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A B S T R A C T   

The natural killer (NK) cell population is unique because it consists of innate lymphocytes capable 
of detecting and eliminating tumors and virus-infected cells. This research aims to identify a new 
prognostic signal in breast cancer (BRCA) based on NK-cell-related genes (NKRGs). A variety of 
sequencing and gene mutation data, along with clinical information, were collected from The 
Cancer Genome Atlas (TCGA) and Gene Expression Database (GEO). COX regression and least 
absolute shrinkage and selection operator (LASSO) Cox regression analyses were conducted to 
identify prognostic genes. In addition, the immune-related analysis was performed to evaluate the 
association between the immune microenvironment and clusters and risk model. The Edu assay, 
colony assay, wound healing assay, and transwell assay were performed to evaluate the cell 
proliferative and invasive abilities. A 4-NKRG-based prognostic model was constructed. Patients 
in high-risk groups were associated with poorer OS in TCGA and GSE42568. Further, a nomogram 
was constructed for better prediction of the prognosis of patients with BRCA. Finally, it was 
discovered that the over-expression of IFNE could suppress the proliferative and invasive abilities 
of BRCA cells, which might be a promising biomarker for patients with BRCA. As a result, we 
developed a novel 4-NKRG signal and nomogram capable of predicting the prognosis of patients 
with BRCA. Additionally, this model was closely associated with the immune microenvironment, 
which opened new therapeutic avenues for the treatment of cancer in the future.   

1. Introduction 

Breast cancer (BRCA) is the most common type of cancer and the leading cause of cancer-associated death in women worldwide [1], 
despite enormous efforts to develop effective treatment strategies [2]. It is often difficult to classify BRCA as a single disease due to its 
heterogeneity. The heterogeneous nature of BRCA has been known since the 19th century and has dictated the classification of the 
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disease [3]. Spatial and temporal heterogeneities have been found between patients with BRCA as well as within single tumors [4]. 
Spatial heterogeneity involves differences in phenotypic, transcriptomic, epigenetic, and genomic features within a tumor [5]. 
Temporal heterogeneity involves differences between primary tumors and metastases or between different metastatic sites over time 
during tumor progression [6]. It is important to note that even the tumor microenvironment (TME) can contribute to tumor hetero-
geneity, as it is affected by spatial heterogeneity within the tumor [7]. 

As innate lymphocytes are able to detect and eliminate tumor and virus-infected cells, natural killer (NK) cells constitute a unique 
population [8]. In addition to their cytotoxic effects, NK cells can also modulate immune responses through the production of cytokines 
[9]. The goal of NK cell-based therapies is to enhance NK cell potency and persistence by enhancing co-stimulatory signaling, 
inhibiting checkpoints, and increasing cytokine production [10]. Due to their ability to affect dendritic cells, macrophages, and 
neutrophils by producing cytokines and chemokines, NK cells are also termed “immunomodulatory” [11]. 

Over recent years, numerous studies have explored the relationship between NK cells and BRCA. One study revealed that 
immunosuppression in the TME of patients with BRCA directly worsens phenotype and suppresses NK cell function [12]. The NK 
cell-activating receptor DNAM-1 is liganded by CD155. The presence of m-CD155 and NK-TIL is associated with a good prognosis in 
patients with BRCA, whereas the presence of cyt-CD155 is associated with a poor prognosis [13]. According to another study, mas-
tectomy may increase NK cell activity in patients with BRCA, which may produce positive therapeutic effects [14]. 

Recently, with the development of bioinformatics, numerous studies have applied bioinformatics analyses to identify potential 
biomarkers for better diagnosis and prognosis of patients with BRCA [15–17]. The present work aimed to explore the behavior of NK 
cells in BRCA and identify potential biomarkers for NK cell-based BRCA immunotherapy. 

2. Materials and methods 

2.1. Dataset downloading for patients with BRCA 

Data from RNAseq analysis and corresponding clinical information for BRCA were obtained from The Cancer Genome Atlas (TCGA) 
dataset (available at http://portal.gdc.com). The dataset contained data for 113 normal tissues and 1113 tumor tissues with BRCA. An 
additional data set was sourced from the GEO database (Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/) in MINiML 
format. The GSE included all platforms, samples, and GSE records. Based on the corresponding platform annotation information, the 
average value of all genes associated with multiple probes for the probe IDs corresponding to multiple platforms. The GSE42568 
cohort, covering 104 patients with BRCA, served as an external validation cohort. 

2.2. Identification of the differentially expressed genes in the BRCA cohort 

To identify differentially expressed mRNAs, the Limma package of the R programming language was used. The threshold for 
detecting differential mRNA expression was defined as follows: “P value < 0.05 with log2 (fold change) > 0.5 or log2 (fold change) < −

0.5.” 

2.3. Protein-protein interaction (PPI) network 

To determine interactions between genes and proteins involved in BRCA, a protein-protein interaction (PPI) network was con-
structed using STRING (https://www.string-db.org/). 

2.4. Pathway enrichment analysis 

Functional enrichment was performed to further validate the functions of the potential key genes. Gene Ontology (GO) was a useful 
tool for annotating genes with functions, such as molecular functions (MFs), biological pathways (BPs), and cellular components (CCs). 
KEGG pathway enrichment was a practical way to gain deep insights into the function of genes and the genome. ClusterProfiler in the R 
software was used to analyze GO functions and enrich pathways related to mRNAs showing prognostic potential for BRCA. 

2.5. Gene somatic mutation analysis 

Data on patients with BRCA regarding mutant MAF were obtained from the TCGA dataset. Using the R software package maftools 
somatic mutations in patients were downloaded from the BRCA cohort and visualized. 

2.6. Immune cell infiltration analysis 

To achieve robust immune score estimation, several algorithms, including TIMER, xCell, MCP-counter, CIBERSORT, EPIC, 
CIBERSORT-ABS, and QUANNTISEQ were used [18–23]. Upon systematically benchmarking these algorithms, each algorithm had its 
own unique characteristics and strengths. In addition, the potential immunotherapy response was predicted using CTLA 4 and PD 1 
scores, using the online tool TIDE (http://tide.dfci.harvard.edu/) [24]. 
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2.7. Construction of an NK cell-based prognostic prediction model in the BRCA cohort 

Based on counts data and clinical information of patients with BRCA, a regression algorithm called the Least Absolute Shrinkage 
and Selection Operator (LASSO) was used, along with a 10-fold cross-validation process for feature selection. Prognostic models were 
constructed using univariate and multivariate Cox regression analyses, and the survival package in R software was used for analysis. 
The log-rank test was implemented to determine survival differences between two or more of the abovementioned groups using KM 
survival analysis. 

2.8. Subgroup analysis 

The R package ConsensusClusterPlus was used for consistency analysis. The maximum number of clusters was nine, and 80 % of the 
total samples were extracted 100 times, using clusterAlg = “hc” and innerLinkage = “ward.D2″ 

2.9. Subgroup- and prognosis prediction model-based correlation analysis 

Data on the expression levels of immune checkpoint-related genes and human leukocyte antigen (HLA) genes and clinical char-
acteristics were extracted from the TCGA database. The correlation analysis was performed using the R software packages ggplot 2 and 
pheatmap. 

2.10. Cell culture 

BRCA cell lines MDA-MB-231, BT-549, ZR-75-1, MCF-7, and SK-BR-3 and breast normal cell lines Hs 578Bst were obtained from the 
Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences (Shanghai, China). The cells were cultivated in DMEM or 
DMEM/F12 (Life, Shanghai, China). Subsequently, the IFNE protein expression level was detected using Western blot analysis to 
confirm the successful construction of the cell line. 

2.11. RNA purification and qRT-PCR 

The total RNAs from tissue samples (approximately 3.0 g) or cells (1 × 106) or cells in Trizol (Invitrogen, United States) were 
extracted. The ultraviolet spectrophotometry technique was used to determine the concentration and purity of total RNA at 260 nm 
and 280 nm. A reverse transcription kit (Thermo Fisher Scientific, Inc.) was used to convert RNA into cDNA. The protocol outlined by 
the manufacturer was followed to conduct the experiments. The qPCR technique was used to study the samples using SYBR Green 
Master (TsingKe, China). GAPDH served as the endogenous control of IFNE. The primers used in this study are listed below:  

IFNE forward, 5′-TCAGCCTCTTCAGGGCAAAT-3′, and reverse, 5′-CCAGTCCCATGAGTGCTTCT-3’;                                                     

GAPDH forward, 5’ -TAGATGACACCCGTCCCTGA-3′, and reverse, 5′-ACCTCCACCTGTCCTTAGTG -3’                                               

2.12. Western blot analysis 

Proteins obtained from cultured cells were subjected to electrophoresis, following which they were transferred onto polyvinylidene 
difluoride membranes. Subsequently, the samples were sealed using 5 % skimmed milk (time: 2 h) at room temperature. Afterward, the 
protein was incubated with the specific primary antibody. The sample was refrigerated overnight at 4 ◦C. Following incubation, the 
samples were washed three times with PBST, with each washing cycle lasting 10 min. Post-washing, the samples were incubated with 
the secondary antibody (Goat Anti-Rabbit IgG-HRP, 1:5,000, Abmart). Rabbit anti-IFNE (1:1,000, Thermo Fisher Scientific) and 
GAPDH (1:5,000, Abmart) antibodies were used for the experiments. 

2.13. Transwell assay 

A 24-well plate was divided into upper and lower chambers by integrating transwell chambers with a pore size of 8.0 mm. Then, 
600 ml medium with 10 % fetal bovine serum (FBS) was added to the lower chamber, and 200 ml serum-free, conditioned medium 
containing 2 × 104 cells was added to the upper chamber. After 24 h, cells in the upper chamber were wiped with a cotton swab, and 
cells that had invaded the bottom surface of the chamber were fixed and stained with crystal violet. 

2.14. Wound healing assay and CCK8 assay 

Following transfection, BT-549 cells were cultured in 6-cm dishes until they reached 90%–95 % confluency. A wound was created 
down the middle of the cell monolayer by scratching with a 200 ml tip. Unattached cells were then washed using PBS (Gibco). The 
wound was photographed at 0 h and 24 h to evaluate the proliferation and metastasis of BT-549 cells. 

By counting the viable cells remaining after the CCK-8 assay, the viability of cells was determined. Briefly, BT-549 cells were seeded 
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in 96-well plates at a cell density of 3000 cells per well and incubated for 24 h. Then, 10 μl of CCK-8 reagent was added to the culture 
medium in each well, and the plates were incubated at 37 ◦C for 2 h. An automatic microplate reader (Synergy 4; BioTek, Winooski, VT, 
USA) was then used to measure light absorbance six times per well at 450 nm. 

2.15. Colony formation assay and 5-Ethynyl-2′ -deoxyuridine (EdU) staining 

For the colony-forming assay, cells were treated with plasmids or irradiated at 0, 4, or 8 Gy for 24 h to determine their ability to 

Fig. 1. Identification of the role of NKRGs in a breast cancer cohort. (A) The volcano map demonstrates the differentially expressed NKRGs 
identified in our breast cancer cohort. (B) The Venn diagram shows the NKRGs that are highly associated with breast cancer prognosis and 
differentially expressed in breast cancer. (C) Univariate cox regression analysis based on the 24 prognosis-related NKRGs. (D) Heatmap showing the 
expression levels of the 24 prognosis-related NKRGs identified in the breast cancer cohort. (E) PPI network based on the 24 prognosis-related 
NKRGs. (F) Network demonstrating the risk or favorable factors and interactive correlations between 24 prognosis-based NKRGs. (G) Somatic 
mutation analysis in the whole TCGA cohort. Data are analyzed by Wilcoxon test. 

D. Yu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e23930

5

form colonies. After 14 days, the colonies formed were counted. 
To detect cells that retained EdU, DMSO was added to culture flasks containing BT-549 cells before their incubation overnight with 

0.1 % EdU and Apollo staining solution (RiboBio). 

2.16. Statistical analysis 

Statistical analysis was carried out using the R programming language. Overall survival (OS) was determined using Kaplan-Meier 
survival curves and the log-rank test. Spearman correlation was conducted to identify the correlation between risk score and immune 
cell infiltration. Wilcox’s signed-rank test was used to compare the proportions of tumor-infiltrating immune cells, immune 

Fig. 2. Potential correlation between NKRG clusters and OS and clinical characteristics, immune-related indexes, pathways enriched in breast 
cancer, and somatic mutations. (A) Cluster diagram for the subtype analysis of breast cancer samples. Intragroup correlations were high and inter- 
group correlations were low at k = 2. (B) CDF curve of consensus cluster analysis. (C) Survival analysis comparison between NKRG cluster A and 
cluster B; Results obtained using the PCA (D), Tsne (E), and UAMP (F) dimensionality reduction algorithms. (G) Heatmap of clinical correlation 
analysis results. Data are analyzed by Wilcoxon test. 
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checkpoints, HLA-related genes, and clinical characteristics between the two groups. 

3. Results 

3.1. Correlation between NK cell-related genes and prognosis, somatic mutations, the PPI network, and BRCA cohort 

First, we identified 244 genes on the ImmPort portal (https://www.immport.org/resources) that were related to the molecular 
characteristics of NK cells and the Molecular Signature Database (MSigDB) (Table S1). These genes were considered NK cell-related 
genes (NKRGs). Subsequently, 95 differentially expressed NKRGs were identified in BRCA (Fig. 1A, Table S2). Moreover, 51 NKRGs 
were closely associated with the prognosis of patients with BRCA. The Venn diagram constructed between these two sets of NKRGs 
demonstrated that 24 NKRGs were highly correlated with BRCA prognosis and were differentially expressed in BRCA (Fig. 1B). Next, a 
univariate Cox regression analysis of these 24 genes was performed (Fig. 1C, Table S3). The heatmap demonstrated the differential 
expression levels of these genes between healthy individuals and the BRCA cohort (Fig. 1D). Additionally, the PPI network constructed 
revealed strong positive relationships between the 24 genes (Fig. 1E). Among the 24 genes, six showed protective roles in BRCA, 
including ULBP2, ULBP1, RAET1G, PRDX1, and KNSTRN, and others were identified as risk factors (Fig. 1F). Finally, we identified 
mutations in 24 NKRGs, at a rate of 37.89 %. The highest mutation rate (about 34 %) in the BRCA cohort was recorded for PIK3CA 
(Fig. 1G). 

Fig. 3. Potential correlation between NKRG clusters and immune-related indexes, pathways enriched in breast cancer, and somatic mutations. (A) 
Correlation analysis between different NKRG clusters and immune-related cells. (B) Correlation analysis between different NKRG clusters and 
immune checkpoint-related genes. (C) Correlation analysis between different NKRG clusters and HLA-related genes. (D) Correlation analysis be-
tween different NKRG clusters and stromal score. (E) Correlation analysis between different NKRG clusters and immune score. (F) Correlation 
analysis between different NKRG clusters and estimate score. (G) KEGG pathway enrichment analysis comparison between the different NKRG 
clusters. (H) Somatic mutation analysis in NKRG cluster A; (I) Somatic mutation analysis in NKRG cluster B. Data are analyzed by Wilcoxon test. 
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3.2. Potential correlations between NKRG clusters and OS, clinical characteristics, immune-related indexes, enriched pathways, and 
somatic mutations in BRCA 

To further explore the role of the 24 genes identified above in the BRCA cohort, a consensus cluster analysis was performed. The 
CDF curve obtained showed that, when k was equal to 2, the classification effect in the BRCA cohort was optimal (Fig. 2A–B and 
Fig. S1). Therefore, the 1093 patients with BRCA in the cohort were classified into NKRG cluster A (n = 627) and NKRG cluster B (n =
466) (Table S4). Subsequently, a survival analysis was performed. Patients with BRCA in NKRG cluster A were likely to have poorer OS 
(Fig. 2C). Moreover, using dimensionality reduction algorithms, the spatial distribution of patients with BRCA was visualized. The 
PCA, tSNE, and UAMP algorithms all suggested that the consensus cluster analysis demonstrated good effects (Fig. 2D–F). Next, a 
correlation analysis demonstrated that different T stages and ages of patients with BRCA were closely associated with different NKRG 
clusters (Fig. 2G and Fig. S2). Further, the correlation between various immune-related indexes and different NKRG clusters was 
evaluated. The immune cell infiltration analysis demonstrated that numerous immune-related cells, such as activated B cells, activated 
CD4 T cells, activated CD8 T cells, activated dendritic cells, and NK cells, were highly expressed in NKRG cluster B (Fig. 3A). Addi-
tionally, patients with BRCA in NKRG cluster B had high expression levels of numerous immune checkpoint-related genes, including 
ADORA2A, BTLA, BTNL2, CD160, CD200, CD244, CD27, and CD274 (Fig. 3B). These results suggested that patients with BRCA in 
NKRG cluster B exhibited better response to immune checkpoint therapy. Furthermore, patients with BRCA in NKRG cluster B have 
higher expression levels of HLA-related genes (Fig. 3C). 

Subsequently, the correlation between the TME (TME) and different NKRG clusters was evaluated. Patients with BRCA in NKRG 
cluster B had higher stromal scores, immune scores, and estimate scores than those in NKRG cluster A (Fig. 3D–F). Additionally, 
different KEGG pathways, such as the toll-like receptor signaling pathway, nod-like receptor signaling pathway, JAK-STAT signaling 
pathway, T cell receptor signaling pathway, and B cell receptor signaling pathway, were observed to be closely associated with 
different NKRG clusters (Fig. 3G). The somatic mutation rates in NKRG cluster A and NKRG cluster B were 83.12 % and 90.3 %, 
respectively (Fig. 3H–I). 

Fig. 4. NKRGs-based risk model (A) LASSO regression analysis. (B) Multivariate Cox regression analysis demonstrated that ULBP2, RAC2, PRDX1, 
and IFNE are closely associated with the prognosis of breast cancer patients; Survival analysis in the train set (C), test set (E), TCGA cohort (G), and 
GEO cohort (I). Risk plot for the train set (D), test set (F), TCGA cohort (H), and GEO cohort (J). (K) Sankey diagram showing the correlation 
between risk groups and different NKRG clusters. (L) Boxplot showing the correlation between risk groups and different NKRG clusters. Data are 
analyzed by Wilcoxon test. 
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3.3. Further exploration of the prognosis-related NKRGs in the BRCA cohort 

First, patients with BRCA in the TCGA cohort were randomly divided into a train set and a test set. In the train set, LASSO regression 
analysis and multivariate Cox regression analysis were performed to identify prognosis-related NKRGs (Fig. 4A). Finally, four 
prognosis-related NKRGs (ULBPS, RAC2, PRDX1, and IFNE) were obtained (Fig. 4B). Next, each BRCA patient was assigned a risk score 
calculated as follows: Risk score = IFNE * − 0.886752686232883 + PRDX1 * 0.294839736125548 + RAC2 * − 0.231801327361253 +
ULBP2 * 0.252737941352663 (Table S7). Subsequently, patients in the train set were equally divided into low- and high-risk groups 
based on their median risk score. Survival analysis showed that patients with higher risk scores in the train set, test set, whole TCGA 
cohort, and the GSE42568 external validation cohort had poorer OS (Fig. 4C, E, G, and I; Tables S5 and S6). BRCA patients were ranked 
from left to right according to the risk score that was calculated in different datasets, and the heatmaps indicated the four prognosis- 
related NKRGs in two risk groups (Fig. 4D, F and J). Moreover, the Sankey diagram and boxplot showed that patients with BRCA in 
NKRG cluster A were more likely to fall into the high-risk group (Fig. 4K-L). The ROC curve also demonstrated that the NKRG-based 
risk model showed good predictive value in the TCGA train set, the TCGA test set, the whole TCGA cohort, and the GSE42568 cohort 
(Fig. S3). 

3.4. Correlation between clinical characteristics and NKRGs and construction of the BRCA cohort nomogram 

A correlation analysis demonstrated that patients with high risk scores had a high stage and high T stage (Fig. 5A–G). Univariate 
independent prognosis analysis revealed that age, stage, T stage, M stage, N stage, and risk score were independent risk factors for 
BRCA (Fig. 5H). Multivariate independent prognosis analysis revealed that age, stage, and risk score were independent risk factors for 
BRCA (Fig. 5I). Therefore, to better predict the prognosis of patients with BRCA, a nomogram was constructed based on age, stage, and 
risk score (Fig. 6A). The calibration curve showed that the nomogram could accurately predict the 3-year, 5-year, and 10-year OSs of 
patients with BRCA (Fig. 6B). Moreover, decision curve analysis suggested that the predictive value of the risk score was superior to 

Fig. 5. Validation of the predictive value of the NKRGs-based risk model in the breast cancer cohort. (A) Correlation analysis between clinical 
characteristics and different risk groups; Correlation analysis between different risk groups and age (B), gender (C), stage (D), T stage (E), M stage 
(F), and N stage (G). (H) Univariate independent prognosis analysis based on age, gender, stage, T stage, N stage, M stage, and risk score. (I) 
Multivariate independent prognosis analysis based on age, gender, stage, T stage, N stage, M stage, and risk score. Data are analyzed by Wil-
coxon test. 
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that of age, stage, and risk score (Fig. 6C–E). 

3.5. The NKRG-based prognostic prediction model may be a potential biomarker for patients with BRCA 

Using various algorithms, positive and negative correlations between immune-related indexes and risk scores were successfully 
identified. Overall, M0 macrophages, M2 macrophages, neutrophils, and CD4 T cells were positively correlated with the risk score. 
Contrarily, B cells, CD8 T cells, and mast cells were negatively correlated with the risk score (Fig. 7A, Table S8). In addition, some 
immune-related functions, such as APC co-inhibition, APC co-stimulation, checkpoint, and HLA, were found to be closely associated 
with the risk score (Fig. 7B). Numerous immune checkpoint-related genes were found to be highly expressed in the low-risk group, 
suggesting that patients with BRCA in the low-risk group were likely to gain benefit from immune checkpoint therapy (Fig. 7C). In 
addition, patients in the low-risk group and high-risk group showed different sensibilities to the positive or negative of CTLA4 and PD1 
therapy (Fig. 8A–D). 

Moreover, the correlation between TME scores and different risk groups was evaluated. Patients with higher risk scores were found 
to have lower stromal scores, immune scores, and estimate scores (Fig. 8E). Then, GO and KEGG pathway enrichment analyses were 
performed based on the differentially expressed NKRGs, and the enrichment of many immune-related pathways was identified. In the 
GO pathway enrichment analysis, the antigen receptor-mediated signaling pathway, leukocyte-mediated immunity, T cell receptor 
complex, antigen binding, and immunoglobulin receptor binding were the most enriched pathways (Fig. 8F, Table S9). In the KEGG 
pathway enrichment analysis, hematopoietic cell lineage, primary immunodeficiency, and cytokine-cytokine receptor interaction 
were the most enriched pathways (Fig. 8G, Table S10). Subsequently, a positive correlation between tumor mutation burden and risk 
score was observed (Fig. 8H–I). Survival analysis demonstrated that the OS of patients with BRCA was closely associated with the 
tumor mutation burden. This finding indicates that patients with a high tumor mutation burden are likely to have poorer OS (Fig. 8J). 
Moreover, the combination of tumor mutation burden and risk score could accurately predict the prognosis of patients with BRCA 
(Fig. 8K). 

Fig. 6. Nomogram based on the NKRGs-based risk model and clinical characteristics. (A) Nomogram based on the risk score, age, and stage in the 
breast cancer cohort. (B) Calibration curve showing that the nomogram could well predict the 3-year, 5-year, and 10-year OSs of breast cancer 
patients; Decision curve analysis for determining the predictive value of the nomogram, risk score, age, and stage for 3-year (C), 5-year (D), and 10- 
year (E) OSs. 
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3.6. IFNE expression and prognosis in BRCA 

Fig. 9 shows that IFNE is downregulated in BRCA tissues and cell lines and is associated with a good prognosis. To determine 
whether IFNE is downregulated in BRCA, the expression levels of IFNE in BRCAs and pair-matched adjacent breast normal tissues were 
examined using RT-qPCR. The expression levels of IFNE were significantly (p < 0.01) reduced in the BRCAs compared with those in the 
normal tissues (Fig. 9A), which is consistent with the results obtained by TIMER 2.0 (Fig. 9D). 

The expression levels of IFNE were also investigated in the BRCA cell lines MDA-MB-231, BT-549, ZR-75-1, MCF-7 and SK-BR-3, in 
which the expression levels were significantly lower compared with those in the normal breast cell line Hs 578Bst (Fig. 9B). In addition, 
Kaplan-Meier survival analysis showed that low IFNE expression is associated with poor OS in patients with BRCA (P < 0.05; Fig. 9C). 

3.7. Role of IFNE in BRCA cells 

Further analysis based on our NKRG-based risk model demonstrated that IFNE may be a key biomarker in the BRCA cohort. To 
evaluate the proliferation and invasion abilities of IFNE in BRCA cells, a plasmid was transfected into BT-549 and MDA-MB-231 cells to 
construct a stable cell line overexpressing IFNE. The IFNE protein expression level was measured via Western blot analysis (Figs. 10A 
and 11A). Additionally, the EdU assay was performed, demonstrating that IFNE overexpression could significantly reduce the number 
of EdU-positive BRCA cells (p < 0.0001, p < 0.0001; Figs. 10B and 11C). Further, the CCK8 assay demonstrated that IFNE over-
expression could inhibit the proliferation ability of BRCA cells (p < 0.0001; Fig. 10C). The colony formation assay confirmed that IFNE 
overexpression could suppress BRCA progression (p < 0.0001, p < 0.0001; Figs. 10D and 11B). Annexin VFITC/PI staining evidently 
revealed that IFNE overexpression significantly increased the proportion of apoptotic cells (p < 0.001; Fig. 10E). Subsequently, the 
effects of IFNE overexpression on the migratory and invasive capacities of BRCA cells were assessed. Scratch wound healing assay 
results reflected that IFNE overexpressing BT-549 or MDA-MB-231 cells had significantly impaired migration compared with vector 
group cells (p < 0.001, p < 0.0001; Figs. 10G and 11D). Consistently, results of the transwell assay with and without matrigel also 
showed that IFNE overexpression dramatically suppressed the migration and invasion of BT-549 and MDA-MB-231 cells (p < 0.0001, 
p < 0.0001, p < 0.0001, p < 0.0001; Fig. 10F, H and Fig. 11E and F). 

4. Discussion 

BRCA is the most common cancer among women, with 1.7 million people diagnosed worldwide and approximately half a million 
people deaths from this disease each year [25]. The risk of BRCA can be reduced through lifestyle changes, chemoprevention, and 

Fig. 7. Correlation between the NKRGs-based risk model and immune cells, immune checkpoint-related genes, and immune-related functions. (A) 
Immune cell infiltration analysis based on the several algorithms, including TIMER, xCell, MCP-counter, CIBERSORT, EPIC, CIBERSORT-ABS, and 
quantIseq. (B) Correlation analysis between immune-related functions and risk score. (C) Correlation analysis between immune checkpoint-related 
genes and risk score. Data are analyzed by Wilcoxon test. 
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preventive surgery [26]. Despite the development of multiple treatments, BRCA incidence remains high. Therefore, there is an urgent 
need to identify novel effective therapies for BRCA. A recent study has found that NK cells can regulate immune responses by producing 
cytokines, which have been applied in the treatment of various types of cancer [27]. Over the recent years, with the development of 
bioinformatics, there has been more and more research searching for cancer biomarkers. In the present study, 24 prognosis-related 
NKRGs were identified in a BRCA cohort. Subsequently, based on the expression levels of these 24 prognosis-related NKRGs, the 
BRCA cohort was successfully divided into two clusters. Analysis of relationships between these NKRGs and clinical characteristics, 
immune cell infiltration, and somatic mutations as well as pathway enrichment analysis proved that NKRGs play a key role in BRCA 
and might provide new avenues for developing future therapies. Moreover, NK cells are of great importance to BRCA. One study 
showed that the PI3K/Akt/GSK-3β/ROS/eIF2B pathway regulates the activity of NK cells and the sensitivity of tumor cells to NK cells, 
contributing to BRCA growth and lung metastasis [28]. Another study discovered that GARP inhibition promotes the metabolism and 
function of NK cells, thereby improving the efficacy of NK cell-based immunotherapy [29]. Therefore, the in-depth analysis of key 
NKRGs may be promising for the diagnosis and treatment of patients with BRCA. 

To further explore the key NKRGs that were closely associated with the prognosis of patients with BRCA, LASSO regression analysis 
and multivariate Cox regression analysis were performed to construct a 4-NKRG-based prognostic model. Using various online 
datasets, the prognosis and treatment of cancers can now be predicted more precisely. A previous study has examined tumor het-
erogeneity and organ tropism during BRCA metastasis using transcriptome analyses [30]. Their results have a gained deeper 

Fig. 8. Correlation between the NKRGs-based risk model and somatic mutations, enriched pathways, immunotherapy, and TMB. (A) 
Immunotherapy-based comparison of CTLA4-negative and PD1-negative patients between low- and high-risk groups. (B) Immunotherapy-based 
comparison of CTLA4-negative and PD1-positive patients between low- and high-risk groups. (C) Immunotherapy-based comparison of CTLA4- 
positive and PD1-negative patients between low- and high-risk groups. (D) Immunotherapy-based comparison of CTLA4-positive and PD1- 
positive patients between low- and high-risk groups. (E) Correlation analysis between risk score and stromal score, immune score, and estimate 
score. (F, G) GO and KEGG enrichment analyses based on differentially expressed NKRGs. (H) Boxplot demonstrating the tumor mutation burden in 
low- and high-risk groups. (I) Correlation analysis between tumor mutation burden and risk score. (J) Survival analysis comparison between low- 
and high-tumor mutation burden groups. (K) Survival analysis comparison between low- and high-tumor mutation burden groups and low- and 
high-risk groups. Data are analyzed by Wilcoxon test. 
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understanding of the metastatic progression of BRCA and revealed new targets for BRCA therapy. In addition, genetic markers for 
BRCA can be utilized to examine how tumor heterogeneity affects metastasis [31]. 

Different clusters and different risk groups of patients with BRCA showed great correlations with immunotherapy. With the 
development of immunotherapy, many types of tumors have been treated with immunotherapy to improve the prognosis. Immuno-
therapy seems to be revolutionizing the management of multiple solid tumors [32]. BRCA treatment has long used monoclonal an-
tibodies, such as trastuzumab, a passive immunotherapy, as therapeutic agents [33]. To maximize antitumor immunity, antibody-drug 
conjugates serve as another novel therapy. They contain tumor-specific mAbs covalently bound to cytotoxins. To select patients most 
likely to benefit from immunotherapy, biomarkers that can predict clinical outcomes are needed [34]. In the present work, four NKRGs 
— IFNE, PRDX1, RAC2, and ULBP2 — that may provide a new direction for immunotherapy in patients with BRCA, were identified. 
This four NKRG-based prognostic model could accurately predict the immune response in the BRCA cohort. Moreover, the NKRG-based 
risk model was also closely associated with the clinical characteristics of patients with BRCA, such as stage and T stage. The univariate 
and multivariate Cox regression analyses demonstrated that the NKRG-based risk model was an independent prognostic factor in 
BRCA. The nomogram in our study was constructed based on the age, stage, and risk score, and the calibration curve demonstrated that 
the nomogram could well predict the 3-year, 5-year, and 10-year OSs of patients with BRCA. 

The GO enrichment analysis conducted in the present study revealed that numerous immune-related pathways were significantly 
enriched in the four-NKRG risk model, such as antigen receptor-mediated signaling pathway, leukocyte-mediated immunity, T cell 
receptor complex, antigen binding, and immunoglobulin receptor binding. The onset, progression, and control of BRCA are strongly 
influenced by the immune system. Immunoediting is characterized by the evolving interaction between BRCAs and host immunity. As 
BRCA progresses, acute inflammation triggers the activation of innate immunity, resulting in cancer cell death and the maturation of 
dendritic cells, which activate T cells specifically targeting BRCA [35–37]. Either immune-mediated rejection of early-stage tumors or 
selection of tumor cell variants that can escape the immune response occurs at this stage [38]. The use of immunotherapy has extended 
survival in patients with other solid tumors besides BRCA and is thus a promising therapeutic approach. Immune checkpoint inhibitors, 
which block immunosuppressive receptors, have proven to be among the most effective immunotherapeutic drugs [39,40]. Moreover, 
immunotherapy has been widely applied in the field of BRCA. According to an early report on PD-1/PD-L1 antagonists, some BRCA 
cases are intrinsically immunogenic, with some responding patients showing durable clinical responses [41]. It is estimated that less 
than 10 % of patients with metastatic cancer have single-agent activity [42,43]. Therefore, it is urgent to identify potential biomarkers 
that can guide immunotherapy in patients with BRCA. In the present work, an NKRG-based risk model was successfully constructed. 
The IPS scoring suggested that patients with lower risk scores tended to be more responsive to immunotherapy, which indicates that 
the NKRGs on which these risk scores are based might be effective biomarkers for patients with BRCA. 

Fig. 9. IFNE expression in breast tumor tissues and cell lines. (A) IFNE expression levels in breast tumor tissues and adjacent normal tissues. (B) 
IFNE expression in the breast tumor cell lines MDA-MB-231, BT-549, ZR-75-1, MCF-7 and SK-BR-3, and in the normal breast cell line Hs 578Bst. (C) 
The survival analysis of IFNE expression and overall survival in breast tumor. (D) Expression of IFNE in different tumors. **p < 0.01, ***p < 0.001. 
Data are analyzed by two-tailed unpaired Student’s t-test or Wilcoxon test. 
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Finally, to evaluate the role of key NKRGs in BRCA cells, cell proliferation and invasion assays were performed for IFNE. IFNE 
overexpression could significantly suppress cell proliferation and invasion abilities in BRCA cells. The IFNE, or Interferon Epsilon, is a 
protein-coding gene. Its related pathways include those involving interferons and the DDX58/IFIH1-mediated induction of interferons 
during cancer development. The IFNE gene ontology (GO) analysis indicated the activity of cytokines and binding of type I interferon 
receptors. However, the role of IFNE in BRCA has not been studied previously. Cell migration is a complex process essential for various 
physiological and pathological conditions. Interferons (IFNs), including IFNE, are known to influence this process, although the 
mechanisms can vary depending on the cell type and context [44]. Upon binding to its receptor, IFNE activates the JAK-STAT signaling 
pathway. This pathway is critical in transmitting the signal from the cell surface to the DNA in the nucleus, ultimately influencing gene 
expression. IFNE can influence the expression of certain genes involved in promoting or inhibiting the cell cycle. For example, it can 
upregulate the expression of cell cycle inhibitors (like p21) that halt the cell cycle, reducing cell proliferation [45]. 

PRDX1 is known for its role in reducing hydrogen peroxide levels, thereby regulating oxidative stress within cells [46]. In the 
context of cancer, oxidative stress has been implicated in various stages of cancer progression, from DNA mutation to cancer cell 
proliferation and survival. Although we did not directly assess PRDX1 in our experiments, its regulation in immune cells and cancer 
cells suggests a dual role. By maintaining redox balance, PRDX1 may prevent DNA damage and mutations; conversely, its antioxidant 
function may support cancer cell survival by protecting against immune cell-induced oxidative stress [47]. This dichotomy warrants 
further exploration, especially concerning BRCA’s oxidative environment. RAC2, a member of the Rho GTPase family, is primarily 
expressed in hematopoietic cells and is crucial for the regulation of the immune response, including the release of reactive oxygen 
species (ROS) and the organization of the actin cytoskeleton in immune cells. While our study did not explore RAC2, its known 
involvement in cellular processes like migration, ROS production, and phagocytosis in immune cells makes it a candidate of interest in 
cancer immunotherapy [48]. For instance, alterations in RAC2 expression or activity could influence immune surveillance and the 
TME in BRCA [49]. ULBP2 is one of the ligands for the NKG2D receptor expressed in NK cells and certain T cells [50]. It is known to be 
induced by stress and is often upregulated in cancerous cells, signaling them for elimination by the immune system [51]. 

However, the study has some limitations. First, the clinical cohorts of patients with BRCA analyzed in our study were exclusively 
acquired from the TCGA and GSE42568. The 4-NKRG-based prognostic model also needs to be validated by external large cohorts. 

Fig. 10. (A) Construction of a stable IFNE overexpressing BT-549 cell line and verification via Western blot analysis. Proliferation and clonogenic 
capacities of BT-549/OE-IFNE cells and BT-549/Vector cells were examined via the EdU assay (B), cell counting kit-8 assay (C), and colony for-
mation assay (D). (E) Cell apoptosis rate assessment using flow cytometric analysis combined with Annexin V-FITC/PI staining. (G) Wound healing 
assay of BT-549 cells, experiments were terminated 24 h after scratching. Effect of IFNE overexpression on breast cancer cell invasion (F) and 
migration (H) based on transwell assays. OE-IFNE cells: IFNE overexpressing cells; **p < 0.01, ***p < 0.001（Fig. B scare bar:100 μm; Fig. F,H scare 
bar:50 μm; Fig G scare bar:200 μm）. Data are analyzed by two-tailed unpaired Student’s t-test or Wilcoxon test. 
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Second, an in-depth characterization of the mechanisms of IFNE in BRCA is required through animal experiments. Furthermore, the 
functions of the other three markers, including PRDX1, RAC2, and ULBP2, should be explored in vivo and in vitro in the future. 

5. Conclusion 

This study developed a novel 4-NKRG prognostic model and nomogram capable of predicting the prognosis of patients with BRCA. 
Additionally, the prognostic model was found to be closely associated with the immune microenvironment, opening new therapeutic 
avenues for cancer. 
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