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Anaerobic ammonium-oxidizing (anammox) bacteria are slow-growing and fastidious bacteria, and limited numbers of
enrichment cultures have been established. A metagenomic analysis of our 5 established anammox bacterial enrichment
cultures was performed in the present study. Fourteen high-quality metagenome-assembled genomes (MAGs) were obtained,
including those of 5 anammox Planctomycetota (Candidatus Brocadia, Ca. Kuenenia, Ca. Jettenia, and Ca. Scalindua), 4
Bacteroidota, and 3 Chloroflexota. Based on the gene sets of metabolic pathways involved in the degradation of polymeric
substances found in Chloroflexota and Bacteroidota MAGs, they are expected to be scavengers of extracellular polymeric
substances and cell debris.
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The anaerobic ammonium oxidation (anammox) process
in which NH4

+ is oxidized to N2 gas with NO2
– markedly

contributes to the global nitrogen cycle (Kuypers et al.,
2005), and has been installed in full-scale wastewater treat‐
ment plants as a cost-efficient and environmentally-friendly
nitrogen removal process (van der Star et al., 2007; Ali
and Okabe, 2015). Anammox bacteria were discovered in
the mid-1990s, and belong to a deep-branching monophy‐
letic group tentatively proposed in the order Brocadiales of
the bacterial phylum Planctomycetota (Strous et al., 1999).
The following five candidate genera have been identified
in the order: Ca. Brocadia, Ca. Kuenenia, Ca. Jettenia,
Ca. Anammoxoglobus, and Ca. Scalindua. Although many
researchers have attempted to enrich and isolate anammox
bacteria, a pure culture has not yet been obtained. This
is somewhat surprising because anammox bacteria may be
highly enriched in membrane bioreactors (<98% in total
biomass) (Lotti et al., 2014), and a subsequent buoyant
density separation technique enables the further enrichment
of anammox bacteria (>99.9%) (Strous et al., 1999; Kartal
et al., 2011). Therefore, several reasons for unsuccessful
isolation attempts have been proposed, such as the occur‐
rence of cell density-dependent anammox activity (Strous
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et al., 1999; Oshiki et al., 2020; Zhang and Okabe, 2020)
and microbial interactions between anammox bacteria and
coexisting microorganisms; e.g., symbiotic/cooccurring bac‐
teria supply the micronutrients required for the growth of
anammox bacteria (Kindaichi et al., 2004; Mee et al., 2014;
Kim et al., 2021). Although the micronutrients required
for the growth of anammox bacteria have not yet been
identified, the supply of soluble organic matter from anam‐
mox bacteria was shown to support the growth of heter‐
otrophs in an anammox bacterial enrichment culture (Ni
et al., 2012). A previous metagenomic analysis revealed
microbial interactions in anammox bacterial enrichment cul‐
tures: 1) NO2

– and/or NO3
– reduction by heterotrophs to

supply NH4
+ and/or NO2

– to anammox bacteria, and 2)
the vitamin and amino acid auxotrophy of coexisting het‐
erotrophs (Lawson et al., 2017). However, (meta)genomic
information on the microbes cooccurring with anammox
bacteria remains limited, and metagenomic analyses have
investigated potential interactions between anammox bacte‐
ria and cooccurring bacteria (Speth et al., 2016; Lawson
et al., 2017). The authors dedicated >10 years to the culti‐
vation of phylogenetically different anammox bacteria, and
obtained enrichment cultures of B. sinica (Oshiki et al.,
2011), B. sapporoensis (Narita et al., 2017), J. caeni (Hira
et al., 2012; Ali et al., 2015), K. stuttgartiensis (Oshiki et
al., 2018), and Scalindua sp. husus a7 (Kindaichi et al.,
2011). To the best of our knowledge, no other laboratory
has maintained these phylogenetically diverse anammox
bacterial enrichment cultures in parallel, and these cultures
provide an excellent opportunity to examine the metabolic
potential of anammox bacteria and cooccurring bacteria in a
metagenomic analysis.

Therefore, a metagenomic analysis of these 5 anammox
bacterial enrichment cultures was performed in the present
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study to retrieve the whole genome sequences of anammox
bacteria and cooccurring bacteria and examine potential
microbial interactions occurring in the enrichment cultures.
Anammox bacterial cultures were maintained in membrane
bioreactors (MBRs) as previously described (Oshiki et al.,
2013; Zhang and Okabe, 2017). Inorganic basal media
fed into the MBRs contained KH2PO4 (24.4 mg L–1),
MgSO4·7H2O (60 mg L–1), CaCl2 (51 mg L–1), and 0.5 mL
of trace element solutions I and II (van de Graaf et al.,
1996). Equimolar amounts of NH4(SO4)2 and NaNO2 were
supplemented into inorganic basal media at 5 to 10 mM,
and nitrogen loading rates were in the range of 0.1 to
0.6 kg N m–3 d–1. In cultivations of K. stuttgartiensis and
Scalindua sp. husus a7, the artificial sea salt SEALIFE
(Marine Tech) (Kindaichi et al., 2011) was supplemented
into inorganic basal media at final concentrations of 10 and
28 g L–1, respectively. Anammox bacteria proliferated in the
form of planktonic cells, which were harvested by centri‐
fugation at 13,420×g for 10 min for genomic DNA extrac‐
tion. Total genomic DNA was extracted using the DNeasy
Blood and Tissue kit (Qiagen) and then subjected to shotgun
sequence library construction using the KAPA Hyper Prep
Kit (for Illumina) (KAPA Biosystems) as described in Hirai
et al. (2017). Between 3.4 and 5.7 M of 300-bp paired-end
reads (corresponding to 1.0–1.7 Gb) were obtained for sam‐
ples on the Illumina MiSeq sequencer. Reads were then
subjected to adapter trimming using Trimmomatic version
0.36 (Bolger et al., 2014), de novo assembly by the CLC
Genomics workbench (word size 64, bubble size 500),
and binning of the assembled contigs using MyCC (Lin
and Liao, 2016). Gene annotation and completeness checks
of the metagenome-assembled genomes (MAGs) obtained
were performed using the DDBJ Fast Annotation and Sub‐
mission tool (DFAST) (Tanizawa et al., 2018). Average
nucleotide identity (ANI) values were calculated in the
DFAST pipeline and also using the OrthoANI tool (Lee
et al., 2016). Fourteen high-quality MAGs with >83% and
<15.7% of completeness and contamination, respectively,
were obtained (Table 1). The taxonomy of these MAGs

was examined using GTDB-Tk v1.7.0 with release 202
data (Chaumeil et al., 2019) and AnnoTree (Mendler et
al., 2019). Five MAGs were affiliated to 4 anammox bac‐
terial genera, Brocadia, Jettenia, Kuenenia, and Scalindua
(Fig. S1a), while other non-anammox bacterial MAGs
were affiliated to the phyla Planctomycetota (Fig. S1a),
Bacteroidota (Fig. S1b), and Chloroflexota (Fig. S1c).
Anammox bacterial MAGs were identified as genomes
of B. sinica (the HBSIN01 MAG), B. sapporoensis (the
HBSAPP01 MAG), J. caeni (the JETCAE04 MAG), K.
stuttgartiensis (the HKUEN01 MAG), and Scalindua sp.
(the SCALA701 MAG) because they had >99.4% ANI
to reference anammox bacterial genomes (Table S1). The
relative abundance of anammox bacterial MAGs in meta‐
genomic sequencing data was calculated by dividing the
read numbers assigned to anammox bacterial MAG by
total read numbers, which were generally high (37–64%),
except for the J. caeni and K. stuttgartiensis biomasses
(17 and 9%, respectively) (Table 1). Apart from anammox
bacterial MAGs, Chloroflexota (JETCAE01, JETCAE02,
and HKUEN02) and Bacteroidota (HBSIN02, HBSAPP04,
JETCAE03, and SCALA702) MAGs were obtained from
anammox bacterial enrichment cultures. A previous meta‐
genomic sequencing analysis of anammox bacterial enrich‐
ment cultures also retrieved Chloroflexota (Table S2)
and Bacteroidota (Table S3) MAGs (Speth et al., 2016;
Bhattacharjee et al., 2017; Lawson et al., 2017; Mardanov
et al., 2019; Okubo et al., 2021): e.g., Chloroflexota MAGs
(JETCAE01 MAG) and Bacteroidota MAGs (JETCAE03
MAG and HBSAPP04 MAGs) obtained in the present
study showed high ANI values with Anaerolineae and
Ignavibacteria MAGs obtained from anammox bioreactors
operated by other research groups (Zhao et al., 2019; Ali
et al., 2020) (Table S1). This result implies that anammox
bioreactors fed with inorganic media containing NH4

+ and
NO2

– enrich phylogenetically-defined bacterial members as
a core microbiome, as previously suggested by Lawson et
al. (2017).

The metabolic capabilities of MAGs for central nitrogen

Metagenome-assembled genomes (MAGs) obtained from 5 anammox bacterial cultures. Taxonomic assignments were examined using
GTDB-Tk and shown in Fig. S1.

Biomass1) MAGs Taxonomy2) Total length Contigs GC CDS rRNA tRNA Completeness Contamination Abundance3)

BS HBSIN01 Planctomycetota 3,980,744 87 42.4% 3,604 16S-1, 23S-1, 5S-1 48 96% 0.0% 64%
HBSIN02 Bacteroidota 3,004,117 111 55.4% 2,565 16S-1, 23S-1, 5S-1 46 100% 0.0% 8%

BA HBSAPP01 Planctomycetota 3,345,265 139 42.4% 2,758 16S-1, 23S-1, 5S-1 47 96% 0.0% 37%
HBSAPP02 Planctomycetota 3,888,461 24 63.4% 3,148 16S-1, 23S-1, 5S-1 49 89% 0.8% 33%
HBSAPP03 Planctomycetota 3,538,919 30 67.9% 3,045 16S-1, 23S-1, 5S-1 55 83% 1.2% 10%
HBSAPP04 Bacteroidota 4,378,747 1118 47.1% 2,829 5S-1 44 100% 7.5% 4%

JC JETCAE01 Chloroflexota 4,077,411 398 53.2% 3,598 23S-1, 5S-1 42 90% 8.3% 6%
JETCAE02 Chloroflexota 3,195,621 90 60.9% 2,914 16S-1, 23S-1, 5S-1 45 91% 2.4% 9%
JETCAE03 Bacteroidota 4,208,711 87 34.5% 3,744 16S-1, 23S-1, 5S-1 81 83% 15.7% 9%
JETCAE04 Planctomycetota 3,935,265 95 40.0% 3,368 16S-1, 23S-1, 5S-1 46 96% 0.0% 17%

KS HKUEN01 Planctomycetota 4,181,252 391 40.8% 3,539 16S-1, 23S-1, 5S-1 51 93% 12.5% 9%
HKUEN02 Chloroflexota 2,777,596 539 52.8% 2,278 16S-1, 5S-1 43 100% 3.5% 3%

SC SCALA701 Planctomycetota 4,498,465 120 41.1% 3,748 16S-1, 23S-1, 5S-1 43 96% 8.3% 52%
SCALA702 Bacteroidota 4,901,315 164 38.8% 3,866 16S-1, 23S-1, 5S-1 42 100% 0.0% 12%

1) BS, BA, JC, KS, and SC correspond to cultures of Brocadia sinica, Brocadia sapporoensis, Jettenia caeni, Kuenenia stuttgartiensis, and
Scalindua sp. husus a7, respectively.
2) Phylogenetic trees are available in Fig. S1. The closest reference genome and ANI scores are available in Table S1.
3) Relative abundance of the number of sequence reads assigned to each MAG to the total number of sequence reads.

Table 1.
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and carbon metabolism were examined by performing a
blastKOALA search using the KEGG database (Kanehisa et
al., 2016), and search hits were visualized using the KEGG
Decoder (Graham et al., 2018). Known anammox bacterial
genomes commonly harbor the gene sets required for the
anammox process (nitrite reduction, hydrazine synthesis,
and hydrazine oxidation) and CO2 fixation via the Wood-
Ljungdahl pathway (Strous et al., 2006; Oshiki et al., 2015,
2017) (Table S4). These gene sets are generally conserved
on the anammox bacterial MAGs obtained. The nitrite
reductase (Nir) of anammox bacteria is still controversial
because the gene encoding a canonical Nir (cytochrome cd1-
containing NirS and copper-containing NirK) is often
missing in Brocadia genomes (Oshiki et al., 2016; Okubo et
al., 2021), and neither nirS nor nirK was found in HBSIN01
and HBSAPP01 MAGs (Table S4). The involvement of
atypical hydroxylamine dehydrogenase (rHao) in anammox
bacterial nitrite reduction has been proposed (Kartal et al.,
2013; Oshiki et al., 2016), and rHao was recently purified
and characterized from a K. stuttgartiensis culture (Ferousi
et al., 2021). rHao lacks the tyrosine residue required for the
crosslinking of catalytic haem 4 in Hao, and the gene
encoding putative rHao was conserved among the anammox
bacterial MAGs obtained in this study (Table S4). In addi‐
tion, the SCALA701 MAG differed from the other known
Scalindua genomes as follows: 1) SCALA701 MAG has
nirK instead of Scalindua nirS (van de Vossenberg et al.,
2013; Oshiki et al., 2017), and 2) SCALA701 HzsB and
HzsG are encoded in each CDS as well as the known
Brocadiaceae genomes, whereas the fusion protein of
HzsBG is encoded in the genome of Scalindua profunda
(van de Vossenberg et al., 2013). Functional difference(s)
resulting from the presence of nirK and separated hzsBG
remain unclear and, thus, warrant further study.

Non-anammox bacterial Planctomycetota, Chloroflexota,
and Bacteroidota MAGs have the gene sets required
for fermentation (substrate-level phosphorylation; such
as glycolysis) (Fig. 1) and respiration (cytochrome c
oxidase and dissimilatory NO3

– reduction), whereas the
MAGS of known inorganic carbon fixation pathways are
absent. JETCAE02 (Chloroflexota) MAG harbors some
of the genes involved in the Wood-Ljungdahl pathway,
whereas the genes encoding key enzymes, namely, for‐
mate dehydrogenase and formate-tetrahydrofolate ligase, are
missing. These features suggest that non-anammox bacte‐
rial Planctomycetota, Chloroflexota, and Bacteroidota are
heterotrophic bacteria, whereas inorganic basal media fed
into the operated MBRs and the nutrients required for heter‐
otrophic growth were not available in influents. Extracellu‐
lar polymeric substances (EPS) (Ali et al., 2018), soluble
microbial products (SMP) (Tsushima et al., 2007; Oshiki
et al., 2011), and/or cell debris derived from anammox
bacteria may be nutrient sources for heterotrophs. Anam‐
mox bacteria produce large amounts of EPS mainly com‐
posed of proteins and polysaccharides (Hou et al., 2015;
Jia et al., 2017; Ali et al., 2018), and the anammox bac‐
terial MAGs obtained have the genes encoding the bacte‐
rial type II secretion system involved in protein secretion
(GspDEFGIK) and the ABC transporters of lipopolysac‐
charide (LptBFG) and lipoprotein (LolCDE) involved in the

formation of the lipopolysaccharide layer. Chloroflexota and
Bacteroidota MAGs have the genes required for the deg‐
radation of polysaccharide chains (alpha-amylase and beta-
glucosidase) (Fig. 1), indicating their metabolic potential for
the degradation of EPS. Chloroflexota bacteria belonging
to the class Anaerolineae are obligately anaerobic bacte‐
ria (Yamada and Sekiguchi, 2009; Nunoura et al., 2013),
and utilize a number of organic compounds, including sug‐
ars, with the production of short fatty acids and hydrogen
gas (Sun et al., 2016). Chloroflexota bacteria in an anam‐
mox bioreactor assimilate sucrose, glucose, and N-acetyl-
glucosamine, as confirmed by microautoradiography and
fluorescence in situ hybridization (Kindaichi et al., 2012).
The Chloroflexota MAGs obtained had genes encoding
the thiamin transporter, but generally lacked the gene set
required for thiamine biosynthesis (Fig. 1); i.e., thiFGHI
required for the synthesis of 4-methyl-5-(β-hydroxyethyl)
thiazole phosphate, thiCD for the synthesis of 4-amino-5-
hydroxymethyl-2-methylpyrimidine pyrophosphate, thiE for
the synthesis of thiamine monophosphate, and thiL for the
synthesis of thiamine pyrophosphate (Leonardi and Roach,
2004). On the other hand, Planctomycetota MAGs exhib‐
ited metabolic potential for thiamine synthesis, and these
bacteria may supply thiamine to Chloroflexota bacteria in
anammox bacterial enrichment cultures. The exchange of
amino acids and vitamins between anammox bacteria and
cooccurring bacteria was predicted based on the findings
of previous metagenomic and metatranscriptomic analyses
(Lawson et al., 2017), and the present results are consistent
with this hypothesis. Among Bacteroidota bacteria, those
belonging to the genera Melioribacter and Ignavibacteria
are facultative anaerobic heterotrophs (Iino et al., 2010;
Podosokorskaya et al., 2013), and may scavenge contami‐
nated O2 in anammox bioreactors. Melioribacter roseus
utilized a number of carbon compounds for fermentation,
and proliferates with the production of acetate and H2
gas or by respiration using oxygen or NO2

– as an elec‐
tron acceptor (Podosokorskaya et al., 2013). In the present
study, Chloroflexota and Bacteroidota MAGs harbored the
genes required for dissimilatory NO3

– reduction to NO2
–

or dissimilatory NO2
– reduction to NH4

+ (DNRA) (Fig.
1). Anammox bacteria oxidize NO2

– to NO3
– to gain the

reducing power for CO2 fixation (Kartal et al., 2013 and
references therein), and NO3

– concentrations are generally
at >1 mM in the operated MBRs. On the other hand,
NH4

+ and NO2
– are consumed by anammox bacteria in the

MBRs, and may be a limiting substrate(s) of anammox
bacteria after their depletion. Therefore, the production
of NO2

– and/or NH4
+ by Chloroflexota and Bacteroidota

bacteria is beneficial for anammox bacteria. These interac‐
tions via NOx

– in the anammox bacterial community were
proposed in previous metagenomic studies (Speth et al.,
2016; Lawson et al., 2017), and the metabolic potential of
the Chloroflexota and Bacteroidota MAGs obtained further
rationalize this hypothesis.

In summary, the present study provides metagenome
sequencing data obtained from 5 phylogenetically differ‐
ent anammox bacterial enrichment cultures in addition
to genomic information on 14 high-quality MAGs. Anam‐
mox bacteria appear to supply organic matter (in the
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Fig. 1. Metabolic potential of metagenome-assembled genomes (MAGs) obtained from anammox bacterial enrichment cultures. The figure
includes MAGs in the present study (i.e., HBSIN, HBSAPP, JETCAE, HKUEN, and SCALA7 MAGs) and those obtained from a partial-
nitritation anammox reactor (UTPRO, UTCFX, UTCFB, UTPLA, and UTAMX MAGs), a sequencing batch anammox reactor (OLB MAGs), and
an up-flow column anammox reactor (the 317325 MAGs). MAGs with a parenthesis share >97% of the average nucleotide identity values. The
heatmap indicates metabolic pathway completeness calculated using the KEGG Decoder. The taxonomic affiliations of MAGs are available at the
top of the heatmap.
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form of EPS, soluble microbial products, and cell debris),
vitamins, and NO3

– to cooccurring heterotrophic bacteria.
Cooccurring heterotrophic bacteria may scavenge contami‐
nated O2 and prevent the accumulation of organic matter,
which suppresses anammox activity (Tsushima et al., 2007).
Although the verification of microbial interactions by a
culture-dependent analysis is warranted (Murakami et al.,
2022), the genome data obtained supports previously pro‐
posed microbial interactions between anammox bacteria and
cooccurring bacteria (Lawson et al., 2017) and will advance
our understanding of microbial interactions in anammox
enrichment cultures. The clarification of these microbial
interactions will provide insights into the specific reason(s)
for unsuccessful isolation attempts of anammox bacteria,
and metatranscriptomic and metaproteomic analyses
(Masuda et al., 2017) in addition to the isolation of
cooccurring bacteria are required to reveal microbial inter‐
actions in anammox bacterial communities.

Data availability

Raw metagenomic sequence data obtained in the present study
are available in the DDBJ nucleotide sequence database under the
accession number DRA013237. The 14 assembled and annotated
MAGs are deposited in the DDBJ nucleotide sequence database
with the accession numbers shown in Table S5.
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