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Purpose: Descemet membrane endothelial keratoplasty (DMEK) is the preferred
method for treating corneal endothelial dysfunction, such as Fuchs endothelial corneal
dystrophy (FECD). The surgical indication is based on the patients’ symptoms and the
presence of corneal edema. We developed an automated tool based on deep learning
to detect edema in corneal optical coherence tomography images. This study aimed
to evaluate this approach in edema detection before Descemet membrane endothelial
keratoplasty surgery, for patients with or without FECD.

Methods: We used our previously described model allowing to classify each pixel in
the corneal optical coherence tomography images as “normal”or “edema.”We included
1992 images of normal and preoperative edematous corneas. We calculated the edema
fraction (EF), defined as the ratio between the number of pixels labeled as “edema,”and
those representing the cornea for each patient. Differential central corneal thickness
(DCCT), defined as the difference in central corneal thickness before and 6months after
surgery, was used to quantify preoperative edema. AUC of EF for the edema detection
was calculated for Several DCCT thresholds and a value of 20 μmwas selected to define
significant edema as it provided the highest area under the curve value.

Results: The area under the curve of the receiver operating characteristic curve for EF
for the detection of 20 μm of DCCT was 0.97 for all patients, 0.96 for Fuchs and normal
only and 0.99 for non-FECD and normal patients. The optimal EF threshold was 0.143 for
all patients and patients with FECD.

Conclusions: Our model is capable of objectively detecting minimal corneal edema
before Descemet membrane endothelial keratoplasty surgery.

TranslationalRelevance:Deep learning canhelp to interpret optical coherence tomog-
raphy scans and aid the surgeon in decision-making.

Introduction

Descemet’s membrane endothelial keratoplasty
(DMEK) is considered as a modern standard in the
management of corneal endothelial dysfunction.1,2 In
DMEK, the endothelium and Descemet’s membrane
are replaced with the corresponding layers from a
healthy donor cornea. DMEK has proven to achieve
faster visual rehabilitation, better visual outcomes
and lower rates of rejection than Descemet’s stripping
endothelial keratoplasty or penetrating keratoplasty.3

Fuchs endothelial corneal dystrophy (FECD) is one
of the leading indications of DMEK,4 followed by
pseudophakic bullous keratopathy, polymorphous
posterior corneal dystrophy, iridoconeal endothe-
lial syndromes, endothelial decompensation after
penetrating keratoplasty, and other causes of corneal
endothelial dysfunction. FECD is a bilateral asymmet-
ric disease of the corneal endothelium characterized
by progressive endothelial cell loss and the develop-
ment of guttae, which are excrescences of Descemet’s
membrane. It may result in corneal decompensa-
tion characterized by corneal edema responsible for
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decreased vision and glare, pain and photophobia
in the presence of subepithelial bullae, and subep-
ithelial fibrosis and scarring at the final stage.5 To
reach optimal visual outcomes with DMEK surgery,
corneal edema must be diagnosed early, before the
development of irreversible microstructural changes.6
In patients with FECD, even though surgical indica-
tions for endothelial keratoplasty are primarily based
on patients’ symptoms and visual acuity, in cases of
associated cataract and/or when no edema can be seen
clinically, the detection of subclinical edema can help
the surgeons in their decision-making.

Clinically, slit-lamp biomicroscopy is widely consid-
ered as the gold standard to assess corneal swelling,
by revealing the presence of stromal haziness, epithe-
lial edema, subepithelial bullae, and Descemet’s folds.7
However, by definition, slit-lamp examination does not
allow the detection of subclinical edema. Nowadays,
central corneal thickness (CCT) remains the most
objective parameter to assess corneal edema, and its
precise measurement is essential in clinical practice.
Several methods are available to measure CCT; ultra-
sound pachymetry is considered as the gold standard,8
but requires contact with the cornea and depends on
the examiner’s experience for reliable measurements.
When consistency and peripheral measurements are
important, optical coherence tomography (OCT) and
Scheimpflug camera tomography may provide greater
accuracy, with numerous advantages like the absence
of contact with the cornea, short measurement times,
and objective determination of pachymetry mapping.
These devices have exhibited good repeatability and
agreement when measuring CCTs in normal corneas,9
but results may vary with corneal edema and might
be deceiving when assessing edema in naturally thin
or thick corneas.10,11 Anterior segment OCT high-
resolution images allow the diagnosis of corneal edema
by trained cornea experts, but minimal or mild corneal
swelling may not be noticed by all practitioners.

Recently, several techniques have been described to
tackle the problem of detecting subclinical edema. The
corneal central to peripheral thickness ratio was used
as an objective method to quantify the severity of
Fuchs dystrophy, but correlation with subjective clini-
cal grading was only moderate.12 Moreover, measur-
ing corneal densitometry using Scheimpflug camera
tomography has been described as a useful method
to objectively quantify subclinical corneal edema.13
Finally, pachymetry maps and posterior corneal eleva-
tion patterns generated with Scheimpflug tomogra-
phy have been reported to facilitate the identification
of subclinical edema in cases with FECD.14 These
diagnostic techniques are useful in clinical practice,
but still lack standardization and automatization to
be usable even by ophthalmologists not specialized

in the cornea. Several studies have demonstrated the
usefulness of machine learning and deep learning in
ophthalmology, specifically in retinal and glaucoma
diseases15,16 and more recently in corneal diseases.17–23
Indeed, interesting results have been described for
keratoconus detection,17–20 refractive surgery screen-
ing,21,22 and predicting the likelihood of future kerato-
plasty,23 both through unsupervised and supervised
learning techniques.

Through deep learning, an algorithm usually uses
a multilayered artificial neural network to perform
complex tasks, such as image recognition and classifi-
cation, after learning from a training set of images.24
Until now, few studies have focused specifically on
automated detection of corneal diseases using anterior
segment OCT.23,25–30 Regarding DMEK surgery, deep
learning has been used for automated detection of graft
detachment31 and predicting the likelihood of rebul-
bing based on postoperative OCT images.32 Recently,
Eleiwa et al.28 reported a deep learning algorithm that
can be used as a potential objective diagnostic tool to
detect clinically visible edema as accurately as ophthal-
mologists. We recently described a different approach
to objectively detect and visualize corneal edema at
the pixel level on anterior segment OCT images.29 The
aim of this study was to evaluate this approach before
DMEK surgery. Accurate detection of minimal edema
could be useful when considering patients for cataract
surgery alone or associated to endothelial keratoplasty.

Methods

Patients and Images

This study was conducted retrospectively at the
Rothschild Foundation Hospital in Paris, France, in
accordance with the tenets of the 1964 Declaration of
Helsinki. The research was approved by the Rothschild
Foundation Hospital Review Board (IRB 00012671).
Informed consent was obtained from all participants.

We collected data as follows for the pre-DMEK
group: we searched for patients who underwent
DMEK surgery in our corneal graft registry between
October 2017 and June 2020. The recorded data were
reviewed manually to include only patients with a
successful surgery defined by an increase in visual
acuity and a reduction of corneal thickness 6 months
after surgery, and an available pachymetry-wide or
pachymetry examination obtained from the Avanti
OCT (RTVue, Optovue, Fremont, CA) before DMEK
surgery. Each examination is composed of eight radial
scans evenly spaced by 22.5°.

We included normal cases with the following exclu-
sion criteria: history of ocular surgery or trauma, any
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corneal disease including dystrophies, infectious kerati-
tis, dry eye disease, and contact lens wear.

Image resolution was 1536 × 640 pixels for the 9-
mm scans and 1020 × 640 pixels for the 6-mm scans.
All 9-mm scans were cropped laterally to the central
1020 pixels to obtain the same size as the 6-mm scans.
No other preprocessing technique was applied to the
images.

Deep Learning Model

We used our previously describe deep learning
pipeline29,30 to detect corneal edema on all images.
Briefly, it is composed of three U-Net models. The
first one detects the epithelium on the image, which
allows to modify the original image by removing the
epithelium. The second one detects corneal edema
on the modified image of the stroma alone. The
third one detects edema on the whole original image,
but only the epithelium part of the prediction is
kept. The final prediction comes from the combina-
tion of the results of the second and third models
by assembling the stromal and epithelial parts. The
pipeline was built using Python 3.6 and the PyTorch
library. The code for the pipeline is available on Git
Hub at https://github.com/pierrezeb/Corneal_edema_
pipeline. It should be noted that no patient used for
the training of the pipeline was used in this validation
cohort.

OutcomeMeasures

For both the normal and pre-DMEK groups
we report the principal characteristics: number of
patients and eyes, mean age, and mean CCT. The pre-
DMEK patients were organized by clinical category:
FECD, decompensation after cataract surgery, and
decompensation after anterior chamber intraocu-
lar lens Artisan. We reported for each one: the
number of reintervention or triple procedures (DMEK
and phacoemulsification), presence of clinical edema,
mean postoperative CCT, and preoperative best-
corrected visual acuity (BCVA) at 3 months and at
6 months.

All images were screened by our algorithm. The
number of pixels predicted as edema and normal, as
well as the total number of pixels representing the
corneawere counted for each image. To remove floating
isolated artifacts in the background that would skew
the pixel count results, we created a binary mask in
which pixels predicted as edema or normal were set to
1 and the other to 0. Then, only the largest connected
component of that mask was used to count the pixels.
The main outcome measure was the edema fraction
(EF), defined as the ratio between the number of pixels

labeled as edema and those representing the cornea
averaged over all scans of each patient. Visualization
of the results are presented as a color map of the
same size as the original image. A colorimetric scale
as described previously29 was used to represent the
output values of the network with hot colors reflect-
ing a high probability of edema and cold colors a lower
one.

To quantify corneal edema objectively before
surgery and account for subclinical edema, we used
the differential CCT (DCCT), defined by the differ-
ence between preoperative and postoperative mean
CCT measured in the 3 central mm of the cornea by
the OCT device. It should be noted that we included
successful surgeries only, because by considering that
surgery is a success, we hypothesize that there is no
residual edema on postoperative images. Therefore,
DCCT should provide an accurate measurement of
the amount of central preoperative edema. Because the
Descemet membrane can be thickened in FECD,33 it
is possible that some patients have a minimal DCCT
with no real edema. Therefore, the optimal threshold
to define edema using DCCT is not known. Hence, to
compare the EFwithDCCT, we used a receiver operat-
ing characteristic curve (ROC) analysis of the EF with
thresholding based on different DCCTs values of 0, 20,
25, and 30 μm. TheDCCT threshold having the highest
area under the curve (AUC) was used to define signif-
icant edema for the rest of the study. Normal patients
were considered to have a DCCT of 0 μm to be compa-
rable with the other patients.

To compare the efficiency of our method in cases
of minimal edema to the existing Scheimpflug based
classification described by Sun et al.,14 we included
only patients with an available Scheimpflug (Pentacam,
Ocumus, Wetzlar, Germany) examination performed
on the same day as the preoperative OCT. Scheimpflug
maps were classified by one corneal surgeon (P.Z.) with
more than 5 years of experience in DMEK surgery,
who applies this classification in his routine practice.
The readerwas blinded to the diagnosis andDCCTand
EF values. The features of this classification are (1) loss
of parallel isopachs on pachymetry map, (2) displace-
ment of the thinnest point of the cornea, and (3) focal
posterior corneal surface depression. To compare the
results with our model’s EF, which is bounded by 0 and
1, we added the number of observed features for each
examination and divided the result by 3 to obtain a
value between 0 and 1. It should be noted that no other
Scheimpflug based parameter was used as these are the
one used routinely in our department. Also, CCT was
measured with OCT and not with Pentacam because
it was available both before and after surgery for all
cases, which ensures a better reliability of the DCCT
value.

https://github.com/pierrezeb/Cornealedemapipeline
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Statistical Analyses

Age, preoperative and postoperative CCT, DCCT,
preoperative BCVA, and BCVA at 3 and 6 months are
presented as mean ± standard deviation. The preop-
erative EF was calculated for every patient. Compar-
isons were performed between normal and edema-
tous patients and between the different groups of
edematous patients. Comparisons between preopera-
tive and postoperative variables were also performed
for each group. Finally, comparisons between patients
with or without clinical edema were performed for
each variable. A Student t-test was used for compar-
ison when the data followed a Gaussian distribution
according to the D’Agostino–Pearson test, a Mann–
Whitney U test was used otherwise, and analysis of
variance was used to compare the different clinical
groups. Tukey’s adjustment was applied to account
for multiple comparisons. Proportions were compared
using the χ2 test.

ROC curves were calculated for three different
settings: for all patients, FECD and normal only,
and non-FECD preoperative patients (others) and
normal only. The AUC, optimal threshold, sensi-
tivity, and specificity are reported in each case.
The Pearson correlation coefficient (r) was used to
assess correlation between EF and the results of
the Scheimpflug classification, EF and preoperative
BCVA and preoperative pachymetry and BCVA. P
values of less than 0.05 were considered statically

significant. Statistical analyses were performed with
the online application EasyMedStat (version 3.4; www.
easymedstat.com) and Stata software. Plots and heat
map representations were made using Seaborn and
Matplotlip libraries in Python 3.6.

Results

Patient Characteristics

We included a total of 1992 images from 290 eyes
of 255 patients (50 eyes of 50 normals patients and
240 eyes from205 pre-DMEKpatients). Various condi-
tions of corneal edema with indication for DMEK
surgery were included: FECD (144 eyes), decompen-
sation after cataract surgery (78 eyes), decompensa-
tion after anterior chamber intraocular lens Artisan
(18 eyes). Patient characteristics are summarized in
Table 1.

There was a significant difference between pre-
DMEK patients and normal patients when comparing
age (P < 0.001) and CCT (P < 0.001). There was a
significant difference between preoperative and postop-
erative CCT (P < 0.001, P < 0.001, and P < 0.01,
respectively) and between preoperative and postop-
erative visual acuity in each group of pre-DMEK
patients (P < 0.001 for all). There was no significant
difference for postoperative pachymetry between pre-
DMEK groups (P = 0.442). There was a significant

Table 1. Patients’Characteristics

Pre-DMEK
Parameters Normal Fuchs Post-Cat Post-ACIOL/Artisan Total P Valuea

Patients 50 144 78 18 240 –
Reintervention – 7 6 4 17 –
Triple procedure – 102 0 2 104 –
clinical edema – 114 74 18 206 –
Mean age (years) 42.1 ± 19.5 68.8 ± 10.3 75.3 ± 9.8 71.2 ± 14.9 71.1 ± 11.0 0.000
Mean pachy preoperatively (μm) 521.7 ± 51.6 599.0 ± 54.9 660.1 ± 94.0 683.7 ± 93.3 625.2 ± 80.0 0.000
Mean pachy postoperative (μm) – 510.7 ± 41.0 499.7 ± 44.5 529.1 ± 105.4 508.5 ± 50.5 0.4420
Mean DCCT – 88.3 ± 52.2 160.3 ± 84.6 154.6 ± 112.7 116.9 ± 78.4 0.000
Mean VA preoperatively (logMAR) – 0. 5 ± 0.3 0.9 ± 0.6 1.3 ± 0.7 0.7 ± 0.5 0.000
Mean VA 3M (logMAR) – 0.2 ± 0.2 0.4 ± 0.4 0.8 ± 0.7 0.3 ± 0.3 0.000
Mean VA 6M (logMAR) – 0.1 ± 0.2 0.3 ± 0.3 0.7 ± 0.7 0.2 ± 0.3 0.000
P value b <0.001 <0.001 <0.01 <0.001
P valuec <0.001 <0.001 0.001 <0.001

Post-Cat, postoperative of cataract surgery; Post-ACIOL/Artisan: postoperative of anterior chamber intraocular lens/Artisan;
Pre-DMEK, preoperative of DMEK; Triple procedure: phacoemulsification+ DMEK; VA, visual acuity.

Values are number or mean ± standard deviation. Values in bold are for emphasize the total values.
aP value between pre-DMEK subgroups for each parameter.
bP*value between preoperative and postoperative pachymetry.
cP value between preoperatively and 6M postoperative.

http://www.easymedstat.com
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Figure 1. ROCs of the EF for the detection of different thickness variations for all patients (top left), Fuchs and normal patients only (top
right), others and normal patients only (bottom). AUCXX, AUC for the detection of a corneal thickness variation of XX microns.

difference between these groups for all other parame-
ters. Results are presented in Table 1.

Model’s Performance

The mean EF was 0.06 ± 0.2 in the normal scans
and 0.80 ± 0.3 in the preoperative scans (P < 0.001).
The model performed better using a DCCT cut-off
of 20 μm to define significant edema. Using this
value, the AUC of the ROC curve for EF was 0.97
for all patients, 0.96 for FECD and normal patients
only, and 0.99 for non-FECD and normal patients
(Fig. 1). The optimal EF threshold for the detection
of a 20-μm DCCT was 0.143 in both all patients
and patients with FECD and was 0.171 in other
patients (Fig. 2). Using these thresholds, the model’s Figure 2. EF as a function of DDCT.



Deep Learning Model to Detect Corneal Edema TVST | December 2022 | Vol. 11 | No. 12 | Article 19 | 6

Figure 3. Comparison of EF and Scheimpflug classification. Dotted
lines represent the threshold for edema detection for bothmethods
(EF of ≥0.143 and Scheimpflug classification of ≥0.66).

sensitivity and specificity were, respectively, 94.5%
and 94.3% for all patients, 94.5% and 92% for FECD
and normal patients only, and 96% and 97.9% for
others and normal patients.

Correlation Analyses

In the subgroup of patients with FECD with avail-
able Scheimpflug examination, the correlation analysis
between EF and the Scheimpflug classification revealed
that both methods are positively correlated (r = 0.58;
P < 0.001) (Fig. 3). The single Scheimpflug parameter
exhibiting the highest correlation with EF was the loss
of parallel isopach (r = 0.66). EF was not correlated
with visual acuity before surgery (r = 0.17; P = 0.18).

When comparing patients with and without clini-
cal edema, there was a significant difference in the
following variables: mean preoperative AV (P< 0.001),
DCCT (P < 0.001), EF (P < 0.001), and the propor-
tion of patients with an EF of 0.143 or greater (0.96
vs 0.71, respectively; P < 0.001). Contingency tables
between EF and DCCT in patients with and without
clinical edema are presented in Table 2.

Table 2. Contingency Tables Between EF and DCCT in
Patients With and Without Clinical Edema

EF < 0.143 EF ≥ 0.143 Total

DCCT < 20 μm 1 0 1
DCCT ≥ 20 μm 8 196 204
Total 9 196 205

EF < 0.143 EF ≥ 0.143 Total
DCCT < 20 μm 3 0 3
DCCT ≥ 20 μm 6 22 28
Total 9 22 31

Examples

Several examples of both colored heat maps and
OCT scans with various EFs, CCT, and DCCT are
illustrated in Figures 4 to 7. Figure 4 represents an
OCT scan of a major corneal edema, with a fully red
color map indicating the presence of edema (EF =
0.99). Figure 5 shows a FECD cornea before a DCCT
of 24 μm in which no edema was detected with our
model nor the Scheimpflug classification. Figure 6 illus-
trates an example of minimal edema with a DCCT
of 39 μm. Figure 7 shows a case of localized periph-
eral edema visible on the colored heat map and on the
Scheimpflug examination.

Discussion

We showed that our deep learning model performed
optimally in the detection of a preoperative corneal
edema corresponding to at least 20 microns of
corneal thickness. Few other studies described artifi-
cial intelligence models designed to improve decision-
making in corneal keratoplasty surgery. One study23
described an unsupervised pipeline to cluster obser-
vations in groups of likelihood of future keratoplasty
using OCT-based parameters. Although the results

Figure 4. OCT scan and colored heat map of an edematous cornea. The CCT was 705 μm, the DCCT was 237 μm, and the EF was 0.99.
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Figure 5. OCT scan and colored heat map (top) and Scheimpflug examination (bottom) of a patient with FECD with a thin cornea and no
edema. The DCCT was 24 μm, EF was 0, and Scheimpflug classification was 0/3. OS, left eye.

Figure 6. OCT scan and colored heat map of localized edema. The CCT was 573 μm, the DDCT was 39 μm, and the EF was 0.64.

are interesting, it should be noted that the unsuper-
vised algorithm used does not allow the a posteri-
ori analysis of a new examination. This makes its
usability limited in clinical practice. Eleiwa et al.28
reported a deep learning algorithm capable of detect-
ing clinically visible edema as well as FECD as
accurately as ophthalmologists. This work describes
an interesting automation of the clinical assessment
of FECD and corneal edema but does not provide
additional help to the clinician in the decision-
making process. Regarding DMEK surgery specifi-
cally, we believe that detection of corneal edema and
subclinical edema could be an interesting addition
to the existing available tools for preoperative assess-
ment.

Currently, there is no gold standard to detect
corneal edema objectively. Although the clinical evalu-
ation of corneal edema remains inaccurate, corneal
thickness remains the most widely used objective
parameter to assess corneal edema. Corneal thickness
can be deceivingwhen detecting edema in naturally thin
or thick corneas.10,11 Several studies have addressed the
evaluation and detection of corneal edema.12–14,28–30
We aimed to develop an automated objective tool,
rather than a subjective classification. Indeed, several
studies focused on diagnosing and grading FECD
severity.12,14 Krachmer et al.34 and Louttit et al.35
described a method to grade FECD using the distri-
bution of guttae and presence of edema. Their grading
scales include the existence of edema as a parameter of
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Figure 7. Comparison of our model’s results and Scheimpflug examination in a Fuchs patient with localized edema. The CCT was 542
μm, the DDCT was 44 μm, and the EF was 0.062. (Top) Radial OCT scan with the model’s results. (Bottom) Corresponding Scheimpflug
examination. The position of the OCT scan is noted with a red and white dashed arrow.

increased FECD severity, but theKrachmer scale states
that corneal edema can only be present with extensive
guttae.

In our study, we have deliberately chosen to use
the DCCT to define edema because it is an objec-
tive and quantitative parameter. The clinical assess-
ment of minimal or subclinical corneal edema is subjec-
tive and unreliable. Minimal edema is nonetheless
certainly an interesting matter when considering a
patient for surgery, especially for a triple procedure.
Therefore, we wanted an objective metric to evalu-
ate our model’s detection performance and to deter-
mine the minimal detectable edema threshold with our
method.

We compared our model’s performance with the
Scheimpflug classification described by Sun et al.14 We
observed a perfect agreement between both methods in
cases with a DCCT of 26 μm or less and a relatively
good agreement in cases with a DCCT over that
threshold. Some patients with a DCCT of more than
26 μm exhibited only one feature, whereas the authors
suggested that the presence of two features is indica-
tive of subclinical edema. Even though this classifi-
cation was described for features inside the central
4 mm, we believe it can be used equally in cases falling
outside these criteria. In our study, most false-negative
cases had visible features outside of the central 4 mm.
Interestingly, in their study, the only case reported
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with guttae and without any tomographic feature
had a DCCT of 27 μm, whereas other cases with
tomographic features had a DCCT greater than this
value. This value is comparable with the 26-μm cut-
off we found for significant edema detectable by both
techniques.

Recently, Zander et al.36 developed a model
to predict corneal edema resolution after DMEK
based on a single Scheimpflug tomographic imaging
examination in patients with FECD. They assessed
tomographic features and parameters of corneal shape
and structure before and after intervention restoring
endothelial function. The model was validated on 32
eyes. The ROC curve AUC of 0.97 (95% confidence
interval, 0.86–1.00) to separate patients with an edema
resolution of less than 50 μm from those with more
edema.

More recently, Patel et al.37 also developed a model
to predict corneal improvement after DMEK for
FECD by using specific software providing quantita-
tive parameters from Scheimpflug tomography poste-
rior elevation and pachymetry maps that were indepen-
dent of corneal thickness. The model was evaluated
on 45 eyes and R2 between predicted and observed
CCT change was 0.89. It should be noted that, in
both studies, no normal cases were included; there-
fore, the risk of a false positive was not evaluated
completely.

Our study has several limits. First, the threshold of
DCCT is affected by the Descemet’s membrane thick-
ness (DMT) which is thickened in patients with FECD.
Indeed, Huang et al.38 reported that the higher density
of guttae is correlated with increased thickness with a
mean DMT of 25.5 ± 10.9 μm in corneas with guttata
against 16.1± 2.4 μm in normal corneas. Thus, it would
be relevant to subtract the DMT to the DCCT to
obtain an accurate measurement of differential thick-
ness strictly due to edema.

Moreover, because the DMT is higher in the center
than the periphery in FECD,39 it is interesting to note
that it could also affect the performance of previously
described techniques. Indeed, posterior corneal densit-
ometry, central-to-peripheral thickness ratio, and focal
posterior corneal surface depression could all theoreti-
cally be falsely positive due to a local central thickening
of the Descemet membrane, even without any stromal
edema.

By using the absolute DCCT instead of relative
thickness variation (defined as DCCT divided by
preoperative pachymetry), it is easy to identify patients
whose DCCT is comparable with a thickened FECD
Descemet membrane. Indeed, patients with FECD
with a DCCT of less than 20 μm and negative for
edema could be true negatives and this CCT decreased

could be explained by the difference of DMT only.
Thus, the cut-off of 20 μm is not absolute and should
be adjusted fromDMT to be certain of the presence of
edema.

In addition to the EF metric, our model provides
informative images of the regions detected as edema
on each OCT image (Figs. 4 to 7). As with most deep
learning models, the explainability of the results is
limited. Even though, we cannot know exactly why
the model selects those regions as edema, we believe
that validation against an objectivemetric (DCCT) and
other imaging techniques (Scheimpflug) helps building
trust in the model’s results. Moreover, the highlighted
regions of the color map encourage the clinician to
look closer for subtle signs of edema.

The provided color maps should be interpreted
together with the EF results. Indeed, in cases of EF
lower than the significant cut-off of 0.143, the colored
heat map can highlight features of the stroma or the
epithelium, helping the surgeon in their decision. For
example, in Figure 7, the CCT was 542 μm, the DCCT
was 44 μm and the mean EF was 0.062, below the
optimal threshold. Nonetheless, the model highlights
a region of peripheral edema, also visible on the
Scheimpflug examination. In this case of very local-
ized edema, the angular spacing of 22.5° of the Avanti
radial scans and the process of averaging the EF value
over all scans resulted in an EF value lower than the
optimal detection threshold.

Some limitations are specific to the current version
of the model. Some of the control patients with no
edema had high EF values (>0.8), meaning that most
of the cornea was detected as edema. Such cases are
probably indicative of a global difference in the image
signal, which could affect the whole image, indepen-
dent of the presence of edema. Convolutional neural
networks are very sensitive to subtle signal differences,
often imperceptible to the human eye. It would be
interesting to repeat the OCT scans in these cases and
compare the results.

Regarding the comparison with the Scheimpflug
classification, despite encouraging results, very few
patients had undergone a Scheimpflug tomography
before surgery. A further comparative study including
more patients would be interesting.

One limitation is related to how CCT is measured
with the Avanti OCT. Indeed, there is no image
registration to ensure corneal thickness measurement
repeatability. Thus, measures performed before and
after surgery for the same patient are probably not from
the exact same area. But because the CCT value is
averaged from the 3-mm central zone, it is probably an
acceptable approximation to consider them as the same
regions.
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Figure 8. Suggested decision tree for patients with FECD using our model. DSO, Descemet stripping only.

Validation of the model should be further
conducted prospectively and in other populations
and situations. For example, the repeatability and
diurnal variation of our model’s results,40 as well as
postoperative performances, should be addressed in
subsequent studies. Figure 8 provides a suggested
decision tree proposing the clinical use of our model
for patients with FECDwhich could be one of its most
common use cases.

When assessing patients with FECD, the most
and foremost aspect to consider is the presence of
symptoms. Indeed, asymptomatic patients should not
undergo any surgery. Nonetheless, using our model
could provide additional objective baseline informa-
tion for comparison during their follow up.

In cases of symptomatic patients without cataract,
if the model detects edema, a DMEK surgery could
be suggested as endothelial failure is manifest and
will only worsen with time. In contrast, in cases of
symptomatic patients without cataract and no detected
edema, visual discomfort is probably due to the optical
consequences of the guttae alone. In this case, depend-
ing on the magnitude of the patient’s symptoms, a
simple follow-up, Descemet stripping only, or DMEK
could be discussed. Finally, in cases of symptomatic
patients with cataract, the presence or absence of
detected edema could help decide between a triple
procedure and cataract surgery alone. Indeed, in our

cohort, some patients had no detected edema, neither
with our model nor with the Scheimpflug classi-
fication. It could be argued that cataract surgery
alone would have been a good option for those
patients.

Finally, it should be noted that, as with any measur-
ing technique or device, its interpretation has some
elements of subjectivity. We believe our model is
intended to help the clinician in reading the images and
should be used jointly to clinical examination, corneal
thickness measurement, and topography to help the
surgeon in decision making.

Because DMEK surgery has become widely
accepted, accurate detection of edema is essential
because it reveals endothelial dysfunction. We believe
methods of edema detection should be evaluated
against an objective measurement rather than a subjec-
tive clinical classification. Indeed, a point-by-point
differential pachymetry between pre and postopera-
tive measures with registration, and subtraction of
the Descemet membrane thickness could provide
a robust standard to quantify preoperative edema
and allow for a precise evaluation of new screening
techniques.

In conclusion, we have developed an automated tool
capable of objectively detectingminimal corneal edema
in patients before DMEK surgery. Our deep learning
approach seems promising and could certainly increase
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the performance of detection of subclinical edema or
be combined with other existing methods. In addition,
it can probably also be used in the follow up of
DMEK surgeries to assess graft function and corneal
edema reduction. This should be verified in subse-
quent studies. In the future, we can imagine its system-
atic use by corneal experts before DMEK surgery and
other ophthalmologists in the decision-making before
cataract surgery.
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