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Abstract

Organoid Intelligence ushers in a new era by seamlessly integrating cutting-edge organoid 

technology with the power of artificial intelligence. Organoids, three-dimensional miniature 

organ-like structures cultivated from stem cells, offer an unparalleled opportunity to simulate 

complex human organ systems in vitro. Through the convergence of organoid technology 

and AI, researchers gain the means to accelerate discoveries and insights across various 

disciplines. Artificial intelligence algorithms enable the comprehensive analysis of intricate 

organoid behaviors, intricate cellular interactions, and dynamic responses to stimuli. This 

synergy empowers the development of predictive models, precise disease simulations, and 

personalized medicine approaches, revolutionizing our understanding of human development, 

disease mechanisms, and therapeutic interventions. Organoid Intelligence holds the promise of 

reshaping how we perceive in vitro modeling, propelling us toward a future where these advanced 

systems play a pivotal role in biomedical research and drug development.
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1. Introduction

In the past few decades, a dynamic collaboration has unfolded between the fields of 

stem cell biology and bioengineering. This synergy has led to the creation of diverse 

culture systems capable of orchestrating the assembly of stem cells into distinct organoid 

types. These include remarkable achievements such as kidney organoids [1,2], intestine 

organoids [3,4], stomach organoids [5,6], optic cup organoids [7,8], and more recently 

cardiac organoids [9,10]. These innovative strides have not only deepened our insights 

into the complex realm of embryonic development but have also propelled the frontiers 

of regenerative medicine [11] [–] [14]. Organoids are three-dimensional (3D) structures 

developed from stem cells or specific types of progenitor cells. In contrast to the traditional 

2D tissue cultures, organoids possess an inherent complexity, replicating the intricate 

cellular compositions and 3D architectures that characterize natural organs [15]. For 

instance, human-induced pluripotent stem cells (hiPSCs)-derived cardiac organoids with 

designated geometric features were generated using spatial-patterned Poly (ethylene glycol) 

(PEG) hydrogel substrates to investigate the early development of cardiovascular tissues 

[16]. In another study, organoids derived from the intestinal stem cells of a cystic fibrosis 

patient harboring a rare genetic mutation were used to test existing drugs, demonstrating 

the potential benefits of organoid technology in drug screening and the treatment of 

inherited diseases [17]. By mimicking the genetic makeup and physiological characteristics 

of individual patients, organoids offer a platform to tailor medical interventions to unique 

cases, thus heralding a paradigm shift in how we approach disease treatment and drug 

development.

In recent years, the emerging high-throughput organoid culture systems have enabled the 

mass production of different types of organoids [18] [–] [21]. Microfluidic technology, 

in particular, has emerged as a key player in this landscape. By encapsulating suspension-

cultured self-assembling stem cell organoids within hydrogels, this technology has managed 

to curtail heterogeneity and enhance quality control on a large scale [22]. However, 

this exciting leap in scalability also introduces its own set of challenges, particularly in 

terms of sample characterization and comprehensive data analysis, which have become 

pivotal considerations in managing the deluge of information generated by high-throughput 

platforms. Traditional analytical tools have demonstrated promise in generating robust 

results [23] [–] [25], yet they currently face the formidable task of handling the vast amount 

of data stemming from these samples. Balancing the benefits of high-throughput screening 

with the need for accurate, in-depth data analysis presents a unique challenge that the field 

must address as it embraces the era of organoid intelligence.

Artificial Intelligence (AI) has emerged as a transformative force in biomedical research. 

AI algorithms have demonstrated exceptional pro-ficiency in processing vast volumes of 

genomic, proteomic, and clinical data, identifying patterns and correlations that might elude 

human observation. Machine learning algorithms are mathematical-based models using 

existing input to reveal the underlying patterns in the new data by optimizing the global 

minima of different cost functions [26]. These algorithms have found expansive application 

in biomedical research, including in the dimension reduction of high-dimensional data 

to visualizable lower embeddings [27]. For example, Dr. McDonnell harnessed mass 
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spectrometry imaging with t-distributed stochastic neighbor embedding (t-SNE) algorithm to 

distinguish breast cancer patients and gastric tumor patients into subpopulations, revealing 

the intratumor heterogeneity [28]. In another study, Dr. Frieboes trained various supervised 

machine models on a dataset containing the surveillance, epidemiology, and end result 

of cancer patients, achieving an accuracy rate of over 90 % in predicting lung cancer 

patient survival rates [29]. Benefited from the advances in computing power, deep learning 

is increasingly revealing its latency for enabling a more nuanced understanding of the 

structural and developmental intricacies of organoids, particularly in the realm of image 

processing, where a growing number of classifiers are being trained on CNN algorithms 

to analyze organoid histology section image [30,31]. The integration of algorithms that 

combine image segmentation [32], feature extraction [33], and classification [34] functions 

has resulted in a remarkable elevation in the analysis of high-content microscopy-based 

datasets [35].

The convergence of stem cell biology, bioengineering, and AI has ushered in a new era of 

organoid research (Fig. 1). In this article, we provide an overview of the recent advances 

in organoid research, only focusing on the emerging applications of AI algorithms in this 

research area. Through stem cell technology, precision engineering, and data-driven insights, 

organoid intelligence is redefining our understanding of developmental biology, disease 

mechanisms, and therapeutic strategies.

2. Application of machine learning models

Machine learning algorithms started to emerge in the 1950s, coinciding with the term 

“artificial intelligence or AI.” This pivotal moment marked a significant milestone in the 

progression of machine learning concepts [36]. These algorithms can be broadly classified 

into two fundamental domains: supervised machine learning and unsupervised machine 

learning [37]. For supervised machine learning, algorithms train models using labeled data, 

where inputs are paired with corresponding target labels or outcomes [38]. During the late 

1950s, one of the early supervised learning models emerged with a single-layer neural 

network tailored for classification tasks [39]. As computational capabilities advanced, a 

diverse array of supervised machine learning models, including Decision Trees [40], the 

k-Nearest Neighbor algorithm (k-NN) [41], Support Vector Machines (SVMs) [42], and 

Naive Bayes [43], were developed and refined. This refinement led to enhanced predictive 

accuracy for classification tasks.

In contrast, unsupervised machine learning algorithms are trained on unlabeled data and 

focus on revealing patterns, structures, or relationships within inputs without predefined 

categories [44]. The evolution of unsupervised machine learning algorithms is closely 

intertwined with the broader landscape of AI and machine learning. An early example, 

the k-Means algorithm, proposed by Stuart Lloyd in 1957 [45], stands as one of the 

earliest clustering algorithms. Another notable contributor, Principal Component Analysis 

(PCA), introduced in 1901 and widely embraced in the 2000s, has proven invaluable 

in biological studies for tasks such as data visualization, noise reduction, and feature 

extraction [46]. Furthermore, the non-linear dimensionality reduction techniques, such as t-

Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation 
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and Projection (UMAP), showcased remarkable potential in visualizing high-dimensional 

data by transforming it into low-dimensional embeddings [47].

2.1. Machine learning in organoid model of human development

Organoids are new forms of 3D cell culture models that faithfully mimic the complexity and 

organization of human tissues or organs. These advanced models recapitulate key features 

of various organs, such as the brain and gastrointestinal tract, making them invaluable tools 

for studying human development, disease mechanisms, and personalized medicine [48,49]. 

Through deciphering the intricate patterns within the complex organoid datasets, machine 

learning algorithms have played a crucial role in validating the similarities between in-vivo 

organs and in-vitro organoid models. For example, through comparing high-throughput 

RNA-seq data from organoids to the organs by machine learning algorithms, precise 

identification of cell types and inference of gene regulatory networks in organoids are 

achieved [50].

In a study focusing on brain development, researchers used UMAP to cluster RNA-seq 

data from organoids at various time points, thereby revealing the cell subtype composition 

during development. Subsequently, these datasets were integrated into a model trained using 

EEG features from preterm infants, yielding prediction results with heightened consistency 

in Week 25 organoids. These findings suggest a parallel developmental trajectory of 

cortical organoids with fetal human brains, indicating similarities in their changing network 

electrophysiological properties over time [51]. Notably, the development of BOMA, a brain 

and organoid manifold alignment algorithm, has enabled comparative analysis of gene 

expression between brains and organoids. Utilizing this unsupervised machine learning 

algorithm, researchers have revealed spatiotemporal and species-wise gene expression 

patterns hidden in bulk tissue sequencing data and single-cell RNA sequencing (scRNA-seq) 

data, thus confirming the legitimacy of brain organoids as in-vitro counterparts for studying 

human neural system development [52]. Harnessing the spatiotemporal transcriptome atlas 

of the human brain, researchers trained a supervised classifier named “CoNTExT” to 

identify developmental maturity with 96.9 % accuracy in brain regional identification [53–

55] The CoNTExT classifier confirmed the neuroanatomical identity of Week 5 and Week 

14 organoids as cortex, thus demonstrating the preservation of molecular changes between 

organoids and the human fetal cortex during development [56].

The application of machine learning has transcended the confines of transcriptome datasets 

and ventured into diverse domains. For instance, SVM algorithms were applied to classify 

salivary gland organoids treated with EGF and FGF2 based on Raman spectral data, 

signifying the potential to facilitate comprehension of cellular changes during organoid 

formation [57]. In a cardiac organoid study, the random forest-based computational 

approach has been proved to be a robust method for annotating scRNA-seq data obtained 

from hiPSC-derived heart organoids, which helped effectively remove non-heart cells 

between fibroblasts and cardiomyocytes. The model has also demonstrated its potential 

in distinguishing cardiac tissues generated from 3D organoids, conventional 2D protocol, 

as well as organoids generated from gene mutation hiPSC cell lines. These distinctions 
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are evident in the differential cross-classification pattern in cell type annotations between 

ventricular and atrial cardiomyocytes [58].

2.2. Machine learning in precision drug screening

The capability to replicate intricate organ structures and phenotypes has positioned 

organoids as invaluable tools for expediting drug development. This is evident through 

their exceptional efficiency in assessing the toxicities of drug candidates and emulating 

disease heterogeneity [59,60]. Furthermore, the integration of machine learning algorithms 

has ushered in a new phase of advancement, enhancing this process by predicting 

drug responses and identifying therapeutic targets. Employing t-SNE as a dimensionality 

reduction technique, researchers have visualized the heterogeneity of colorectal tumor 

organoids in response to oxaliplatin treatment within a two-dimensional representation. 

Subsequently, DBSCAN (Density-based spatial clustering of applications with noise) 

was employed on the low-dimensional outcome to categorize the embedding into 

distinct clusters. The comparison of clustering outcomes prior to and post-treatment has 

engendered the delineation of distinct subtypes within cellular populations, encompassing 

the drug-insensitive, drug-sensitive, and drug-ultrasensitive groups, showcasing considerable 

potential in cancer chemotherapeutic applications [61]. In a study aimed at building 

a neurotoxin-induced Parkinson’s disease (PD) organoid model, hiPSC-induced human 

midbrain organoids (hMOs) were treated with 6-hydroxydopamine (6-OHDA) to damage 

the dopaminergic system. Using high-content confocal image-based data of this PD model, 

researchers trained a classification random forest model, which achieved an impressive 86 

% accuracy in predicting control and treatment organoids, highlighting the potential of 

supervised machine learning algorithms for neurotoxicity prediction [62].

In line with the goal of advancing precision medicine, a network-incorporated machine 

learning model was developed to pinpoint drug biomarkers. This model stratified colorectal 

cancer patients into drug responders and non-responders. The classification outcome was 

then evaluated in drug-response prediction, revealing that drug responder patients exhibited 

significantly elongated overall survival following 5-Fluorouracil treatment. Subsequently, 

this model underwent validation using datasets from patients afflicted by bladder cancer and 

undergoing cisplatin treatment, thereby exemplifying the model’s capacity for generalization 

across diverse clinical scenarios [63]. Another study utilizes a random forest prediction 

model fed with survival fraction data from rectal cancer patient-derived tumor organoids 

subjected to pre-neoadjuvant chemoradiotherapy. Remarkably, the model achieves over 

89 % accuracy in predicting tumor regression grade. Furthermore, the study establishes 

a significant positive correlation between patient and organoid irradiation responses, 

underscoring the value of organoid intelligence in understanding treatment outcomes and 

suggesting improved strategies for cancer therapy [64]. These studies emanate a promising 

signal in personalized therapy, enabling researchers to assess the efficacy of chemotherapy 

drugs more precisely, thereby minimizing unnecessary side effects.
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3. Application of deep learning models

Advances in computing power and the accessibility of extensive training datasets have paved 

the way for researchers to push the boundaries of neural networks, giving rise to more 

sophisticated architectures composed of multiple processing layers. These advancements 

have enabled neural networks to decipher intricate and intricate patterns and structures 

inherent in high-dimensional data. Noteworthy among these architectures are convolutional 

neural networks (CNNs), which have demonstrated remarkable potential in the realm of 

biomedical engineering [65,66]. CNNs generally work by processing data through multiple 

layers to extract information from local connections, leveraging shared weights, and pooling 

these connections across the many layers of a deep neural network. CNNs exhibit a 

particularly strong aptitude for extracting salient features from the multidimensional data 

intrinsic to imagery, as is often seen in microscopy images. Convolutional networks have 

had great success in detection, segmentation, and detection of features within images which 

have translated successfully to biomedical imaging analysis.

3.1. Deep learning for organoid tracking

One of the most difficult and time intensive aspects of organoid research is the analysis 

of the images and videos generated by microscopy. A wealth of information is available 

within the video and image captures of organoids relating to changes within organoids 

morphology, size, number and functioning that relay critical information about organoid 

development and response to changes within their environment. However, the sheer volume 

of data presents a bottleneck in the interpretation of experimental results, thus leading to a 

pivotal need to implement deep learning technology in this field [67]. Considerable effort 

has been dedicated to developing investigative tools that harness the power of deep learning 

for organoid image analysis and tracking. The ability to automatically quantify changes 

in organoids is immensely advantageous, as manual screening of organoids is not only 

laborious but also prone to human errors. High-throughput image acquisition is a common 

approach for capturing images of a wide organoid area. However, this method comes with 

its own set of challenges, stemming from factors such as organoid density, depth, movement, 

and focus-related issues.

To address these obstacles, a specialized high-throughput organoid image dataset was 

designed specifically for organoid detection and tracking [68]. By employing a CNN 

architecture known as ResNet [69], the dynamic evolution of organoid cultures was 

successfully tracked to profile the growth and morphological changes throughout the 

organoid developmental process. The impressive speed and accuracy in organoid tracking 

throughout the entire culture period marks a significant progress that not only advances 

organoid research but also showcases the potential of deep learning in this domain. Several 

open-source packages have emerged to facilitate the training of deep learning architectures 

for organoid analysis. Among these, the python-based tool MOrgAna utilizes a combined 

approach of deep learning and classical machine learning to analyze brain organoids from 

brightfield microscopic images. To discern organoid pixels from debris or background noise 

in the images, a multilayer perceptron neural network is extended into a deeper architecture. 
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This expansion of logistic regression-based machine learning approach with deep learning 

network enhances the accuracy beyond traditional quantification tools [70].

OrganoID utilizes a CNN network derived from U-NET for pixel-by-pixel organoid 

detection from brightfield microscopy images. This enables automatic counting and tracking 

of the size of cancerous organoids. While initially trained on pancreatic cancer organoids, 

this algorithm has been validated on diverse images, encompassing pancreatic, lung, colon, 

and adenoid cystic carcinoma organoids. The achieved accuracy rates are noteworthy, with 

individual count accuracy at 95 % and individual organoid size accuracy at 97 % [71]. 

Similarly, autoencoder CNNs, like Deep Image Prior (DIP) [72], has been applied to 

enhance microscopy resolution. This innovative super-resolution framework employs an 

encoder-decoder architecture to improve the resolution of time-lapse videos involving tumor 

and immune cells as the focal objects. Extensive validation, covering both synthetic and 

real videos, has been conducted. In comparison to other techniques, this model demonstrates 

its value through an unsupervised architecture that effectively complements edge location 

and edge detection methods, thereby contributing to the advancement of high-resolution 

microscopy.

3.2. Deep learning for organoid characterization

Identification of abstract and nuanced alterations in organoid morphology has posed 

significant challenges. However, deep learning approaches have proven successful in 

quantifying and capturing these subtle morphological changes, which often elude empirical 

and consistent observation through traditional analysis methods. D-CryptO, a tool for 

analysis colorectal organoids, was developed by leveraging a comparison of six popular 

deep learning architectures on brightfield microscopy to detect the opacity and budding of 

these organoids. The study revealed that D-CryptO achieved remarkable outcomes by not 

only accurately predicting the overall opacity of individual organoids but also identifying 

instances of organoid budding with an impressively high level of accuracy [73]. 3D retinal 

organoids, derived from either mouse or human pluripotent cells, have exhibited a distinct 

resemblance to the native tissue. Despite their translational potential, the current approach 

to select functional retinal organoids relies heavily on subjective assessment of organoid 

morphology and features extracted from brightfield imaging. Addressing this challenge, 

a CNN-based system was designed to predict retinal differentiation based on early-stage 

retinal organoid brightfield images [74]. After cross-validation and hyperparameter tuning, 

the CNN was established using the ResNet50v2 architecture. Notably, the CNN algorithm 

outperformed experts in predicting organoid fate, even prior to the initiation of reporters. 

This advancement effectively obviates the need for intricate imaging techniques or the 

use of fluorescent probes. Moreover, the proposed approach is highly versatile and can be 

seamlessly incorporated into laboratories for streamlined implementation.

Deep learning autoencoder-decoders have emerged as promising tools for high-throughput 

drug screening, leveraging the latent vectors of autoencoders to capture the underlying 

phenotypic structures of organoids. These latent vectors effectively represent the organoids’ 

phenotypic characteristics in a reduced dimension compared to the comprehensive 

microscopic capture. Metzger et al. pioneered a drug screening platform that successfully 
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distinguished neural tube organoids between wild-type and diseased ones carrying the 

genetic mutations responsible for Huntington’s disease (HD). This discrimination was 

achieved with remarkable accuracy by analyzing changes within the condensed phenotypic 

space of the latent vectors. The model was further extended to quantitatively assess the 

therapeutic efficacy of drugs designed to treat HD. This extension involved measuring 

the extent to which therapeutic agents brought the HD organoids closer to a phenotypic 

space resembling that of the wild-type organoids. Additionally, the platform enabled the 

exploration of potential adverse drug effects. By examining how much the addition of 

therapeutic agents altered the phenotypic space of the organoids from their original latent 

state, both for the diseased and wild-type organoids, insights into potential adverse effects 

could be obtained [66].

4. Conclusions and future perspectives

Organoid technology holds immense promise in a wide range from animal-free drug testing 

that can investigate traditionally difficult areas from rare genetic diseases and developmental 

toxicology to personalized precision medicine for testing therapeutic strategies for patients 

[15]. As researchers create more complex and intricate organoid models to further replicate 

the structure and functionality of their in-vivo counterparts, our analytical tools must 

advance in sophistication to match. AI has proven to be fast, efficient, and quantitatively 

capable of extracting and analyzing the high-dimensional data generated from high-

throughput organoid models with a high degree of accuracy. Future organoid models will 

continue to utilize powerful AI algorithms to fully investigate and model the complex and 

dynamic nature of organoids, facilitating the development of life-saving and groundbreaking 

discoveries. The future for organoids and AI may even become further entwined with 

the development of organoid intelligence [75] which seeks to utilize brain organoids for 

biological computing to implement a hybrid system for the future of artificial intelligence 

and organoid technology.

Explainable AI (XAI) refers to the capability of AI systems to provide understandable and 

interpretable explanations for their decisions or predictions [76]. In the context of advancing 

research on organoid analysis, XAI can play a crucial role in enhancing our understanding 

of complex biological processes and improving the accuracy and reliability of analysis 

techniques. Integrating XAI and organoid technology will provide insights into how AI 

models arrive at a specific conclusion about organoid behaviors or properties. Researchers 

can gain a clearer view of which features or patterns that AI is focusing on, leading to 

increased trust and confidence in the results. By revealing the relationships between various 

organoid features, XAI can help researchers identify novel correlations (i.e., markers), 

leading to the discovery of new organoid characteristics that might be associated with 

certain biological conditions or diseases [77]. Researchers can understand which features or 

combinations of features are most influential in making predictions, potentially uncovering 

subtle biomarkers that would have been overlooked otherwise. In addition, AI models can 

learn irrelevant information from the data and then give high accuracy on biased predictions. 

This often occurs in biological data where many correlated factors presented to differentiate 

data might be irrelevant to the target application. Explaining the model outcomes based on 

XAI will reveal such bias and help develop unbiased AI models.
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Fig. 1. Organoid Intelligence.
The integration of organoid technology and artificial intelligence for studying organoid 

properties, modeling human development, and assisting drug screening workflow.
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