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Abstract

The availability of large-scale screens of host-virus interaction interfaces enabled the topo-

logical analysis of viral protein targets of the host. In particular, host proteins that bind viral

proteins are generally hubs and proteins with high betweenness centrality. Recently, other

topological measures were introduced that a virus may tap to infect a host cell. Utilizing

experimentally determined sets of human protein targets from Herpes, Hepatitis, HIV and

Influenza, we pooled molecular interactions between proteins from different pathway data-

bases. Apart from a protein’s degree and betweenness centrality, we considered a protein’s

pathway participation, ability to topologically control a network and protein PageRank index.

In particular, we found that proteins with increasing values of such measures tend to accu-

mulate viral targets and distinguish viral targets from non-targets. Furthermore, all such

topological measures strongly correlate with the occurrence of a given protein in different

pathways. Building a random forest classifier that is based on such topological measures,

we found that protein PageRank index had the highest impact on the classification of viral

(non-)targets while proteins’ ability to topologically control an interaction network played the

least important role.

Introduction

The arrival of high-throughput screens that allow the generation of large datasets of protein

interactions has enabled scientists to comprehensively understand the ways different proteins

interact with each other within and between cells. Over the last decade, protein interaction

interfaces of several human pathogens and their human host cells have been experimentally

determined [1–7], indicating physical interactions between viral and human host proteins. In

addition, interaction interfaces of several other pathogens such as bacteriophages [8] and para-

sites [9] have been investigated as well. Various RNAi screens have additionally revealed sets

of human proteins required by different human viruses to infect their host cells [10–12]. While

PLOS ONE | https://doi.org/10.1371/journal.pone.0197595 May 24, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Devkota P, Danzi MC, Wuchty S (2018)

Beyond degree and betweenness centrality:

Alternative topological measures to predict viral

targets. PLoS ONE 13(5): e0197595. https://doi.

org/10.1371/journal.pone.0197595

Editor: Lars Kaderali, Universitatsmedizin

Greifswald, GERMANY

Received: November 28, 2017

Accepted: May 4, 2018

Published: May 24, 2018

Copyright: © 2018 Devkota et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Human pathway data

from Kegg database (www.kegg.jp) was obtained

via the graphite R package (https://bioconductor.

org/packages/release/bioc/html/graphite.html). All

virus specific human-pathogen interactions were

obtained from the hpidb2.mitab_plus.txt file that

was downloaded from the statistics section of the

HPIDB database (http://hpidb.igbb.msstate.edu).

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0197595
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197595&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197595&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197595&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197595&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197595&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197595&domain=pdf&date_stamp=2018-05-24
https://doi.org/10.1371/journal.pone.0197595
https://doi.org/10.1371/journal.pone.0197595
http://creativecommons.org/licenses/by/4.0/
http://www.kegg.jp
https://bioconductor.org/packages/release/bioc/html/graphite.html
https://bioconductor.org/packages/release/bioc/html/graphite.html
http://hpidb.igbb.msstate.edu


they usually do not directly interact with viral proteins, required genes play a decisive role in

the viral infection process as removal or loss of function prevents the virus from accomplishing

its task. Such sets have also been determined in bacteriophage-host systems [13, 14].

The understanding of their topological influence in a host-specific molecular interaction

network helps us to gain insight on why pathogens choose certain host proteins as targets.

Therefore, the availability of such large interaction sets between human host and viral proteins

has already prompted researchers to investigate the characteristics of these pathogen-host

interfaces as well as sets of virus-specific genes that are required for the corresponding infec-

tion process [15–24]. Generally, viral proteins tend to target hubs and bottleneck proteins in

the underlying host protein interaction network. Notably, such parameters were applied to

predict potential viral targets using machine-learning approaches [25–28].

Apart from such topological measures in protein interaction networks, pathway informa-

tion has also been tapped to predict interactions between viral and host proteins [29, 30]. Nota-

bly, topological features can be used for pathway based impact factor analysis [31], using a

variation of Google’s PageRank algorithm. Such observations suggest that topological features

may serve as reliable predictors of potential viral protein targets. Here, we used different topo-

logical measures beyond simple degree and betweenness centrality to investigate their propen-

sity to characterize viral targets. We utilized a molecular protein interaction network that has

been assembled from different molecular pathway databases. Apart from degree and between-

ness centrality we considered the number of times a protein occurs in a pathway, the protein

PageRank index and the ability of proteins to topologically control the underlying network.

We found that all measures correlated with increasing propensity of proteins to be targeted by

different human viruses. Furthermore, we showed that such measures have different impact

on the ability to predict viral targets as well as were independent from the underlying pathway

and viral target information.

Results and discussion

We collected sets of human proteins that were targeted by Hepatitis, Herpes simplex, Influ-

enza, HIV, and remaining viruses as of the HPIDB database [32]. Importantly, these four

human-infecting viruses are very different in their taxonomy, nucleotide content, and mode of

infection. Counting the number of shared proteins, we determined the corresponding Jaccard

index of overlapping target gene sets (Fig 1A). We generally observed that virus-specific target

sets moderately overlapped, indicating highest overlap between Influenza, Herpes and targets

of remaining viruses.

To determine topological parameters of a large network of molecular interactions, we col-

lected human pathways from the KEGG [33], Reactome [34], Biocarta and NCI PID [35] data-

bases. In particular, we used the graphite tool [36] to parse pathway information, allowing us

to represent each pathway as a network of directed interactions. Pooling all interactions in

each pathway from all pathway sources we obtained a network of 10,981 human proteins that

were involved in 622,056 directed interactions. As for descriptive statistics, Fig 1B indicated

that the distribution of occurrences of proteins in different pathways has a fat tail. Such an

observation suggested that a minority of proteins participated in an increasing number of

pathways and vice versa. Investigating networks that were generated from considered data-

bases separately, we obtained similar results (S1 Fig). Assuming that a minority of proteins

allows a broad reach into a variety of pathways, we hypothesized that viruses may potentially

tap such a characteristic. Randomizing sets of viral targets 10,000 times, we determined the

enrichment of viral targets in sets of proteins that appear in an increasing number of pathways.

Fig 1C suggested that all viruses preferentially targeted proteins that reached into an increasing
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number of pathways. Notably, such an observation was independent from the underlying

pathway data as we observed similar results, when we separately considered KEGG, Reactome

and Biocarta/NCI data (S2 Fig).

In a similar vein, we determined the enrichment of viral targets in sets of highly connected

and highly central proteins. Considering each interaction undirected we defined a set of hub

genes as the top 20% of highest connected proteins. In turn, we calculated betweenness central-

ity of each protein in the underlying directed network of protein interactions and defined the

top 20% of proteins with highest centrality as a set of bottleneck proteins. In Fig 2A, we ran-

domly sampled targets of Hepatitis, Herpes, HIV, Influenza and other viruses 10,000 times.

Determining their enrichment, we clearly observed that hub proteins were significantly

enriched with viral targets and vice versa (P<10−4). Similarly, Fig 2B indicated that bottlenecks

were significantly targeted by viruses (P<10−4) while the opposite held for non-bottleneck pro-

teins. To determine the dependence of our results from different pathway sources, we found

that our observations held independently from different pathway data (S3 Fig).

Another topological characteristic that may be tapped by viruses were nodes that topologi-

cally controlled the underlying network. In particular, we calculated maximum-matching

Fig 1. Enrichment of human targets of Hepatitis, Herpes, HIV, Influenza and other viruses as a function of pathway participation. In (A), we determined the

overlap between sets of viral targets of Hepatitis, Herpes, HIV, Influenza and other viruses, determining the corresponding Jaccard indices. We observed that targets of

Herpes, Influenza and other viruses overlapped strongly. In (B), we determined the occurrence of proteins in different pathways. The cumulative frequency distribution

thus obtained featured a heavy tail, indicating that a small minority of proteins appeared in a large number of pathways and vice versa. In (C), we determined the

enrichment of viral targets as a function of targeted protein’s occurrence in different pathways by randomly sampling viral target sets 10,000 times. We found that targets

appeared in an increasing number of pathways.

https://doi.org/10.1371/journal.pone.0197595.g001
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configurations in a bipartite representation of directed links in the underlying network of

molecular interactions. We defined a node as indispensable for the topological control of the

underlying network if the cardinality of the set of controllers (i.e. indispensable proteins)

increased when we deleted the considered node. If the number of controllers was unchanged

we considered the deleted node neutral. Furthermore, a node was defined as dispensable if less

controlling nodes were found upon deletion [37]. In particular, we found 1,393 indispensable,

6,350 neutral and 3,238 dispensable proteins in the underlying network of directed interac-

tions. We randomly sampled sets of (in-)dispensable and neutral proteins 10,000 times and

determined their mean enrichment in bins of proteins that occurred in a certain number of

pathways. Fig 3A suggested that indispensable proteins preferably appeared in an increasing

number of pathways. While neutral proteins did not show a significant trend, dispensable pro-

teins appeared diluted among proteins that appeared in an increasing number of pathways.

Furthermore, such observations were independent from the underlying pathway data (S4 Fig).

As a corollary, we determined the enrichment of viral targets in sets of (in-)dispensable and

neutral proteins. In Fig 3B, we randomly sampled targets of Hepatitis, Herpes, HIV, Influenza

and other viruses 10,000 times and found that indispensable nodes were significantly enriched

with viral targets (P<10−4). In turn, the opposite held for dispensable proteins, results that

were independent from the underlying pathway data (S5 Fig).

As another global topological parameter we considered the protein PageRank index,

defined as the probability that a random walker ended up at a given protein. Notably, such a

measure is based on the original Google PageRank, which reflects the probability that a ran-

dom walker reaches a page following hyperlinks on web pages. We hypothesized that proteins

that unified information flow from different parts of the network may be preferable targets of

viruses. Determining the protein PageRank of each protein in the underlying directed network

of molecular interactions, we considered the top 20% of proteins with highest protein PageR-

ank. Randomly sampling such sets of proteins 10,000 times, we determined their enrichment

in sets of indispensable, neutral and dispensable proteins. Fig 3C suggests that indispensable

and neutral proteins were significantly enriched with top PageRank proteins, while we found

Fig 2. Enrichment of viral targets in sets of hubs and bottleneck nodes. (A) Defining the top 20% of most connected proteins as hubs, we determined the

enrichment of targets of Hepatitis, Herpes, HIV, Influenza and other viruses in such sets. Randomly sampling sets of targeted proteins 10,000 times, we observed

that targets were significantly enriched in the set of hubs and vice versa (P<10−4). In (B), we defined the top 20% of proteins with highest betweeness as bottleneck

nodes. Randomly sampling sets of targeted proteins 10,000 times, we found that bottleneck protein preferably were targeted by viruses while the opposite held for

non-bottleneck proteins (P<10−4).

https://doi.org/10.1371/journal.pone.0197595.g002
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the opposite, considering dispensable proteins (P< 10−4). Furthermore, we determined the

enrichment of top PageRank proteins as a function of their corresponding appearance in path-

ways. In the inset of Fig 3C, we clearly observed that such proteins predominately appeared in

sets of proteins that occurred in an increasing number of pathways. As a corollary, we investi-

gated the ability of top PageRank proteins to accumulate viral targets. Randomizing such sets

of virus-specific targets 10,000 times, we found that viruses preferably targeted proteins with a

high PageRank index and vice versa (Fig 3D, P<10−4). Notably, such observations were inde-

pendent from the utilized pathway data (S6 Fig).

Fig 3. Network controllers and proteins with high protein page rank are enriched with viral targets. In (A) we determined indispensable, neutral and dispensable

proteins in the underlying protein interaction network. Randomizing such sets 10,000 times, we observed that proteins that are indispensable for the control of the

underlying network preferably occurred in an increasing number of pathways. In turn, we found the opposite for dispensable proteins. (B) Randomizing sets of proteins

that are targeted by Hepatitis, Herpes, HIV, Influenza and other viruses 10,000 times, we observed that indispensable proteins are preferably targeted by viruses

(P<10−4) while the opposite held for dispensable nodes. (C) Randomizing the set of top PageRank proteins, we determined their enrichment in sets of indispensable,

neutral and dispensable proteins. We observed that indispensable and neutral nodes significantly accumulated top PageRank proteins. In the inset, we observed that

proteins in an increasing number of pathways were enriched with top PageRank proteins. (D) Randomizing sets of targets of Hepatitis, Herpes, HIV, Influenza and

other viruses 10,000 times we observed that proteins with highest protein PageRank were significantly targeted (P<10−4).

https://doi.org/10.1371/journal.pone.0197595.g003
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Given our frequent observation that topological parameters correlated with the underlying

proteins’ occurrence in an increasing number of pathways, we determined a matrix composed

of Pearson correlation coefficients between all pairs of topological measures. The heatmap in

Fig 4A generally suggests that all topological measures are reasonably correlated while degree,

betweenness centrality, protein PageRank index and pathway appearance showed strongest

correlations between each other. As for control features of proteins, we only accounted for

proteins that were labeled indispensable. In turn, indispensability of proteins appeared the

least correlated with other topological measures. To corroborate our results, we determined

the corresponding heatmaps of correlations between network parameters in networks that

have been obtained from different pathway data, separately (S7 Fig). We observed that degree

and appearance in pathways generally showed highest degree of correlation to other network

parameters in the networks while indispensability of proteins showed lowest levels of

correlation.

Considering all topological measurements separately, we utilized target sets of Hepatitis,

Herpes, HIV, Influenza and other viruses as positive training data, and randomly sampled sets

of non-targeted proteins as negative training data sets of equal size. In Fig 4B, we determined

the mean area under ROC curves (AUC) for each pair of topological measure and virus, using

1,000 random samples of negative training sets. Independently from the type of virus, we

found that protein rank and a protein’s appearance in pathways allowed the most thorough

classification of targets. Notably, such an observation is corroborated when we considered

different pathway data separately (S8 Fig). To determine the topological measure of the un-

derlying interaction network that has the highest impact on the classification process, we

applied a random forest classifier. Utilizing all five topological measures to distinguish between

randomly sampled sets of non-targets as negative training and targeted proteins as positive

training data we calculated the mean importance of each characteristic. In particular, the

importance of a parameter is determined by the change in classification accuracy if a given

parameter is omitted. On average, protein rank had highest importance followed by degree

and betweenness centrality (Fig 4C). Notably, such an observation was independent of the

virus target sets as well as the underlying pathway data (S9 Fig). To investigate the impact of

different topological characteristics further we determined area under the ROC curves using

different combinations. In Fig 4D, we considered protein targets of HIV and randomly sam-

pled non-targeted protein sets of equal size. Using a random forest algorithm, we predicted if a

protein was (not) targeted as a function of the three most and least important topological fea-

tures. As the random forest algorithm sampled a subset of the underlying training data to

establish decision trees, remaining training data were used as testing data. Predicting targets

through out-of-bag samples, we obtained best classification results with most important fea-

tures (protein PageRank index, appearance in pathways and a protein’s degree). Notably, clas-

sification differences compared to the three least important measures (betweenness centrality,

protein indispensability and pathway appearance) were statistically significant (Student’s t-

test, P<10−20), a result that largely held for the prediction of targets of Hepatitis, Herpes, influ-

enza and other viruses as well (S10 Fig).

Conclusions

Previous approaches tout the role of the simple degree and betweenness centrality as topologi-

cal features in molecular interaction networks that viruses and other pathogens tap. Here, we

investigated other more recent topological parameters that previously have not been consid-

ered as pathogen relevant. Specifically, we based our considerations on a directed molecular

interaction network that was compiled from all pathways of the KEGG, Reactome and
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Biocarta/NCI databases. To lay the groundwork, we confirmed that targeted proteins were

preferably hubs and bottleneck proteins. Furthermore, we considered the number of pathways

that a protein appeared in as a potential pathogen feature, as viruses may thoroughly penetrate

a host system by reaching into many different pathways. Indeed, we observed that viral targets

were enriched with proteins that appeared in an increasing number of pathways. Such an

observation appeared plausible, assuming that viruses need to utilize their limited protein rep-

ertoire to secure maximum impact on the host cell through reaching into a large number of

pathways, an objective that is further aided by hubs and bottleneck proteins.

Fig 4. Prediction of viral targets. (A) The heatmap indicated Pearson correlation values between the distributions of degree, betweenness centrality, number of

pathways a protein is involved in, protein PageRank index and indispensability of a protein. Notably, degree, protein PageRank, betweenness centrality and appearance

in pathways appeared best correlated while indispensability of proteins showed lowest levels of correlation with other topological measures. (B) Considering target sets

of Hepatitis, Herpes, HIV, Influenza and other viruses, we randomly sampled sets of non-targeted proteins of equal size. Determining the area under the ROC curves

(AUC), we observed that protein PageRank index and pathway participation of a protein allowed the most thorough classification of (non-)targets. (C) As a corollary,

we utilized all five topological measures to predict viral targets using a random forest. We found that protein PageRank had the highest impact on the classification

process, a result that was independent of the underlying virus. In (D), we randomly sampled sets of non-targeted proteins 1,000 times that were equal in size to the set of

HIV targets and determined the area under the ROC curve (AUC) of the classification process with a random forest. In particular, we predicted if a protein was (not)

targeted as a function of the three most (protein PageRank index, degree and pathway appearance) and least important topological features (betweenness centrality,

pathway appearance, control). Notably, the distributions of AUC values thus obtained were statistically significant (Student’s t-test, P< 10−20), suggesting that most

important features allowed a significantly better classification result.

https://doi.org/10.1371/journal.pone.0197595.g004
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Another global topological parameter that we considered was the protein PageRank index,

defined as the probability that a random walker ended up at a given protein. Notably, such a mea-

sure was based on the original Google PageRank, which reflected the probability that a random

walker reaches a page following hyperlinks on web pages. As high PageRank indicated proteins

occurred in an increasing number of pathways, we hypothesized that proteins that unify informa-

tion flow from different parts of the network may be viral targets. Indeed, we observed that pro-

teins with a high protein PageRank were indeed enriched with proteins that viruses bind.

Recently, different measures for a node’s ability to control a network were introduced.

Here, we determined the role of proteins in terms of their contribution to topologically control

a network by distinguishing indispensable, neutral and dispensable proteins in the underlying

network. Notably, a protein’s role in the topological control of the underlying network also

correlated with the occurrence of such proteins in an increasing number of pathways, suggest-

ing that viruses may tap such a characteristic. Indeed, we found that indispensable proteins

were prime viral targets while dispensable proteins were hardly found targeted.

The underlying molecular interaction network was based on the pooled interactions of dif-

ferent pathway databases. Notably, all topological characteristics of proteins were well corre-

lated with their corresponding participation in different pathways. Such an observation

suggested that centrality in terms of degree, betweenness, protein rank and ability to control a

network was a function of increased pathway occurrence. We also investigated how the differ-

ent measures stacked up in their ability to predict potential viral targets. Instead of a protein’s

appearance in different pathways, we surprisingly found that a protein PageRank predicted

viral targets best when we considered each measure in isolation. Such a result is corroborated

when we considered the impact of each feature, training a random forest algorithm with

sets of virus specific targets. In turn, network control had least impact on the classification pro-

cess. Putting the most important features together we obtained significantly better prediction

results compared to a random forest classifier that was built on the least important topological

measures.

Notably, we observed that our results were independent from the viruses considered, sug-

gesting that viruses generally tap similar topological features to control a human host cell.

Furthermore, our observations were independent from the underlying sources of pathway

information, suggesting that the way the underlying molecular interactions were obtained do

not preordain the outcome of our analysis and prediction even though the underlying network

was based on the pool of all pathways.

While our results were encouraging in terms of finding topological features that are po-

tentially tapped by viral pathogens, such characteristics may also be indicative of other non-

targeted proteins with certain functions, limiting the assumption that viral targets can be deter-

mined on topological grounds alone. Viral targets tend to closely interact with proteins that

are important for the infection of the underlying viral pathogen as well as essential proteins

[24]. In particular, recent analyses revealed that host genes that were critical for the infection

of the HIV virus may be direct targets as well [38], suggesting that their topological characteris-

tics were similar [17]. Furthermore, a virus’ propensity to interact with hub and bottleneck

proteins appeared to be a consequence of interactions with particular cellular functions as

well, rather than being a direct effect of network topological properties alone [39].

Materials and methods

Pathway information

We utilized 294 molecular human pathways from the KEGG database [33], 1,924 pathways

from Reactome [34] and 459 pathways from Biocarta and the NCI PID database [35].

Alternative topological measures to predict viral targets
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Interactions between proteins were parsed with graphite [36], allowing us to represent each

pathway as a directed, unweighted network. Pooling such directed interactions of all pathways

we created a network of 10,981 proteins embedded in 622,056 directed interactions. As for

database specific networks, we obtained a web of 9,878 proteins and 510,626 directed interac-

tions from Reactome pathways. While we found 5,424 proteins that were linked by 114,123

interactions using KEGG pathway data, we obtained 2,737 proteins and 36,204 interactions

from Biocarta/PID databases.

Virus-host interactions

Collecting data from the HPIDB database, we obtained 988 human proteins that were targeted

by the Hepatitis C virus, as well as 2,157 targets of the Herpes simplex virus, 872 targets of

HIV-1 and 2,358 targets of the Influenza A virus [32]. In addition, we accounted for 5,619 tar-

gets of other, remaining human viruses.

Enrichment analysis

Binning proteins with a certain characteristic d (e.g. viral target) we calculated the fraction of

proteins that had a feature i (e.g. bottleneck protein) in each group d, fi(d). As a null model we

randomly sampled protein sets with feature i of the same size 10,000 times and calculated the

corresponding random fraction, fi,r (d). The enrichment/depletion of proteins with feature i in

a group d was then defined as Ei(d) = lg2(fi(d)/fi,r(d)). As a variation of this approach, we calcu-

lated the enrichment of proteins with a characteristic d as a function of a topological parameter

t (e.g. number of pathways a protein occurs in). Specifically, we binned proteins in groups N�t

where each protein was characterized by a parameter� t and calculated the corresponding

number of proteins with characteristic d, Nd,�t. Randomly sampling genes we defined Ed;�t ¼

lg2ðNd;�t=Nr
d;�tÞ as the enrichment of proteins with d where Nr

d;�t was the corresponding ran-

dom number of proteins with characteristic d among all N�t proteins in the corresponding

bin. After averaging Ei over 10,000 randomizations Ed >0 pointed to an enrichment and vice
versa, while Ei ~ 0 indicated a random process [40].

Protein’s PageRank index

In our directed network of protein interactions, we calculated each protein’s PageRank index,

representing a stationary limit probability that a random walker will reach the corresponding

protein [41, 42]. We defined the protein PageRank index as PR(g) = (1 − d)N−1 + ∑u2U(g)PR(u)/

Nds(u), where U(g) is the set of upstream proteins of protein g, Nds(u) is the number of proteins

downstream of protein u and N is the total number of proteins in the underlying network. Fur-

thermore, d is a damping factor that has been set to 0.85. Based on this measure, we defined a

set of protein with top protein PageRank as 20% highest ranking proteins.

Betweenness centrality

As a global measure of its centrality, we calculated node betweenness, indicating a node’s

appearance in shortest paths through the whole network. In particular, we defined between-

ness centrality cB of a node v as cB = ∑s6¼t6¼v2Vσst(v)/σst, where σst was the number of shortest

paths between proteins s and t. Furthermore, σst(v) was the number of shortest paths running

through v. Based on this measure, we defined a set of bottleneck proteins as the top 20% of pro-

teins with highest betweenness.

Alternative topological measures to predict viral targets

PLOS ONE | https://doi.org/10.1371/journal.pone.0197595 May 24, 2018 9 / 14

https://doi.org/10.1371/journal.pone.0197595


Random forests

Random Forests (RF) is an ensemble learning method [43] where classification trees are con-

structed with N different bootstrap samples of the data (‘bagging’). In addition, random forests

change how classification trees are constructed by splitting each node, using the best among a

subset of M predictors randomly chosen at that node (‘boosting’), and new data is predicted by

aggregating the predictions of N trees. The Variable Importance is calculated using Breiman-

Cutler permutation [43], recording the prediction error on out-of-bag (OOB) data in each tree

of a random forest. OOB cases are then randomly permuted for a variable x, and the prediction

error is recorded. Variable importance is then determined based on the difference between the

perturbed and unperturbed error rate and averaged over all trees. We used a Python imple-

mentation of the random forest algorithm as of the sklearn package.

Network controllers

Utilizing the directed network of protein interactions, we determined nodes that are relevant

for the topological control of networks by applying a maximum matching algorithm [44] that

aims at matching each directed interaction. In particular, directed interactions are represented

as a bipartite graph, where proteins that cannot be matched are considered network control-

lers. However, many equivalent solutions for the maximum matching problem exist. There-

fore, we defined sets of proteins as indispensable if the number of unmatched nodes increased

when we deleted the underlying node from the network. In turn, we found a dispensable node

if the number of unmatched nodes declined upon deletion of the considered node. Neutral

nodes did not change the number of unmatched nodes when they were deleted [37].

Supporting information

S1 Fig. Frequency distributions of proteins pathway participation. Utilizing networks that

were obtained from pathways in Reactome, Kegg, and Biocarta/NCI, we observed heavy tails

in the frequency distributions of the numbers of pathways that proteins occur in.
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S2 Fig. Enrichment of viral targets as a function of pathway participation. We determined

the enrichment of viral targets as a function of targeted protein’s occurrence in different path-

ways. Randomly sampling viral target sets 10,000 times, we found that targets appeared to be

involved in an increasing number of pathways, a result that held for KEGG, Reactome and Bio-

carta/NCI pathways, respectively.

(TIFF)

S3 Fig. Enrichment of viral targets in sets of hubs and bottlenecks. Defining the top 20% of

most connected proteins as hubs and top 20% of proteins with highest betweenness centrality

as bottleneck proteins, we determined the enrichment of viral targets in such sets. Randomly

sampling viral target sets 10,000 times, we generally observed that viral targets appeared

enriched in sets of hubs and bottleneck nodes when we considered networks from different

pathway sources, separately.

(TIFF)

S4 Fig. Enrichment of (in-)dispensable and neutral proteins. We randomly sampled sets of

(in-)dispensable and neutral proteins and determined their enrichment in bins of proteins that

occur in a certain number of KEGG, Reactome and Biocarta/NCI pathways. In all cases, we

observed that indispensable proteins preferably appeared in an increasing number of path-

ways. Neutral proteins did not show any significant trend while dispensable proteins appeared
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diluted among proteins that appeared in an increasing number of pathways.
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S5 Fig. Network controllers are enriched with viral targets. Randomizing sets of proteins

that are targeted by Hepatitis, Herpes, HIV, Influenza and other viruses 10,000 times, we

observed that indispensable proteins were preferably targeted by viruses (P<10−4) while the

opposite held for dispensable nodes. Such observations held irrespective of the underlying

pathway data source.

(TIFF)

S6 Fig. Proteins with high protein PageRank index are enriched with viral targets. Ran-

domizing sets of viral targets 10,000 times we determined their enrichment in sets of the top

20% of proteins with highest PageRank index. We observed that proteins with top PageRank

were significantly enriched with viral targets and vice versa (P < 0.01). Notably, such observa-

tions were independent from pathway specific data.

(TIFF)

S7 Fig. Correlation between topological measures. The heatmap indicated Pearson correla-

tion values between the distributions of degree, betweenness centrality, number of pathways a

protein is involved in, protein PageRank and indispensability of a protein using different path-

way information.

(TIFF)

S8 Fig. Classifier performance of different topological measures. Considering target sets of

Hepatitis, Herpes, HIV, Influenza and other viruses, we randomly sampled sets of non-tar-

geted proteins of equal size. In comparison to betweenness centrality (BC) and protein’s indis-

pensability (C) we observed that protein PageRank index (PR), pathway participation (P) of a

protein and a proteins degree (k) allowed the most thorough classification of (non-)targets.

Such observations were independent from the pathway information used.

(TIFF)

S9 Fig. Importance of topological measures. We utilized all five topological measures to pre-

dict viral targets using a random forest. We found that protein PageRank had the highest

impact on the classification process, a result that was independent of the underlying virus and

pathway information.

(TIFF)

S10 Fig. Performance of random forest classifier, predicting viral targets. Focusing on pro-

teins that are targeted by Hepatitis, Herpes, Influenza and other viruses, we randomly sampled

non-targeted proteins of equal size 1,000 times. Furthermore, we used a random forest trained

with the three most and least important features. In all cases, we found that the AUC curves

obtained from the most important features allowed a significantly better classification (Stu-

dent’s t-test, P< 10−20).

(TIFF)
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