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ABSTRACT: Visual feature information regarding flotation foam is crucial for the flotation process. Owing to a large amount of
noise and blur in the foam images collected in the floatation field, feature extraction and segmentation of foam images pose
considerable challenges. Furthermore, the visual properties of foam are strongly correlated with current flotation conditions.
Therefore, this study presents a method to repair blurred pixels in foam images. In addition to enhancing the image dataset necessary
for network model training, the restored images can provide high-quality images extracting foam-feature information. In addition,
this research presents a novel fifth-order residual structure that enlarges the network structure by stacking, enhancing the learning
ability of complex networks. Experimental results demonstrate that the suggested method can achieve a satisfactory repair effect for
foam images under various blurring conditions, laying a foundation for guiding the intelligent adjustment of flotation field
parameters.

1. INTRODUCTION
Foam flotation is one of the most efficient processes for coal
separation.1−3 It is a process of mineral separation that involves
adding flotation reagents to coal slurry so that hydrophobic
coal particles adhere to the bubbles while hydrophilic gangue
remains in the slurry.4 During the flotation process, the onsite
staff artificially adjust the factors affecting flotation production.
These factors include the addition of flotation reagents and the
amount of aeration by observing the characteristic information
of the foam surface.5−8 However, owing to subjective bias,
production environment changes, and other factors, the
findings of manual judgment are frequently inaccurate, causing
frequent fluctuations in flotation production indicators and low
utilization of mineral resources.7 Consequently, using machine
vision to capture the characteristic information of flotation
foam, to monitor and identify the foam in the flotation process
in real time, and to guide the adjustment of production factors,
such as reagent dosage and liquid level, affecting flotation
production increases the yield and economic benefits of the
flotation concentrate in a coal washing plant.8−10

In addition to information on static features such as color
and shape, flotation foam images contain information on

dynamic feature information such as foam velocity and
stability.3 In the flotation process, rising and floating of
bubbles, collision between materials and bubbles, stirring of
the flotation machine, and other factors usually cause many
irregular movements of bubbles, affording considerable noise
and blurring in the collected foam images.11,12 This
complicates the extraction of features from foam images as
well as necessitates the screening of collected foam images
when learning-based methods are employed to analyze
flotation foam images. After removing fuzzy low-quality
images, the foam dataset for model training is created, which
influences the final performance of the model. In this regard,
the CNN-SVM hybrid training model has been proposed for
classifying and identifying coal slime flotation froth images.
Herein, multiple images were gathered sequentially for each
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ash label. From these images, a subset was selected as the
dataset corresponding to each ash label. Correspondingly, the
accuracy rate reached 87.66% for froth classification, and it was
concluded that a higher accuracy may be achieved by acquiring
more image datasets.13 As such, the network described herein
uses the pixel information in the foam image to repair the
blurred and damaged pixels in the image, yielding a more
detailed image and resolving the difficulties associated with
using the foam images collected onsite to construct the dataset
and extract the feature information.
In recent years, multiscale Convolutional Neural Networks

(multiscale CNNs) have been applied to a variety of computer
vision problems and have achieved good results in a variety of
image tasks.14−26 Li et al. used multiscale fully CNNs for
feature extraction from high-resolution remote sensing images
and for change detection tasks,15 Yao et al. proposed an end-
to-end multiscale convolutional neural network (MSCNN) for
extracting features of objects at different scales in HRS
images,16 and Li and Yu found that the multiscale features
extracted using the CNN have high visual saliency, so they
proposed a new visual saliency model, combining the CNN
saliency model with the spatial consistency model and image
segmentation into a complete framework for saliency
detection,17 and their experiments achieved good results.
Image restoration is an important application area and a

challenging topic for multiscale CNNs,18−27 where image
restoration plays an important role in processing, under-
standing, and representing images. Using a multiscale CNN,
when restoring the scratches on old images,18 it is possible to
collect image semantic information while repairing the image
texture, affording a more realistic photo repair result. To fix the
hues and contours of damaged murals,20 the most similar
relevant aspects can be selected. When repairing the occluded
face image,22 the high-level information of the image is used to
maintain image consistency and the low-level feature
information is used to fill in the texture. For the restoration
of blurred coal slurry foam images, Xiao et al. screened the
foam images for deblurring and then performed image
enhancement, followed by deblurring of the processed images
using the FS-DeblurGAN network.28 Liu et al. used the MsD
model to increase the extraction of image feature information
without estimating the blurring kernel using a multiscale
architecture for the restoration of blurred foam image
restoration work.29

This study offers a coal slime flotation foam image repair
network based on an analysis of the coal slime flotation process
and foam image features to address the difficulties associated
with precisely and effectively extracting foam features from
fuzzy damaged foam images. The contributions of this study
include the following. (1) The network described herein
repairs the blurred and damaged pixels in the foam image
obtained from the scene, yielding a more detailed image to
construct the foam image dataset and extract the feature
information. (2) A five-ordered residual structure is designed
in the network, and 1 × 1 conv. is performed on the parts
connected by summation for each order. The residual structure
is stacked to form an encoder−decoder structure, and a long
short-term memory network with a self-attention mechanism
module is connected between the two so that the entire
network can be designed by stacking as well as perform
complex learning in time and space dimensions to make better
use of interrelated feature information to repair images. (3)
This study also presents a method for repairing the blurred

pixels in a foam image while maintaining a high level of image
detail. The resulting high-quality image facilitates the
extraction of foam visual feature information, laying the
groundwork for the intelligent adjustment of flotation field
parameters.

This paper is organized as follows: in Section 2, the content
related to the coal slime foam image repair network is
introduced. In Section 3, the proposed method foam image
repair network will be described in detail. In Section 4, the
effectiveness of the image repairing method is experimentally
verified from qualitative and quantitative aspects, and the
repairing effect is discussed for the experiment. In Section 5,
this work is summarized and provides an outlook on future
research topics.

2. RELATED WORK
Residual structure. The network architecture becomes difficult
to design as the number of network layers increases. To
address this challenge, the ResNets network30 adopts the
method of stacking blocks of the same shape in the VGG
network.31 The stacked ResBlock structure30 facilitates the
network ability to achieve accuracy gains from the considerably
increased network depth through skip connections. Sub-
sequently, the ResNeXt structure,36 based on the stacking
technique, sums and aggregates the outputs of each module to
achieve various transformations without redesigning the
architecture. While preserving complexity, the aggregate
transformation is found to be superior to the original ResBlock
structure. When constructing a network using the Inception
series architecture,32−35 the number and size of filters should
be carefully designed. However, it is often difficult to
determine how to design for greater precision owing to factors
such as network structures and hyperparameters. Through the
study of networks designed using residual structures30,36 and
Inception series architecture32−35 when dealing with image
tasks such as image recognition and classification, it has been
discovered that the presence of jump connections in a network
can make the network produce good results in image-
processing tasks.

Long short-term memory network. The long short-term
memory network (LSTM) is a special type of recurrent neural
network that may acquire long-term-dependent information.
Convolutional LSTM (ConvLSTM)37 comprises a coding
network and a prediction network with multiple ConvLSTM
layers stacked on top of one another. The final prediction is to
concatenate and generate all the states in the prediction
network via 1 × 1 conv. To better capture the temporal and
spatial correlation of feature information, the nested LSTM
(NLSTM) architecture38 proposes to increase the depth of
LSTM by nesting. In this architecture, the external storage unit
can selectively read and write related long-term information to
its internal unit. Compared to the stacked LSTM, it can
process events on a longer time scale and is more suited for
learning long-term dependencies. Self-attention ConvLSTM
(SA-ConvLSTM) is incorporated into ConvLSTM as a result
of the self-attention mechanism.39 The constructed memory
module is capable of aggregating past-related image feature
information and determining the temporal and spatial relation
between image feature information.

Multiscale convolutional neural network. Typical multiscale
convolutional neural networks define three scales in the
decreasing order of image resolution. The network with the
greatest size generates the coarsest level of clear images, which
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are then used as the input by a network with a finer scale to
generate images with a finer level of clarity. By directly stacking
19 modified residual structure extension networks, a multiscale
loss function is employed to converge the training loss of the
multiscale CNN,24 allowing the image to be repaired without
estimating the blur kernel. The scale-recurrent network
(SRN)26 enhances the stability of the network by sharing
network weights across scales. The encoder−decoder ResBlock
structure can receive additional image feature information for
image inpainting. MPRNet40 is a network that exchanges
information between multiple scales. Each scale network
contains an adaptive design in which each pixel reweights
local features. The encoder−decoder architecture of
MPRNet40 combines cross-scale and finer-grained networks
after image feature learning. The network24,26 primarily uses
spatial image feature information for image restoration.
MPRNet40 demonstrates that the network can better repair
images by combining temporal and spatial feature information.

3. NETWORK ARCHITECTURE
The architecture of the proposed multiscale convolutional
network is shown in Figure 1. The network is divided into
three scales according to the order of image resolution
reduction. A coarse-to-fine strategy is adopted. The maximum-
scale network generates the coarsest level of clear images,
which are transmitted as input to the next finer-scale network
to generate finer clear images. Simultaneously, the training
efficiency is improved by weight sharing and recursive
structures between different scales.

3.1. Residual Structure. The residual structure of this
paper is shown in Figure 2. Based on the residual structure,27

the residual function is extended to the fifth order and the
original one-time jump connection is redesigned to conduct a
five-time jump connection. The input portion is performed 1 ×

1 conv. before the first feature summation. After each feature
summation, 3 × 3 conv. features are passed, followed by 1 × 1
conv. features before the following feature summation.
Redesigning the network structure using a stacking technique
for residual structures enhances the ability of the network to
perform complex learning. In this network, the convolution
kernel size of the residual structure is set to 3 × 3.

The residual structure can be defined as

=
=

++

l
mooo
n
ooo

x n

x x n

( ), 1

( ), 2
n

n

n n n1 1 1 (1)

where ( )n is the result of n through a 1 × 1 conv. and 1
through a combination of 3 × 3 conv. and 1 × 1 conv. is ( )n .
The specific process of feature information through the
residual structure is as follows.

(1) Input image feature information x after a 1 × 1 conv.
feature information is expressed as ( )1 , recorded as 1.

(2) The new feature information generated by summing the
feature information combined with 1 through the first 3 × 3

Figure 1. Architecture of the proposed multiscale convolutional network.

Figure 2. Residual block structure used herein.
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conv. and 1 × 1 conv. is expressed as + ( )1 1 , denoted as
2.
(3) The new feature information generated by summing the

feature information combined with 2 through the first 3 × 3
conv. and 1 × 1 conv. is expressed as + ( )2 2 , denoted as

3.
(4) The new feature information generated by summing the

feature information combined with 3 through the first 3 × 3
conv. and 1 × 1 conv. is expressed as + ( )3 3 , denoted as

4.
(5) The new feature information generated by summing the

feature information combined with 4 through the first 3 × 3
conv. and 1 × 1 conv. is expressed as + ( )4 4 , denoted as

5.
(6) The new feature information generated by summing the

feature information combined with 5 through the first 3 × 3
conv. and 1 × 1 conv. is expressed as + ( )5 5 , denoted as

.6
3.2. Encoder−Decoder Structure. Encoder−decoder29

does not refer to a specific algorithm. In the process of image
processing, the image feature extraction process is termed as
the encoding process and the output process is termed as the
decoding process. The encoder−decoder structure is shown in
Figure 3. The encoder is stacked by five residual structures
with a resolution of 256 × 256 and five residual structures with
a resolution of 128 × 128. The decoder structure comprises
four residual structures with a resolution of 128 × 128 and four
residual structures with a resolution of 256 × 256.
The encoder−decoder arrangement creates a large receptive

field that effectively utilizes feature information for image
restoration. The SA-ConvLSTM network structure connected
between the encoder and decoder41 may connect all the states
in the prediction network by stacking multiple ConvLSTM
layers and using the self-attention memory module to
aggregate past-related features for the final prediction. In
addition, feature summation is used to establish a skip
connection between the encoder and decoder to ensure
image consistency.

3.3. Loss Function. Herein, the loss function uses a root
mean square error (RMSE) to calculate the square root by
determining the ratio of the square sum of the deviation
between the observed value and the true value by the number
of observations n. The smaller the value utilized to measure the
deviation between the repaired and blurred images in the
network, the greater the fitting result. The RMSE can be
expressed as follows.

=
=N

RMSE
1

(observed predicted )
i

N

i i
1

2

(2)

where observedi represents the blurred image and predictedi
represents the repaired image. After the experiments, when

RMSE is used as the loss function, the network model can
converge faster and achieve satisfactory repair results.

4. RESULTS AND DISCUSSION
4.1. Foam Image Acquisition Process. The design of the

image-capturing process is shown in Figures 4 and 5. Industrial

cameras, equipment boxes, computers, and lighting equipment
were used. Foam images of flotation tanks No. 1 and No. 2 at a
coal washing company in the Inner Mongolia Autonomous
Region were captured over the course of eight days. The daily
duration of filming was 11 h. At the same time, every 20 min,
the slime foam from two flotation tanks was collected. After
the samples were dried, they were loaded to prepare for
subsequent flotation-ash prediction based on foam character-
istics.

4.2. Experimental Results of the Foam Image Set. We
randomly selected 1000 foam images from over 20,000 foam
images obtained onsite as datasets and then repaired them
using our proposed network. For different degrees of blurred
foam images, our proposed network has obtained good repair

Figure 3. Encoder−decoder structure.

Figure 4. Acquisition device structure.

Figure 5. Field-image acquisition device.
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results for varied levels of fuzzy bubble images, and the specific
repair effect is shown in Table 1.

Based on the visual renderings of the repaired foam, we can
find that the repaired foam images have sharp foam edges and
clear textures, which is beneficial for our later segmentation
and feature extraction of the foam.
The network proposed herein is compared with SRN,26

DeepRFT,23 MPRNet,40 and the network suggested by Gao et
al.,25 which may be used to deblur the multiscale convolutional
neural network for image restoration on foam image datasets.
To meet the requirements of the image size of MPRNet,40 the
foam image size is reduced to 1280 × 968 in equal proportions
during testing.
To evaluate the image quality of the restored image, the

peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and entropy are used. The greater the value of
these three evaluation methods, the higher the quality of the
image restoration. The visual effect of repairing different
degrees of blurred foam images is shown in Table 2.
The evaluation results of repairing different degrees of

blurred foam images are shown in Table 3.
The PSNR obtained by the network test herein is 0.216

points higher than the highest in other comparison networks,
the SSIM is 0.010 points higher than the highest in other
comparison networks, and the entropy is 0.015 points higher
than the highest in other comparison networks, indicating that
the network herein has achieved good results in the repair of
foam images. The quantified results are consistent with our
observation that our framework outperforms other frameworks
in the remediation of slime flotation foam images.

4.3. GOPRO Image Set Experimental Results. The
GOPRO24 dataset contains 3214 pairs of blurred and clear
images with an image resolution of 1280 × 720. Different
intensity blurs in the dataset are generated by averaging a
varied number of consecutive frames from a video captured at
240 fps using a GOPRO4 camera.

To ensure accuracy, all the networks herein are trained and
tested in the same environment. The 2103 images in the
GOPRO24 dataset are used for model training, while the
remaining images are used to test blurred images of varying
degrees. The PSNR, SSIM, and entropy results are shown in
Table 4.

The PSNR obtained by the network test herein is 0.503
points higher than the highest in other comparison networks,
and the SSIM is 0.032 points higher than the highest in other
comparison networks, although the entropy is lower than the
highest reported by Gao et al., and the difference is only 0.003,

Table 1. Our Proposed Network on Repairing Different
Degrees of Blurred Foam Images

Table 2. Different Networks in Repairing Different Degrees
of Blurred Foam Images

Table 3. Evaluation Results of Different Networks on the
Foam Image Set

our
proposed
network SRN DeepRFT MPRNet

network
proposed by
Gao et al.

PSNR 33.657 33.422 33.371 32.908 33.441
SSIM 0.868 0.858 0.858 0.855 0.858
entropy 4.288 4.272 4.262 4.269 4.273

Table 4. Evaluation Results after GOPRO Dataset Repair

our
proposed
network SRN DeepRFT MPRNet

network
proposed by
Gao et al.

PSNR 33.811 33.308 33.219 33.170 33.067
SSIM 0.861 0.829 0.815 0.813 0.813
entropy 5.192 5.195 5.193 5.189 5.198
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indicating that the network herein has achieved a good repair
effect on the GOPRO24 dataset images.
For the images in the GOPRO24 dataset with varying

degrees of blur, the visual effect is shown in Table 5.

4.4. Experimental Results of the HIDE Image Set. The
HIDE42 dataset includes 8422 pairs of clear and blurred
images. Motion blur is developed by averaging frames of
several real-world scenarios with varying numbers of persons
captured using GoPro Hero cameras at 240 fps. The PSNR,
SSIM, and entropy results obtained by evaluating 1200
randomly selected blurred images of varying degrees from
the HIDE42 dataset are shown in Table 6.

From the results in Table 6, it can be seen that the PSNR
obtained by the network proposed herein is 0.503 times higher
than the highest in other comparison networks, whereas the
SSIM is 0.032 times greater than the highest in other
comparison networks, and the entropy is lower than the
highest Gao et al., but the difference is only 0.003. This
demonstrates that the network proposed herein can effectively
repair images from the HIDE42 dataset.
The visual effect for images in the HIDE42 dataset with

varying degrees of blur is shown in Table 7.
4.5. Ablation Study. Table 8 demonstrates that

connecting SA-ConvLSTM39 between the encoder and
decoder may aggregate the previous relevant features of the
image, obtain the connection in the spatial and temporal

dimensions, and enable the network to achieve superior
outcomes in image restoration.

From the results in Table 8, it can be seen that for the froth
image dataset, the PSNR for the SA-ConvLSTM network
connected to the network in this paper is 0.206 higher and the
SSIM is 0.012 higher than the PSNR for the unconnected SA-
ConvLSTM network, for the GOPRO image dataset, the
PSNR is 0.470 higher and the SSIM is 0.029 higher, for the
GOPRO image dataset, the PSNR is 0.385 higher and the
SSIM is 0.032 higher. This suggests that connecting the SA-
ConvLSTM network can help the network achieve better
results when performing image restoration.

The quantitative analysis of the restored coal slurry foam
image dataset with different order residual structures is shown
in Table 9.

From the results in Table 9, it can be seen that the fifth-
order residual structure helps the network in this paper to
achieve better restoration results in the image restoration
process.

Table 5. Visual Results after GOPRO24 Dataset Repaira

aPhotograph courtesy of “Nah, S.; Tae, H. K.; Kyoung, M. L.”.
Copyright 2023.

Table 6. Evaluation Results after HIDE Dataset Repair

our
proposed
network SRN DeepRFT MPRNet

network
proposed by
Gao et al.

PSNR 32.978 32.671 32.862 32.777 32.577
SSIM 0.832 0.804 0.794 0.788 0.789
entropy 5.195 5.196 5.185 5.174 5.198

Table 7. Visual Results after HIDE Dataset Repaira

aPhotograph courtesy of “Shen, Z.; Wang, W.; Lu, X.; Shen, J.; Ling,
H.; Xu, T.; Shao, L.”. Copyright 2023.

Table 8. Influence of Networks on Image Restoration

froth images GOPRO HIDE

PSNR SSIM PSNR SSIM PSNR SSIM

No SA-
ConvLSTM

33.451 0.856 33.341 0.832 32.593 0.800

SA-
ConvLSTM

33.657 0.868 33.811 0.861 32.978 0.832

Table 9. Quantitative Analysis of the Structure of Residuals
of Different Orders

froth images

PSNR SSIM entropy

fifth-order residual structure 33.657 0.868 4.288
fourth-order residual structure 33.409 0.855 4.280
third-order residual structure 33.631 0.866 4.282
second-order residual structure 33.524 0.867 4.283
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5. CONCLUSIONS
This study proposes a multiscale convolutional neural network
to repair blurred images to solve the challenge of constructing
image datasets owing to image blur, which hinders the feature
extraction of foam images. This paper proposes a novel five-
order residual structure that may be used to extend the
network structure through simple stacking. It can not only
extend the network structure through direct stacking but also
enhance its ability for complex learning. This study
demonstrates that connecting the SA-ConvLSTM network
across encoder−decoder structures stacked using the residual
structure enables the network to obtain good results in image
restoration with varying degrees of blur. Numerous studies
demonstrate that the proposed image restoration technique
has a superior effect on the fuzzy restoration of foam images
and has the potential to be implemented in the flotation field.
Subsequently, utilizing high-quality foam image generated by
the network repair described herein, we will construct a
dataset, extract the feature information of the foam image, and
analyze the correlation between the foam characteristics and
the key process parameters of the onsite flotation to guide the
intelligent adjustment of flotation site parameters.

■ AUTHOR INFORMATION

Corresponding Author
Xianwu Huang − School of Information Engineering, Inner
Mongolia University of Science & Technology, Baotou
014010, China; orcid.org/0000-0002-8867-6747;
Email: huangxianwu1983@163.com

Authors
Yuxiao Wang − School of Information Engineering, Inner
Mongolia University of Science & Technology, Baotou
014010, China; orcid.org/0000-0002-9313-1995

Haili Shang − Key Laboratory of Coal Processing and Efficient
Utilization, China University of Mining and Technology,
Ministry of Education, Xuzhou 221116, China;
orcid.org/0000-0001-9952-0687

Jinshan Zhang − School of Mines and Coal, Inner Mongolia
University of Science & Technology, Baotou 014010, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c08293

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The study was financially supported by the Key Laboratory of
Coal Processing and Efficient Utilization, (China University of
Mining and Technology), Ministry of Education, supported by
the Research Program of Science and Technology at
Universities of Inner Mongolia Autonomous Region
(NJZY22451), supported by the Fundamental Research
Funds for Inner Mongolia University of Science and
Technology.

■ ABBREVIATIONS
CCDC, Chinese control and decision conference; LSTM, long
short-term memory; PSNR, peak signal-to-noise ratio; RMSE,
root mean square error; SSIM, structural similarity

■ REFERENCES
(1) Zarie, M.; Jahedsaravani, A.; Massinaei, M. Flotation Froth
Image Classification Using Convolutional Neural Networks. Miner.
Eng. 2020, 155, No. 106443.
(2) Jian, H.; Lihui, C.; Yongfang, X. Design of Soft Sensor for
Industrial Antimony Flotation Based on Deep CNN. In Chinese
control and decision conference (CCDC); IEEE Publications, 2020; pp
2492−2496.
(3) Lu, M.; Liu, D.; Deng, Y.; Wu, L.; Xie, Y.; Chen, Z. RK
algorithm: A Novel Dynamic Feature Matching Method of Flotation
Froth. Measurement 2020, 156, No. 107581.
(4) Pawlik, M. Fundamentals of Froth Flotation. ChemTexts 2022, 8,
1−40.
(5) Wen, Z.; Zhou, C.; Pan, J.; Nie, T.; Jia, R.; Yang, F. Froth Image
Feature Engineering-based Prediction Method for Concentrate Ash
Content of Coal Flotation. Miner. Eng. 2021, 170, No. 107023.
(6) Cao, W.; Wang, R.; Fan, M.; Fu, X.; Wang, H.; Wang, Y.
Recognition of reagent dosage condition image for coal flotation
system based on joint classification model of MRMR and SSGMM.
Appl. Intell. 2022, 52, 732−752.
(7) Ding, L.; Yang, J.; Zhang, Z.; Zhao, Y. A summary of extraction
algorithms of froth features in slime flotation. Coal Prep. Technol.
2021, 38, 2045−2058.
(8) Tan, J.; Liang, L.; Peng, Y.; Xie, G. Challenges of Using Froth
Features to Predict Clean Coal Ash Content in Coal Flotation. Int. J.
Coal Prep. Util. 2020, 42, 1−37.
(9) Ozmak, M.; Zeki, A. Coal Froth Flotation: Effects of Reagent
Adsorption on the Froth Structure. Energy Fuels 2006, 20, 1123−
1130.
(10) Zhao, L.; Peng, T.; Xie, Y.; Gui, W.; Zhao, Y. Froth Stereo
Visual Feature Extraction for the Industrial Flotation Process. Ind.
Eng. Chem. Res. 2019, 58, 14510−14519.
(11) Wang, Z.; Cheng, H.; Xu, Y.; Cheng, K.; Gao, H.; Li, H.
Development of intelligent controls system for slime flotation. Coal.
Process. Compr. Util. 2022, 8, 6−11.
(12) Guo, Z.; Wang, R.; Fu, X.; Wei, K.; Wang, Y. Method for
extracting froth velocity of coal slime flotation based on image feature
matching. Ind. Mine Autom. 2022, 48, 34−39.
(13) Sun, Y.; Chen, C.; Yang, Z.; Wang, X. Image Recognition
Method of Flotation Foam in Coal Preparation Plant Based on CNN-
SVM. Coal Process. Compr. Util. 2021, 2, 8−11.
(14) Wang, X.; Zhang, C.; Zhang, S. Multiscale Convolutional
Neural Networks with Attention for Plant Species Recognition.
Comput. Intell. Neurosci. 2021, 2021, No. 5529905.
(15) Li, X.; He, M.; Li, H.; Shen, H. A Combined Loss-Based
Multiscale Fully Convolutional Network for High-Resolution Remote
Sensing Image Change Detection. IEEE Geosci. Remote Sens. Lett.
2022, 19, 8017505.
(16) Yao, Q.; Hu, X.; Lei, H. Multiscale Convolutional Neural
Networks for Geospatial Object Detection in VHR Satellite Images.
IEEE Geosci. Remote Sens. Lett. 2021, 18−27.
(17) Li, G.; Yu, Y. Visual saliency detection based on multiscale deep
CNN features. IEEE Trans. Image Process. 2016, 25, 5012−5024.
(18) Gao, W.; Wu, S. Scratch Repairing of Old Photos Based on
Multi-Scale Attention Semi-Supervised Learning. Comput. Eng. 2022,
48, 245−251.
(19) Chen, G.; Liao, Y.; Yang, Z.; Liu, W. Image inpainting
algorithm of multi-scale generative adversarial network based on multi
feature fusion. J. Comput. Appl. 2022, 1−10.
(20) Zhang, H.; Xu, D.; Luo, H.; Yang, B. Multi-scale mural
restoration method based on edge reconstruction. J. Graph. 2021, 42,
590−598.
(21) Lin, X.; Zhou, Y.; Li, D.; Huang, W.; Sheng, B. Image
Inpainting Using Multi-Scale Feature Joint Attention Model. J.
Comput. Aided Des. Comput. Graph. 2022, 34, 1260−1271.
(22) Bai, Z.; Yi, T.; Zhou, M.; Wei, W. Face Image Inpainting
Method Based on Multi-Scale Feature Fusion. Comput. Eng. 2021, 47,
213−220.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08293
ACS Omega 2023, 8, 9547−9554

9553

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xianwu+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8867-6747
mailto:huangxianwu1983@163.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuxiao+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9313-1995
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Haili+Shang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9952-0687
https://orcid.org/0000-0001-9952-0687
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jinshan+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08293?ref=pdf
https://doi.org/10.1016/j.mineng.2020.106443
https://doi.org/10.1016/j.mineng.2020.106443
https://doi.org/10.1016/j.measurement.2020.107581
https://doi.org/10.1016/j.measurement.2020.107581
https://doi.org/10.1016/j.measurement.2020.107581
https://doi.org/10.1007/s40828-022-00170-5
https://doi.org/10.1016/j.mineng.2021.107023
https://doi.org/10.1016/j.mineng.2021.107023
https://doi.org/10.1016/j.mineng.2021.107023
https://doi.org/10.1007/s10489-021-02328-z
https://doi.org/10.1007/s10489-021-02328-z
https://doi.org/10.1080/19392699.2020.1789973
https://doi.org/10.1080/19392699.2020.1789973
https://doi.org/10.1021/ef0503358?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ef0503358?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.9b00426?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.9b00426?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.16200/j.cnki.11-2627/td.2022.08.002
https://doi.org/10.13272/j.issn.1671-251x.17991
https://doi.org/10.13272/j.issn.1671-251x.17991
https://doi.org/10.13272/j.issn.1671-251x.17991
https://doi.org/10.16200/j.cnki.11-2627/td.2021.02.003
https://doi.org/10.16200/j.cnki.11-2627/td.2021.02.003
https://doi.org/10.16200/j.cnki.11-2627/td.2021.02.003
https://doi.org/10.1155/2021/5529905
https://doi.org/10.1155/2021/5529905
https://doi.org/10.1109/LGRS.2021.3098774
https://doi.org/10.1109/LGRS.2021.3098774
https://doi.org/10.1109/LGRS.2021.3098774
https://doi.org/10.1109/LGRS.2020.2967819
https://doi.org/10.1109/LGRS.2020.2967819
https://doi.org/10.1109/TIP.2016.2602079
https://doi.org/10.1109/TIP.2016.2602079
https://doi.org/10.3724/SP.J.1089.2022.19172
https://doi.org/10.3724/SP.J.1089.2022.19172
https://doi.org/10.19678/j.issn.1000-3428.0060053
https://doi.org/10.19678/j.issn.1000-3428.0060053
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08293?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(23) Mao, X.; Liu, Y.; Shen, W.; Li, Q.; Wang, Y. Deep Residual
Fourier Transformation for Single Image Deblurring. 2021, arXiv
preprint arXiv: 2111.11745.
(24) Nah, S.; Tae, H. K.; Kyoung, M. L. Deep Multi-scale
Convolutional Neural Network for Dynamic Scene Deblurring. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition; 2017, pp 3883−3891.
(25) Gao, H.; Tao, X.; Shen, X.; Jia, J. Dynamic Scene Deblurring
with Parameter Selective Sharing and Nested Skip Connections. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition; 2019; pp 3848−3856.
(26) Tao, X.; Gao, H.; Shen, X.; Wang, J.; Jia, J. Scale-recurrent
Network for Deep Image Deblurring. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition; 2018; pp
8174−8182.
(27) Su, J.; Xu, B.; Yin, H. A survey of deep learning approaches to
image restoration. Neurocomputing 2022, 487, 46−65.
(28) Xiao, W.; Tang, Z.; Luo, J.; Liu, J. FS-Deblur GAN: a
spatiotemporal deblurring method for zinc froth flotation. Eur. Phys.
J.: Spec. Top. 2022, 231, 1983−1993.
(29) Liu, J.; Gao, Q.; Tang, Z.; Xie, Y.; Gui, W.; Ma, T.; Niyoyita, J.
P. Online monitoring of flotation froth bubble-size distributions via
multiscale deblurring and multistage jumping feature-fused full
convolutional networks. IEEE Trans. Instrum. Meas. 2020, 69,
9618−9633.
(30) He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition; 2016; pp 770−778.
(31) Simonyan, K.; Andrew, Z. Very Deep Convolutional Networks
for Large-scale Image Recognition. Comput. Sci. 2014, ar Xiv preprint
ar Xiv: 1409.1556.
(32) Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. A. Inception-v4,
Inception-resnet and the Impact of Residual Connections on
Learning. In Thirty-first AAAI conference on artificial intelligence; 2017.
(33) Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov,
D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition; 2015; pp 1−9.
(34) Ioffe, S.; Christian, S. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Interna-
tional Conference on Machine Learning. PMLR; 2015; pp 448−456.
(35) Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z.
Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition; 2016; pp 2818−2826.
(36) Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated
Residual Transformations for Deep Neural Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition;
2017, pp 1492−1500.
(37) Shi, X.; Chen, Z.; Wang, H.; Yeung, D. Y.; Wong, W. K.; Woo,
W. C. Convolutional LSTM Network: A Machine Learning Approach
for Precipitation Nowcasting. In Adv. Neural Inf. Process. Syst.; 2015; p
28.
(38) Moniz, J. R. A.; David, K. Nested lstms. In Asian Conference on
Machine Learning. PMLR; 2017, pp 530−544.
(39) Lin, Z.; Li, M.; Zheng, Z.; Cheng, Y.; Yuan, C. Self-attention
Convlstm for Spatiotemporal Prediction. AAAI Conf. Artif. Intell.
2020, 34, 11531−11538.
(40) Zamir, S. W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F. S.; Yang,
M. H.; Shao, L. Multi-stage Progressive Image Restoration. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition; 2021; pp 14816−14826, DOI: 10.1109/
CVPR46437.2021.01458.
(41) Mao, X.; Chunhua, S.; Yu-Bin, Y. Image Restoration Using
Very Deep Convolutional Encoder-decoder Networks with Sym-
metric Skip Connections. In Advances in Neural Information Processing
Systems; 2016; p 29.

(42) Shen, Z.; Wang, W.; Lu, X.; Shen, J.; Ling, H.; Xu, T.; Shao, L.
Human-aware Motion Deblurring. In Proceedings of the IEEE/CVF
International Conference on Computer Vision; 2019; pp 5572−5581.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08293
ACS Omega 2023, 8, 9547−9554

9554

https://doi.org/10.1016/j.neucom.2022.02.046
https://doi.org/10.1016/j.neucom.2022.02.046
https://doi.org/10.1140/epjs/s11734-022-00459-z
https://doi.org/10.1140/epjs/s11734-022-00459-z
https://doi.org/10.1109/TIM.2020.3006629
https://doi.org/10.1109/TIM.2020.3006629
https://doi.org/10.1109/TIM.2020.3006629
https://doi.org/10.1609/aaai.v34i07.6819
https://doi.org/10.1609/aaai.v34i07.6819
https://doi.org/10.1109/CVPR46437.2021.01458
https://doi.org/10.1109/CVPR46437.2021.01458?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/CVPR46437.2021.01458?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08293?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

