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During tumor development and progression, intrinsic and extrinsic factors trigger
endoplasmic reticulum (ER) stress and the unfolded protein response, resulting in the
increased expression of molecular chaperones to cope with the stress and maintain tumor
cell survival. Heat shock protein (HSP) GRP94, also known as GP96, is an ER paralog of
HSP90 and has been shown to promote survival signaling during tumor-induced stress
and modulate the immune response through its multiple clients, including TLRs, integrins,
LRP6, GARP, IGF, and HER2. Clinically, elevated expression of GRP94 correlates with an
aggressive phenotype and poor clinical outcome in a variety of cancers. Thus, GRP94 is a
potential molecular marker and therapeutic target in malignancies. In this review, we will
undergo deep molecular profiling of GRP94 in tumor development and summarize the
individual roles of GRP94 in common cancers, including breast cancer, colon cancer, lung
cancer, liver cancer, multiple myeloma, and others. Finally, we will briefly review the
therapeutic potential of selectively targeting GRP94 for the treatment of cancers.
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INTRODUCTION

Glucose regulated protein 94 (GRP94), also known as GP96, is a stress-inducible molecular
chaperone that belongs to the heat shock protein (HSP) 90 family (1). GRP94 is upregulated in
many stress conditions that disturb endoplasmic reticulum (ER) homeostasis (2). A wide range of
stressful conditions exists within the tumor microenvironment, including hypoxia, redox
homeostasis dysregulation, altered cell metabolism, acidosis, and genetic lesions leading to the
production of mutated proteins, high rates of proliferation, and increased protein synthesis (3).
Activation of the unfolded protein response (UPR) leads to the up-regulation of pro-survival
proteins involved in angiogenesis, folding capacity, redox protection, or degradation of unfolded
proteins (4). However, when the activation of this response is prolonged, it can also result in cell
death. GRP94 plays a critical role in regulating the balance between cancer cell survival and death
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through sustaining ER protein folding capacity, maintaining ER
stress sensors, and repressing ER-associated pro-apoptotic
machinery (Figure 1B).

Moreover, GRP94 is responsible for chaperoning multiple
proteins that have been reported to play essential roles in
immune response and promoting cancer development,
including Toll-like receptors (TLRs) (5–8), the majority of a
and b integrin subunits (7, 9), Wnt co-receptor low-density
lipoprotein receptor-related protein 6 (LRP6) (9, 10), glycoprotein
A repetitions predominant (GARP) (11–15), Insulin-like growth
factor (IGF) (16–18), as well as platelet glycoprotein Ib-IX-V
complex (19) (Figure 1A).

Using a genetic strategy, depletion of GRP94 from specific
cells reveals that GRP94 promotes tumorigenesis in multiple
myeloma (10), liver cancer (20–22), colon cancer (23, 24), and
endometrial carcinoma (25). An elevated level of GRP94 has also
been reported in many cancers (26–29) and is associated with a
more aggressive tumor phenotype. This review will mainly focus
on the involvement of GRP94 in cancer development and
progression and its potential as a diagnostic biomarker as well
as a therapeutic target.
ONCOGENIC NATURE OF
GRP94 CLIENTS

GRP94 is a master ER chaperone that plays a role in protein
quality control in response to stress, inflammation, and cancer
through its client protein networks, such as LRP6-Wnt, GARP-
TGF-b signaling pathways, etc. (9, 10, 23). The Wnt signal
network plays a critical role in regulating cell differentiation,
proliferation, and fate (30, 31). The bindings of Wnt to Frizzled
and LRP 5 and 6 stabilize b-catenin, a major mediator in the
canonical Wnt signaling pathway (32, 33). GRP94 is a critical
chaperone for the Wnt co-receptor LRP6. Without GRP94, LRP6
fails to export from the ER to the cell surface, resulting in a
profound loss of canonical Wnt signaling and causing a fast and
severe compromise in intestinal homeostasis. This study
uncovered the role of GRP94 in coordinating intestinal
homeostasis through chaperoning LRP6, placing the canonical
Wnt-signaling pathway under the direct regulation of the general
protein quality control machinery in the ER (9). Additionally,
specific deletion of GRP94 in macrophages protects mice from
inflammation-associated colon tumorigenesis partially by the
protection of gut epithelium from b-catenin mutation and
stabilizes the DNA repair pathway (23). Furthermore, we
demonstrated that GRP94 is required for multiple myeloma
cell survival, which is mediated in part by the Wnt target
survivin in a murine model of multiple myeloma (10). Also,
we found that GRP94 is highly expressed in malignant plasma
cells in human multiple myeloma, and the higher levels of
GRP94 have a significant association with a worse clinical
stage in myeloma (34).

GARP is essential to the expression of latent TGF-b (LTGF-b)
on the surface of Foxp3+ regulatory T cells (Tregs) and activated
platelets (35). Zhang et al. demonstrated that GARP is a client
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protein of GRP94 (11). In the absence of GRP94, GARP is unable
to exit the ER because of incorrect protein folding. Specific
deletion of GRP94 in Tregs resulted in both membrane-
associated LTGF-b and secreted form of active TGF-b from
Tregs being significantly reduced (11) (Figure 1C). Also,
platelet-specific deletion of GARP blunted systemic active
TGF-b and induced anti-tumor immunity against both
melanoma and colon cancer (13). Furthermore, Salem et al.
demonstrated that Treg cells lacking GARP were unable to
suppress pathogenic T cell responses, promoted inflammation,
and improved anti-tumor immunity in the inflammation-
associated colon cancer model (14). Moreover, Metelli et al.
found that GARP is highly expressed in human breast cancers
compared with normal breast tissue. Overexpression of GARP in
normal mammary gland epithelial cells increased TGF-b
bioactivity and promoted malignant transformation in
immune-deficient mice (12).

GRP94 is a master chaperone for a variety of integrins and all
TLRs except TLR3 (5–9, 36, 37). Integrins are transmembrane
receptors that facilitate cell-extracellular matrix interaction and
signal transduction by modulating the cell signaling pathways of
transmembrane protein kinases that can promote cell
transformation and tumor progression (38, 39). TLRs are a
class of proteins that recognize the pathogen and damage
associated-molecular patterns and play a key role in innate and
adaptive immune responses. TLRs are localized either on cell
surfaces (TLR1, 2, 4, 5, and 6) or in the endosomes (TLR 3, 7, 8,
and 9). Surface TLRs are responsible for primarily recognizing
bacteria components. Intracellular TLRs recognize nucleic acids
such as TLR3 for dsRNA, TLR7/8 for ssRNA, and TLR9 is the
receptor for unmethylated DNA enriched with the CpG motif
(40, 41). Both immune cells and tumor cells express TLRs.
Immune cells of the myeloid and lymphoid lineages express
TLRs to recognize pathogenic components or cellular debris and
activate the immune system through the secretion of cytokines
and chemokines, thereby recruiting immune cells into the tumor
microenvironment and playing a key role in innate and adaptive
immune responses (42).

Accumulating evidence demonstrates that the TLR signaling
can be a double-edged sword in the tumor microenvironment
(42–44). TLRs can manifest either pro-or anti-tumor activities
depending on the tumor-infiltrating immune cells and cancer
type. However, controversies exist regarding some TLRs in
experimental tumor models (45). The TLR stimulation in an
experimental tumor model has an anti-tumor effect by directing
immune cells to a tumor site or reducing tumor progression by
enhancing tumor cell apoptosis. On the contrary, TLRs
expressed by tumor cells have been widely associated with
tumor progression. TLR2 plays both anti- and pro-tumor roles
depending on its expression on immune cells or tumors. Lowe
et al. showed that TLR2−/− mice developed more tumors in a
colitis-associated colorectal tumor mouse model (46). However,
specific deletion of TLR2 in epithelial cells protects APCmin/+

mice from adenomas and delayed the onset of mammary tumor
development (47). A recent study also showed that the tumor
expressing high level of TLR2 and TLR4 in colorectal cancer
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FIGURE 1 | GRP94 major client network, the role of GRP94 in balancing cancer-induced ER stress responses, and immune regulation in the tumor
microenvironment. (A) Major clients of GRP94 and its role in different signaling pathways. (B) Both intrinsic and extrinsic stress conditions exist in the tumor
microenvironment and trigger ER stress and UPR. Activation of UPR leads to the up-regulation of pro-survival signaling involved in angiogenesis, folding capacity,
redox protection, and degradation of unfolded proteins to keep the cell surviving. However, when the UPR is prolonged, it can also result in cell death through
apoptosis and autophagy. GRP94 is a downstream molecule of UPR. The increase of GRP94 is responsible for strengthening pro-survival signaling to promote
tumor cell survival and aggression. (C) Surface GRP94 is involved in DC maturation via a cell surface receptor CD91. Peptides chaperoned by GRP94 can be
presented to cytotoxic T lymphocytes and initiate antigen-specific T-cell responses to cancer. Also, GARP is translocated to the cell surface with the help of GRP94,
which then activates latent TGF-b in regulatory T cell (Tregs). Tregs then mediate the suppression of effector T cells leading to immunosuppression.
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patients was associated with a worse disease (48). Another study
showed that stimulation of TLR2 promotes TLR2 positive
squamous carcinoma cell growth (49). However, Reilley et al.
showed that local injection of TLR9 agonist improved
checkpoint blockade immunotherapies in poorly immunogenic
melanoma (50). Also, Bellmann et al. reported that a clinical
approved TLR7 agonist increased activation of tumor-infiltrating
T and NK cells, and delayed melanoma cells’ resistance to BRAF
inhibitor (51). Thus, care must be taken while designing anti-
cancer drugs targeting TLRs due to their dual role.

Humanepidermalgrowth factor receptor-2 (HER2) is a receptor
tyrosine kinase (RTK). Overexpression/amplification of HER2 has
been shown indifferent cancers and is associatedwithworse clinical
outcomes. HER2-targeted therapies have been used in the
treatment of HER2-positive breast cancer, gynecologic
malignancies, and other cancers (52–54). Interestingly, Chavany
et al. demonstrated that GRP94 modulates HER2 intracellular
trafficking and stability (55). Later on, Patel et al. discovered that
GRP94 is associated with HER2 and stabilizes this protein at the
plasma membrane (PM) in the HER2-positive breast cancer cells
(56). Li et al. further demonstrated thatGRP94 interactswithHER2
and facilities HER2 dimerization on the PM. Overexpression of
GRP94 on the PM promotes the growth of HER2-positive breast
cancer. Targeting GRP94 with a monoclonal antibody inhibits
tumor growth (57). These studies indicate that molecule
chaperone GRP94 and its clients play a pivotal role in cancer
initiation and development.
SURFACE EXPRESSION OF GRP94 AND
TUMOR IMMUNOGENICITY

GRP94/GP96 normally resides in the lumen of the ER. However,
it can be translocated to the cell surface under stress and other
conditions such as bacterial infection (58, 59) and in the tumor
microenvironment (60, 61). GRP94 is a peptide-binding protein
and stimulate an anti-tumor immune response (62). The
selective surface expression of GRP94 on some immune cells
in different vertebrate classes is consistent with an ancestral
immunological role of GRP94 as a danger-signaling
molecule (61).

Dendritic cells (DCs) are professional antigen-presenting cells
(APCs) and are central to the regulation, maturation, and
maintenance of cellular immune response to cancer. After taking
up antigens, immature DCs differentiate into mature DCs that
prime naive T cells and initiate antigen-specific T-cell responses to
tumors (63). Zheng et al. discovered that surface expression of
GRP94 on tumor cells is involved in DCmaturation and activation
as well as increases tumor immunogenicity to suppress tumor
growth through T lymphocytes (64). Furthermore, cell surface
expression of GRP94 enhances cross-presentation of cellular
antigens and the generation of tumor-specific T cell memory (65).
Peptides chaperoned by GRP94 can be presented to cytotoxic T
lymphocytes. Such a presentation requires the uptake of GRP94 via
a cell surface receptor CD91 expressed by DCs (64) (Figure 1C).
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On the other hand, cell surface GRP94 has also been found on
cancer cells. A recent study found that HER2+ breast cancer cells
expressed GRP94 on the PM, and GRP94 maintained the
stability of HER2 to enhance downstream signaling (56). More
recently, Yan et al. found that different cancer cells had distinct
sensitivities to GRP94 inhibitors. More GRP94 was located on
the PM in inhibitor-sensitive breast cancer cells compared with
inhibitor-insensitive cancer cells. Also, the GRP94 inhibitor is
preferentially bound to the PM-localized GRP94-HER2 complex.
Interestingly, the hyper-N-glycosylated GRP94 at the PM
contributed to the stability of GRP94-receptor tyrosine kinase
complexes, which indicates that GRP94 can adopt a unique
hyperglycosylated conformation to preferentially regulate
growth factor receptors on tumor cells and alter tumor
oncogenesis (66) (Figure 1A).
THE ONTOGENETIC ROLE OF GRP94
IN CANCERS

Multiple Myeloma
Multiple myeloma (MM) is a plasma cell malignancy. UPR plays
a critical role in plasma cell differentiation and myeloma
pathogenesis (67, 68). UPR is an evolutionally conserved
mechanism that maintains protein quality control in the
secretory pathway. Accumulation of misfolded proteins in the
ER triggers the activation of three well-known pathways:
activating transcription factor 6 (ATF6), the double-stranded
RNA-activated protein kinase-like ER kinase (PERK), and the
spliced form of X-box binding protein 1 (XBP1s). XBP1s and
downstream ER chaperones are consistently upregulated in
myeloma cells (69). Malignant plasma cells characteristically
produce large amounts of proteins in the form of
immunoglobulins that require ER chaperones such as GRP94
to prevent ER stress-induced cell death. Hua et al. found that the
persistence of plasma cells and the development of myeloma in
XBP1s-transgenic mice are critically dependent on GRP94. The
addiction of myeloma cells to GRP94 was also demonstrated
genetically and pharmacologically using multiple human
myeloma cell lines (10). Mechanically, GRP94 is a critical
chaperone for LRP6 and is essential for canonical Wnt
signaling. LRP6 is required for the release of b-catenin from its
destruction complex, accumulation of nuclear b-catenin, and
upregulation of Wnt targets including survivin. Deletion of
GRP94 compromises survivin expression, leading to its failure
to safeguard mitotic spindles and the initiation of apoptosis (10,
70) through the activation of proapoptotic molecule CHOP,
which causes downstream activation of the JNK and intrinsic
caspase pathways that finally lead to apoptosis of tumor cells
(71). Also, Chhabra et al. found that GRP94 is highly expressed
in malignant plasma cells in MM. The higher level of GRP94 is
significantly associated with a worse clinical stage in MM (34).
These studies uncover the critical roles of GRP94 in the initiation
and progression of MM, suggesting that blockade of GRP94 is a
novel therapeutic strategy against this disease.
April 2021 | Volume 11 | Article 629846

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Duan et al. Molecular Chaperone GRP94/GP96 in Cancers
Breast Cancer
An early study showed that GRP94 is highly expressed in breast
carcinoma cells but not in normal mammary tissue (26). CD44hi/
CD24lo breast cancer stem cells represent the main driving factor
in breast cancer initiation, growth, metastasis, and poor
responses to anti-cancer agents. Nami et al. found that
CD44hi/CD24lo cells exhibited higher expression of GRP94 at
both mRNA and protein levels compared to their original bulk
cells (72). Dejeans et al. found that overexpression of GRP94 in
breast cancers is associated with resistance to oxidative stress and
the promotion of cancer cell proliferation and migration (4). The
expression level of GRP94 was higher in recurrent human breast
cancers than in their paired primary tumor (29). Recent studies
also showed that GRP94 overexpression is associated with brain
metastasis and poor survival in breast cancer patients (73, 74).
Upregulation of the GRP94 is associated with triple-negative
breast cancer brain metastasis through the Wnt-b-catenin
signaling pathway (75). A recent study showed that GRP94
promoted brain metastasis by engaging pro-survival autophagy
(76). Patients with infiltrated axillary lymph nodes also displayed
increased expression of GRP94 protein.

Recently, Hou et al. found that GRP94 also regulated ER-a36
expression and signaling on the cell membrane of breast cancer.
ER-a36 is a variant of human ERa that is overexpressed in breast
cancer and involved in tamoxifen resistance. Targeting GRP94
with siRNA or monoclonal antibody blocked the GRP94-ER-a36
interaction and inhibited breast cancer growth and invasion (57).
Also, GRP94 can control the stability of the nascent and mature
forms of HER2, an RTK, which leads to the upregulation of
numerous cancer-driving signaling pathways (77). GRP94
specific inhibitors provide evidence for the role of GRP94 in
maintaining the architecture of high-density HER2 formations at
the plasma membrane, which is vital for proper HER2
functioning in breast cancers (56). Targeting GRP94 with a
specific monoclonal antibody or peptide-based inhibitor p37
disrupted HER2 dimerization and led to HER2 degradation,
which subsequently decreased tumor cell growth and increased
apoptosis (57, 78). These results provide insights into the
dependence of breast cancer cells on GRP94 for survival and
suggest that GRP94 could be a potential therapeutic target for
HER2 or ER-a36-overexpressing breast cancer.
Colon Cancer
The intestinal epithelial cells are continually replenished through
the proliferation and differentiation of intestinal stem cells within
the intestinal crypts (79). The interplay between ER stress and
inflammation contributes to the pathogenesis of inflammatory
bowel diseases and inflammation-associated colon cancer (80).
Canonical Wnt signaling through the surface receptor Frizzled
and its coreceptors LRP5 or LRP6 is essential for the homeostatic
proliferation of epithelial cells in the gut. Unsurprisingly
aberrant Wnt/b-catenin signaling also plays a role in the
initiation and progression of colorectal cancer, as well as its
invasion and metastasis (81). Epithelial-specific GRP94
deficiency resulted in the loss of intestinal barrier function in
mice dependent on canonical LRP6/Wnt-signaling (9). This
Frontiers in Oncology | www.frontiersin.org 5
study uncovered the role of GRP94 in chaperoning LRP6-
MesD to coordinate intestinal homeostasis, placing the
canonical Wnt-signaling pathway under the direct regulation
of the general protein quality control machinery in the ER (9).

Macrophages are important drivers in the development of
inflammation-associated colon cancers. Using a unique
macrophage-specific GRP94 deficient mouse model, Morales
et al. found that macrophages promoted colitis and colitis-
associated colon tumorigenesis in a GRP94-dependent manner.
Strikingly, they also discovered that deletion of GRP94 in
macrophages attenuated colon tumor initiation, which was
correlated with reduced mutation rates of b-catenin, reduced
activation of the canonical Wnt signaling, and increased
efficiency of the DNA repair machinery as well as reduced
expression of pro-inflammatory cytokines, including IL-17 and
IL-23 in the tumor microenvironment (23). These studies reveal
that GRP94 is a strategically important ER chaperone that
integrates stress and innate immunity and plays a pivotal role
in macrophage biology and tumor oncogenesis. Besides, GRP94
is upregulated in human metastatic colorectal cancer (28).
Therefore, targeting GRP94 in macrophages may prove to be
an attractive strategy for the treatment of colon cancer by
regulating the Wnt and inflammatory signaling in the
tumor microenvironment.

Liver Cancer
The liver is an exocrine and endocrine organ involved in the
synthesis of bioactive molecules and proteins, detoxification, and
metabolism, resulting in a particularly high need for adequate ER
maintenance and stress-coping mechanisms. Hence, the loss of
GRP94 in hepatocytes would drastically affect normal
physiological functions. Chen et al. demonstrated that
conditional deletion of GRP94 and PTEN from the mouse liver
increased liver tumorigenesis (20). However, the GRP94 status of
these tumors was not reported, leaving open a possibility of
GRP94 being either a tumor suppressor or a pro-oncogenic
chaperone (21). Using a similar strategy, Rachidi et al. (22)
found that GRP94 maintains liver development and hepatocyte
function in vivo. Deletion of GRP94 in hepatocytes promotes
adaptive accumulation of long-chain ceramides, accompanied by
steatosis and regeneration of residual GRP94+ hepatocytes. The
need for compensatory expansion of GRP94+ cells in the GRP94-

background predisposes mice to develop carcinogen-induced
hepatic hyperplasia and cancer from GRP94+ but not GRP94-

hepatocytes. They also demonstrated that both genetic and
pharmacological inhibitions of GRP94 in human hepatocellular
carcinoma cells perturbed multiple growth signals and
attenuated their proliferation and expansion. The development
of GRP94+ but not GRP94- tumors in the same hosts indicated
that GRP94 played tumor-promoting rather than a tumor-
suppressive role in liver cancer (21). Similar results were found
in another study. Deletion of GRP94 resulted in liver injury,
activation of oncogenic signaling, repopulation of GRP94+

hepatocytes, and spontaneous development of hepatocellular
carcinoma in aged mice (82).

Additionally, Lim et al. showed that the expression of GRP94
is up-regulated in hepatitis B virus-related hepatocellular
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carcinoma in humans, and is strongly correlated with vascular
invasion and intrahepatic metastasis (83). Wei et al. also found
that knockdown of GRP94 inhibited the growth, invasion, and
metastasis of hepatocellular carcinoma cells in vivo and in vitro.
The high expression of GRP94 in tumors indicated poor survival
(84, 85). These studies show the oncologenic role of GRP94 and
its potential as a prognostic indicator of liver cancer.

Lung Cancer
Cigarette smoking is the most relevant environmental risk factor
associated with chronic obstructive pulmonary disease (COPD)
and lung malignancies. It is well established that cigarette smoke
induces ER stress, which activates UPR, and COPD subjects have
intense ER stress evidenced by high expression of ER stress
markers in fully differentiated human bronchial epithelial cells
(86). Chronic ER stress upon exposure to cigarette smoking or
other causative agents may play a pivotal role in the etiology or
progression of lung cancers (87). UPR activation and enhanced
ER chaperon translation, including GRP94 may promote lung
cancer progression.

Wang et al. revealed that GRP94 is overexpressed in lung
cancer at the mRNA and protein level and correlated with poor
epithelial differentiation and tumor progression (88). Lee et al.
showed that 98% of small cell lung cancer patients were GRP94
positive with moderate to high expression (27). GRP94 was also
highly expressed in non-small cell lung cancer patients with
brain metastasis (74). Furthermore, the upregulation of GRP94
by the interference of calcium stores can confer drug resistance to
lung cancer cells against the chemotherapy agent etoposide (89).
A recent study demonstrated that GRP94 is highly expressed in
lung adenocarcinoma and is associated with an advanced stage of
the disease as well as poor survival. Also, the GRP94 expression
level was positively correlated with FoxP3+ regulatory T cells in
tumors (90). Hence, targeting GRP94 will provide a new
therapeutic approach to the clinical management of lung
cancer with chemo-resistance.

Others
Elevated expression of GRP94 correlates with the aggressiveness
of numerous other tumors, including esophageal (91), gastric
(92), and pancreatic cancers (93) as well as oral carcinoma (94)
and glioblastoma (95), indicating that GRP94 plays a tumor-
promoting role in many different cancers. Shen et al. generated a
uterus-specific GRP94 knockout mouse model and discovered
that GRP94 suppressed PTEN-null driven endometrioid
adenocarcinoma. Deletion of GRP94 reduced cellular
proliferation through attenuating b-catenin signaling and
decreasing AKT/S6 activation (25).

Tramentozzi et al. found that GRP94 was highly expressed in
both gastrointestinal tumor tissues and tumor-infiltrating
lymphocytes regardless of stage or anatomical location. GRP94
was also found in the plasma in stable complexes with
Immunoglobulin G (IgG). The study showed that GRP94-IgG
complexes are significantly increased in cancer patients
compared to healthy control subjects, suggesting its potential
as a diagnostic biomarker. GRP94 is over-expressed in a wide
variety of both solid and hematological tumors and correlates
Frontiers in Oncology | www.frontiersin.org 6
with poor outcomes, which indicates that GRP94 is a potential
diagnostic and prognostic biomarker.
GRP94/GP96 AND CANCER THERAPEUTICS

Tumor Vaccine
Mounting evidence indicates that the surface expression of
GRP94/GP96 plays an integral role in shaping the immune
landscape of tumors. Melendez et al. found that surface
expression of GRP94 in malignant breast cells correlates with
NK-mediated cytotoxicity, and the use of a GRP94 blocking
antibody protected tumor cells from NK cytotoxicity (96). Zheng
et al. found that overexpressed surface GRP94 on colon cancer
and fibrosarcoma cells are capable of inducing maturation of
dendritic cells leading to the release of proinflammatory
cytokines and upregulation of antigen presentation machinery
(64). Similarly, another study found that the administration of a
GRP94 and Her2/neu DNA vaccine to HER2+ breast cancer-
bearing mice led to an increased immune response against the
tumors evidenced by increased IFN-g/IL-4 levels and decreased
Tregs at the tumor site (97). These studies reveal the ability of
extra-cellular GRP94 to induce anti-tumor immune responses,
and highlighting its potential to be used as an antigen for tumor
vaccines (Table 1).

Immunization of tumor-bearing mice with GRP94-peptide
complexes has been shown to generate effective immune
responses in numerous pre-clinical and clinical settings (99,
106). Autologous tumor-derived GRP94/GP96 significantly
attenuated tumor growth and improved survival in various
spontaneous and carcinogen-induced cancer models. The
effectiveness of the treatment was dependent on the presence
of CD4+ and CD8+ T cells and NK cells (106). Similarly,
placental derived GRP94 was found to bind to tumor-
associated antigens such as HER2 and MUC1 and induce
tumor-specific T cell responses (98). The therapeutic
effectiveness of GRP94 complexes likely results from their
ability to improve the uptake and processing of tumor
antigens. Consequently, Shinagawa et al. found that delivering
GRP94 complexes directly to dendritic cells ex vivo before
adoptive transfer of DCs into tumor-bearing mice led to
improved tumor control compared to treatment with DCs or
tumor-derived GRP94 complexes alone (102). Fromm et al.
reported that the secreted form of GRP94 (GRP94-Ig) and
costimulator combination cellular vaccine increased antigen-
specific CD8 and memory T cells, delayed melanoma tumor
growth, and prolonged overall survival (101) (Table 1).
Small Molecular Inhibitors
GRP94 is expressed in most human cells. Therefore, specificity
for cancer cells is a major concern when designing small
molecular inhibitors. Identification of geldanamycin (GM)
revealed the possibility of selectively targeting HSP90 within
tumor cells. A more recent study showed that the purine scaffold
small molecule DN401 simultaneously inhibited all HSP90
paralogs, including HSP90, TRAP1, and GRP94, and
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synergized the anti-tumor effects with another TRAP1 inhibitor,
gamitrnib (107). However, pan HSP90 inhibitors inactivate all
HSP90 isoforms, including GRP94, and display severe toxicity.
To improve selectivity and further reduce toxicity, Patel et al.
developed novel purine-based ligands that are greater than 100-
fold more selective for GRP94 over HSP90a/b (56). Based on a
strategy that combined library screening of purine-scaffold
compounds and structural studies, GRP94-specific inhibitors,
PU-WS13, PU-H39, and PU-H54, were developed, and these
inhibitors significantly induced apoptosis of human HER2
positive breast cancer cells (56). Also, Hua et al. found that
PU-WS13 significantly inhibited the growth of multiple human
MM cells, including those that are resistant to cytosolic HSP90
inhibitor PU-H71, doxorubicin, and proteasome inhibitor
bortezomib in vitro (10). Recently, based on an extensive
Structure–Activity relationship study, Patel et al. designed a
new GRP94-specific inhibitor, compound 18c. Specifically,
18c inhibited the post-ER expression of TLR9, and also
reduced the steady-state levels of HER2 kinase in HER2-
overexpressing breast cancer cells. When administered into
tumor-bearing mice, compound 18c was cleared rapidly from
normal tissue while being selectively retained in the tumor (108).
Crowley et al. developed another series of GRP94-selective
inhibitors (103). These small molecular inhibitors reduced the
migratory capabilities of metastatic breast and prostate cancer
cells through the degradation of integrin a2 and with better
selectivity than their previous reported compounds (109–112)
(Table 1). Recently, the Xu group developed a GRP94 selective
inhibitor, Compound 54, with an IC50 of 2 nM and over 1,000-
fold selectivity for GRP94 versus HSP90a. They found that this
Frontiers in Oncology | www.frontiersin.org 7
compound has anti-inflammation efficacy in the DSS-induced
colitis mouse model (113). However, Compound 54 hasn’t been
tested in the treatment of cancers.

Monoclonal Antibody
The therapeutic targeting of surface GRP94 in tumors has
emerged with the recent development of specific monoclonal
antibodies that have potent GRP94 inhibitory effects and
consequent anti-tumor activities (114). Li et al. developed a
GRP94 monoclonal antibody that interfered with GRP94-
dependent HER2 dimerization and phosphorylation in breast
cancer and suppressed the HER2+ breast cancer cell growth in
vitro and in vivo (57, 78). Moreover, Sabbatino et al. developed a
novel grp94-antagonizing monoclonal antibody, W9 mAb,
which selectively targets the extracellular epitope of GRP94 in
malignant cells but is not detectable on normal cells. W9 mAb
increased the sensitivity of human BRAFV600E melanoma cells to
BRAF inhibitors (104). Using a phage display approach, Jeoung
et al. isolated an antibody binding to the cell surface of human
colon cancer cells. Furthermore, they demonstrated that this
antibody specifically targeted GRP94 and inhibited the growth of
Cetuximab-resistant colorectal cancer (105) (Table 1). These
studies lay a strong foundation for developing GRP94-targeted
therapeutics for cancers in the future.
CONCLUSION

A wide range of intrinsic and extrinsic stressful conditions exists
within tumors during development and progression, creating the
TABLE 1 | GRP94/GP96-targeted treatment strategies for cancers.

Strategies Phase Effect Reference

Tumor Vaccine

Surface GP96-tumor cells Pre-clinical study Suppressed tumor growth through T cell-dependent mechanism. (64)
GRP94/Her2/neu
DNA vaccine

Pre-clinical study Decreased Tregs at the tumor site, increasing IFN-g/IL-4 level; partial control of tumor progression. (97)

Placental-derived GRP94 Pre-clinical study Exhibited high immunogenicity against multiple tumors (melanoma, HER+, and triple negative
mammary tumors).

(98)

Tumor-derived GP96 I/II Increased tumor-specific immune response and prolonged the survival of patients with metastatic
CRC and gastric cancer.

(99, 100)

GP96-Ig vaccine Pre-clinical study Increased Ag-specific CD8+ and memory T cells, delayed melanoma tumor growth and prolonged
overall survival.

(101)

DC vaccine with tumor-
derived GP96

Pre-clinical study Decreased the tumor growth of murine lung cancer through CD8+ T cells and NK cells. (102)

Small molecule inhibitor
PU-WS13 Pre-clinical study Induced apoptosis of HER2+ breast cancer cells. (56)
PU-WS13 Pre-clinical study Induced apoptosis and inhibited the growth of multiple myeloma through Wnt-Survivin pathway. (10)
PU-WS13 Pre-clinical study Inhibited the proliferation of hepatocellular carcinoma. (22)
GRP94 Inhibitor 30 Pre-clinical study Reduced the migratory capabilities of metastatic breast and prostate cancer cells through

degradation of integrin a2.
(103)

Monoclonal antibody
Anti-GP96 mAb Pre-clinical study Increased apoptosis and suppressed the

HER2+ breast cancer cell growth.
(57, 78)

Anti-GRP94 mAb W9 Pre-clinical study Selectively recognized GRP94-epitope on malignant cells. Increased and restored the sensitivity of
BRAF-1-resistant melanoma
Cells.

(104)

Anti-sGRP94 IgG Pre-clinical study Inhibited the growth of Cetuximab-resistant CRC cells. (105)
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need for increased chaperone expression to cope with the stress
and regulate the balance between tumor cell viability and death
(Figure 1B). The elevated expression of GRP94 in a variety of
cancer cells correlates with an aggressive phenotype, giving it
strong potential as a biomarker and therapeutic target. GRP94
has been revealed to play roles in survival signaling through its
client protein network, induction of the UPR, and modulating
the immune response (Figure 1). The development of a GRP94-
based tumor vaccine, small molecular inhibitors, and
monoclonal antibodies will open new territories for cancer
treatment. Nevertheless, previous attempts to target HSP90
have not been successful in clinical trials due to severe toxicity.
Recently, Yan et al. discovered that GRP94 adopt a unique
hyperglycosylated conformation to preferentially regulate
growth factor receptors on tumor cells. GRP94 specific
inhibitor PU-WS13 favorably binds to hyperglycosylated
GRP94 and inhibits RTK-driven tumor growth (66). Selective
inhibition of GRP94 is still a feasible targeted therapy. Up to date,
the complete GRP94 client network is still unknown.
Identification of GRP94 clients involved in tumor initiation
and progression and the development of specific GRP94 client-
targeted therapeutics will bear fruit for the treatment of cancers.
Frontiers in Oncology | www.frontiersin.org 8
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