the outdoor material test standard was performed (three-cycle
treatment: soaking in boiling water for 4 h, then drying at 63 ◦C for 20 h and soaking in
boiling water for 4 h again), the PE film was completely separated from the wood. PP has
better high-temperature resistance compared with PE, but higher energy consumption is
required for preparing the panels. Li et al. [75] fabricated eucalyptus plywood using PP film
as an adhesive. The tensile shear strength was 1.4 MPa after outdoor aging treatment (type I,
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the specified value of the standard is 0.7 MPa). Xia [32,76] prepared oriented cotton stalk–PP
boards and oriented cotton stalk–HDPE boards under the same processing conditions (hot-
press temperature 185 ◦C, hot-press time 15 min, board density 0.7g/cm3). Results showed
that the mechanical properties and water resistance of the two directional composite boards
were better than those of conventional MDF and particleboard. The 24 h TS value of both
boards was less than 3%. When the amount of thermoplastic resin was fixed at 15%, the
static flexural strength, elastic modulus and internal bonding strength of the oriented cotton
stalk–PP boards were 60.60, 5074.4 and 1.48 MPa, respectively, which are 33%, 13% and
13% higher than those of PE composites. When the mass fraction of thermoplastic resin
exceeded 15%, the mechanical properties of the two composites decreased, and the water
resistance was further improved. Polyvinyl chloride (PVC) film has the characteristics of
lower price and wider availability compared with PP and PE [33,77,78]. It has also been
successfully applied to the manufacturing of plywood.

Table 3. Mechanical properties of plywood bonded with different adhesives [22,30,35,36,69].

Adhesives Hot-Pressing
Temperature (◦C)

Type II Bonding
Strength (MPa)

Type I Bonding
Strength (MPa) MOR (MPa) MOE (MPa)

PE film 152 1.5 0 82.8 7480
PP film 180 1.9 1.4 109.3 13,890

PVC film 183 1.1 0.5 65.1 8600
PS 140 1.25 — 79.7 5253

PHB 170 1.19 — 58.3 6001
UF resins 115~120 1.3~1.4 0 75.7~94.5 7520~13,019

4. Technical Problems of Wood-Based Panel Made of Thermoplastic Resin Adhesive

The physical–mechanical properties of this novel formaldehyde-free wood-based
panel can meet the strength requirements for different applications by controlling the
process conditions. Their technological and environmental benefits confirm their suitability
to gradually replace the traditional plywood, particleboard or fiberboard. However, ther-
moplastics have the characteristics of melting and softening at high temperatures. When
the temperature approaches or exceeds the melting point of the thermoplastic, the bonding
structure between the thermoplastic and wood cannot be maintained, and the strength of
the panel will be lost [25,79]. When thermoplastics are used as adhesives, their incompatibil-
ity with wood can present another major problem [18,26,29,36,47]. As shown in Figure 2b,
there was a large gap at the interface. Therefore, enhancing the compatibility between ther-
moplastic and wood raw materials and improving the high-temperature resistance will be
the most important work in the future. Multiple review studies related to the improvement
of the wood fiber–plastic interfacial interaction have been published [41,80–82]. The most
popular and most widely described methods are thermal treatment, plasma treatment,
alkali treatment, silanization, acetylation, maleation, acrylation or isocyanate treatment.
For wood–plastic particleboard, various modification methods that have been successfully
applied in WPCs are essentially applicable. Meanwhile, for a wood veneer–plastic film
bonding system, the interfacial methods are relatively limited due to the size limitation.
Here, we simply focus on some effective methods for wood–plastic plywood.

Giving the wood veneer or plastic film new chemical properties has been proven to
be the most effective solution [30,83,84]. Zhou et al. [29,85] grafted oxygen- and nitrogen-
containing functional groups onto the surfaces of plastic bags using an industrial atmo-
spheric dielectric-barrier discharge plasma system. Due to the enhanced surface polarity
and wettability, formaldehyde-free plywood with a high bonding strength (0.82 MPa)
was successfully fabricated. Fang et al. [26] introduced the bifunctional structure of
vinyltrimethoxysilane hydrolysate into a wood veneer and successfully established a chem-
ical bridge between the wood veneer and PE film. The bonding interface gap decreased to
a single molecular scale because of the silane surface treatment, resulting in an increase
in tensile shear strength by 293.2%. The temperature point at which the panel strength
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sharply decreased raised from 140 to 180 ◦C, indicating that the interfacial improvement
was also of benefit to the thermal stability of the composites.

Physical modification has also attracted extensive attention because of its unique
advantages. In order to promote the penetration of thermoplastics in wood, some scholars
have used a self-made hole rolling machine to roll dense blind holes on the surface of the
wood veneer [86]. This method helped to form a more stable “dendritic glue nail” mi-
crostructure and contributed to improving the bonding strength and dimensional stability
of the PE film-bonded wood-based panel. The perforation of the thermoplastic film was
also conducive to increasing the mechanical interlocking between the plastic and wood [87].
This is because the heat transfer rate was accelerated during the hot pressing. However,
the efficiency of these methods is low, and the self-strength of wood veneer or plastic
films can easily be reduced. Thermal treatment will not only degrade hemicellulose in
wood, but also lead to the migration or volatilization of various extractives to the wood
surface [88]. Therefore, an alternative modification method has been explored as a strategy
to improve the compatibility of the wood veneer and hydrophobic thermoplastic without
contaminating the environment. However, the high temperature usually reduced the elastic
modulus of wood. The key technology of thermal treatment was to select appropriate
parameters, such as treating temperature and treating medium, so as to effectively change
the surface properties of wood without reducing its mechanical properties. To date, there
have been several reports of improved dimensional stability, water resistance and biological
resistance [89–91], but little improvement in flexural properties has been reported. Future
work should focus on exploring environmentally friendly modification methods, with low
energy consumption and low cost, that are conducive to industrial production. At the same
time, the mechanism of various modification methods should be further clarified to add
new content to the development of high-performance green wood adhesives.

5. Conclusions

Thermoplastic-bonded wood-based panels prepared using the hot-pressing technique
have the characteristics of no formaldehyde emission and excellent water resistance. This
has become an ideal alternative material for furniture, flooring decoration and so on. To
date, a large number of systematic studies have been carried out on these novel panels, but
there are still some problems that require further attention.

(1) As for the types of thermoplastics, virgin and single plastics are preferred, among
which PP and PE are the most studied. The hot-pressing temperature for preparing the
composites is relatively high (above 140 ◦C). In order to alleviate the defects caused
by plastic shrinkage, cooling forming equipment needs to be added for the prepa-
ration of thermoplastic-bonded wood-based panels. In general, the manufacturing
cost of thermoplastic-bonded wood-based panels is higher than that of traditional
trialdehyde-bonded panels.

(2) The incompatibility between thermoplastic and wood has an adverse impact on the
mechanical properties. Therefore, thermoplastic-bonded wood-based panels can only
find use in some nonstructural applications. To date, numerous modification methods
have been tested and proven to counter the incompatibility between hydrophilic
wood and hydrophobic thermoplastics, but some of their enhancement mechanisms
need to be further clarified.

(3) For thermoplastic-bonded particleboard or fiberboard, obtaining uniformly mixed
materials at the lowest cost, ensuring the uniform paving and molding of mixtures and
selecting the cold-pressing parameters according to different manufacturing processes
still lack data and theoretical support.

(4) The performance evaluation of wood-based panels made with thermoplastic resin
adhesives mainly focuses on indexes such as bonding strength, bending resistance
and water resistance, while there is a lack of research on the flame retardance, mildew
resistance and ultraviolet aging resistance properties.
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