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ABSTRACT Duck salmonellosis is a common acute
septic infectious disease that spreads rapidly, with seri-
ous harm to the duck breeding industry and public
health. To date, there are few reports about the epidemi-
ological characteristics of drug resistance in Salmonella
from ducks. In this study, an epidemiological investiga-
tion was conducted on drug resistance of 110 Salmonella
strains isolated from multiple duck farms in Shandong
Province and surrounding areas, China. The multidrug-
resistant (MDR) rate for 110 Salmonella strains was up
to 71.82% (79/110), and 12 types of drug resistance
genes were detected in all isolates, including g-lactams,
aminoglycosides, tetracycline, macrolides, and quino-
lones resistance genes. Using the multilocus sequence
typing (MLST) based on 7 housekeeping genes, 13 vari-
ous ST types were identified among all strains, and
ST19 (32/110, 29.09%) was the primary type. As the

dominant serotypes, S. Kottbus and S. Typhimurium
were divided into multiple ST types. A total of 6 kinds
of plasmid incompatibility groups were carried in the
Salmonella strains, of which IncFIIs (29/110, 26.36%)
was most prevalent, and the class I integrons were
detected in 78.18% (86/110) of strains. Furthermore,
we found that some drug resistance genes, plasmid
incompatibility groups, and class I integrons coexist in
the same strain. This phenomenon indicates that class I
integrons and plasmids are important ways for the
spread of drug resistance genes. Therefore, the spread
of antibiotic resistance in Salmonella had been facili-
tated, especially erythromycin (108/110, 98.18%),
streptomycin (93/110, 84.54%), and tetracycline (53/
110, 48.18%). The above research results broadened
ideas and provided directions for the transmission
mechanism of Salmonella resistance.
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INTRODUCTION

Salmonella is a common zoonotic pathogen (Liu et al.,
2018). Up to now, more than 2,600 Salmonella serovars
have been discovered all over the world (Xiong et al.,
2020). Duck salmonellosis can be transmitted vertically
and horizontally, and it has a high fatality rate for duck-
lings (Adzitey et al., 2012; Soria et al., 2017,
Wang et al., 2020). Over the past several decades,
broad-spectrum antimicrobials such as aminoglycosides,
B-lactams, and quinolones are often used as the first
choice to treat bacterial infections (Wong et al., 2014;
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Kuang et al., 2015; Lin et al., 2015). However, due to the
long-term abuse and misuse of antibiotics, the phenome-
non of multidrug resistance has become more and more
serious in recent years (dos Reis et al., 2018; Qiao et al.,
2018). According to reports, the multidrug-resistant
(MDR) rates of Salmonella isolated from patients,
chicken, and swine all exceeded 70% (Kalonji et al.,
2015; Song et al., 2020; de Azevedo et al., 2021).

At present, a host of molecular typing techniques have
been widely used in the traceability analysis of patho-
genic microorganisms (Achtman et al., 2012), such as
multilocus sequence typing (MLST). MLST is conve-
nient and has high efficiency, repeatability and feasibil-
ity, conducive to acquiring experimental data
(Feijao et al., 2017; Jain et al., 2018). Drug resistance
genes flowing between different bacteria strains closely
related to bacterial plasmids and class I integrons. A
PCR-based replicon typing (PBRT) method was suc-
cessfully established to identify HI1, HI2, 11, X, /M, N,
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FTIA, FIB, W, Y, P, FIC, A/C, T, F1lIs, FrepB, K, and
B/O replicons through 5 multiplex PCR and 3 single
PCR with 18 pairs of primers (Carattoli et al., 2005).
Class I integrons are most commonly embedded in
diverse and highly mobile elements and, thereby, have
become broadly distributed drug-resistant genes
amongst the Gram-negative bacteria (Hall, 2012).

Compared with other researches, the epidemiological
investigations of antimicrobial resistance in Salmonella
from ducks have rarely been reported systematically.
This study used antimicrobial susceptibility testing,
PCR, MLST, and plasmid typing to conduct epidemio-
logical investigations about drug resistance and class I
integrons on Salmonella isolated from duck farms in
Shandong Province and surrounding areas, China. Con-
sequently, this study is vital to reveal the drug resistance
characteristics of Salmonella from ducks and will lay the
foundation for the follow-up study of drug resistance
mechanisms.

MATERIALS AND METHODS
Sample Collection

From June 2020 to June 2021, 110 Salmonella strains
were isolated from ground embryonic tissues suspen-
sions, cloacal cotton swabs of duck bodies, and the living
environment (water, feed, soil, and manure) from multi-
ple large-scale duck breeding farms in Shandong Prov-
ince and surrounding areas, China, and their serotype
distribution was shown in Table 1. All duck embryos
were dead and weighed between 180.54 g and 190.33 g
(average weight 186.75 g £ 5.4 g).

Antimicrobial Susceptibility Testing

The sensitivity of 110 Salmonella strains to commonly
used antibiotics was detected by the Kirby-Bauer disk
diffusion method. The following 15 antimicrobials pro-
vided by Hangzhou Microbial Reagent Co., Ltd (Hang-
zhou City, Zhejiang Province, PR China) were used:
amoxicillin (AMX, 20 pg), ampicillin (AMP, 10 ug),
cefotaxime (CTX, 30 ug), amikacin (AMK, 30 ug), neo-
mycin (NEO, 30 ug), streptomycin (STR, 10 ug), kana-
mycin (KAN, 30 ug), tetracycline (TET, 30 pg),
erythromycin (ERY, 15 ug), ofloxacin (OFX, 5 ug), cip-
rofloxacin (CIP, 5 ug), norfloxacin (NOR, 10 ug),

Table 1. Serotype distribution of 110 Salmonella isolates.

enrofloxacin (ENR, 10 ug), chloramphenicol (CHL, 30
ug), florfenicol (FFC, 30 ug). The quality control strain
was Escherichia coli ATCC 25922. After measuring the
diameters of the inhibition zones, all results were judged
according to the Clinical and Laboratory Standards
Institute (CLSI) guidelines (https://clsi.org/). If iso-
lates were resistant to three or more categories of antibi-
otics, they were considered MDR strains.

Detection of Antibiotic Resistance Genes

This study used PCR to amplify the drug resistance
genes of 110 Salmonella strains, including B-lactam resis-
tance genes (blargy, blasny, blacrxa, and blacyry-2),
aminoglycoside resistance genes (aac(6')-Ib-cr, aph(%)-
Ia, aadAl, aac(3)-1, aac(3)-II, aac(3)-1II, aac(3)-1V,
rmtB, and armA), tetracycline resistance genes (tetA4,
tetC), macrolide resistance genes (ereA, mefA), and
quinolone resistance genes (oqrAB, gnrA, and gnrD).
The related primer information can be found in
Table S1(Ahmed et al., 2007; Phuc Nguyen et al., 2009;
Zhang et al., 2009; Clemente et al., 2015; Ayad et al.,
2016; Navajas-Benito et al., 2017; Tahbaz et al., 2019).
After PCR amplification, positive DNA samples of anti-
biotic resistance genes were sequenced by Sangon Bio-
tech in Shanghai, China.

MLST

In Salmonella MLST Database (https:/ /enterobase.war
wick.ac.uk), seven housekeeping genes were used in Sal-
monella MLST, including aroC, dnaN, hemD, hisD,
purE, sucA, and thrA. According to the primer informa-
tion and PCR conditions provided by Salmonella MLST
Database  (https://enterobase.warwick.ac.uk), seven
housekeeping genes of Salmonella strains were amplified.
PCR products were purified and sequenced by Sangon
Biotech, and sequencing results were spliced. The sequen-
ces of Salmonella housekeeping genes were downloaded
from Pubmlst (https://pubmlst.org/), and the spliced
sequences were aligned with them to obtain the allele val-
ues. The corresponding ST types of different Salmonella
strains can be queried on Pubmlst (https://pubmlst.org/
). Bionumerics 8.0 was used to perform cluster analysis on
the results of MLST and construct a minimum spanning
tree.

Serotype
Area Source Kottbus  Typhimurium Enteritidis Newlands Montevideo Bonn Potsdam  Unknown Tgta]
Taian Duck embryos 26 11 3 1 3 2 1 13 60
Liaocheng  Duck embryos, duck bodies 13 9 3 3 0 0 0 0 28
and living environment
Heze Duck bodies, living 1 0 4 5 0 0 0 0 10
environment
Jining Duck embryos 0 9 0 0 0 0 0 0 9
Guantao Duck embryos 0 3 0 0 0 0 0 0 3
Total 40 32 10 9 3 2 1 13 110
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Plasmid Typing

The types of plasmid carried by Salmonella isolates
were detected according to the method established by
Carattoli et al. (Carattoli et al., 2005). PCR products
were sent to Sangon Biotech for sequencing.

Detection of Class | Integrons

Referring to class I integronase gene intl1 in NCBI
(https://www.ncbinlm.mnih.gov/), the primer sequence
was designed (forward: 5-CCGAGGATGCGAAC-
CACTTC-3; reverse: 5-CCGCCAC TGCGCCGT
TACCA-3') by Primer Premier 6.0. Positive DNA samples
of intl! were sent to Sangon Biotech for sequencing after
PCR amplification.

RESULTS
Antibiotic Resistance and MDR Profiles

Among 15 antibiotics, the resistance rate of 110
Salmonella strains to ERY was 98.18% (108,/110), fol-
lowed by STR and TET, with resistance rates of
84.54% (93/110) and 48.18% (53/110), respectively
(Table S2). On the contrary, the sensitivity rates of
110 isolates to OFX and AMK were 87.27% (96/
110), which were highest in 15 antibacterials
(Table S2). According to Table 2, 71.82% (79/110) of
strains showed multidrug resistance, of which 17
strains (17/110, 15.45%) were resistant to 10 or more
antibiotics, including 2 strains (2/110, 1.82%) resis-
tant to all tested antibiotics. Interestingly, one strain
of Salmonella (1/110, 0.91%) was not immune to 15
kinds of antibiotics. Moreover, 47 different antimicro-
bial resistance patterns were discovered in 110 iso-
lates (Table 2). The MDR rates of S. Newlands, S.
Enteritidis, and S. Kottbus varied between 77.50%
and 88.89%, of which S. Kottbus was the dominant
serotype (Figure 1). As shown in Table S3, the anti-
biotic resistance of Salmonella isolated from Heze was
notably serious.

Prevalence of Antibiotic Resistance Genes

As shown in Table 5S4, 12 types of drug resistance
genes had been detected in 110 Salmonella strains,
including B-lactam resistance genes (blatgn, blacTx)s
aminoglycoside resistance genes (aac(6¢' )-Ib-cr, aph(3 )-
Ia, aadA1, aac(8)-1I, aac(3)-IV, and rmtB), tetracycline
resistance gene (tetA), macrolide resistance gene (ered),
and quinolone resistance genes (0qrAB, gnrD). Among
B-lactam resistance genes, the most prevalent gene was
blatgn (36/110, 32.73%). The positive rates of aph(¥ )-
Ia (36/110, 32.73%) and aadA1 (33/110, 30.00%) were
dominant in aminoglycoside resistance genes. The most
common tetracycline resistance gene was tetA (37/110,
33.64%), and the highest carrying rate of macrolide
resistance gene was ereA (38/110, 34.55%). OqzAB (7/
110, 6.36%) and gnrD (9/110, 8.18%) were detected in

Table 2. Antimicrobial resistance patterns of 110 Salmonella
strains.

No. of No. of
drugs Antimicrobial resistance pattern isolates
15 AMX-AMP-CTX-AMK-NEO-STR-KAN-TET- 2
ERY-OFX-CIP-NOR-ENR-CHL-FFC
14 AMX-AMP-CTX-NEO-STR-KAN-TET-ERY- 4
OFX-CIP-NOR-ENR-CHL-FFC
13 AMX-AMP-CTX-NEO-STR-KAN-TET-ERY- 4
CIP-NOR-ENR-CHL-FFC
AMX-AMP-NEO-STR-KAN-TET-ERY-OFX- 1
CIP-NOR-ENR-CHL-FFC
12 AMX-AMP-CTX-NEO-STR-KAN-TET-ERY- 2
CIP-ENR-CHL-FFC
11 AMX-AMP-CTX-NEO-STR-KAN-TET-ERY- 2
ENR-CHL-FFC
10 NEO-STR-KAN-TET-ERY-CIP-NOR-ENR- 1
CHL-FFC
AMX-AMP-KAN-TET-ERY-CIP-NOR-ENR- 1
CHL-FFC
9 NEO-STR-TET-ERY-CIP-NOR-ENR-CHL- 1
FFC
AMP-NEO-STR-KAN-TET-ERY-OFX-CIP- 1
NOR
AMX-AMP-STR-ERY-CIP-NOR-ENR-CHL- 1
FFC
AMX-AMP-AMK-NEO-TET-ERY-CIP-NOR- 1
ENR
AMX-AMP-NEO-STR-KAN-TET-ERY-CHL- 1
FFC
8 STR-KAN-ERY-CIP-NOR-ENR-CHL-FFC

CTX-AMK-NEO-STR-CIP-NOR-ENR-FFC
AMP-NEO-STR-KAN-TET-ERY-CHL-FFC

7 STR-ERY-CIP-NOR-ENR-CHL-FFC
NEO-STR-KAN-TET-ERY-CHL-FFC
AMX-AMP-STR-TET-ERY-CHL-FFC

6 AMX-AMP-STR-TET-ERY-ENR

5 AMX-AMP-STR-TET-ERY
AMP-STR-TET-ERY-ENR
AMP-NEO-STR-TET-ERY
NEO-STR-TET-ERY-ENR
ERY-CIP-NOR-ENR-FFC
AMX-AMP-STR-KAN-ERY
STR-ERY-CIP-NOR-ENR
AMX-AMP-CTX-STR-ERY

4 AMX-AMP-STR-ERY
STR-TET-ERY-ENR
AMX-AMP-TET-ERY
CTX-KAN-TET-ERY
AMX-STR-TET-ERY
AMP-STR-TET-ERY
AMK-NEO-STR-ERY
STR-KAN-TET-ERY
STR-KAN-ERY-ENR

3 STR-TET-ERY
STR-ERY-ENR
NEO-STR-ERY
TET-ERY-ENR
NEO-TET-ERY
AMX-AMP-ERY
STR-KAN-ERY

2 STR-ERY

ERY

0 None

—_

[\o}
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—

Abbreviations: AMX, amoxicillin; AMP, ampicillin; AMK, amikacin;
CIP, ciprofloxacin; CTX, cefotaxime; CHL, chloramphenicol; ENR, enro-
floxacin; ERY, erythromycin; FFC, florfenicol; KAN, kanamycin; NEO,
neomycin; NOR, norfloxacin; OFX, ofloxacin; STR, streptomycin; TET,
tetracycline.

quinolone resistance genes. Besides, the remaining 8
types of drug resistance genes were not detected. Among
all serotypes, the above 12 types of drug resistance genes
were all found only in S. Kottbus (Table S4).
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Figure 1. MDR profiles of Salmonella in different serotypes.

Relevance of Drug Resistance Phenotypes
and Drug Resistance Genes

Coincidence rate = No. of strains with resistance phe-
notypes/No. of strains carrying resistance genes*100%.
Table 3 showed that the coincidence rates of macrolides
(37/38, 97.37%), aminoglycosides (59/62, 95.16%),
B-lactams (40/47, 85.11%), and tetracyclines (27/37,
72.97%) were more than 70%. Only quinolones had a
low coincidence rate of 25.00% (4/16).

MLST

The results of MLST showed that 110 Salmonella
strains were divided into 13 various ST types, including
ST19 (32/110, 29.09%), ST1546 (24/110, 21.82%),
STS08 (21/110, 19.09%), ST11 (9/110, 8.18%), ST321
(8/110, 7.27%), ST305 (4/110, 3.63%), ST1690 (3/110,
2.73%), ST198 (2/110, 1.82%), ST2441 (2/110, 1.82%),
ST358 (1/110, 0.91%), ST367 (1/110, 0.91%), ST1544
(1/110, 0.91%), and ST2309 (1,/110, 0.91%) (Figure 2).
In addition, only one strain could not be identified ST
type (Figure 4). Among the 13 ST types, ST19, ST1546,
and ST808 were the main types (Figure 2). As shown in
Figure 2, the most closely related ST types to genetic
evolution were ST19 and ST1544, ST808, and ST1690,
and they all had 6 identical alleles. Based on the results
in Figure 4 and Salmonella MLST Database, a few

Table 3. The coincidence rates of drug resistance phenotype and
drug resistance gene.

No. of strains with No. of strains

resistance carrying Coincidence
Category phenotypes resistance genes rate (%)
B-lactams 40 47 85.11
Aminoglycosides 59 62 95.16
Tetracyclines 27 37 72.97
Macrolides 37 38 97.37
Quinolones 4 16 25.00

relationships between ST types and Salmonella sero-
types were established, involving ST19 with S. Typhi-
murium, ST808 and ST1690 with S. Kottbus, ST11 with
S. Enteritidis, ST305 with S. Montevideo, and ST2309
with S. Potsdam. Except for S. Montevideo and S. Pots-
dam, other serotypes were all divided into multiple ST
types (Figure 4).

Plasmid Typing

As shown in Table 4, 110 Salmonella strains carried 6
types of plasmid incompatibility groups, namely IncFIIs
(29/110, 26.36%), IncHI2 (10/110, 9.09%), IncIl (7/
110, 6.36%), IncFrepB (7/110, 6.36%), IncFIB (6/110,
5.45%), and IncY (1/110, 0.91%). As can be seen in
Table 4, one strain (1/110, 0.91%) carried 3 different
types of plasmids, 11 strains (11/110, 10.00%) carried
two different types of plasmids, and 35 strains (35/110,
31.82%) carried one type of plasmids. Besides, no plas-
mid incompatibility group was detected in the other 63
strains (63/110, 57.27%). Based on Table 4, the carrying
rates of plasmid incompatibility groups in S. Typhimu-
rium, S. Enteritidis, and S. Newlands were far higher
than those in other serotypes. In addition to IncY, all
detected drug resistance genes almost presented in Sal-
monella holding the other five types of plasmid incom-
patibility groups (Table S5).

Detection of Class I Integrons

PCR results showed that class I integronase gene int/!
was detected in 86 Salmonella strains (78.18%, 86/110).
According to Table 5, the carrying rates of all detected
drug resistance genes in class I integrons-positive strains
were much higher than those in class I integrons-nega-
tive strains. The carrying rate of class I integrons in
MDR strains was considerably higher than that in non-
MDR stains (Figure 3).
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Table 4. The carrying rates of plasmid incompatibility groups in different serotypes of Salmonella.

Plasmid incompatibility Positive detection Serotype

group rate (%) Kottbus ~ Typhimurium Enteritidis Newlands Montevideo  Bonn Potsdam  Unknown
IncFIIs 24.54 (27/110)  0.00 (0/40) 65.62 (21/32) 60.00 (6/10) 0.00(0/9) 0.00(0/3) 0.00(0/2) 0.00 (0/1) 0.00 (0/13)
IncHI2 2.73 (3/110) 0.00 (0/40) 0.00 (0/32)  0.00(0/10) 33.33(3/9) 0.00(0/3) 0.00(0/2) 0.00(0/1) 0.00(0/13)
IncIl 1.82 (2/110) 5.00 (2/40) 0.00 (0/32)  0.00(0/10) 0.00 (0/9) 0.00(0/3) 0.00(0/2) 0.00(0/1) 0.00(0/13)
IncFrepB 1.82(2/110) 0.00 (0/40) 0.00(0/32)  0.00(0/10) 0.00(0/9) 0.00(0/3) 0.00(0/2) 0.00(0/1) 15.38 (2/13)
IncFIB 0.91 (1/110) 2.50 (1/40) 0.00 (0/32)  0.00(0/10) 0.00 (0/9) 0.00(0/3) 0.00(0/2) 0.00(0/1) 0.00(0/13)
IncFIIs-+IncFrepB 0.91 (1/110) 0.00 (0/40) 0.00 (0/32) 10.00(1/10) 0.00 (0/9) 0.00(0/3) 0.00(0/2) 0.00(0/1) 0.00 (0/13)
IncFIIs+Incll 0.91 (1/110) 0.00 (0/40) 3.13(1/32)  0.00(0/10) 0.00(0/9) 0.00(0/3) 0.00(0/2) 0.00(0/1) 0.00(0/13)
IncHI2+Incl1 3.63 (4/110) 5.00 (2/40) 0.00 (0/32) 10.00(1/10) 11.11(1/9) 0.00(0/3) 0.00(0/2) 0.00 (0/1) 0.00 (0/13)
IncHI2+IncY 0.91 (1/110) 0.00 (0/40) 0.00 (0/32)  0.00 (0/10) 11.11(1/9) 0.00(0/3) 0.00(0/2) 0.00 (0/1) 0.00(0/13)
IncHI2+IncFIB 0.91 (1/110) 2.50 (1/40) 0.00(0/32)  0.00(0/10) 0.00(0/9) 0.00(0/3) 0.00(0/2) 0.00(0/1) 0.00(0/13)
IncFrepB+IncFIB 2.73 (3/110) 2.50 (1/40) 0.00 (0/32)  0.00(0/10) 0.00 (0/9) 0.00(0/3) 0.00(0/2) 0.00(0/1) 15.38 (2/13)
IncHI2+IncFIB+IncFrepB  0.91 (1/110) 0.00 (0/40) 0.00 (0/32)  0.00 (0/10) 11.11(1/9) 0.00(0/3) 0.00(0/2) 0.00 (0/1) 0.00(0/13)
Total 42.73 (47/110)  17.50 (7/40) 68.75 (22/32) 80.00 (8/10) 66.66 (6/9) 0.00 (0/3) 0.00(0/2) 0.00 (0/1) 30.76 (4/13)

Table 5. The carrying rates of resistance genes in positive strains
with class I integrons and negative strains without class I
integrons.

Detection rate (%)

Resistance gene No. of strains intl1 (+)" intll ()"
blarpn 36 86.11 (31/36) 13.89 (5/36)
blacrx-m 14 100.00 (14/14) 0.00 (0/14)
aac(6')-Ib-cr 29 100.00 (29/29) 0.00 (0/29)
aph(3')-Ia 36 97.22 (35/36) 2.78 (1/36)
aadA1 33 100.00 (33/33) 0.00 (0/33)
aac(3)-IT 10 100.00 (10/10) 0.00 (0/10)
aac(3)-IV 31 100.00 (31/31) 0.00 (0/31)
rmtB 4 100.00 (4/4) 0.00 (0/4)
tetA 37 81.08 (30/37) 18.92 (7/37)
ereA 38 100.00 (38/38) 0.00 (0/38)
0qrAB 7 71.43 (5/7) 28.57 (2/7)
qnrD 9 7778 (7/9) 22.22 (2/9)

*Class I integrons-positive strains.
"Class I integrons-negative strains.

Drug Resistance Epidemiological
Investigation Heatmap for 110 Salmonella
Strains

Figure 4 provided the complete information of 110
Salmonella strains, including cluster analysis, drug resis-
tance phenotype, drug resistance gene, plasmid typing,
class I integron, strain number, corresponding ST type,
serotype, isolation area, and source.

DISCUSSION

In this study, 110 Salmonella strains had 47 antimi-
crobial resistance patterns to 15 different antibacterial
drugs. Among them, the resistance rates to ERY, STR,
and TET reached 98.18%, 84.54%, and 48.18%,
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respectively. These results are consistent with previous
reports from China (Wang et al., 2014; Yang et al.,
2014; Zhou et al., 2018; Song et al., 2020; Yang et al.,
2020b), Turkey (Yildirim et al., 2011), and Greece
(Zdragas et al., 2012). Of all, 71.82% isolates were MDR
strains, which is similar to the results from former sur-
veys (Ziech et al., 2016; Zhou et al., 2018; Yang et al.,
2020a). Of particular concern, the multidrug resistance
rate of S. Kottbus as the dominant serotype was 77.50%.
Still, the same serotype showed low resistance levels to
the tested antimicrobial drugs in other areas of China
(Yang et al., 2020a). The MDR phenomenon of strains
isolated from living environment was more serious than
other sources, and the drug resistance rate of Salmonella
isolated from Heze was vastly higher than other regions.
Owing to the different types of drugs and medication
habits in different areas, numerous poultry breeding
farms also have certain geographical and time discrepan-
cies in Salmonella resistance (Foley and Lynne, 2008;
Lai et al., 2014). According to the results of antibiotic
susceptibility tests, we knew that 110 Salmonella strains
were most sensitive to OFX and AMK, which are third-
generation antibiotics with a broad antibacterial spec-
trum to solve the above problems.

The present investigation has detected 12 types of
drug resistance genes with multitudes of varieties and
only in the living environment, nine types of drug resis-
tance genes existed in Salmonella, reflecting the poten-
tial hazard to duck breeding farms. Of note, among all
serotypes, only S. Kottbus contained all 12 types of drug
resistance genes, which further exhibits that S. Kottbus
is a significant risk to the duck industry. Among B-lac-
tam resistance genes, the most prevalent gene was bla-
TEM, Which is coherent with the detection in other areas
of Shandong (Yang et al., 2019). The positive rates of
aph(8 )-Ia and aadA1 were dominant in aminoglycoside
genes. Likewise, we can get similar results in another
article (Li et al., 2015). Compared with the other 4 cate-
gories of resistance genes, the general detection rate of
quinolone resistance genes (16/110, 14.55%) was
extremely low, which corresponds to the reports from
Guangdong Province (Xiong et al., 2020). It is worth
noting that quinolones had the lowest coincidence rate

(4/16, 25.00%) of drug-resistant phenotype and geno-
type. This data shows that the generation of antimicro-
bial resistance is not only caused by drug resistance
genes, which is also relevant to complex antibiotic resis-
tance mechanisms (Hooper and Jacoby, 2015).

In previous research, we found as many as 13 ST types
in 110 isolates from multiple duck breeding farms. Yang
et al. discovered seven ST types in Salmonella isolated
from duck farms and a slaughterhouse in Shandong
Province (Yang et al., 2019). Also in Shandong Prov-
ince, Zhao et al. found nine ST types in 154 Salmonella
strains isolated from farm animals (Zhao et al., 2017). In
2019, only 5 ST types were identified in 95 Salmonella
strains isolated from chicken breeder flocks in nine Chi-
nese provinces (Song et al., 2020). Compared with previ-
ous reports, the ST type is more abundant in our study.
Among all ST types we have detected, the leading ST
type was ST19, the most frequent sequence type in Sal-
monella isolated from humankind and food products
derived from animals throughout the globe
(Mandomando et al., 2015; Murgia et al., 2015;
Ktari et al., 2016; Panzenhagen et al., 2018). Accord-
ingly to the results of MLST, the proportion of ST11 in
all strains was only 8.18%. However, ST11 was the most
common ST type in other reports (Cha et al., 2013;
Yang et al., 2019). This phenomenon reflects that
MLST has prominent geographical distribution charac-
teristics. Additionally, 110 Salmonella strains were
divided into seven serotypes, but 13 different ST types
were distinguished in them. This data indicated that
MLST is more accurate than serotype identification. At
the same time, the relationships between ST types and
Salmonella serotypes showed that MLST is usually
related to serotypes and can predict the serovars of Sal-
monella to a certain degree, some of which is agreement
features (Achtman et al., 2012; Zhao et al., 2017). As
the main serotypes, both S. Kottbus and S. Typhimu-
rium were divided into multiple ST types, which were
similar with another report (Liu et al., 2011). In con-
trast, nondominant serotypes S. Montevideo and S.
Potsdam were matched with a single ST type. These
results indicated that organisms frequently evolve spe-
cialized phenotypes to adapt to local environmental
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Figure 4. Drug resistance epidemiological investigation heatmap for 110 Salmonella strains. From left to right followed by cluster analysis of 110
Salmonella strains, drug resistance phenotype (green for sensitivity, yellow for intermediary, red for resistance), drug resistance gene (black for posi-
tivity, white for negativity), plasmid typing (black for positivity, white for negativity), class I integron (black for positivity, white for negativity),
strain number, corresponding ST type, serotype, isolation area, and source.

conditions. The minimum spanning tree showed that the  indicates that strains with different ST types may come
strains from duck embryos belonging to ST19 and  from the same clonal ancestor in the vertical transmis-
ST1544, ST808, and ST1690 had a close genetic evolu-  sion process of Salmonella. Nevertheless, ST types hold-
tion relationship to each other. This phenomenon  ing remote evolutionary relationships were widely
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distributed in isolates from duck embryos, duck bodies,
and the living environment.

Plasmids are ubiquitous mobile genetic elements in
Salmonella, facilitating the spread of resistance genes in
bacteria (Lopatkin et al., 2017). Therefore, plasmid fam-
ilies are related to the emergence and spread of specific
antibiotic resistance (Carattoli, 2013). Accordingly, the
identification of plasmids helps track the transfer of
resistance between various bacterial species. 74.47% of
the 47 strains possessing plasmid incompatibility groups
carried only one plasmid incompatibility group. This
finding verifies that different plasmid incompatibility
groups cannot coexist in most strains. IncFIIs, IncHI2,
and IncN which can be extensively spread have
attracted widespread attention worldwide and they can
provide drug resistance genes, bacteriocins, sidero-
phores, cytotoxins, adhesion factors, and other substan-
ces to promote the survival of bacteria (Pereira et al.,
2015; Campos et al., 2016; Mansour et al., 2020). How-
ever, IncFIIs and IncHI2 were both detected except
IncN in our research. Interestingly, we found that tetA
(16/29, 55.17%) and blargy (14/29, 48.28%) were pre-
dominant genes in the strains containing IncFIIs, and
similar results were discovered in other articles
(Yang et al., 2016; Oliva et al., 2018). At the same time,
the results of antimicrobial susceptibility tests showed
that the Salmonella stains isolated from duck embryos
had high resistance to S-lactams and tetracyclines anti-
biotics. Combining the above findings, vertical transmis-
sion is more conducive to the spread of drug resistance
with IncF1IIs as the main carrier in this study. Moreover,
the aminoglycosides and tetracyclines resistance genes
were all detected in the strains containing IncHI2, and
the resistance rates of these strains to aminoglycosides
and tetracyclines antibacterials were 100%. These Sal-
monella strains were isolated from duck bodies and liv-
ing environment. Consequently, the horizontal
transmission may help spread drug resistance with
IncHI2 as the major carrier. Other than IncY, all
detected drug resistance genes almost existed in Salmo-
nella carrying the other 5 types of plasmid incompatibil-
ity groups, which were isolated from duck embryos,
duck bodies, and the living environment. This phenome-
non highlights the importance of plasmids for the trans-
fer of drug-resistant genes.

Integrons are a genetic platform that allows bacteria
to evolve rapidly by acquiring, storing, removing, and
rearranging gene cassettes. So far, class I integrons are
the most common integrons, associating with antibiotic
resistance  genes,  transposons, and  plasmids
(Escudero et al., 2015; Partridge et al., 2018). Class I
integrons can integrate multiple drug resistance genes
harboring plasmids or chromosomes, especially S-lac-
tams, aminoglycosides, and sulfonamides, leading to
severe drug resistance in bacteria (Firoozeh et al., 2011).
Of all, 68.09% of the 47 Salmonella strains possessing
plasmid incompatibility groups carried class I integrons,
and the detection rates of B-lactams, aminoglycosides,
and tetracyclines resistance genes were all over 40% in
them. At the same time, the resistance rates of these

strains to B-lactams, aminoglycosides, and tetracyclines
antibiotics were exceedingly high. These results sug-
gested that class T integrons integrate drug resistance
genes into plasmids to promote the horizontal spread of
antimicrobial resistance. However, some strains carrying
class I integrons were also resistant to antibiotics, but no
plasmid incompatibility group had been detected in
them. This phenomenon indicates that class I integrons
may recombine drug resistance genes into chromosomes
to promote antibiotic resistance by vertical transmis-
sion.

Unlike many previous reports, the dominant serotype
was S. Kottbus isolated from duck embryos, duck bodies,
and the living environment and they had 7 ST types in
this study. The MDR rate for S. Kottbus was 77.50%
and they carried all detected drug resistance genes.
Moreover, the positive rate of class I integrons in S.
Kottbus was 82.50% and 4 types of plasmid incompati-
bility groups existed in them. The above results indi-
cated that S. Kottbus evolved from different ancestors
and they greatly contributed to the generation and
spread of drug resistance. Therefore, 5. Kottbus from
ducks is very worthy of attention.

CONCLUSIONS

The MDR rate for 110 Salmonella strains isolated
from multiple duck breeding farms was up to 71.82%.
We found as many as 13 ST types in all strains and
ST19 was the leading type. As the dominant serotypes,
both S. Kottbus and S. Typhimurium were divided into
multiple ST types. Twelve types of drug resistance genes
and 6 kinds of plasmid incompatibility groups had been
detected in 110 Salmonella strains. Moreover, the carry-
ing rate of class I integrons in all isolates was 78.18%.
Class I integrons integrated drug resistance genes into
plasmids or chromosomes to promote the spread of anti-
biotic resistance, especially ERY, STR, and TET.
Hence, it is essential to continuously monitor the drug
resistance related to Salmonella isolated from ducks.
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