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Simple Summary: A comprehensive evaluation of immune cell distribution in the tumor microen-
vironment (TME) and tumor gene mutation status may contribute to therapeutic optimization of
cancer patients. In this study, we aimed to demonstrate that deep learning (DL)-based computational
frameworks have remarkable potential as a tool to analyze the spatial distribution of immune cells
and cancer cells in TME and detect tumor gene mutations. TME analysis can benefit from the compu-
tational framework, mainly due to its efficiency and low cost. Cells distribution in TME and tumor
gene mutation status can be characterized accurately and efficiently. This may lead to a reduced
working load of pathologists and may result in an improved and more standardized workflow.

Abstract: Spatial distribution of tumor infiltrating lymphocytes (TILs) and cancer cells in the tumor
microenvironment (TME) along with tumor gene mutation status are of vital importance to the
guidance of cancer immunotherapy and prognoses. In this work, we developed a deep learning-
based computational framework, termed ImmunoAIzer, which involves: (1) the implementation of a
semi-supervised strategy to train a cellular biomarker distribution prediction network (CBDPN) to
make predictions of spatial distributions of CD3, CD20, PanCK, and DAPI biomarkers in the tumor
microenvironment with an accuracy of 90.4%; (2) using CBDPN to select tumor areas on hematoxylin
and eosin (H&E) staining tissue slides and training a multilabel tumor gene mutation detection
network (TGMDN), which can detect APC, KRAS, and TP53 mutations with area-under-the-curve
(AUC) values of 0.76, 0.77, and 0.79. These findings suggest that ImmunoAIzer could provide
comprehensive information of cell distribution and tumor gene mutation status of colon cancer
patients efficiently and less costly; hence, it could serve as an effective auxiliary tool for the guidance
of immunotherapy and prognoses. The method is also generalizable and has the potential to be
extended for application to other types of cancers other than colon cancer.

Keywords: deep learning; cell distribution; biomarker; tumor gene mutation; tumor microenviron-
ment (TME); semi-supervised learning; hematoxylin and eosin (H&E)
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1. Introduction

The tumor microenvironment (TME) is the internal environment in which tumor
grows [1–3]. The understanding of TME, especially the spatial distribution of tumor
infiltrating lymphocytes (TILs) within TME, can be of great importance to offer guidance
for immunotherapy [4–7] and evaluating prognosis of cancer [8]. Moreover, tumor gene
mutation status is also of vital importance for the prediction of drug efficacy [9], disease-free
survival [10], and immunotherapy response [11,12]. As such, a comprehensive evaluation
of immune cell distribution in TMEs and tumor gene mutation status may offer guidance
for patient selection and therapeutic optimization.

Currently, the histological analysis of hematoxylin and eosin (H&E)-stained tissue is
considered the gold standard for pathologic diagnoses. Multiplexed immunohistochem-
istry (mIHC) techniques can help pathologists interpret clinically relevant cellular subtypes
and biomolecules, and are widely applied in TME analysis [13–15]. The mIHC-based
methods allow simultaneous display of the cellular expressions of several biomarkers
on tissue slides; thus, they offer more comprehensive insight into disease heterogeneity.
However, mIHC has certain limitations [16]. First, the multiplexed staining method is both
time- and cost-consuming. Second, spectrum overlapping can affect the accuracy of the
staining results. Third, a professional pathologist is often required to interpret mIHC-based
images; thus, the interpretation is subject to individual subjectivity. Therefore, there is
an urgent need to develop an alternative and more efficient method to complement the
existing mIHC approach to characterize different cell types in the TME.

A computational framework may provide a more comprehensive, accurate, and ob-
jective method to assist in therapeutic optimization [17]. The application of deep learning
(DL) in medical image processing, especially histological image analysis, has been shown
to extract valuable information that is imperceptible to humans [18–20]. Recent advances in
DL and digital pathology have made it possible to derive fluorescence images from trans-
mitted light images of unlabeled fixed or live biological samples [21], thus demonstrating
the capability and reliability of DL methodology as a tool to facilitate biomarker prediction
tasks. Burlingame et al. introduced an adversarial deep learning method that they used to
infer fluorescence images based on the H&E-stained tissue from a patient with pancreatic
ductal adenocarcinoma [22], further verifying the practicability of DL-based methods as a
type of prediction tool for complex human tissues. Moreover, previous research has also
suggested that a DL neural network can detect gene mutations based on H&E images [23],
demonstrating the potential application of DL-based methods in the field of pathological
image analysis. Hence, we hypothesized that DL may facilitate the evaluation of immune
cell and cancer cell distribution in TMEs by predicting the cellular biomarker distribution,
meanwhile offer guidance for tumor gene mutation analysis.

Despite the advancements of DL-based methods in medical image analysis, most
existing DL-based methods are fully supervised and require a large amount of labeled
data for training to achieve an acceptable level of performance, especially when they are
applied to pixel-level segmentation tasks. However, the annotation of medical image data
can be very laborious and time-consuming, and it often requires professional pathologists
to ensure accuracy [24]. Thus, it would be very beneficial to develop semi-supervised
DL- based computational methods [25] to leverage unlabeled image data to increase the
efficiency. Moreover, The Cancer Genome Atlas (TCGA) dataset contains a massive amount
of H&E staining data from cancer patients; however, it remains underutilized and can be
useful for a semi-supervised approach.

In this study, we proposed a computational framework, termed ImmunoAIzer, which
can use H&E images to provide comprehensive and valuable information for pathologists
to aid TME analysis. ImmunoAIzer contains two components: (1) a semi-supervised
cellular biomarker distribution prediction network (CBDPN) which can make predictions
of the spatial distribution of CD3, CD20, PanCK, and DAPI on H&E images; (2) a tumor
gene mutation detection network (TGMDN), which can detect APC, TP53, and KRAS gene
mutations from H&E images. The flowchart of ImmunoAIzer is described in Figure 1. In
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general, our proposed computational framework can reveal TILs and cancer cells distri-
bution in TME, and facilitate tumor gene mutation assessment. These factors allow the
framework to be used as an effective auxiliary tool for the comprehensive evaluation of
TME and as a reference for the therapeutic optimization. Furthermore, our method can be
extended for application to different cancer types.

Figure 1. Study protocol workflow. (A) ImmunoAIzer includes: a cellular biomarker distribution
prediction network (CBDPN) and a tumor gene mutation detection network (TGMDN). (B) CBDPN
takes H&E image patches as input and makes predictions of the spatial distribution of CD3 and
CD20, pan-cytokeratin (PanCK) and DAPI in TME. (C) TGMDN takes H&E image patches as input
and detects adenomatous polyposis coli gene (APC), tumor protein P53 gene (TP53), and kirsten rat
sarcoma viral oncogene (KRAS) mutations. (TCGA: The Cancer Genome Atlas; H&E: hematoxylin
and eosin)
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2. Materials and Methods
2.1. Dataset Establishment

The data we used in our work includes two parts: (1) data used for CBDPN training
and validation, and (2) data used for TGMDN training and validation.

For the CBDPN, the dataset included two types of data: (1) pixel-level labeled H&E
image data of 8697 H&E image patches and their corresponding label masks of 8 colon
cancer patients from Peking University Cancer Hospital and Institute, and (2) unlabeled
image data of 50,801 H&E image patches of 60 colon cancer patients acquired from the
TCGA dataset, Colon Adenocarcinoma (COAD) project. For the tissue samples acquired
from Peking University Cancer Hospital and Institute, the H&E and mIHC stains were
conducted. PanCK was used to characterize tumor cells, and CD3 and CD20 were used
to characterize TILs [26], and DAPI for nuclei. The staining and scanning protocols are
described in Appendix A. First, in order to facilitate annotation, a registration procedure
was performed after acquisition of the H&E and mIHC images to ensure that the H&E
and mIHC images were spatially registered. Second, the registered H&E and mIHC whole
slide images (WSI) were tiled into 512 × 512-pixel patches, and were pixel-level annotated
by 3 board certified pathologists. Third, a color normalization [27,28] procedure was
conducted to improve the image quality. Finally, we conducted a data augmentation
procedure to obtain 8697 H&E image patches of which the training, validation, and testing
image data ratio was set to be approximately 8:1:1, yielding 6937 image patches in the
training set, 946 image patches in the validation set, and 814 images in the test set. The
whole data processing pipeline is illustrated in Figure S1. The registration procedure and
other post-processing details are described in Appendix B. Additionally, for the unlabeled
image data from the TCGA dataset, the WSIs of 60 patients were tiled into 512 × 512-pixel
patches, yielding 50,801 image patches in total, among which 10,200 image patches of
35 patients with background proportion below 50% were utilized for semi-supervised
training, and 40,601 image patches of the other 25 patients were utilized for performance
validation.

For the TGMDN, H&E-stained WSIs from 446 colon cancer patients with gene muta-
tions were selected from the TCGA dataset COAD project. In order to make sure that the
dataset contains sufficient images with mutations, we chose those which were mutated in
at least 10% of the tumor areas. The WSIs were tiled into 512 × 512-pixel patches. For each
H&E-stained slide, only patches predicted through our CBDPN to have a PanCK-positive
area of more than 50% were selected for implementation. This condition was necessary
to choose the images of the tumor area. Finally, we used CBDPN to select 44,534 image
patches from 339 patients for the task. The training, validation, and testing image ratio
was set to be approximately 14:3:3, respectively, yielding 31,174 H&E image patches in the
training set, 6680 H&E images in the validation set, and 6680 H&E images in the test set.
All of the H&E patches were intensity-normalized [27,28] prior to training.

2.2. CBDPN Training and Validation
2.2.1. Semi-Supervised Mechanism

In order to tackle the problem of insufficient labeled data and the heavy burden of
annotation work, our semi-supervised biomarker distribution prediction network utilizes
an adversarial learning paradigm [29], the structure of which consists of a generator and
a discriminator. In order to better extract useful features from pathological images and
optimize performance, the generator was structured to have an encoder–decoder form. The
generator can be any form of segmentation network which takes in the original H&E image
and outputs the class probability maps and the discriminator is organized the same as [29].
Note that the generator can also be used as an independent, fully supervised biomarker
distribution prediction network. The semi-supervised network structure is illustrated in
Figure 2.
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Figure 2. Semi-supervised structure for the ImmunoAIzer cellular biomarker prediction networks. Note that the generator
and discriminator structure in this figure is only schematic, a detailed introduction about the generator structures will be
given in the following sections.

Given an input H&E image, Xn, of size H ×W × 3, the segmentation network of the
generator is denoted as S(·); the predicted probability map, S(Xn), of size H ×W × C
where C is the category number; the applied categories were background, PanCK-positive
area, CD3 and CD20-positive area, and DAPI. Note that CD3 and CD20 positive cells were
regarded as one class as TILs in our study [26]. The discriminator is denoted as D(·),
which takes in a probability map of size H × W × C and outputs a confidence map of
size H ×W × 1. In this study, we applied two possible inputs to the discriminator: (1) a
biomarker distribution prediction, S(Xn), and (2) a one-hot-encoded mask vector, Yn. Each
pixel p of the discriminator output map indicates whether the pixel was sampled from
the ground truth labeled by the pathologists p = 1 or from the predictions made by our
segmentation network p = 0. In this way, we can leverage both labeled data and unlabeled
data to train the network.

The generator was trained by minimizing the multitask loss function:

Lseg = Lce + λadvLadv + λsemiLsemi, (1)

where Lce, Ladv, and Lsemi represent multiclass cross-entropy loss, adversarial loss, and
semi-supervised loss, respectively. In (1), λadv and λsemi are two weighted parameters. As
the network is trained on the labeled data, the cross-entropy loss is calculated as:

Lce = −∑
h,w

∑
c∈C

Y(h,w,c)
n log(S(Xn)

(h,w,c)). (2)

The adversarial learning strategy is applied to maximize loss Ladv, as follows:

Ladv = −∑
h,w

log
(

D(S(Xn))
(h,w)

)
. (3)

This loss function was applied to fool the discriminator by maximizing the probability
of the predicted results being generated from the ground-truth label mask.

The discriminator was trained by applying the spatial cross-entropy loss of the two
causes; this was achieved by performing the following operation:

LD = −∑ h,w(1− yn) log(1− D(S(Xn))
(h,w)) + yn log

(
D(Yn)

(h,w)
)

, (4)

under the condition that the input is given as the output of the generator, yn = 0; alterna-
tively, under the condition that the sample input was taken from the ground truth labels,
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yn = 1. In (4), D(S(Xn)
(h,w) represents the confidence map of X at coordinates (h, w);

D(Yn)
(h,w) is similarly defined.

Note that Lce was not applied in the case of unlabeled data because there was no
ground-truth mask. To prevent the prediction from being overcorrected by the adversarial
loss, we applied a smaller λadv to the loss function. The segmentation network outputs an
initial prediction, S(Xn), and the discriminator generates a confidence map, D(S(Xn)), to
indicate the regions that are sufficiently close to the ground-truth biomarker distribution
masks. A threshold was applied to establish the trustworthy region, i.e., the region that can
be used as the label to reasonably train the segmentation network in a self-taught manner.
The resulting semi-supervised loss is defined as:

Lsemi = −∑
h,w

∑
c∈C

I
(

D(S(Xn))
(h,w) > Tsemi

)
·Ŷ(h,w,c)

n log
(

S(Xn)
(h,w,c)

)
. (5)

In (5), I(·) is the indicator function, Tsemi is the threshold used to select the trustworthy
region, Ŷn is the one-hot-encoded ground truth, and Ŷ(h,w,c)

n = 1 if c = argmaxcS(Xn)
(h,w,c).

2.2.2. CBPDN Structure

In order to better extract features from pathological images, we equipped CBDPN with
a combination of residual blocks [30], and Inception V3 [31] architecture as the backbone.
The Inception V3 architecture comprises inception units, with each inception unit consisting
of several nonlinear convolutional modules at various resolutions, which makes it very
useful for pathology-related image-processing tasks. We added two residual blocks after
the first max-pooling layer to improve the feature-extraction performance. The network
structure is illustrated in Figure 3. In addition, the structure details of each block are
described in Figure S3. CBPDN can be used as the generator in the semi supervised
mechanism described in Section 2.2.1 and it can also be used independently as a fully
supervised segmentation network.

Figure 3. CBPDN structure to predict biomarker distributions. Inception blocks A to D are a series of convolutional modules
at various resolutions which are used extract features at different levels, and Inception block E is used to promote high
dimensional representations to boost prediction performance. Details of the module structure are described in Figure S3.

For the discriminator, it consists of 5 convolution layers with 4 × 4 kernel in the stride
of 2. The channels of these layers are 64, 128, 256, 512, and 1, respectively. Each convolution
layer is followed by batch normalization and Leaky ReLU. An up-sampling layer is added
to the last layer to rescale the output to the size of the input map to transform the model
into a fully convolutional network.
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2.2.3. Test Set Validation

For CBPDN performance evaluation, first, we applied the dataset with labeled images
in independent training and testing experiments using CBDPN and three conventional
segmentation networks, i.e., UNet [32], DeepLabV3 [33], and DeepLabV3+ [34] in the
fully supervised manner, to prove the superiority of our proposed approach in making
predictions of the biomarker distribution. Second, to prove the effectiveness of the semi-
supervised mechanism, we incorporated CBDPN and the other three networks with the
semi-supervised structure. It is worth mentioning that in this case, the segmentation
networks were used as the generator of the entire structure described in Figure 2. Further,
10,200 unlabeled H&E image patches were added in the training phase. In addition,
814 H&E images with labels were used for validation.

The metrics used to evaluate the performance of the biomarker distribution prediction
network were the dice coefficient, and intersection-over-union (IoU), precision, recall. We
used TP, FP, TN, and FN to denote the true-positive, false-positive, true-negative, and false-
negative predictions, respectively. In addition, x, y are used to represent the prediction
result and the ground truth map, respectively. Further, k denotes the total number of
classes. The IoU and Dice metrics are defined as:

IoU =
∑k

i=1
|xi∩yi |
|xi∪yi |
k

, (6)

dice =
2·∑k

i=1
|xi∩yi |
|xi |+|yi |

k
, (7)

which measure the overlap between prediction x and ground truth y.
The precision score was calculated as follows:

precision =
∑k

i=1
TPi

TPi+FPi

k
. (8)

The recall score was calculated as follows:

recall =
∑k

i=1
TPi

TPi+FNi

k
. (9)

For each patch, the prediction result and the ground truth label were compressed
into one channel and each pixel was labeled to represent one specific marker. For the
prediction result, the label with the highest probability of each pixel point being predicted
is considered to be the final marker classification of that pixel. In addition, the final metrics
were calculated on pixel-level by averaging the metric of each prediction class.

2.2.4. TCGA Dataset Validation

In order to prove the robustness and generalization ability of CBDPN, we used
43,601 H&E image patches of 25 colon cancer patients from the TCGA dataset for further
validation. Because the corresponding mIHC staining images of the TCGA WSIs were
not available, we were unable to make label masks and calculate the accuracy and dice
coefficient. Instead, we calculated the PanCK-positive cell fraction and CD3- and CD20-
positive cell fractions given by our optimal model, and then compared the results to the cell
fractions determined based on the molecular information available in the TCGA dataset.
The TCGA benchmark cell fraction was obtained from molecular genomics assays based
on DNA methylation arrays and RNA sequencing data. This is a reasonable approach
because PanCK is typically used to characterize tumor cells, and CD3 and CD20 are used
to characterize TILs [26].
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2.2.5. CBDPN-Based Cell Quantification

In order to prove the utility of CBDPN in clinical scenarios, considering programmed
cell death protein 1 (PD-1) is a crucial biomarker for TILs [35–37], we also tested the
ability of CBDPN to aid quantification of PD-1-expressing cells in TME in the presence
of anti-PD-1 immunofluorescence staining. We first acquired H&E images and anti-PD-1
immunofluorescence images of the same tissue. We used CBDPN to acquire cell-specific
biomarker distribution in TME, and then we used ImageJ software [38] to preprocess
the anti-PD-1 immunofluorescence image to determine PD-1-positive cell distribution.
Finally, we merge the cell-specific biomarker distribution generated by CBDPN and the
PD-1-positive cell distribution image to gain visualization of the spatial distribution of
PD-1-expressing TILs. The quantification can then be achieved by using ImageJ software
(Version 1.52p, Fiji-64bit).

In clinical settings, pathologists often use mIHC staining images and Inform soft-
ware [39] (PerkinElmer, Waltham, MA, USA) to characterize and quantify the PD-1 expres-
sion in TME. Inform software (Version 2.4) uses mIHC image as input to experimentally
measure cell proportion. The basic workflow is that Inform software first localizes nuclei
distribution on the mIHC WSI and then detects the type of fluorescence marker closest to
each nucleus to determine the biomarker expression status at cellular level.

To validate the accuracy of our CBDPN-based cell quantification method, we com-
pared our results with the results calculated using the commercial Inform software based
on mIHC WSIs of the same tissues.

2.3. TGMDN Training and Validation
2.3.1. TGMDN Structure

For the TGMDN, we used the ShuffleNet V2 [40] network to conduct the multilabel
training process to detect APC, TP53, and KRAS mutations in colon cancer patients. Shuf-
fleNet V2 was selected because it has demonstrated good performance on gene mutation
detection tasks [41]. The network learned the features of each of the three mutations, with
each mutation classification corresponding to an independent binary classification. We
implemented a binary cross-entropy loss function and sigmoid layer to replace the softmax
layer; this allowed each H&E patch to be associated with several binary labels. The entire
network structure is illustrated in Figure 4.

Figure 4. TGMDN structure to detect tumor gene mutations.
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2.3.2. TGMDN Evaluation

To test the performance of the TGMDN, we tested the detection accuracy on the test
set containing 6680 H&E image patches from TCGA dataset and calculated the receiver
operating characteristic (ROC) of these three mutations.

Moreover, in order to better understand the gene mutation association, we also em-
ployed a t-SNE method [42], utilizing the values of the last fully connected layer of our
TGMDN as input, to visualize how the mutations and patches were organized in the
multidimensional space of the network.

2.4. Implementation Details

Our method is implemented based on the PyTorch DL framework using Python [43].
Two pieces of TESLA V100 GPUs were employed to accelerate the training. For semi-
supervised CBDPN training, the batch size was set as 8 and the initial learning rate was
set as 0.001 for the generator, and 10−6 for the discriminator. λsemi was set as 0.1; λadv
was set as 0.01 and 0.001 for labeled and unlabeled data, respectively, and Tsemi was set
as 0.5. To train the predictive network, we use the Adam optimizer method, where the
momentum is 0.9, and the weight decay is 10−8. We first train the generator for 10,000 steps
and then train the generator and discriminator simultaneously for 300,000 steps. We start
the semi-supervised training after training 100,000 steps with labeled data. For TGMDN
training, we implemented the RMSprop optimization to train the network for 100 epochs
with batch size as 16. We set the momentum as 0.9, and the weight decay as 10−8. The
initial learning rate is 0.01. Statistical analysis is conducted using Prism 6 software.

3. Results
3.1. CBDPN for the Prediction of Cellular Biomarker Distribution in TME
3.1.1. Fully-Supervised Experiment Results

We used CBDPN, UNet, DeeplabV3, and DeeplabV3+ to train the biomarker prediction
model. The results on our test set (including 814 H&E image patches) are summarized
in Table 1. As observed, our CBDPN yielded optimal results in the fully supervised
experiments. Our proposed network achieved the highest scores for accuracy, precision,
IoU, and dice among the four networks. Although CBDPN did not achieve the highest
score for recall, it achieved the best dice coefficient, which provides information on the
trade-off between precision and recall. The results prove the effectiveness and reliability of
CBDPN in predicting cell biomarker distributions.

Table 1. Fully-supervised learning comparisons of the four networks on the test set.

Network Accuracy Precision Recall Dice IoU

UNet 0.873 0.799 0.871 0.825 0.714
DeepLab V3 0.856 0.776 0.836 0.797 0.677
DeepLab V3+ 0.863 0.778 0.858 0.805 0.690

CBPDN 0.875 0.806 0.865 0.827 0.717
The bold font indicates the best result.

3.1.2. Semi-Supervised Experiment Results

We incorporate CBDPN, UNet, DeeplabV3, and DeeplabV3+ with the semi-supervised
structure to train the biomarker prediction model. Note that in this case, the segmentation
networks were used as the generator of the whole structure. By incorporating with the
semi-supervised structure, CBDPN was demonstrated to be capable of predicting cellu-
lar biomarker distributions that are similar to the corresponding mIHC staining results
(Figure 5). An example of an H&E-stained slide is shown in Figure 5A; the corresponding
mIHC image and prediction generated by CBDPN are shown in Figure 5B,C, respectively.
In Figure 5D, we compared results generated by CBDPN and other three conventional
segmentation networks under the semi-supervised structure. The visualization of the
feature maps obtained after softmax operation are illustrated in Figure S4. It can be seen
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that our method yielded cellular biomarker distribution prediction results that were similar
to the results of mIHC staining analysis.

Figure 5. Cellular biomarker prediction results. (A) H&E-stained colon cancer slides: the middle image shows an H&E-
stained slide (~5500 × 4000 pixels). (The left and right images show enlarged views.) (B) mIHC image of the same tissue
sample. (C) Predictions of our proposed biomarker prediction network. (D) 512 × 512 patch-wise results for our proposed
method and UNet, DeepLabV3 and DeepLabV3+ under the semi-supervised structure.

The quantified results of our test set (including 814 H&E patches with labels) are
summarized in Table 2. As observed, our CBDPN also achieved optimal results in the
semi-supervised experiments. The results of all performance indicators revealed that
CBDPN consistently outperformed the other networks. Our semi-supervised strategy
also proved to be effective in the biomarker distribution prediction task, as it increased
accuracy by 2.9%, up to 90.4% in the case of CBDPN. Increases were also observed in the
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tests conducted using the other three networks. The semi-supervised mechanism enables
unlabeled images being trained in a self-taught manner, so that more image data can be
leveraged in the training phase.

Table 2. Semi-supervised learning comparisons of the four networks on the test set.

Network Accuracy Precision Recall Dice IoU

UNet 0.891 0.804 0.863 0.824 0.711
DeepLab V3 0.868 0.789 0.859 0.813 0.701
DeepLab V3+ 0.872 0.803 0.865 0.823 0.712

CBPDN 0.904 0.854 0.901 0.872 0.788
The bold font indicates the best result.

3.1.3. TCGA Dataset Validation Results

To confirm the generalizability and robust of our model, we also used data of 25 pa-
tients from TCGA dataset for validation. A prediction result visualization of TCGA whole
slide image (WSI) is shown in Figure 6. Board certified pathologists were asked to make
judgements of the spatial distribution of TILs on the H&E WSI. It can be seen that TIL
clusters predicted by our method is consistent with the judgment of pathologists. We
compared proportions of cancer cells and TILs calculated based on CBDPN predictions
and molecular information provided by TCGA. The details are illustrated in Figure 7. The
scatter plot is shown in Figure 7A, p values analysis and Pearson correlation coefficients
are shown in Figure 7B. Pearson correlation coefficients for PanCK and TILs experiments
are 0.7942 and 0.5875, respectively, accompanied by significant p values. The results of
the statistical analysis revealed agreement between the cell proportions calculated by the
CBDPN and those determined based on the molecular information of TCGA dataset. The
number of image patches of the WSIs used in this experiment is described in Figure 7C and
races and genders distribution of these 25 patients is shown in Figure 7D. These results
prove that our proposed biomarker prediction network has good generalizability and
robustness across various tissue samples.

3.1.4. CBDPN-Based Cell Quantification Analysis

PD-1, a critical immune checkpoint molecule, plays an important role in determining
the TME immune status. In this study, we tested the ability of CBDPN to help quantify
PD-1 expression in TME in the presence of anti-PD-1 immunofluorescence staining.

In total, all of the 94,662 H&E image patches of WSIs of four colon cancer patients
from Peking University Cancer Hospital and Institute were analyzed by CBDPN in the
cell quantification experiment. One sample image is shown in Figure 8. Figure 8A shows
the H&E image and Figure 8B shows the anti-PD-1 immunofluorescence-stained image
of the same tissue. The prediction result generated by CBPDN is shown in Figure 8C,
and the merged image showing PD-1 expressing TILs is shown in Figure 8D. The sizes of
the four WSIs are described in Table S1. We compared results obtained via our approach,
and those obtained by applying the commercial Inform software to analyze the mIHC
image of the same tissue. CD3 and CD20-positive cell percentage comparison results
are described in Figure 9A,B. In addition, PD-1-expressing CD3 and CD20-positive cell
percentage comparison results are described in Figure 9C,D. The results showed that most
of the cells expressing PD-1 were TILs. Further, agreement can be seen between results
based on CBDPN and Inform software, with Pearson correlation values as 0.9998 and 0.9834
for the two quantification experiments accompanied by highly significant p values. This
further proves that our proposed method can help quantify TILs and PD-1-expressing TILs
in TME accurately. Moreover, quantification using CBDPN was achieved at a lower cost
and faster speed than conventional methods based on mIHC, and thus it can be beneficial
for TME analysis. We believe that, given the ability of our network to quantify PD-1
expression, CBDPN could also be used to facilitate the quantification of other biomarkers
in the presence of certain immunochemistry stains.
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Figure 6. Visualization of the prediction result of a whole slide image (WSI) from the TCGA dataset. (A) H&E stained WSI
(filename: TCGA-AZ-4616-01Z-00-DX1). The red arrows indicate pathologists confirmed tumor infiltrating lymphocytes
(TILs) clusters. (B) Prediction result acquired using semi-supervised CBDPN.
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Figure 7. TCGA dataset validation results. (A) Scatter plot of the PanCK-positive cell proportion: results based on CBDPN
versus results based on molecular information provided by TCGA. (B) Scatter plot of the TILs proportion: results based
on CBDPN (Note that TILs were labeled by CD3 and CD20 in this study) versus results based on molecular information
provided by TCGA. (C) Correlation analysis between results based on CBDPN and results based on TCGA information.
(D) Distribution of the number of tiles per case. (E) Races and genders distribution of the cases used in this experiment.
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Figure 8. PD-1 distribution analysis with the ImmunoAIzer CBDPN. (A) H&E-stained colon cancer sample slide. (B)
Anti-PD-1 immunofluorescence-stained image of the same tissue slide. (C) Cell-specific biomarker distribution image
generated by CBDPN. (D) Merged image showing the stained PD-1-positive cells overlaid on our predicted cell-specific
biomarker distribution image, the orange area represents PD-1-positive TILs.

Figure 9. Comparative analysis of cell quantification based on semi-supervised CBDPN and commercial Inform Software
(Version 2.4). (A) Bar chart comparison of CD3- and CD20-positive cell percentage calculated based on CBDPN and Inform
software. (B) Correlation analysis of CD3- and CD20-positive cell percentage calculated based on CBDPN and Inform
software. (C) Bar chart comparison of PD-1-expressing TILs percentage calculated based on CBDPN and Inform software.
(D) Correlation analysis of PD-1-expressing TILs percentage calculated based on CBDPN and Inform software.
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3.2. TGMDN for the Detection of Tumor Gene Mutations
3.2.1. Detection of Tumor Gene Mutations from H&E Images

We next focused on predicting APC, KRAS, and TP53 gene mutations in the colon
cancer tumor areas by using H&E image data as the input to a multilabel prediction
network. We selected 446 patients in total, and the gene mutation status of the dataset is
illustrated in Supplementary Figure S2. In total 44,534 H&E patches were used in the gene
mutation detection experiment, of which 31,174 H&E image patches were included in the
training set, 6680 H&E image patches in the validation set, and 6680 H&E image patches in
the test set.

The receiver operating characteristic (ROC) curves are shown in Figure 10. The
area-under-the-curve (AUC) values for APC, TP53, and KRAS were 0.76, 0.79, and 0.77,
respectively, indicating that these three gene mutations were detectable in the tumor areas
analyzed by TGMDN.

Figure 10. Receiver operating characteristic curves for tumor gene mutation detection network. (A) Receiver operating
characteristic curve (ROC) and area under curve (AUC) value for adenomatous polyposis coli gene (APC), tumor protein
P53 gene (TP53), and kirsten rat sarcoma viral oncogene (KRAS) mutations. (B) ROC curve and AUC value for APC
mutation. (C) ROC curve and AUC value for KRAS mutation. (D) ROC curve and AUC value for TP53 mutation.
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3.2.2. Visualization of Network Features

The cluster results based on t-SNE are shown in Figure 11A–C, with each dot repre-
senting an image patch and its color intensity indicating the probability of our model to
predict the tumor gene mutation. The H&E patch-embedded representation (Figure 11D)
can be used to visualize patches predicted to have similar mutations, and thus possess the
potential to help reveal the associations of gene mutations. In Figure 11D, the clusters in
the top-left enlargement comprise patches constituting APC and TP53 gene mutations. The
clusters in the center reveal the co-existence of TP53 and KRAS gene mutations. Finally, the
clusters in the bottom-right enlargement comprise patches that confirm the co-existence of
APC and KRAS gene mutations. These findings suggest that our ImmunoAIzer-TGMDN
can be used to identify such genotype–phenotype association in colon cancer.

Figure 11. Two-dimensional visualization of TGMDN output obtained by implementing the t-SNE Algorithm. (A) Cluster
result of APC mutation probability generated by the TGMDN. (B) Cluster result of TP53 mutation probability generated
by the TGMDN. (C) Cluster result of KRAS mutation probability generated by the TGMDN. (D) Patch-embedded t-SNE
representation with magnifications showing specific mutations that were detected based on the H&E image data from test
set that were obtained from the TCGA Colon adenocarcinoma (COAD) project.

4. Discussion

In this work, we proposed a computational framework, termed ImmunoAIzer, which
takes H&E image patches as inputs and consists of two components: (1) CBDPN to make
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predictions of the spatial distribution of CD3, CD20, PanCK, and DAPI in TME, and (2)
TGMDN to detect APC, TP53, and KRAS mutations.

Our study demonstrates that CBDPN can make predictions of distributions of CD3,
CD20, PanCK, and DAPI with an accuracy of 90.4%, demonstrating that it can be used
to reveal the spatial distributions of TILs and cancer cells in TME, and is therefore of
significant value as a tool for TME analysis. To maximize the utility of our proposed
ImmunoAIzer framework as a tool for clinical application, we incorporated a tumor gene
detection network. We used TGMDN to predict the mutation status of three of the most
common mutations in TCGA COAD project, namely, APC, TP53, and KRAS. The predicted
AUC values for these three mutations were 0.76, 0.79, and 0.77, respectively; these results
demonstrate the feasibility of TGMDN as a tool to predict tumor gene mutation status. In
general, our approach demonstrates that DL-based methods can be reasonably applied to
predict the spatial distribution of TILs and cancer cells in TME, meanwhile to detect gene
mutations of colon cancer patients based on histological image data. This can be highly
beneficial for the guidance of immunotherapy and prognoses.

The spatial distribution of TILs and cancer cells in TME is of crucial importance for
the guidance of immunotherapy and prognosis. The acquisition of such information often
requires mIHC staining, which can be time- and cost-consuming, and the interpretation
of the staining result can be compromised by individual subjectivity; this highlights the
necessity for the development of a standardized methodology to provide pathologists with
comprehensive references for TME analysis. Despite advances in DL-based computational
methods, current fully supervised DL-based methods often require large amount of an-
notated image data to achieve good generalization ability and robustness. However, it
can be extremely time consuming to annotate each cell on histological image in practice.
Thus, our proposed computational framework ImmunoAIzer includes a semi-supervised
CBDPN to leverage both labeled and unlabeled image data to make accurate and robust
predictions of spatial distribution of TILs and cancer cells in TME, which highly reduces
the burden of annotation work and makes it more suitable for clinical use. The increasing
data size can contribute to the robustness of the model and improve the generalization
performance as well as prediction accuracy on the test set. These account for the improve-
ment of models when switching from fully to semi-supervised strategy. Both CBDPN
and UNet adopted the idea of multi-scale feature fusion, which makes both of them su-
perior in pathological image data processing tasks. However, CBDPN not only conducts
a feature concatenation process between the encoder and decoder, but also used a series
of multi-resolution convolutional modules within the encoder structure to enhance the
feature extraction performance, which made the performance advantage of CBPDN more
obvious when the data size is increased. The results demonstrate the effectiveness of the
semi-supervised mechanism to make full use of information encoded in the unlabeled
image data to boost prediction performance. To the best of our knowledge, ImmunoAIzer
is the first DL-based computational framework that utilizes a semi-supervised learning
strategy to make predictions of the spatial distribution of immune cells and cancer cells
in TME. Moreover, the incorporation of anti-PD-1 immunofluorescence staining image
enables the CBDPN to be used to aid quantification of the PD-1-positive cells in TME. The
implementation of CBDPN offers significant time and cost savings compared to stain-based
methods. These findings demonstrate that the ImmunoAIzer can serve as an auxiliary tool
for providing guidance for TME analysis.

Meanwhile, the results of incorporating a gene mutation detection network that
enables detections about APC, TP53, and KRAS mutations revealed the potential of compu-
tational methods for implementation in gene mutation detection tasks. The t-SNE cluster
results provided further insight into the associations between APC, TP53, and KRAS mu-
tations; this type of information can be well utilized in tumor gene mutation association
studies. Thus, this study is also useful as a reference for tumor gene mutation analysis, and
as a general introduction to computational methods as a valuable tool for clinical usage.
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The necessity of a tool with the ability to increase the amount of useful information
that can be acquired from histological images is increasingly being acknowledged as critical
for therapeutic optimization and patient selection [44]. ImmunoAIzer is reproducible and
provides an efficient tool for the cellular biomarker distribution prediction and tumor gene
mutation detection. Moreover, the dataset consists of H&E images with pixel-level labels
which can be used to facilitate development of other DL-based computational tools.

It is worth mentioning that our model was initially trained on H&E data from colon
cancer patients, the performance of the model on other cancer types has yet to be validated.
However, we believe this methodology is generalizable and could be used to analyze data
of other cancer types. In our future work, we will extend the application of ImmunoAIzer
to other cancer types and immune biomarkers. For the network structure, the attention
mechanism [45] can be further incorporated into the convolution process to optimize
the model and thus improve the prediction accuracy. We hope that by applying our
computational framework to recognize a wider range of pathological features in TME, we
will be able to gain more insights and offer more guidance for therapeutic optimization
and prognoses.

5. Conclusions

ImmunoAIzer can utilize H&E images to provide comprehensive information about
spatial distribution of TILs and cancer cells in TME, meanwhile detect tumor gene muta-
tions as APC, KRAS, and TP53. Our work demonstrates the potential of DL-based tools to
aid pathologists in clinical use.
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Appendix A

In this appendix, we will describe our staining and scanning protocols.
We acquired tissue samples from eight colon cancer patients from the Key Laboratory

of Carcinogenesis and Translational Research (Ministry of Education), Peking University
Cancer Hospital and Institute. The mIHC images were obtained using a PANO 7-plex IHC
kit (Panovue, Beijing, China). We applied different colored chromogens including CD3
and CD20 to label TILs [26], PanCK to label cancer cells and DAPI to label other cell nuclei.
Then, performed horseradish peroxidase-conjugated secondary antibody incubation and
tyramide signal amplification. A microwave heat treatment was applied to the samples
after each tumor-specific antigen operation. DAPI (Sigma-Aldrich, Shanghai, China) was
used to stain nuclei. After the mIHC slides were scanned and the mIHC stain was verified,
the sample slides were treated using microwave and then bleached using sterile water.
The slides were further processed for H&E staining using an H&E staining kit (Solarbio,
Beijing, China).

In order to acquire a clear view of the structural details of the pathological tissue, the
H&E- and mIHC-stained slides were scanned at 40×magnification using a high-resolution
Mantra system scanner (PerkinElmer, Waltham, MA, USA).

Appendix B

In this appendix, we will describe the image processing procedure during constructing
the dataset.

The registration procedure was performed as follows:

1. Coarse block matching: Generally, the original WSIs are extremely large in size and
thus difficult to process in their entirety owing to RAM limitations. To address
this problem, we randomly selected 15 candidate blocks (~5000 × ~4000 pixels) in
each mIHC staining WSI. Then, a normalized correlation matrix was calculated by
correlating each of the ~5000 × ~4000-pixel blocks with the corresponding block
extracted from the whole-slide grayscale H&E image of the same size. The block with
the highest correlation score was considered to be the coarsely matched H&E block
for the two staining blocks.

2. Global registration: After acquiring coarsely matched block pairs. A global registra-
tion step was carried out to correct the slight rotation angle. We extracted feature
vectors (descriptors) and their corresponding locations from the block pairs; we then
matched the features using the descriptors [46]. Next, the M-estimator sample consen-
sus algorithm was used to calculate the transformation matrix [47]. After the rotation
was applied, the images were cropped, removing 50 pixels on each side to eliminate
the undefined areas that resulted from the rotation.

3. Elastic registration: After Step 2, an elastic registration between H&E image blocks
and globally registered mIHC image blocks was conducted by applying a diffeo-
morphic demons algorithm [48] to correct the distortions induced by warping and
various aberrations.

After the registration procedure was completed, the registered block pairs were tiled
into patches of 512 × 512 pixels and pixel-level annotated by 3 board certified pathologists.
Then, all of the H&E image patches were processed to apply stain intensity normaliza-
tion [27,28]. Finally, an image augmentation step was carried out to enrich the dataset
and improve generalizability. We applied image augmentation to all H&E patches. The

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


Cancers 2021, 13, 1659 20 of 21

transformations that were applied to our original H&E patches included the Gaussian
blur, flipping, rotations, and Gaussian noise. The augmentation code implemented in
this study was taken from https://github.com/codebox/image_augmentor (accessed on
2 February 2021).
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