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Structure, Dynamics, and 
Wettability of Water at Metal 
Interfaces
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The water/metal interface often governs important chemophysical processes in various technologies. 
Therefore, from scientific and engineering perspectives, the detailed molecular-level elucidation of the 
water/metal interface is of high priority, but the related research is limited. In experiments, the surface-
science techniques, which can provide full structural details of the surface, are not easy to directly 
apply to the interfacial systems under ambient conditions, and the well-defined facets cannot be 
entirely free from contamination at the contact with water. To answer long-standing debates regarding 
the wettability, structure, and dynamics of water at metal interfaces, we here develop reliable first-
principles-based multiscale simulations. Using the state-of-the-art simulations, we find that the clean 
metal surfaces are actually superhydrophilic and yield zero contact angles. Furthermore, we disclose 
an inadequacy of widespread ice-like bilayer model of the water adlayers on metal surfaces from both 
averaged structural and dynamic points of view. Our findings on the nature of water on metal surfaces 
provide new molecular level perspectives on the tuning and design of water/metal interfaces that are at 
the heart of many energy applications.

The water/metal interface is ubiquitous in a variety of interesting systems that are relevant to heterogeneous cat-
alysts, electrochemistry, corrosion, fluid transport, etc., which all have a great deal of technological importance 
in our daily lives. Notably, the proper control and optimization of such systems are prerequisites to resolving the 
current climate change and renewable energy issues. Therefore, there is an utmost scientific need to develop a 
fundamental understanding of water/metal interfaces. However, many chemophysical properties of water/metal 
interfaces are still unknown. For example, even one of the most basic properties, the water contact angle (θCA), 
shows huge discrepancies among the various measurements at gold surfaces, spanning from 0° to 93° (Table S1). 
This discrepancy has raised the question of whether a clean gold surface is hydrophilic or hydrophobic1.

Of prime interest is the identification of the atomic/molecular structure of the interface. However, unlike a 
bare surface, the interface is unexposed and thereby difficult to directly observe. Furthermore, most experimental 
techniques that can reveal the atomic arrangements require ultrahigh-vacuum (UHV) conditions, but water is sta-
ble only at the cryogenic temperature under UHV conditions. This leads most experimental efforts to be focused 
on elucidating the structure of ice clusters on metal surfaces within cryostats2, while the room-temperature (RT) 
structure and dynamics of water at metal interfaces are largely unknown.

Due to the aforementioned experimental difficulties, molecular level investigations of the water/metal inter-
faces at RT seem to be, per se, suitable for theoretical studies3. However, a single simulation method can hardly 
describe the high complexity of the interfacial systems. For example, density functional theory (DFT) can accu-
rately describe the electronic polarization of a metal surface, and the interaction potential between the water 
and metal surface relies on a proper choice of nonlocal correlation functionals4. However, the system size and 
timescale are quite limited, as only a few hundred atoms and picoseconds of measurement are affordable with 
regard to computational cost, thereby hampering the ability to obtain a full understanding of the liquid structure 
and dynamics. On the other hand, classical molecular dynamics (MD) simulations have been a powerful tool to 
examine liquid structures and dynamics, but accurate force-field (FF) parameters need to be established to ensure 
the reliability of the simulation results.
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Here, we investigate the water/metal interface by employing our recently developed first-principles-based 
multiscale simulation method (Fig. 1), which is called the density functional theory in classical explicit sol-
vents (DFT-CES)5–8. Using the mean-field coupling of electrostatics between the DFT and classical molecular 
dynamics, DFT-CES efficiently describes both the structural and dynamical properties of liquid water and the full 
electronic details and surface polarization of the metal surface. In addition to the seamless treatment of the elec-
trostatics, DFT-CES employs the parameterized pairwise interaction terms to account for the exchange repulsion 
and long-range nonlocal correlation (namely, dispersion) energies that are missing during the classical treatment 
of water. When these van der Waals (vdW) parameters are carefully prepared to reproduce the single water bind-
ing curve from the first-principles, our recent study has demonstrated that the DFT-CES can accurately describe 
the macroscopic wettability of the solid surface without having experimental input or empirical treatment6.

Wettability of Clean Metal Surfaces
To properly account for the nonlocal correlation governing the water binding on the metal surface4, in this study, 
we employ the nonlocal correlation functional DFT, vdW-DF29, which has often been used to investigate water 
structures on metal at zero kelvin10. Using vdW-DF2, we obtain a single water-metal binding reference curve for 
Ag, Au, Pd, and Pt, respectively (Fig. S1), and determine the corresponding vdW parameters (Table S2).

Using the DFT-CES calculations of the water/metal interfacial systems (Fig. S2), we calculate the surface wet-
tability of the clean metal surfaces of Ag, Au, Pd, and Pt for the atomically flat facets of (111) and (100), as shown 
in Table 1. The surface wettability is quantified using the work of adhesion (Wad) that is related to the contact angle 
(θCA) through the Young-Dupré equation Wad = γlv(1 + cos θCA), where γlv is the surface tension of water. Despite 
the previous debate on the hydrophobicity of clean metal surfaces1, we find that all clean metal surfaces that are 
investigated here have zero θCA, which is where water exhibits complete spreading-out behavior. This seems to be 
in agreement with the general consensus that noble metal surfaces are hydrophilic.

Since θCA becomes zero when Wad is merely larger than 2γlv ≈ 145 mJ/m2, the experiment-theory comparison 
of θCA is less informative. Indeed, our predicted Wad values are nearly one order of magnitude smaller than other 
previous theoretical ones that were obtained using classical force-fields11, albeit both results yield zero θCA. We 
thus compare our values with the references that are derived from experimental dielectric spectroscopic data. 

Figure 1.  Schematic diagram of the first-principles-based multiscale simulation of a solid (metal)-liquid 
(water) interfacial system. The classical treatment of water molecules and the quantum description of the metal 
surface enable an accurate description of both the single water-metal surface interaction and the liquid water-
metal interfacial interaction using a single set of transferrable vdW parameters.

(111) (100)

Wad (mJ/m2) θCA (degrees) Wad (mJ/m2) θCA (degrees)

Ag 195.81 0 179.00 0

Au 217.16 0 201.70 0

Pd 320.70 0 300.85 0

Pt 267.20 0 255.52 0

Table 1.  Predicted work of adhesion (Wad) and water contact angle (θCA) of different metal surfaces. The vdW 
parameters of the DFT-CES simulations are optimized to reproduce the reference curves from the vdW-DF2 
functional. Units are in mJ/m2 for Wad, and degrees for θCA.
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Using Lifshitz theory12–15, one can calculate the Hamaker coefficient16–19 from spectroscopic data, which can be 
converted into Wad assuming that the vdW interaction predominantly determines the water-metal interaction. 
For the Ag and Au surfaces, the Wad values that are estimated using Lifshitz theory span 110–180 mJ/m2 and 
110–200 mJ/m2, respectively. These are highly comparable with our values of 180–196 mJ/m2 and 202–217 mJ/m2  
for Ag and Au facets, respectively. We emphasize that our first-principles-derived results provide a reliable theo-
retical measure of the wettability of ideally clean metal surfaces without incurring any uncontrollable experimen-
tal arbitrariness that is caused from surface oxidation, contaminants, etc. To assess the possible error due to the 
imperfect description of DFT functionals, we calculate the Wad values using the vdW parameters that are obtained 
from another functional of vdW-DF2c09x 20 (Fig. S3 and Table S2), which leads to only small quantitative changes 
(Table S3), but we draw the same conclusion as was discussed above.

Structure of Water Adlayer at Metal Interfaces
Based on the accurate description of the water/metal interface, we now understand the structure and dynamics of 
interfacial water. The local density profile of water along the surface normal direction (chosen as the z-direction) 
shows a layering tendency near the solid surface due to the symmetry breaking from the bulk, as widely shown 
from various solid-fluid interfaces21,22. Of particular, the local density shows two prominent peaks, implying the 
existence of strong adsorption water layers at the hydrophilic metal interface (Fig. S4). This is in consistent with 
the previous results from MD simulation using polarizable force fields23 and quantum mechanical MD simula-
tion24, both of which report the existence of two prominent peaks in the local water density profile. Interestingly, 
a similar density profile is observed for the water at the hydrophobic surface such as graphene, graphite or fluoro-
graphene (Fig. S5a–c), while the air-water interface shows a completely different water density profile where the 
layering is lacking (Fig. S5d). We thus conclude that the water bilayer is formed at the interfacial region regardless 
of the surface hydrophilicity. We note that the “bilayer” term is used here in a loose sense, while it often refers to 
the buckled hexagonal water layer resembling the ice structure in the field25.

We then characterize the structure of water in the first layer contacting the surface, namely, a water adlayer. 
The hydrogen bond (HB) configuration of the water adlayer gradually changes from the single-donor (SD) to 
double-donor (DD) type (Fig. 2a,b) with an increase of the Wad, which consequently accompanies an increase of 
the HB donor (HBD) number per water (Fig. 2c), i.e., strengthening the HB network. The existence of a strong 
linear correlation between the SD/DD population and the surface hydrophilicity (Wad) infers that the microscopic 
HB configuration is a good descriptor of the macroscopic surface wetting property.

The enhanced HB network at the hydrophilic surface is seemingly opposed to the simple conceptual picture 
that the strong attraction between the water and solid surface would competitively weaken the HB interaction 

Figure 2.  Populations of different hydrogen bond (HB) configurations of the water adlayers on metal surfaces 
as a function of the surface hydrophilicity (Wad) for (a) single donor (SD) configuration and (b) double donor 
(DD) configuration. (c) Number of hydrogen bond donors (HBDs) per water molecule in the adlayer region as a 
function of the surface hydrophilicity (Wad). (d) Average angle of the water dipole from the metal surface in the 
adlayer region as a function of the surface hydrophilicity (Wad).
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among water molecules. We further elucidate that such a rather counterintuitive behavior becomes possible since 
the stronger attraction to the surface yields the more lying-down orientation of water (Fig. 2d) by stabilizing the 
lone pairs of water molecules26. This geometrically enables greater hydrogen bonds (HB) among interfacial water 
molecules.

When Wad becomes larger than 155 mJ/m2 (Fig. 2c), as for most metal surfaces, the number of HBDs becomes 
larger than that of bulk liquid water (1.70), and may even be close to 2, which is the value of the hexagonal ice 
structure. It is thus natural to question whether the water adlayer structure becomes actually hexagonal ice-like.

Topology of Hydrogen Bond Network at Interfaces
To answer if the interfacial water is in the ice-like phase, we analyze the topology of the HB network of the water 
adlayer using HB connectivity (as defined in the Fig. S6) as shown in Fig. 3a, and then investigate the population 
of small polygons (n-gon: n = 3, 4, 5, and 6) at different interfaces. We find that the more polygons are formed at 
the more hydrophilic surface due to the increased number of HBDs (Fig. 3b). However, regardless of the surface 
hydrophilicity, tetragons and pentagons are more populated than hexagons. From the (averaged) structural point 
of view, therefore, the water adlayer is not quite likely to be “hexagonal” ice-like.

More interesting is the dynamics of the water adlayer. As representatively shown in the snapshots for the water 
at the Pd(111)/water interface (Fig. 3c), which are taken at every picosecond, the HB topology shows a rapid 
change (<1 ps). Thus, also from the dynamics point of view, it is difficult to conclude that the HB network of the 
water adlayer is either solid or “ice”-like.

Interfacial Water Shows Liquid-Phase Dynamics
From the mean-squared displacement (MSD) of the water molecules that started their diffusion from the adlayer 
region (Fig. 4a), we further elucidate that the diffusion of the water adlayer follows normal Fickian behavior, 
thereby supporting the nonexistence of the ice-like phase. Considering that the flattening-out behavior of MSD 
in the log-log scale is a key fingerprint of supercooled water27, the absence of such a feature in our case (Fig. S7) 
further excludes the possibility of a glassy phase at the interface, and thus the phase of the water adlayer is con-
cluded to be a simple liquid.

Compared with bulk liquid water, however, the diffusivity of the interfacial liquid water shows a quantita-
tive difference. Figure 4b,c show that the translational (Dtrans) and rotational diffusion constants (Drot.) gradu-
ally decrease as the surface hydrophilicity increases (values are list in Table S4). We note that Dtrans and Drot are 
obtained using the Green-Kubo relation, which yields the same value of the translational diffusion constant as 
the one that is obtained from the MSD using the Einstein-Enskog relation (Fig. S8). Similar to the Dtrans of the 
water adlayer, which is smaller than that of bulk water in all cases, the Drot of the water adlayer is also smaller 

Figure 3.  (a) Topology of the hydrogen bond (HB) network of water in the adlayer region on Ag(111), Au(111), 
Pd(111), and Pt(111) surfaces. Representative cases are shown. (b) Population of the small polygons (n-gon) 
that are formed by enclosures of HB, where n = 3 (red), 4 (yellow), 5 (pink), and 6 (purple), as a function of 
the surface hydrophilicity (Wad). (c) Temporal series of HB topological changes that are displayed at every 
picosecond. The Pd(111) case is representatively shown.
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than that of bulk water in all cases. In consideration of both Dtrans and Drot, the liquid phase of the water adlayer 
diffuses slower than the bulk liquid water regardless of the surface hydrophilicity. Thus, our results clearly show 
no existence of hexagonal ice-like phase at the interface at ambient condition, instead a simple liquid phase exists 
with decreased diffusivity.

To conclude, using state-of-the art multiscale simulation, we elucidate that the clean noble metal surfaces are 
hydrophilic; therefore, water tends to spread out flat on them (θCA = 0). Our results agree well with the values 
that are calculated from the experimental spectroscopic data, thus suggesting that several previous exrimental 
reports of large contact angle values could be due to partial surface oxidation and/or contamination. Based on the 
accurate first-principles of the DFT description of water metal interaction, we further investigate the conventional 
picture of the water structure at the interface, e.g., an ice-like bilayer model. From both the structural and dynam-
ics points of view, we conclude that there is an inadequacy hexagonal ice-like phase, and the interfacial water is in 
the liquid phase with retarded diffusivity. Our molecular-level understanding of water at metal interfaces provides 
a fundamental starting point to tackle important challenges in various technological processes that are related to 
water/metal interfaces, e.g., fouling inhibition, anti-icing surfaces, electrical double layers formation, etc.

Figure 4.  (a) Mean-squared displacement (MSD) of the water molecules that started their diffusion from the 
adlayer region. For comparison, the MSD of bulk water is shown in the graph. (b) Translational (Dtrans) and 
(c) rotational (Drot) diffusion coefficients of water at the adlayer region are shown as a function of the surface 
hydrophilicity (Wad). For comparison, the Dtrans and Drot of bulk water are shown as horizontal lines.
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Methods
Single-scale density functional theory (DFT) calculations.  To obtain single water binding reference 
curves, we performed DFT calculations using Quantum ESPRESSO28 by employing two different non-local cor-
relation functionals of vdW-DF29 and vdW-DF2c09x20. The metal slab was modeled using 3 layers of (2 × 2) surface 
unit cell of (111) surface (consisting of 48 metal atoms), and the electronic-ion interactions were considered in 
the form of the projector-augmented-wave (PAW) method29. The kinetic energy cutoff for the planewaves was set 
as 50 Ry, and the Gaussian smearing was used with a value of 0.2 eV for Brillouin-zone integration in metals. The 
dipole correction was applied along the surface normal direction (chose as a z-direction).

Multi-scale simulations: DFT in classical explicit solvents (DFT-CES).  The DFT-CES method is 
implemented by combining open-source density functional theory (DFT) and classical molecular dynamics 
(MD) programs; Quantum ESPRESSO28 (a planewave DFT code) and Large-scale Atomic/Molecular Massively 
Parallel Simulator30 (LAMMPS; a classical MD code). Detailed simulation procedure of DFT-CES can be found 
from our previous publications5,6.

DFT part was described using Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional31. The metal 
slab was modeled using 3 layers of (2 × 2) surface unit cell of (111) surface (consisting of 48 metal atoms), and 3 
layers of (2 × 2) surface unit cell of (100) surface (consisting of 24 metal atoms), and the electronic-ion interac-
tions were considered in the form of the projector-augmented-wave (PAW) method. The kinetic energy cutoff for 
the planewaves was set as 50 Ry, and the Gaussian smearing was used with a value of 0.2 eV for Brillouin-zone inte-
gration in metals. The dipole correction was applied along the surface normal direction (chose as a z-direction).

For MD simulations, we used the (3 × 3) and (4 × 4) expanded supercell structure of aforementioned (111) 
and (100) slab models, respectively, in order to minimize the finite size effect during MD simulations. We sim-
ulated 1,000 number of TIP3P-Ew water molecules32 at the metal interfaces. By employing the Nosé-Hoover 
thermostat, canonical ensemble (NVT) simulation was performed at 300 K for 1 ns at every DFT-CES iteration, 
and the last 500 ps trajectory was used to compute the ensemble averaged solvent charge density. The long-range 
electrostatic interactions were calculated using the multi-level summation method (MSM)33. The DFT-CES iter-
ation was performed until the internal energy change of the DFT part became less than 0.1 kcal/mol. Optimized 
vdW parameters for interfacial interaction can be found from; the reference6 for C of graphene/graphite systems; 
Fig. S9 for F of fluorographene (F-graphene); and Table S2 for metals.
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