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Self-assembly of ternary hollow 
microspheres with strong wideband 
microwave absorption and 
controllable microwave absorption 
properties
Qiang Zeng1, Ping Chen1, Qi Yu2, Hai-rong Chu1, Xu-hai Xiong2, Dong-wei Xu1 & Qi Wang2

In this study, we report a simple and efficient two-step method consisting of water-in-oil (W/O) 
emulsion technique and subsequent annealing process for synthesizing the hollow reduced graphene 
oxide microspheres embedded with Co nanoparticles (Air@rGO€Co). The microspheres showed 
good electromagnetic properties because of the coexistence of magnetic loss and dielectric loss to 
microwaves. The minimum reflection loss (RLmin) value of S1.5 reaches −68.1 dB at 13.8 GHz with a 
thickness of 2.2 mm, and the absorption bandwidth (lower than −10 dB) is 7.1 GHz covering from 
10.9 GHz to 18.0 GHz. More interestingly, we can easily controll the microwave absorbing properties 
of the microspheres by changing the ratio of the two components in the composites. The excellent 
electromagnetic match at the corresponding resonance peaks for dielectric and magnetic loss play 
an important role in improving microwave absorption property. Our study provides a good potential 
method for preparation of lightweight microwave absorbing materials.

The rapid development of modern science and technology such as radar technology and modern electronic infor-
mation industry has promoted increasing demand for high effective microwave absorbing (MA) materials. For 
example, stealth airplane, stealthy warship, and microwave darkroom1–3. The ideal microwave absorbing mate-
rials should possess the characteristics of thin thickness, low density, strong absorption over a broad frequency, 
and good chemical stability4, 5. Generally, basis on their microwave loss mechanism, the MA materials can be 
classified into two categories, including dielectric loss and magnetic loss6. The loss mechanism of dielectric mate-
rials such as carbon nanotubes (CNTs), graphene, carbon nanofibers (CNFs) and reduced graphene oxide (rGO) 
is mainly attributed to their dipolar relaxation polarization. These carbon-based materials although have some 
advantages such as chemical stability and light weight, but the out of balance of their dielectric permittivity and 
magnetic permeability will lead to most of the incident microwaves being reflected rather than absorbed5, 7. While 
the magnetic materials such as Fe3O4, Co3O4, Fe, Ni and Co although have strong magnetic loss, but the problems 
such as easy oxidation and high density have also hampered their applications8.

Thus, constructing the composite absorbers with both high dielectric and magnetic loss has attracted a lot 
of attention, which always exhibit strong microwave absorption properties. Wang and their colleagues prepared 
graphene@Fe3O4@C@PANI composites with the mimimum reflection loss (RL) of the composites reached 
−44.2 dB at 11.4 GHz at the thickness of 3.0 mm9. Li et al. prepared SWCNT/CoFe2O4 nanocomposites with the 
mimimum reflection loss at 12.9 GHz and the reflection loss value of −30.7 dB at a thickness of 2.0 mm10. Wang  
et al. reported excellent MA material via an in situ oxidation polymerization of pyrrole in an aqueous dispersion 
of Co nanoparticles. The as-synthesized composites with a coating layer thickness of 2.0 mm exhibited a max-
imum absorption of −33dB at 13.6 GHz as well as a bandwidth of 4.8 GHz (at a frequency of 11.7–16.5 GHz) 
corresponding to reflection loss lower than −10 dB11. Zong et al. synthesized RGO/CoFe2O4 composites by a 
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one-pot hydrothermal route12, the mimimum RL of the composite is −47.9 dB at 12.4 GHz with a thickness of 
2.3 mm, and from 12.4 to 17.4 GHz the RL of the composites below −10 dB. Huang et al. synthesized graphene@
Fe3O4@carbon nanocomposites, the mimimum reflection loss of the nanocomposites is −30.1 dB at 14.8 GHz 
with a thickness of only 1.8 mm, and the reflection loss below −10dB is ranges from 12.1 to 17.5 GHz13. Ren et al.  
prepared RGO–CoFe2O4/GNSs composites and obtained the minimum reflection loss value of −21.8 dB at 
11.8 GHz with 13 wt% filler content, and the frequency bandwidth less than −10 dB is from 9.6 to 12.4 GHz14. Pan 
et al. studied the microwave absorption properties of α-Co/graphene composites and β-Co/graphene composites, 
the results showed that the α-Co/graphene composites have excellent MA property, and the matching frequency 
for reflection loss exceeded −47.5 dB was at 11.9 GHz15.

In the last few years, microcapsule techniques have gained an increasing attention due to their high potential-
ities in many fields, such as self-healing materials, drug delivery and anti-corrosion field. White et al. prepared a 
structural polymeric material with the ability to autonomically heal cracks16. The material incorporates a micro-
encapsulated healing agent that is released upon crack intrusion, afte that, polymerization of the healing agent 
is then triggered by contact with an embedded catalyst, and bonding the crack faces. The fracture experiments 
yield as much as 75% recovery in toughness. Xiong et al. report a novel capsule-based selfrecovery system that 
utilizes chloride ions as a trigger17. Those capsules, which are functionalized via a smart response to chloride ions, 
are fabricated using a silver alginate hydrogel that disintegrates upon contact with chloride ions, and thereby 
releases the activated core materials which can be precipitated with chloride ions. They introduce the capsules 
into cementitious materials, and prove the capsules still can be responsive to chloride ions in concrete matrix. 
Therefore, the capsules will be a promising candidate for building materials and prolong the life of construction 
and building materials, especially in marine environment. Wang et al. fabricated a self-immunity microcapsule 
which can be triggered by low pH values, and calcium hydroxide can be controllably released to regulate the envi-
ronmental pH condition and decrease the [Cl−]/[OH−] ratio, reach corrosion protection of steel bar in reinforced 
concrete. Furthermore, test results show that the release rate of core materials could interact with environmental 
pH value; the rate increases markedly with decreasing pH value, but is inhibited by high pH values18. Cui et al. 
fabricated multi-stimuli responsive smart chitosan-based microcapsules (MSRS-CS-MCs) via a facile sonochem-
ical method19. The obtained spherical MSRS-CS-MCs with the average size of 500 nm showed excellent magnetic 
responsive ability, favorable selectively folate-receptor-mediated targeting functionality to the HeLa cells, and 
attractive reduction-responsive release ability for hydrophobic drugs, which make MSRS-CS-MCs promising 
nanocarriers for future biomedical applications.

MA performances of microwave absorbing materials are closely related to their microstructures20, 21. In order 
to improve the dielectric-magnetic composite MA performance further, many efforts have been devoted to devel-
oping novel MA absorber with special structures, such as barium ferrite@poly (3,4-ethylenedioxy thiophene), 
Fe3O4@TiO2, Fe3O4@ZnO, Ni@P, CoNi@SiO2@TiO2, CoNi@Air@TiO2

1, 22–27. These core/shell or Yolk/shell mul-
ticomponent hierarchical microspheres with magnetic/dielectric absorption components, can generate tunable 
reflection loss by changing the type and relative content of core/shell component, thereby improving the imped-
ance matching in terms of complex permittivity and permeability. Typically, based on our previous works, it 
confirms that hollow hybrid 3D microspheres have excellent MA performance28.

Herein, we report a facile and efficient procedure for preparation of hollow hybrid 3D microspheres (Air@
rGO€Co microspheres), in which Co nanoparticles were embedded within the spongy shell assembled by rGO 
nanosheets. These Air@rGO€Co microspheres show strong wide band and controllable microwave absorption 
properties. The minimum reflection loss (RLmin) value of S1.5 reaches −68.1 dB at 13.8 GHz with a thickness of 
2.2 mm, and the absorption bandwidth (lower than −10 dB) is 7.1 GHz covering from 10.9 GHz to 18.0 GHz. The 
excellent absorption capability could be attributed to the special 3D morphology with hollow cavities, the intrin-
sic magnetic loss from Co nanoparticles and dielectric polarization loss from the rGO nanosheets. Interestingly, 
we can easily controll the microwave absorbing properties of the microspheres by changing the ratio of the two 
components in the composites.

Experimental section
Materials.  All chemical regents including concentrated hydrochloric acid (HCl), polyvinyl alcohol, ethyl alco-
hol and acetylacetone cobalt(II)(AACo) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, 
China). Olive oil (Olivoilà) and deionized water obtained from a Milli-Q system (Millipore, Bedford, MA) were 
used.

Preparation of GO aqueous dispersion.  GO was synthesized from natural graphite powder using a mod-
ified Hummers method28. The resulting solid GO were dispersed in water under ultrasound treatment to obtain 
an aqueous dispersion of GO nanosheets (4.5 mg ml−1).

Synthesis of the Air@rGO€Co microsphere.  Polyvinyl alcohol (PVA, 0.3 g), acetylacetone cobalt 
(AACo, 1.5 g) and absolute ethyl alcohol (50 ml) were mixed with GO suspension (4.5 mg ml−1, 20 ml) and stirred 
for several hours to obtain homogeneous suspension. The obtained suspension was then slowly added into the 
hot olive oil (preheated to 75 °C) under intense stirring (6000 r min−1) to form stable water-in-oil emulsions. The 
emulsion system was kept stirring with speed of ~500 r min−1 for two hours at 75 °C to remove the ethyl alcohol, 
followed by heated to 95 °C with continuously stirring for another two hours to remove the water and the remain-
ing ethyl alcohol. Finally, the emulsion system was cooled down to room temperature and the GO/AACo/PVA 
microspheres were separated and purified by centrifugation, washing and drying. The obtained microspheres 
precursor was calcined at 550 °C in Ar atmosphere for two hours to obtain the Air@rGO€Co microspheres and 
labeled as S1.5. The schematic illustration for the self-assembly process of Air@rGO€Co microspheres is shown 
in Fig. 1. For comparison, GO/AACo/PVA microspheres with different amounts of AACo (0, 0.5, 1.0, 2.0, and 
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2.5 g) were addedthe, and the corresponding Air@rGO€Co microspheres were labeled as S0, S0.5, S1.0, S2.0 and S2.5, 
respectively. Pure Co nanoparticles were prepared by calcining AACo in the same conditions and labeled as Sp.

Characterization.  The composition and phase purity of the as-synthesized samples were analyzed by X-ray 
diffraction (XRD) with monochromatized Cu-Kα incident radiation by a Rigaku D/Max-2400 instrument oper-
ating at 12 kV voltage. The size and morphology of the samples were characterized by a Hitachi Su3500 scanning 
electron microscope (SEM) equipped with an energy dispersive spectrometer (XFlash 5030, Bruker, Germany), 
along with a field–emission transmission electron microscope (TEM, Tecnai F30, USA). AFM analysis was con-
ducted on a PicoScanTM 2500(USA). X-ray photoelectron spectroscopy (XPS) was recorded on an ESCALAB 
250 spectrometer (Thermo Fisher) to characterize the surface composition. The complex permittivity and per-
meability were measured using the waveguide technique at the frequency range of 1−18 GHz with an Agilent 
8720ET network analyzer. These products were uniformly blended with paraffin matrix with a mass ratio of 1:2, 
and the mixture was cast into a ring mold with thickness of 2.0 mm, inner diameter of 3 mm, and outer diameter 
of 7 mm.

Results and Discussion
The synthesis process of Air@rGO€Co microsphere is depicted in Fig. 1, where PVA acts as the binder between 
AACo particles and GO nanosheets as well as the framework of microsphere, which can be ablated off after 
calcination in Ar atmosphere. In the calcination process, GO nanosheets which have been reduced to rGO were 
linked together by the reactions of rested hydroxy, epoxy and carboxy group. Simultaneously, PVA was pyrolyzed 
and AACo particles were calcined to be Co nanoparticles at high temperature. The crystallinity of the nanopar-
ticles was characterized by X-ray diffraction (XRD). As seen from Fig. 2a, all diffraction peaks can be assigned 
to the (111), (200) and (220) lattice planes of the cubic spinel structured Co (JCPDS No.15–0806). The appear-
ance of diffraction hump (002), which originates from the short-range order of stacked graphene sheets, and the 
disappearance of diffraction peak (001) confirm that the GO sheets were completely reduced in the calcination 
process29, 30. The chemical composition of S1.5 was studied by X-ray photoelectron spectroscopy (XPS). The peaks 
associated with C 1 s, O 1 s, and Co2p indicate that the microsphere consists of three elements including C, O and 
Co (Fig. 2b).

Figure 3a,b show a representative scanning electron microscopy (SEM) images of the Air@rGO€Co micro-
spheres (S1.5), which show hollow spherical structure. The size of microspheres is not uniform and their diameters 
are normally distributed, and the size distribution analysis of Air@rGO€Co microspheres was shown in Fig. S1 
(Supplementary information). The result shows that the range of microspheres diameters is 3 to 6 μm, and the 

Figure 1.  A schematic illustration for the self-assembly process of Air@rGO€Co microspheres.

Figure 2.  (a) XRD patterns of S1.5 (b) The XPS full spectrun of S1.5.

http://S1
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mean diameter is 4.2 μm. There presents a hollow-core construction in the interior of the microspheres and the 
thickness of the spongy shell is about 0.5 μm (Fig. 3b). Transmission electron microscopy (TEM) images in Fig. 3c 
show that Co nanoparticles are sandwiched between the rGO nanosheets with an average size of 7 nm. Moreover, 
the high-resolution image (as shown in Fig. 3d) revealed a distance between atoms of ca. 0.20 nm, which corre-
sponds to the distance between the (111) planes of Co. The energy disperse spectroscopy (EDS) elemental map-
pings (Fig. S2d–f, Supplementary information) show different distribution patterns for C, O and Co elements. 
The EDS line scanning analyses (Fig. S2c, Supplementary information) reveal that the relative concentration of 
Co element increases from outer to inner surface of the microsphere wall, which will be benefit to improve the 
corrosion resistance of the Air@rGO€Co microspheres.

The electromagnetic properties (complex permittivity and permeability) of Air@rGO€Co microspheres were 
investigated in the frequency range of 1.0−18.0 GHz at room temperature. The real permittivity (ε′) and real 
permeability (μ′) represent the storage ability for electromagnetic energy, and the imaginary permittivity (ε″) 
and imaginary permeability (μ″) are an expression for the dissipation of energy and magnetic loss, respectively31. 
The dielectric loss tangent (tan δε = ε″/ε′) and the magnetic loss tangent (tan δμ = μ″/μ′) are used to describe the 
corresponding dielectric and magnetic loss ability32, 33.

The samples used for the measurement of electromagnetic properties were prepared by mixing the paraffin 
wax and Air@rGO€Co microspheres (mass ratio was 2:1). As shown in Fig. 4a, the real part of permittivity (ε′) 
value of S1.5 is located within the range of 6–12, and the imaginary part of permittivity (ε″) value is located within 
the range of 3.1–4.3. The parameters of the relative complex permeability for the sample is shown in Fig. 4b, the 
real part of permeability (μ′) values display a decrease trend with the increase of frequency, and the imaginary 
part of permeability (μ″) value is within the range of 0.15–−0.17.

The dielectric loss tangent and the magnetic loss tangent are shown in Fig. 4c. The presence of multiple loss 
peaks on the dielectric loss tangent curve suggests complex dissipation mechanisms of dielectric loss process. 
Multiple polarization processes may cause these resonance peaks, including the interface polarization induced by 
the presence interface between the Co and rGO34, and the polarization of existing defects and functional groups 
in the rGO35. Multi-resonance peaks which are induced by multiple magnetic loss mechanisms can be observed 
at 2–16.5 GHz in the magnetic loss tangent curves36, 37. The peaks detected at the low-frequency range of 2–6 GHz 
are related to natural resonance38, and the resonance peaks appearing in the middle-frequency (6–12 GHz) are 
ascribed to the dipolar polarization and exchange resonances36, 39, 40. According to the Maxwell equations, a mag-
netic field can be induced by an ac electric field and the magnetic energy can transferred into the electric energy41. 
Thus, the magnetic loss tangent and increased dielectric loss tangent value of Air@rGO€Co microspheres in 

Figure 3.  SEM images of (a) Air@rGO€Co microspheres (S1.5), (b) cross-section of microsphere. (c) TEM 
image of a fragment from a microsphere which has been ultrasonic decomposed, (d) high magnification TEM 
image of the fragment.
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the frequency range of 15.0–18.0 GHz (Fig. 4c) denotes that the magnetic energy is transferred into the electric 
energy.

Based on above EM parameters, the reflection loss (RL) was calculated based on the relative complex permit-
tivity and permeability at a given frequency and thickness according to the following equations3, 38:

µ ε π µ ε= 
−


Z tanh j fd c/ (2 / ) / (1)in r r r r

= − +RL dB Z Z( ) 20log ( 1)/( 1) (2)in in10

where εr and μr are the relative complex permittivity (εr = ε′ − jε″) and permeability (μr = μ′ −jμ″) of the 
absorber, f is the frequency of microwave in free space, c is the velocity of light, d is the coating thickness and Zin 
is the input impedance of the absorber. When the RL valve is lower than −10 dB, it means that only 10% of the 
incident microwave is reflected while 90% of the microwave is absorbed. Conventionally, we define the frequency 
range over which the RL value lower than −10 dB as the effective absorption bandwidth. Figure 4d shows the 
calculated RL of paraffin/S1.5 (mass ratio was 2:1) composites at different thicknesses (1.6–4.0 mm). The minimum 
reflection loss (RLmin) value of the composites reaches −68.1 dB at 13.8 GHz (matching thickness is 2.2 mm), 
and the absorption bandwidth (lower than −10 dB) is 7.1 GHz covering from 10.9 GHz to 18.0 GHz. Otherwise, 
Fig. 4d presents an interesting phenomenon, as the matching thickness increased the reflection loss peak moved 
to a lower frequency region. The 1/4 wavelength equation can be used to explain above mentioned law42:

µ= εt nc/4f ( ) (3)m rm r
1/2

where tm is matching thickness, fm is the frequency of the RLmin peaks, εr and μr are the complex permittivity and 
permeability, respectively, at the fm, and c is the velocity of light.

Electromagnetic parameter is the key factor in improving the absorbing performance of the composites. 
Changing the ratio between AACo and the GO will obtained Air@rGO€Co microspheres with different elec-
tromagnetic parameter. In this way, the adjustable MA property of the composites can be realized. The elec-
tromagnetic parameters of S0, S0.5, S1.0, S2.0, S2.5 and SP were shown in Figs S3–S8 (Supplementary information), 

Figure 4.  Relative complex permittivity (a), relative complex permeability (b), dielectric loss tangent (tan δε)  
and magnetic loss tangent (tan δμ) (c) of paraffin composites filled with 33.3 wt% S1.5, and the calculated 
reflection loss of paraffin composites with different thicknesses (d).

http://S3
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and the reflection losses were calculated based on the electromagnetic parameters. As indicated in Fig. 5b–f, the 
Air@rGO€Co microspheres with different Co contents were also exhibit excellent microwave absorption ability. 
Comparing with the sample shown in Fig. 5a–g, it can be found that as the AACo content increase, the RLmin valve 

Figure 5.  Calculated reflection loss of (a) S0, (b) S0.5, (c) S1.0, (d) S1.5, (e) S2.0, (f) S2.5, (g) Sp with differents 
thickness in the frequency range of 1–18 GHz.
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of Air@rGO€Co microspheres move to higher frequency range. The minimum reflection loss value (RLmin), the 
frequency of RLmin value and the absorption bandwidth of differents samples under the thickness of 2.2 mm were 
shown in Table 1.

The increasing content of AACo will introduce more magnetic component of Co nanoparticles into the micro-
spheres. As shown in Figs S3–S8 (Supplementary information), the permeability of Air@rGO€Co microspheres 
increase with the increasing Co contents, thus results in the enhanced magnetic loss. The primary magnetic loss 
mechanism of Co nanoparticles is exchange resonance in higher frequency range11, so the microsphere with 
more Co content has a better absorption of microwave in higher frequency range. Meanwhile, the increasing 
content of Co means the density of rGO in the microspheres was decreased. On the contrary, the permittivity of 
Air@rGO€Co microspheres decrease with the increasing Co contents (Figs S3–S8, Supplementary information), 
meaning that the dielectric loss was weakened. Debye dipolar relaxation is main dielectric loss mechanism of rGO 
in lower frequency domain28, so the microsphere with more rGO content has a better absorption of microwave 
in lower frequency range.

As a result, we can easily controll the microwave absorbing frequency range and RL valve of the microspheres 
by changing the ratio of the two components in the Air@rGO€Co microspheres.

From Fig. 5a,d and g, the minimum reflection loss value of S0 and Sp was no more than −25 dB, while that of 
S1.5 at a coating thickness of 2.2 mm was as much as -68.1 dB. The Air@rGO€Co microspheres which composed 
of dielectric loss material (rGO) and magnetic loss material (Co) exhibit strong microwave absorption properties. 
To evaluate the MA performance of material, impedance matching Z and attenuation constant α are two of the 
most important parameters, as expressed by the following equation43:

µ µ ε ε= ′ + ″ ′ + ″Z ( ) / ( ) (4)
2 2 1 2

α π µ ε µ ε µ ε µ ε µ ε µ ε= × ″ ″ − ′ ′ + ″ ″ − ′ ′ + ′ ″ − ″ ′
f

c
2 ( ) ( ) ( ) (5)

2 2

where f is the frequency of the microwave and c is the velocity of light. Good impedance matching behavior of an 
absorbent means that most of incident electromagnetic wave can enter into material interior and be attenuated, 
rather than being reflected on the material surface. It is observed from Fig. 6a that the S0 have the lowest imped-
ance matching ratio value, while the Sp have the highest impedance matching ratio value but the lowest attenu-
ation constant α (Fig. 6b). As a consequence, both the S0 and the Sp show relatively poor microwave absorption 

Samples RLmin [dB]
The frequency 
of RLmin [GHz]

Frequency range [GHz] 
(RL ≤ −10 dB)

S0 −14.8 11.2 10.0–12.7

S0.5 −32 11.8 9.7–15.1

S1.0 −34 12.6 10.6–14.9

S1.5 −68.1 13.8 10.9–18.0

S2.0 −38.1 14.1 11.7–17.7

S2.5 −21.1 15.0 12.4–18.0

Sp −6.7 16.4 —

Table 1.  The minimum reflection loss value (RLmin), the frequency of RLmin and the absorption bandwidth of 
differents samples under the thickness of 2.2 mm.

Figure 6.  (a) Impedance matching ratio Z, (b) attenuation constant α of Sp, S0 and S1.5.
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properties. In contrast, the S1.5 have a moderate impedance matching ratiowhich is lower than that of Sp and 
higher than that of S0 (Fig. 6a), and fascinating attenuation ability according to Fig. 6b. Their attenuation values 
are much higher than that of the Sp and the S0 over 1–18 GHz. Overall, the S1.5 which could effectively offset the 
drawbacks of the sole Co nanoparticles or rGO nanosheets, possess moderate impedance matching and splendid 
attenuation constant as well as the optimal MA properties.

Conclusions
Summary, we have successfully synthesized Air@rGO€Co microspheres by a simple and efficient two-step 
method consisting of water-in-oil (W/O) emulsion technique and subsequent annealing process. The micro-
spheres showed good electromagnetic properties because of the coexistence of magnetic loss and dielectric loss 
to microwaves. The minimum reflection loss (RLmin) value of S1.5 reaches −68.1 dB at 13.8 GHz with a thickness 
of 2.2 mm, and the absorption bandwidth (lower than −10 dB) is 7.1 GHz covering from 10.9 GHz to 18.0 GHz. 
More interestingly, we can easily controll the microwave absorbing properties of the microspheres by changing 
the ratio of the two components in the composites. As the Co content increasing, the RLmin valve of Air@rGO€Co 
microspheres move to higher frequency rang. Our study provides a good potential method for preparation of 
lightweight microwave absorbing materials.
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