
molecules

Article

Anastatin Derivatives Alleviate Myocardial
Ischemia-Reperfusion Injury via Antioxidative Properties

Ying Fu 1 , Cai Zhao 1, Rengui Saxu 1, Chaoran Yao 1, Lianbo Zhao 1, Weida Zheng 2, Peng Yu 1,*
and Yuou Teng 1,*

����������
�������

Citation: Fu, Y.; Zhao, C.; Saxu, R.;

Yao, C.; Zhao, L.; Zheng, W.; Yu, P.;

Teng, Y. Anastatin Derivatives

Alleviate Myocardial

Ischemia-Reperfusion Injury via

Antioxidative Properties. Molecules

2021, 26, 4779. https://doi.org/

10.3390/molecules26164779

Academic Editor: Francesco Cacciola

Received: 13 June 2021

Accepted: 2 August 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 China International Science and Technology Cooperation Base of Food Nutrition/
Safety and Medicinal Chemistry, College of Bioengineering, Tianjin University of Science and Technology,
Tianjin 300457, China; fuyingying605@163.com (Y.F.); zc20200925@mail.tust.edu.cn (C.Z.);
17320056317@163.com (R.S.); yaochaoran123@163.com (C.Y.); zhaolianbo123456@126.com (L.Z.)

2 Medical College, Yanbian University, No.977 Gongyuan Road, Yanji 133002, China; A1679709514@163.com
* Correspondence: yupeng@tust.edu.cn (P.Y.); tyo201485@tust.edu.cn (Y.T.); Tel.: +022-60-912-562 (Y.T.)

Abstract: (±)-Anastatins A and B are flavonoids isolated from Anastatica hierochuntica. In a previous
study, twenty-four di- and tri-substituted novel derivatives of anastatins were designed and their
preliminary antioxidant activities were evaluated. In the present study, the protective effect of
myocardial ischemia-reperfusion (I/R) and the systematic antioxidant capacity of 24 derivatives
were further studied. Compound 13 was the most potent among all the compounds studied, which
increased the survival of H9c2 cells to 80.82%. The antioxidant capability of compound 13 was
evaluated in ferric reducing antioxidant power, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic
acid) radical scavenging, and 2,2-diphenyl-1-picrylhydrazyl assays. It was observed that compound
13 significantly reduced infarcted areas and improved histopathological and electrocardiogram
changes in rats with myocardial I/R injury. Moreover, compound 13 decreased the leakage rates of
serum lactate dehydrogenase, creatine kinase, and malonyldialdehyde from rat myocardial tissues
and increased the level of glutathione and superoxide dismutase activities following myocardial I/R
injury in rats. Taken together, we concluded that compound 13 had potent cardioprotective effects
against myocardial I/R injury both in vitro and in vivo owing to its extensive antioxidant activities.

Keywords: flavonoids derivatives; H9c2 cells; hypoxia/reoxygenation; cardioprotective effects

1. Introduction

Ischemic heart disease (IHD) is a leading cause of death worldwide [1]. Timely
restoration of blood flow can effectively improve the clinical outcome of the disease;
however, reperfusion is not without risk owing to the extent of cellular damage caused
by reperfusion itself. Therefore, it is extremely important to develop effective therapeutic
strategies against myocardial ischemia-reperfusion (I/R) injury [2]. The mechanism of
myocardial I/R injury is very complicated; it includes apoptosis, oxidative stress [3],
calcium overload [4], and inflammation [5]. Oxidative stress may lead to apoptosis through
various signal transduction pathways, including signal-regulated kinase (ERK), c-Jun
amino-terminal kinase (JNK), activation of p53 (tumor protein p53), and p66shc variant.
Moreover, excessive reactive oxygen species (ROS) production can cause irreversible
damage to cell membranes and cellular molecules, such as DNA, nucleic acids, protein,
lipids, and start chain reactions, further damaging myocardial tissue. Oxidative stress [6],
which is caused by an imbalance between free radical formation and ROS scavenging,
plays an important role in the pathogenesis of I/R injury [7]. Therefore, strategies that
protect the myocardium from oxidative stress are highly considered in the management
of myocardial I/R injury. Therefore, owing to their potential free radical-scavenging
capabilities, antioxidant-based strategies are beneficial in the management of I/R injury.
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In clinical studies, antioxidants used to reduce myocardial I/R injury are mainly
divided into two types: enzymes and non-enzymes. Enzymes such as catalase and glu-
tathione peroxidase reduce the concentration of hydrogen peroxide to prevent cell damage;
non-enzymatic antioxidants such as vitamin E, vitamin C, β-carotene, etc., weaken the ox-
idative stress response of the tissue to reduce tissue damage and promote functional repair.
However, the application of both currently has certain limitations. The large molecular
mass of enzyme preparations is not conducive to absorption [8]. There are also certain
problems with the stability of the non-enzymes, which leads to poor stability of drugs,
hence they are easily oxidized [9]. Flavonoids, as a kind of non-enzymatic antioxidants,
have been reported to possess a variety of potent properties, including antioxidant, anti-
cancer, antiapoptotic, and cardiovascular protection [10]. They prevent the formation of
highly reactive oxides and inhibit oxidative reactions by scavenging ROS, such as hydrogen
radicals and peroxynitrite. Anastatins A and B [11] are flavonoids with hepatoprotective
activity. Anastatins A and B are active components in Anastatica hierochuntica (subtype
Anastatica, family Brassicaceae). Currently, there are very few reports on the chemical
synthesis and structural modifications of anastatins A and B. In 2003, active compounds
from Anastatica hierochuntica were isolated and revealed to have hepatoprotective effects
against D-galactosamine-induced cytotoxicity in primary cultured mouse hepatocytes.
Nakashima and Eman have also shown that the compounds exert in vitro antioxidant
and anticancer activities. However, the pharmacological effects of anastatins A and B and
their derivatives, as well as procedures for their syntheses, remain unclear. Therefore, we
aimed to synthesize anastatins A and B and some of their derivatives and evaluate them
for antioxidant activities in a hypoxia/reoxygenation (H/R) model, which is effective for
studying myocardial I/R injury [12].

In a previous study, we synthesized anastatins A and B and their analogs, and evalu-
ated their antioxidant capacities using a cell culture model of H2O2(hydrogen peroxide)-
induced oxidative damage [13]. Our previous results showed that anastatins A and B have
potent hepatoprotective activities that seem to be related to their antioxidant capabilities.

In the present study, anastatins A and B and 24 of their derivatives were synthesized
and evaluated for antioxidant capabilities using reducing power and radical-scavenging
tests. In addition, a simple H9c2 cell model of H/R and a rat model of myocardial I/R
injury were used to evaluate the cardioprotective effects of the compounds.

2. Results
2.1. H/R Model Establishment

The concentration of Na2S2O4 treatment was assessed as shown in Figure 1A, and the
survival rate of H9c2 cells were reduced with increasing Na2S2O4 concentration. Under the
4 mM of Na2S2O4, cell viability decreased to less than 50% (13.7, 25, and 43.4%, respectively
at the reoxygenation time of 2, 1 and 0 h) and the level of cell viability reduction was
lower. Therefore, a 4 mM concentration of Na2S2O4 was used to mimic hypoxic treatment.
Figure 1B shows that 4 mM of Na2S2O4 treatment for 2 h with no reoxygenation (0 h)
significantly reduced cell viability, and remained steady. Under the condition of 4 mM
concentration of Na2S2O4 for 2 h of mimicking hypoxia, 2 h of reoxygenation reduced cell
survival rate to 17.37% (Figure 1C). As is clearly shown in Figure 1D, 10 µM of resveratrol
reversed the reduced cell viability caused by H/R, which was more potent than the same
concentration of gallic acid (74.34 vs. 60.44% for gallic acid).

As a result, the hypoxia/reoxygenation model was established by using Na2S2O4 at a
final concentration of 4 mM for 2 h of mimicking hypoxia followed by the culture in normal
DMEM (Dulbecco’s modification of Eagle’s medium)/high glucose to mimic reoxygenation
injury. Resveratrol at a final concentration of 10 µM was used as a positive control.
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Figure 1. The establishment of mimic hypoxia/reoxygenation model in H9c2 cells; (A) Effects of different concentrations
of Na2S2O4 on the viability of cardiomyocytes. (B) Effects of 4 mM Na2S2O4 hypoxia treatment on the viability of
H9c2 cardiomyocytes at different hypoxia times. ### p < 0.001 vs. blank. (C) Effects of 4 mM Na2S2O4 treatment on
the viability of H9c2 cardiomyocytes at different reoxygenation times. ### p < 0.001 vs. blank. (D) Effects of different
concentrations of resveratrol/gallic acid on the survival rate of H9c2 cells. First (from left to right): cytotoxicity of resveratrol
on H9c2 cells using MTT assay. Second: cytotoxicity of gallic acid to H9c2 cells using MTT assay. Third: resveratrol at
different concentrations affected the survival rate of H9c2 cardiomyocytes after hypoxia for 2 h and reoxygenation for 2 h.
Fourth: gallic acid at different concentrations affected the survival rate of H9c2 cardiomyocytes after hypoxia for 2 h and
reoxygenation for 2 h. # p < 0.05; ## p < 0.01; ### p < 0.001 vs. blank. *** p < 0.001 vs. model.

2.2. Anastatins and Their Derivatives Improve the Viability of H9c2 Cells
Subjected to H/R Treatment

First, we examined the effects of anastatins A and B (Figure 2A,B) and their deriva-
tives on the viability of H9c2 cells in an MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-
phenytetrazoliumromide) assay [13]. Compounds 20a, 21a, 22a, 20b, 22b, 20c, 20c′, 21c, 22c,
10, and 11 were not significantly cytotoxic to H9c2 cells (Figure 3A,B, Table S2). Anastatins
A and B, their derivatives, and resveratrol (positive control) reversed hypoxia-induced cell
damage (Figure 4). In the model group, cell viability was decreased to 20.31%, which was
increased to 82.68% by resveratrol, and anastatin A and compounds 22b, 22c, 24b, 24c, 13,
and 14 increased the cell survival rate to more than 70% (71.49, 71.00, 76.50, 73.24, 77.57,
80.82, and 77.13%, respectively). Therefore, compound 13 (Figure 2C) had the strongest
protective effect among the anastatins derivatives from H/R injury and was used in the
subsequent experiments.

Figure 2. (A) Chemical structures of (±) anastatins A, (B) (±) anastatins B, and (C) compound 13.
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Figure 3. Cytotoxicity of anastatins A and B and their derivatives (10 µM) to H9c2 cardiomyocytes. (A) Cell viability was
determined in H9c2 cells treated with anastatin A and its derivatives. (B) Cell viability was determined in H9c2 cells treated
with anastatin B and its derivatives # p < 0.05; ## p < 0.01; ### p < 0.001 vs. blank.

Figure 4. Anastatins A and B and their derivatives improved cell viability in H/R-stimulated H9c2 cells. (A) Anastatin
A, its derivatives, and resveratrol at a final concentration of 10 µM protected H9c2 cells against H/R-induced damage.
(B) Anastatin B, its derivatives, and resveratrol at a final concentration of 10 µM protected H9c2 cells against H/R-induced
damage. ### p < 0.001 vs. blank. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. model.

2.3. Compound 13 Alleviates H/R-Induced Cell Damage and Oxidative Stress

In order to explore the antioxidant capacity of the compound, three oxidative stress
indicators, LDH (lactate dehydrogenase), GSH (L-Glutathione), and SOD (superoxide
dismutase), were selected to evaluate the antioxidant capacity of compounds. LDH is the
stable cytoplasmic enzyme present in myocardial cells, which is rapidly released from cell to
cell culture medium upon myocardial cell membrane injury. The more serious the injury, the
higher the level of LDH in the culture medium. Figure 5A demonstrated that 2 h of hypoxia
followed by 2 h of reoxygenation significantly increased LDH release (478.98 U/L vs.
55.84 U/L in the blank group, p < 0.001), which was inhibited by resveratrol (284.07 U/L vs.
the model group (H/R model), p < 0.01) and compound 13 (276.61 U/L vs. the model group,
p < 0.001). GSH can act as a hydrogen donor for glutathione catalase (CAT), eliminating
O2− and its derivatives in the organism, thereby cells are protected from oxidant damage.
Additionally, SOD can catalyze the disproportionation of superoxide anions and protect
cells from damage. As shown in Figure 5B,C, compound 13 significantly increased GSH
release and SOD activity (p < 0.01). It increased GSH level to 39.93 µmol/gprot which was
higher than the level in the model group (18.2 µmol/gprot) but slightly lower than that in
the resveratrol group. Additionally, it reversed H/R-induced reduction in SOD activity by
increasing SOD level from 12.00 U/mgprot to 22.98 U/mgprot. These findings demonstrate
that compound 13 has a protective effect on H9c2 cells subjected to H/R treatment.
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Figure 5. Compound 13 attenuated H/R-induced cell injury and oxidative stress in H9c2 cells.
(A) Cell injury was determined by measuring LDH (lactate dehydrogenase) release in H9c2 cells
under H/R treatment. ### p < 0.001 vs. blank. ** p < 0.01, *** p < 0.001 vs. model. (B) Oxidative stress
was evaluated by measuring GSH (L-Glutathione) content in cell supernatants. ### p < 0.001 vs. blank.
*** p < 0.001 vs. model. (C) Oxidative stress was also evaluated by measuring SOD (superoxide
dismutase) activity in cell supernatants. # p < 0.05 vs. blank. * p < 0.05, ** p < 0.01 vs. model.

2.4. Antioxidant Capacity of Compound 13

Vitamin C (VC) was used as an antioxidant control in order to evaluate the antioxidant
effects of resveratrol and compound 13 intuitively. FRAP assay was used to evaluate
the reducing power of the compound that can transfer ions from Fe3+ into Fe2+ to de-
termine the antioxidant capacity of compounds. The results of the experiment showed
that the reducing power of compound 13 was 354.80 mg/mmol, significantly stronger
than the values obtained for the positive control Vc (127.47 mg/mmol) and resveratrol
(261.91 mg/mmol) (Figure 6A). ABTS (2’-Azinobis-(3-ethylbenzthiazoline-6-sulphonate)
and DPPH (2,2-Diphenyl-1-picrylhydrazyl) are stable free radicals in solvent, but when a
radical scavenger is added to the solvent, the result is a reduction in the number of free
radicals and the degree of reduction in the number of free radicals is directly proportional
to the antioxidant capacity. Figure 6B, C show the ABTS and DPPH radical scavenging
abilities of compound 13. The results indicate that compound 13 had the strongest scaveng-
ing activity on ABTS and DPPH with EC50 values of 1.38 and 0.07 mM, respectively. The
antioxidant capacities of the compounds tested in all three antioxidant assays followed the
same trend: compound 13 > resveratrol. Therefore, the antioxidant capacity of compound
13 may be higher than those of other typical antioxidants.

Figure 6. In vitro antioxidant capabilities. FRAP (A), ABTS (B), and DPPH (C) assay results of Vc,
resveratrol, and compound 13. *** p < 0.001 vs Vc group.
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2.5. Effects of Anastatin Derivative 13 on Myocardial I/R Injury in Rats
2.5.1. Effects of Compound 13 on Oxidative Stress and Antioxidant Enzyme Activities

The level of myocardial injury was assessed by detecting the oxidative stress marker
and antioxidant enzyme activities. The effects of compound 13 on MDA (malondialdehyde)
activity in myocardial tissue, as well as the levels of LDH, CK (Creatine Kinase), GSH, and
SOD in serum were assessed. As shown in Figure 7, I/R injury resulted in an increase in the
levels of LDH (Figure 7A) and CK (Figure 7B) and a significant decrease in GSH (Figure 7C)
and SOD activities (Figure 7D) (p < 0.001). The level of MDA (Figure 7E) increases after
I/R injury, which is a critical diagnostic marker of I/R injury. However, pretreatment
with a positive control drug and different concentrations of compound 13 significantly
alleviated these injuries. LDH activity obtained for the I/R model group was 771.37 U/mL,
which was remarkably decreased to 416.129 U/mL under resveratrol treatment. In the high-
and low-dose 13 groups, LDH activity decreased to 408.05 and 462.81 U/mL, respectively.
Similar trends were observed for other myocardial injury markers, including the level
of CK, GSH, SOD, and MDA release. These results indicated that compound 13 exerted
protective effects against oxidative stress-induced I/R injury in a dose-dependent manner.

Figure 7. Compound 13 protected against myocardial injury in rats. Levels of LDH (A), CK (B),
GSH (C), SOD (D) in serum and MDA (E) in myocardial homogenate in different treatment groups.
### p < 0.001 vs. blank. ** p < 0.001 vs. model. *** p < 0.001 vs. model.

2.5.2. Effects of Compound 13 on Electrocardiogram (ECG) Changes and Heart Rate

Typical ECG (electrocardiogram) changes induced by myocardial I/R injury are shown
in Figure 8. Compared with normal ECG (Figure 8A), myocardial I/R injury can cause QRS
(part of electrocardiographic wave) amplitude increase (Figure 8B); QRS wave and ST wave
fusion (Figure 8C); ST segment (the interval between the S wave and the T wave) elevation
(Figure 8D); and ST segment inversion (Figure 8E). After 15 min of LAD ligation, QRS
amplitude was significantly increased from around 0.5 mV to 1.2 mV in the model group
(Figure 9A), while a lower QRS amplitude increase was observed in all of the treatment
groups (from around 0.4 mV to 1, 0.8, and 0.6 mV for the resveratrol, low dose 13, and high
dose 13 group, respectively) (Figure 9B–D). Additionally, a similar trend was observed
at the ligation of 30 min. During the reperfusion, the QRS amplitude started to decrease;
however, the QRS wave in the model group remained the highest in the whole period.
After 20 min of reperfusion, the QRS amplitude in the model group reduced to about
0.8 mV, the value in the treatment group was about 0.6, 0.5, 0.5 mV for the resveratrol,
low dose 13, and high dose 13 group, respectively. Overall, the treatment of resveratrol,
low dose 13, and high dose 13 all reduced pathological QRS amplitude increase compared
with the model group during both ischemia and the early reperfusion process, which may
attributed to their myocardial protective activity.
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Figure 8. Typical myocardial I/R injury on ECG. (A) Normal rat ECG; (B) QRS amplitude increase;
(C) QRS wave and ST wave fusion; (D) ST segment elevation; (E) ST segment inversion.

Figure 9. ECGs of rats with myocardial I/R injury in the model group (A), resveratrol group (B),
low-dose 13 group (C), and high-dose 13 group (D).

Along with the monitoring of ECG, the changes in heart rates were detected closely.
As shown in Table S3, 30 min of ligation reduced the heart rate dramatically in all groups,
while no significant differences were detected between any of the treatment groups and
model groups. After 2 h of reperfusion, heart rates increased but no significant changes
were found among any of the groups.

2.5.3. Effects of Compound 13 on Infarcted Area and Histopathological Changes

To evaluate the level of myocardial injury, heart tissues were stained by TTC (2,3,5-
Triphenyltetrazolium chloride) and histopathological changes were detected. As shown
in Figure 10, in the sham group, no changes were observed in the myocardium following
TTC staining while a scale of about 30% of white infarcted areas were observed in the
I/R group. In the resveratrol group and low-dose 13 group, infarcted areas were signif-
icantly diminished to around 10% and the infarcted area in the high-dose 13 group was
minimized to around 5%. Figure 10 shows the result of HE (hematoxylin eosin) staining
examination: enlargement of cardiac cells, partially dissolved membranes and nuclei,
and inflammatory cell infiltration were observed in tissue sections from the model group.
However, pretreatment with compound 13 significantly alleviated these histopathological
changes. The results of TTC staining and HE staining indicated that compound 13 can
reduce I/R-induced myocardial infarction in a dose-dependent manner.
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Figure 10. Effect of resveratrol, low-dose 13, and high-dose 13 on I/R-induced myocardial infarction.
(A) TTC-stained images of rat heart sections from each group. (B) Pathological morphology of
the myocardial tissue of rats with myocardial I/R injury. Heart tissues were stained with HE and
visualized under a light microscope at 100× and 400×magnifications. (C) The percentage of infarct
area in the area at risk in each group. Values were determined as means ± standard error. # p < 0.05
vs. sham group. * p < 0.05 vs. I/R group.

3. Discussion

Aiming at the potential antioxidant activity of anastatins A and B, our laboratory
synthesized 24 derivatives of anastatins and conducted a preliminary analysis of the cyto-
toxicity of compounds against PC-12 and their cytoprotective activities in H2O2-induced
oxidative damage [13]. In this study, we mainly conducted the in-depth biological evalua-
tion of 13 of the 24 derivatives with the strongest antioxidant activities.

In the present study, myocardial I/R injury was established in H9c2 cells through
induction with H/R treatment. The results of the study indicated that anastatins A and B
and their studied derivatives improved the viability of H9c2 cells following H/R treatment.
Compound 13 was found to be the most potent among the 26 compounds studied and
therefore was selected for further evaluation. The activities of LDH (a marker of cell
injury), SOD, and GSH (oxidative stress markers) were detected in the supernatants of
H9c2 cells following H/R treatment. We found that pretreatment with the test compounds
significantly decreased LDH level and increased SOD and GSH levels in the cells. Thus,
we hypothesized that anastatin derivatives possessed cardioprotective activity that may
be attributed to their ability to suppress oxidative stress. The DPPH and ABTS assays are
used to evaluate radical-scavenging power of the compound [14]. As a result, compound
13 had high antioxidant power, and it scavenged ABTS and DPPH at low EC50 values,
further indicating suppression of oxidative stress. LAD ligation is a common method used
to establish myocardial I/R models. By assessing the amplitude of QRS complex before
ischemia, after ischemia, and after reperfusion, we found that pretreatment with compound
13 can alleviate ventricular arrhythmia significantly during ischemia and early reperfusion.
Furthermore, compound 13 affected the infarction areas and histopathological changes
of myocardial infarction as well. These results, along with the findings that compound
13 suppressed oxidative stress and increased the levels of antioxidant enzymes in rat
serum in a dose-dependent manner, showed that compound 13 had a potent effect against
myocardial injury.

In conclusion, anastatin derivatives had potent antioxidant capabilities, with com-
pound 13 showing the highest antioxidant activity among the tested compounds. The
mechanisms responsible for the effect of anastatins derivatives on oxidative stress-related
signaling pathways still need to be discussed. Astaxanthin (subtype of carotenoid) can scav-
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enge ROS and further alleviates ischemia/reperfusion injury [15]. Drugs with the potential
to prevent ROS generation might be promising in oxidative stress-related diseases [4]
such as cell therapy and cardiovascular diseases. Furthermore, ROS suppress the hypoxic
induction of hypoxia inducible factor-1 (HIF-1) target gene expression, which is reported
to have a cardioprotective effect on ischemia-reperfusion injury [16]. We hypothesize that
ROS and HIF-1 regulatory protein may play a crucial role in the cardioprotective effect of
compound 13. Tournefolic acid B (TAB), which is derived from a Chinese herbal medicine,
protects against myocardial I/R injury [17]. The study revealed the important roles of TAB
in endoplasmic reticulum (ER) stress, apoptosis, and PI3K (phosphatidylinositol 3 kinase)
/AKT (protein kinase B) pathways in the management of myocardial I/R injury. Other
pathways, such as the mitogen-activated protein kinase (MAPK) pathway [18] and AMPK
(Adenosine 5‘-monophosphate-activated protein kinase) signaling pathway [19], may also
be involved in myocardial I/R injury. Therefore, the next step is to start with ROS and HIF-1
regulatory proteins, and use TAB-mediated pathways to explore the mechanisms by which
13 exerts an antioxidant effect and protects myocardial I/R. Moreover, the experiments at
the cell level in this study should also be carried out in human cell lines.

4. Materials and Methods
4.1. Cell Culture

Rat cardiomyocyte H9c2 cell line was purchased from Nanjing Kebai Biotechnol-
ogy Company (Nanjing, China). Cells were cultured in DMEM/High glucose (Hyclone,
USA) and supplemented with 10% FBS (Lanzhou Minhai Biological Engineering co. LTD,
Lanzhou, China) and 1% penicillin/streptomycin (Hyclone, Marlborough, MA, USA) in a
humidified incobator at 37 ◦C with 5% CO2.

4.2. Cell Viability Assay

Cell viability was measured using the MTT assay. H9c2 cells were seeded in a 96-well
plate at 1 × 104 cells/well for 24 h. Afterwards, cells were treated with Anastatins A and B,
and their derivatives for 48 h or pretreated with Anastatins A and B, and their derivatives
followed by H/R treatment. Then, the MTT (20 µL/well) was added and cultured at 37 ◦C
for 4 h. The absorbance was measured at 578 nm by using a microplate reader (Tecan,
Infinite 50). The cell viability in the blank group was considered 100%.

4.3. Hypoxia/Reoxygenation (H/R) Model and Drug Administration
4.3.1. H/R Model

Na2S2O4 was used to mimic the hypoxic condition, which reacts with [20] oxygen
and reduces the oxygen tension. A variety of seven concentrations of 0.5, 1, 2, 3, 4, 5,
or 6 mM were conducted to determine the optimal concentrations of Na2S2O4. To select
optimal hypoxia time, cultures of 0.5, 1, 2, 3, or 4 h were conducted after Na2S2O4 solution
treatment. The culture under normal DMEM/high glucose medium for 0, 1, 2, 3, or 4 h
was conducted to mimic the reoxygenation time [21].

4.3.2. Drug Administration

For drug administration, anastatins A and B and their derivatives (chemical structures
in Table S1) were separated into two groups: anastatins A and its derivatives, and anas-
tatins B and its derivatives. Resveratrol, which was reported to have a cardio-protective
effect through its antioxidant activity, was used as a positive control. To determine the
concentration of the positive control, resveratrol and another antioxidant compound, gallic
acid (3–100 µM), were evaluated using MTT assay in which cells were treated for 48 h [22].
In general, H9c2 cells were pretreated with anastatins A and B and their derivatives (10 µM
of final concentration) as well as 10 µM of resveratrol for 30 min before H/R treatment.
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4.4. Antioxidant Capacity Evaluation
4.4.1. Ferric Reducing Antioxidant Power (FRAP) Assay

The FRAP assay was done according to Qiyuan’s method [23]. A total of 25 µL of
1% potassium ferricyanide K3Fe(CN)6 was pipetted and 10 µL of compound 13, vitamin
c (ascorbic acid, Vc), and resveratrol (0.02–20 mM) plus 1 × PBS (pH = 6.6) were added.
The mixture was kept in 50 ◦C water baths for 20 min followed by rapid ice cooling.
Then, 25 µL of 10% trichloroacetic acid (TCA), 0.1% ferric chloride (FeCl3), and distilled
water were added in sequence. The mixture was transferred into a 96-well plate and the
absorbance was analyzed at 650 nm. Vc solution (20–200 µg/mL) was used to build a
standard curve. The antioxidant capabilities were calculated from the linear calibration
curve and represented as Vc equivalents.

4.4.2. ABTS Method

The ABTS radical scavenging activity [24] was performed according to Sugahara et al.
and Re et al. ABTS solution was diluted to adjust the absorbance spectrophotometrically
at 650 of 0.70 ± 0.02 nm, and ABTS scavenging activities were measured according to the
following formula, E = ((Acontrol − Ablank) − (A2 − A1)/(Acontrol − Ablank)) × 10, where
Acontrol is the absorbance of the control reaction containing 130 µL ABTS•+ working solution
and 5.5 µL sample diluent (DMSO), and Ablank is the absorbance of 130 µL sodium acetate
buffer and 5.5 µL DMSO. A1 is the absorbance of 130 µL ABTS•+ working solution (sodium
acetate buffer) and 5.5 µL of compound 13 (0.02–20 mM), and A2 is the absorbance of
130 µL sodium acetate buffer and 5.5 µL of compound 13 (0.02–20 mM). All mixtures were
vortexed for 30 s and incubated at room temperature for 10 min followed by measuring
the absorbance at 650 nm. The EC50 was calculated using the linear relation between the
compound concentration and the probability of the percentage of ABTS inhibition.

4.5. Ischemia-Reperfusion Model
4.5.1. Animal Care

Sprague Dawley (SD) rats were obtained from PLA Mi1itary Academy of Medical
Sciences Laboratory Animal Center (Beijing, China). Fifty male SD rats weighing from
250–280 g were acclimated for one week under room temperature of 23 ± 1 ◦C with a
12 h light/dark cycle and food and water were provided. Rats were divided into five
groups: the blank group (rats received no treatment but sham operation), the model
group (rats received vehicle treatment and MI/R operation), the resveratrol group (rats
received 200 mg/kg resveratrol and MI/R operation), the low dose 13 group (rats received
100 mg/kg compound 13 and MI/R operation), and the high dose 13 group (rats received
200 mg/kg compound 13 and MI/R operation). Compounds were formulated in 0.5%
sodium carboxymethylcellulose and dosed as a suspension at 1 mL/kg orally once daily for
seven days. All animal experiments carried out in accordance with the National Institutes
of Health guide for the care and use of laboratory animals and approved by the Academic
Committee of Tianjin University of Science and Technology.

4.5.2. Experimental Protocol

Sprague Dawley rats were anesthetized with 20% urethan (0.8 mL/100 g) and we then
performed myocardial ischemia by left anterior descending (LAD) ligation. The heart was
exposed through a left thoracic incision and placed on a 4–0 silk suture to perform regional
ischemia for 30 min of ischemia followed by 2 h of reperfusion. The evidence of myocardial
ischemia was confirmed by ST segment elevation and QRS amplitude increase. During
the experiment, rats were maintained on a ventilator DW3000 (Beijing Zhishu Duobao
Biological Technology Co. Ltd, Beijing, China). Heart rate and ECGs were monitored
through biological signal acquisition system MD3000 (Beijing Zhishu Duobao Biological
Technology Co. Ltd, Beijing, China). After monitoring the ischemia/reperfusion process,
the rats were sacrificed and blood samples and heart homogenates were used to detect
myocardial injury using detective commercial kits.
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4.5.3. TTC Staining and HE Staining

Extent of ischemic area was quantified by triphenyl tetrazolium chloride (TTC) stain-
ing. The heart samples were frozen immediately in −20 ◦C for 10 min and five slices
of thin 1 to 2 mm slices were made. Then, the slices were placed in 1% TTC phosphate
buffer (pH = 7.0) and stained at 37 ◦C for 20 min and were fixed in formalin. Images were
obtained using a digital camera, and the percentage of infracted area (TTC-negative) and
area at risk (TTC-positive) were measured using ImageJ software [25]. For HE staining,
infarcted area was excised and fixed in 10% formaldehyde and then embedded in paraffin.
After that, tissues were stained with HE (hematoxylin eosin) and examined under a light
microscope. Dehydrated embedded sections and sealing sections were commissioned by
Tianjin YiSheng Yuan Bio-technology Company (Tianjin, China).

4.6. Spectrophotometric Commercial Kits

Commercial kits used in this research were purchased from Beijing Solarbio Science
& Technology Co. Ltd. (Beijing, China) and Nanjing Jiancheng Bioengineering Com-
pany (Nanjing, China). In the rat serum and cell supernatant, myocardial injury marker,
lactate dehydrogenase (LDH), creatine kinase (CK), glutathione (GSH) and superoxide
dismutase (SOD) activities were evaluated. Malonyldialdehyde (MDA) activities were
measured using rat heart homogenate. All commercial kits were conducted following the
manufacturer’s instruction.

4.7. Statistics Process

All the experiments were repeated at least three times. The experimental data was
processed using GraphPad Prism7 software, and the experimental result of each group
was expressed as mean ± standard deviation (x ± s). The t-test was used to compare the
statistical significance between the groups. P < 0.05 was recorded as statistically significant.

Supplementary Materials: The following are available online, Table S1: Compounds screened for an-
tioxidant activity, Table S2: Effects of anastatins A and B and their derivatives on hypoxia/reoxygenation
injury in H9C2 cells, Table S3: Heart rate (bpm) following LAD ligation in rats.
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