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ABSTRACT Yeasts constitute over 1,500 species with great potential for biotechnology.
Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alter-
native physiological capabilities of lesser-known yeasts are not being fully exploited. While
comparative genomics receives substantial attention, little is known about yeasts’ meta-
bolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic
genome-scale model of yeast batch cultures that describes the uptake of carbon and
nitrogen sources and the production of primary and secondary metabolites. The model
integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a ki-
netic model describing the time-varying culture environment. In addition, we proposed a
multiphase multiobjective flux balance analysis to compute the dynamics of intracellular
fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum
strains in a rich medium fermentation. The model successfully explained the experimental
data and brought novel insights into how cryotolerant strains achieve redox balance. The
proposed model (along with the corresponding code) provides a comprehensive picture
of the main steps occurring inside the cell during batch cultures and offers a systematic
approach to prospect or metabolically engineering novel yeast cell factories.

IMPORTANCE Nonconventional yeast species hold the promise to provide novel met-
abolic routes to produce industrially relevant compounds and tolerate specific stres-
sors, such as cold temperatures. This work validated the first multiphase multiobjec-
tive genome-scale dynamic model to describe carbon and nitrogen metabolism
throughout batch fermentation. To test and illustrate its performance, we considered
the comparative metabolism of three yeast strains of the Saccharomyces genus in
rich medium fermentation. The study revealed that cryotolerant Saccharomyces spe-
cies might use the g-aminobutyric acid (GABA) shunt and the production of reducing
equivalents as alternative routes to achieve redox balance, a novel biological insight
worth being explored further. The proposed model (along with the provided code)
can be applied to a wide range of batch processes started with different yeast spe-
cies and media, offering a systematic and rational approach to prospect nonconven-
tional yeast species metabolism and engineering novel cell factories.

KEYWORDS batch fermentation, Saccharomyces species, cryotolerant species, dynamic
genome-scale models, redox balance

Yeasts have been used to produce fermented foods and beverages for millennia and are
among the most frequently used microorganisms in biotechnology. Saccharomyces cere-

visiae dominates the scene and many research efforts focus on engineering this species for
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particular applications (for examples, see references 1 to 4). Nowadays it is used to produce
glycerol (5), biopharmaceutical proteins (6), or secondary metabolites, such as aromas or bio-
flavors (7, 8).

However, yeasts constitute a large group of 1,500 (so far) described species, and
much less attention has been paid to nonconventional yeasts. These species remain a
mostly untapped resource of alternative metabolic routes for substrate use and prod-
uct formation as well as tolerances to specific stressors (9, 10). To exploit these alterna-
tives efficiently, it is essential to understand the metabolic pathways of these species.
Given the complexity of the endeavor, a modeling approach becomes indispensable.

Genome-scale models (GEMs) can contextualize high-throughput data and predict
genotype-environment-phenotype relationships (11, 12). While GEMs have been widely used
for the study and metabolic engineering of S. cerevisiae strains in continuous (steady-state) fer-
mentations (13), their use to predict batch (dynamic) fermentation is still scarce. Nevertheless,
many yeast-based processes operate in batch mode.

In batch operation, cell culture follows a growth curve with the following phases: lag
phase, exponential growth, growth under nutrient limitation, stationary phase, and cellu-
lar decay. Available dynamic GEMs of yeast metabolism focus on the exponential phase
and explain reasonably well the measured dynamics of biomass growth, carbon source
uptake, and the production of relevant primary metabolites (14–17). The development
of GEMs that describe the five phases of batch processes, considering carbon and nitro-
gen metabolism throughout time and explaining secondary metabolism, is still required.

In this work, we derived a multiphase and multiobjective dynamic genome-scale
model of batch fermentation, which accounts for carbon and nitrogen metabolism
throughout time and explains secondary metabolism. The model required various
refinements to succeed: (i) a novel metabolic reconstruction, based on an extension of
the current consensus genome-scale model of S. cerevisiae (Yeast8 [18]); (ii) multiphase
multiobjective implementation of a parsimonious flux balance analysis (pFBA) (19) to
compute the dynamics of the intracellular fluxes; (iii) a model of protein turnover to
explain nitrogen homeostasis; and (iv) a dynamic biomass equation to account for bio-
mass composition variations throughout the process.

As a relevant case study, we considered the metabolism of S. cerevisiae and
Saccharomyces uvarum strains in rich medium fermentation. Recent studies revealed
that S. uvarum strains show interesting physiological properties. S. uvarum is more cry-
otolerant than S. cerevisiae, produces more glycerol and less ethanol than S. cerevisiae
wine strains, and has different aroma profiles (20–23). In addition, traits such as its
increased 2-phenylethanol (24, 25) yield could make this species a good candidate for
metabolic engineering studies (26).

We applied the proposed model to investigate the origin of the phenotypic diver-
gence between species. The model explained the experimental data successfully and
revealed differences into how species achieve redox balance. Predicted intracellular
fluxes led us to hypothesize that cryotolerant yeast strains can use the g-aminobutyric
acid (GABA) shunt as an alternative NADPH source and store reductive power—neces-
sary to subdue oxidative stress under cold conditions—in lipids or other polymers.
Additionally, our results are compatible with recent experimental observations show-
ing that most carbon skeletons used to form higher alcohols (i.e., isoamyl alcohol, iso-
butanol, and 2-phenylethanol) are synthesized de novo.

RESULTS
Novel metabolic reconstruction.We updated the Yeast8 consensus genome-scale

reconstruction of S. cerevisiae S288C (v.8.3.1) (18) to include 38 metabolites and 50
reactions to explain secondary metabolism (Table S1). Furthermore, comprehensive
metabolic annotations, such as SBO (Systems Biology Ontology) terms and MetaNetX
identifiers, were added to the new metabolites and reactions.

Among the metabolites added, 13 aroma compounds were included. Noticeably, we
found that prior genome-scale reconstructions lacked methionol and tyrosol impeding
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simulated growth on methionine and tyrosine as sole nitrogen sources, which is known
to be possible for several S. cerevisiae strains, including S288C.

MetaDraft, AuReMe, and the results from the orthology analysis were used to create
strain-specific models for two wine strains, S. cerevisiae T73 and S. uvarum BMV58, and a
strain, S. uvarum CECT12600, found in nonfermentation environments (further details can
be found in Text S1). These strains are referred to as ScT73, SuBMV58, and SuCECT12600
here. The three models had 2, 3, and 2 reactions that were not in Yeast8, respectively.

Multiphase multiobjective flux balance analysis framework. Our results showed
that batch fermentation modeling should be divided into five phases in which cellular objec-
tives and flux constraints need to be modified: lag phase, exponential growth, growth under
nitrogen limitation, stationary, and decay (Fig. 1A and B sketch the modeling approach).
Their duration is imposed by the estimated parameters tL, tE , tS, and tD, illustrated in Fig. 1B.

Once inoculated, cells encounter new nutrients and undergo a temporary period of
nonreplication, the lag phase, during which we assumed that ATP production is maxi-
mized. The exponential growth phase covers only the first hours until nitrogen exhaus-
tion. In this phase, cells maximize growth. During growth under nitrogen limitation
cells, still maximizing growth, accumulate carbohydrates. Thenceforward, a substantial
fraction of the sugar is consumed during the stationary and decay phases by quiescent
cells, which adjust their metabolism to cope with environmental fluctuations. In the
last two phases, we assumed that cells maximize both ATP and protein production.

The general formulation of the FBA problem reads as follows:

maximize
v

Jp
subject to

S � v ¼ 0
vNH4 $ fNH4 NH4ð Þ
vAAi $ fAA AAið Þ; 8i ¼ 1; � � � ; 20
vGlx ¼ fGlx Glx;Eð Þ
vF ¼ fF F; Eð Þ
vO2 ¼ fO O2ð Þ
vPj ¼ fPj vGlx; vFð Þ; 8j ¼ 1; � � � ; 20

where Jp is the function to be maximized in each phase p, S is the stoichiometric matrix, v
is the vector of fluxes in millimoles per gram (dry weight [DW]) per hour, vGlx and vF are
the fluxes of glucose and fructose, vO2 is the flux of O2 present only at the beginning of
the fermentation, vNH4 is the flux of ammonium, vAAi is the exchange rate of the amino
acid i (covering all 20 amino acids), and vPj are the constraints associated with the
j ¼ 1; . . . ; 20 fermentation products considered. Glx, F, NH4, AAi, and Pj correspond to the
concentrations of glucose, fructose, ammonium, amino acids, and products, all expressed
in millimoles per liter. Table S2 presents the specific formulation for each phase.

The uptake of glucose and fructose was modeled using Michaelis-Menten (MM)-
type kinetics with competitive ethanol inhibition (14):

vGlx ¼ 2vmaxG �
Glx

Glx1 kG
� 1
1 1 E=KEi

(1)

where vmaxG is the maximum uptake rate, kG is the MM constant, KEi is the strength of
ethanol inhibitory effect, and E is its concentration (mmol/liter). A similar expression,
vF , exists for fructose (F). Additionally, in our case studies, the medium was supple-
mented with sucrose; thus, we included a mass action-type expression, characterized
by the kinetic constant khydro, describing its hydrolysis.

A certain amount of dissolved oxygen is present in the medium and consumed dur-
ing the lag phase (see Fig. S3B in Text S2). Its uptake is determined as follows:

vO2 $ 2kO2 � O2 (2)

where vO2 and kO2 are the oxygen uptake and transport rate constants and O2 is the
concentration of oxygen in the medium.
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The uptake of ammonium was modeled by

vNH4 $ 2vmaxNH4
� NH4

NH4 1 kNH4

(3)

where NH4 is the extracellular concentration of ammonia (in millimoles per liter),
vmaxNH4

is the maximum uptake rate achieved, and kNH4 is the MM constant. To avoid an
excessive number of parameters, amino acid transport was modeled following mass
action kinetics:

FIG 1 Details on the implementation of the multiphase and multiobjective dynamic genome-scale model to simulate
batch fermentation. (A) Implementation, model formulation, and solution approach. (B) Multiphase and multiobjective
dynamic FBA and methodology to compute dynamic flux rates. The process starts at t0 ¼ 0 and ends at tF ; the timing of
each phase tL , tE , tS , and tD is computed through parameter estimation. (C) Model improvements through additional
mechanisms. (C1) Model prediction versus the experimental dynamics of methionine with and without its degradation
pathway; (C2) schematic view of active versus viable biomass in the model; (C3) YAN consumption prediction with static
and dynamic biomass equations; (C4 to C6) model predictions versus biomass, CFU, and OD600 measurements.
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vAAi $ 2kAAi � AAi (4)

where AAi is the extracellular concentration of the amino acid (in millimoles per liter)
and kAAi is the associated kinetic parameter.

Production of alcohols and higher alcohols, carboxylic acids, and esters follows
mass action kinetics:

Pi
_ ¼ XA � vPi (5)

with XA the active biomass and the flux, vPi , proportional to the amount of transported
hexoses:

vPi ¼ 2kPi � vGlx1vFð Þ (6)

where Pi refers to the excreted product i ¼ 1; . . . ; 20 and kPi the production rates.
An exception to this was the formulation of the dynamics of acetate. This metabo-

lite is produced during exponential growth and consumed during stationary phase fol-
lowing mass action kinetics.

Model of protein turnover. Since nitrogen sources are depleted before the station-
ary phase, we developed a new model of nitrogen homeostasis that considered pro-
tein turnover. The proposed model describes the combined use of the Ehrlich and de
novo synthesis pathways during stationary and decay phases to guarantee optimal ad-
aptation to perturbations in nitrogen homeostasis.

To introduce protein turnover, we simulated the degradation of the existing protein
fraction inside biomass (Prot), into a pool of amino acids that subsequently produce
new proteins. During stationary and decay phases, the lower bounds on the amino
acid uptake are set as

vAAi $ 2l � Prot � aAAi (7)

where l is the turnover rate, Prot is the concentration of protein, and aAAi is associ-
ated with the stoichiometric coefficient of the amino acid i in the protein pseudoreac-
tion. Mathematically, the dynamics of protein content reads as follows:

dProt
dt

¼ m � Xv � Protcontent 2 Prot � kdeath 1 XA � vProt 2 l � Prot (8)

where m is the growth rate, Protcontent is the fraction of protein in the newly formed
biomass, kdeath (per hour) is the rate of biomass degradation during decay phase, XV is
the simulated viable biomass (grams per liter), XA is the simulated active biomass
(grams per liter), vProt is the protein production rate (grams per gram [DW] per hour),
and l is the protein turnover rate (per hour).

The degraded proteins (l � Prot) are converted into extracellular amino acids
whose concentrations are represented by the following equations:

dAAi

dt
¼ X � vAAi1 l � Prot � aAAi (9)

The rates vAAi are computed by maximizing protein production (vProt) and ATP
(VATP) while solving the FBA problem:

maximize
v

vProt; f � vATP
subject to

S � v ¼ 0
vAA , l � Prot � aAA

vPro ¼ vGlx 1 vFð Þ � aPro

. . .

where f is estimated for each strain, S is the stoichiometric matrix, v is the vector of
fluxes, vAAi is the exchange rate of amino acid AAi, vPi are constraints associated with
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fermentation products, and vPro (r_1904) is the amount of excreted proline. The last
amino acid accumulates in the extracellular medium throughout the fermentation (see
Fig. S3 in Text S2), likely as a consequence of stored arginine consumption under an-
aerobic conditions (27). The extracellular dynamics of proline is described as follows:

dPro
dt

¼ XA � vPro (10)

Depending on the kinetic constraints, amino acids can be directly incorporated into
proteins or degraded to recover nitrogen for protein production. We observed that
those amino acids which lacked pathways for their catabolism or elimination accumu-
lated in the extracellular compartment during stationary phase. As an example,
Fig. 1C1 shows how including a catabolic route for methionine, during stationary
phase, successfully describes its dynamics, possibly indicating that this route could be
active during the stationary phase.

Dynamic biomass equation. A static biomass equation was not able to explain
nitrogen assimilation (Fig. 1C2). Therefore, we implemented the following dynamic
biomass equation (15):

Protcontent ¼ A � 1 2 eB�YANð Þ (11)

where A and B are estimated parameters and yeast assimilable nitrogen (YAN) accounts
for the ammonium and free amino acids present in the medium, excluding proline,
which is not catabolized under anaerobic conditions.

Furthermore, we assumed that mRNA level was proportional to the protein content
(mRNA ¼ Prot=RNA� to� Prot ratio). In this framework, carbohydrates compensate
for the variation in protein and mRNA content. Growth-associated ATP maintenance
(GAM) was also updated to account for the polymerization costs of the different mac-
romolecules (protein, RNA, DNA, and carbohydrates):

GAM ¼ GAMfitted 1 GAMProt 1 GAMRNA 1 GAMCarbs 1 GAMDNA (12)

where GAMfitted is a species- or strain-dependent parameter estimated from data and the
rest are polymerization costs of the different biomass precursors (adapted from reference
18). Additionally, to represent the premature end of fermentations during the decay phase
(observed in SuCECT12600), we estimated the non-growth-associated maintenance (NGAM).

In addition, we discriminated between active cells (able to ferment) and viable cells
(able to divide and ferment) to capture the dynamics of CFU and biomass (Fig. 1C2).
The dynamics of active cell mass is represented by the equation

XA

_ ¼ m � XV 2 XA � kdecay 1 XA � vProt 2 l � Prot (13)

where XA is the active cell mass (grams per liter), m is the growth rate computed with
pFBA, kdecay is the decay rate (only active during decay), vProt (r_4047) is the exchange
flux for protein production, and l is the turnover rate (both only active during station-
ary and decay phases). The behavior of viable cell mass differed from that of active cell
mass by a decline induced by ethanol (28):

Xv

_ ¼ XA

_
2Xv � kEdeath � En

En 1 kn
(14)

where Xv (grams per liter) is the growth rate obtained with the constraint based model,
E is the ethanol concentration (millimoles per liter), and kEdeath, n, and k are the param-
eters controlling susceptibility to ethanol.

The former mechanisms, coupled to parameter estimation, allowed us to predict
nitrogen consumption, CFU, and biomass dynamics accurately (Fig. 1C3 to Fig. 1C6).

Goodness of fit of the model in the case studies. The final model consisted of 46
ordinary differential equations depending on 66 parameters which we estimated from
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time series data for all measured external metabolites and biomass. The mean standard
deviation on the parameters ranges from 2:5% for SuCECT12600 and 12:6% for
SuBMV58. The reasonably low distribution on the parameters resulted in a reasonably
low uncertainty associated with the model simulations (as seen in Fig. 2, 3, and 4).

The model described the dynamics of our illustrative examples successfully. The
best fit to the data and the associated uncertainty, as computed by the bootstrap, are
shown in Text S2 and Fig. 3 and 4. We determined the R-squared measure of goodness

FIG 2 Comparative study of the fluxes through the reactions consuming and producing NADH and NADPH at the
stationary phase, illustrating how strains achieve redox balance. The most significant differences between strains are
found at the level of the TCA cycle, the GABA shunt, the pentose phosphate pathway, the biosynthesis of aromatic
amino acids which eventually lead to production of 2-phenylethanol (PEA) and the Ehrlich pathway toward
production of isoamylol. It is also important to note that S. uvarum diverts flux to the production of mevalonate.
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FIG 3 Redox balance in central carbon metabolism. Panels A to F show model predictions versus the experimental data extracellular metabolite
concentrations associated with glycolysis and central carbon metabolism for the three strains. Panel H presents the predicted intracellular dynamic flux
ratios during the stationary phase, showing how S. uvarum and S. cerevisiae strains use different redox balance strategies. These differences result in the
differential production of relevant external metabolites such as acetate (C), succinate (D), ethanol (E), 2,3-butanediol (F), and glycerol (G). Explicit differences
in the pathways in gray are presented in Text S3; otherwise, as indicated in the legend, width of the lines is proportional to the dynamic flux ratio.

Henriques et al.

July/August 2021 Volume 6 Issue 4 e00260-21 msystems.asm.org 8

https://msystems.asm.org


of fit (R2) for each measured variable and each strain-based fermentation. The medians
of the R2 values are above 0:94 for all strains.

Interested readers may find further details on the parameter estimation in Text S2.
Optimal parameter values and R2 values are reported in Table S3.

Species behavior differs significantly in the stationary phase. At the extracellular
level, the most striking differences between strains occur in the production of compounds
associated with the central carbon metabolism and nitrogen metabolism, in particular, in the
dynamics of acetate and the yields of succinate, 2,3-butanediol, and glycerol (Fig. 3C, D, F, and
G) and in the production of 2-phenylethanol and isoamyl alcohol (Fig. 4B and D).

FIG 4 Redox balance in higher-alcohol production. Panel A shows the predicted intracellular flux ratios (above 0.01mmol/mmolH) related to
higher alcohols 2-phenylethanol (PEA), isobutanol, and isoamyl alcohol during the stationary phase and their corresponding impact on the
redox balance of cofactors NADPH/NADP1 and NADH/NAD1. Panels B to D correspond to the comparison between model predictions and
raw measures of PEA, isobutanol, and isoamyl alcohol, respectively. Other higher alcohols, such as methionol and tyrosol, seemed to accumulate
in minimal quantities (flux ratio 100 ’ 0:001) in response to perturbations in the amino acid pool.
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We used the model to decipher the metabolic strategies used by the different strains
that lead to such differences. Table S4 reports the dynamic flux ratios computed for the
overall process and the different phases using equations 21 to 23 for those reactions in
which the maximum flux ratio value over the three species is above 0.01mmol/mmolH
(where mmolH is millimoles of consumed hexose � 100). Uncertainties associated with
the fluxes due to uncertainties on the parameters are also reported.

Text S3 summarizes the differences observed in flux ratios between species and
phases. Again, the intracellular behavior differs significantly in the stationary phase.
Thus, subsequent sections elaborate on the metabolic study of the stationary phase.
Remarkably, this is also the phase in which higher alcohols and aroma are produced,
thus being relevant for industrial applications.

The GABA shunt as an NADPH source in cryotolerant species. Cells produced the
most significant fraction of succinate during the stationary and decay phases, with a
significantly higher dynamic flux ratio by SuBMV58 and SuCECT1600 (6:08 and 1:66)
than ScT73 (0:42, r 2057).

During the decay phase, most succinate was produced through the tricarboxylic
acid (TCA) cycle reductive branch in the two species. However, during the stationary
phase, succinate production was distributed between the GABA shunt (ScT73, 0.42;
SuBMV58, 2.00; SuCECT12600, 1:31; Fig. 3H, r 1023) and the reductive branch of TCA
(ScT73, 0:00; SuBMV58, 4:10; and SuCECT12600, 0:35; Fig. 3H, r 1000). Remarkably, suc-
cinate production through the GABA shunt was between 3 and 4.6 times higher for S.
uvarum species than for S. cerevisiae (Fig. 3H, r 0068, r 1023). This result suggested an
important role for the GABA shunt in the maintenance of the cellular redox state.
Incidentally, revisiting data from reference 29, we found a considerable accumulation
of GABA (93:59-fold change) by SuCECT12600 (Table S4).

Intracellular mevalonate as a reducing equivalent in cryotolerant yeast
species. The three strains produced acetate during the growth phase (ScT73, 1:079;
SuBMV58, 1:145; SuCECT12600, 1:422 [Table S4, r 1106]) and until the entry into the
stationary phase. Afterward, while the extracellular acetate concentration remained
constant in ScT73, a decrease was observed in both S. uvarum fermentations, indicat-
ing acetate consumption. As shown in Fig. 3C, our model successfully described these
phenotypes.

According to the modeling constraints, the most parsimonious explanation for this
observation would have been an operative glyoxylate cycle. However, based on the
repression by glucose of the key enzymes of the glyoxylate cycle (i.e., ICL1 and MLS1)
and previous intracellular data (29), we decided to block this cycle and explore an alter-
native hypothesis. As a result, the model suggested that S. uvarum strains incorporated
the acetate derivative, acetyl coenzyme A (acetyl-CoA), into mevalonate (SuBMV58,
0:19, and SuCECT12600, 0:10; r 0559 and r 0103) also consuming NADPH. In addition,
mevalonate is a reducing equivalent that can be further metabolized into, for example,
ergosterol (r 0127 in our reconstruction) possibly acting as storage of NADPH in cryo-
tolerant species.

S. uvarum strains also used the carnitine shuttle system to transport acetyl-CoA into
the mitochondria (SuBMV58, 0:09, and SuCECT12600, 0:38; Fig. 3H, r 0254). Inside the
mitochondria, acetyl-CoA was used to form isopropylmalate (Fig. 4A)—a precursor of
leucine and isoamyl alcohol—or in the TCA oxidative branch toward the synthesis of 2-
oxoglutarate (Fig. 3H).

The production of higher alcohols contributed to the redox balance. Higher-
alcohol production was most prominent during the stationary phase for the three
strains. Our model predicted that carbon skeletons of isoamyl alcohol, 2-phenyletha-
nol (PEA), and isobutanol were in great part synthesized de novo from glycolytic and
pentose phosphate pathway (PPP) intermediates, rather than coming from the catab-
olism of precursor amino acids (leucine, valine, and phenylalanine, respectively)
(Fig. 4A).

S. uvarum strains produced more PEA than ScT73 (ScT73, 0:158; SuBMV58, 0:659;
and SuCECT12600, 0:383; r 1590), while the opposite occurred for isoamyl alcohol
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(ScT73, 0:736; SuBMV58, 0:483; and SuCECT12600, 0:394; r 1863). We found that the
production of PEA and isoamyl alcohol contributed substantially to the redox metabo-
lism related to glycerol accumulation. Approximately 43%, 36%, and 27% of the glyc-
erol produced by the ScT73, SuBMV58, and SuCECT12600 strains was attributable to
NADH derived from isoamyl alcohol and PEA.

The higher production of PEA observed in S. uvarum strains occurs through the higher
flux through the shikimate pathway (Fig. 4A, r 0996 and r 0279). Interestingly, while ScT73
had a larger flux ratio through the oxidative pentose phosphate pathway (Fig. 4A, r 0091
and r 0889) partly redirected toward glycolysis, S. uvarum simulations reflected the inverse
pattern (Fig. 4A, r 0984), with glycolytic flux being shifted toward the nonoxidative PPP.

Pyruvate in the mitochondrion showed two different fates: acetyl-CoA (r 0961) and
2-acetyllactic acid (r 0097). Noticeably, S. uvarum strains also contributed to acetyl-CoA
using the carnitine shuttle (r 0254). 2-Acetyllactic acid can further be converted to 3-
methyl-2-oxobutanoate, consuming one NADPH (r 0096), which also showed two dif-
ferent fates: the production of 2-isopropylmalate (leading to isoamyl alcohol; r 0025,
r 0072, and r 0179) or valine (leading to the synthesis of isobutanol via the Ehrlich
pathway; r 1087, r 0062, and r 0182).

Production of PEA and isoamyl alcohol also affected NADP1/NADPH metabolism.
While the GABA shunt and oxidative PPP were the main producers of NADPH, con-
sumption of NADPH was attributable mostly to isoamyl alcohol and PEA. In fact, the
increased isocitrate dehydrogenase flux (r 0659) observed in ScT73 (1:646 against
0:917 and 0:727 in the S. uvarum strains) was associated with the need for shuttling
NADPH into the mitochondria (r 2131), utilized in 3-methyl-2-oxobutanoate synthesis
(precursor of the isoamyl alcohol; see Fig. 3H and Fig. 4A). On the other hand, produc-
tion of PEA without the oxidative PPP (predicted in the S. uvarum strains) resulted in
excess NADP1. In the case of S. uvarum, given the reduced influence of oxidative PPP,
NADP1 recycling was achieved mostly through the GABA shunt.

DISCUSSION

Genome-scale models have the potential to decipher how nonconventional yeast
species use metabolism to produce industrially relevant products and tolerate specific
stressors, such as cold temperatures. This study aimed to develop a dynamic genome-
scale model to investigate the dynamics of yeasts primary and secondary metabolism
in batch cultures. To generate biological hypotheses for modeling, we considered the
description of the metabolism of S. cerevisiae and cryotolerant S. uvarum strains in a
rich medium (grape must) fermentation.

The first question in this research was how to model all phases in the batch process:
lag, exponential growth, limited nitrogen growth, stationary, and decay. Prior studies
focused on the exponential growth phase and were based on available reconstructions
with many missing reactions, particularly those related to secondary metabolism (14,
15, 17, 30). Also, their static nature hinders the description of the sequential nature of
amino acid consumption (31).

As a first step, we needed to extend a yeast genome-scale reconstruction to
account for the production of higher alcohols, carboxylic acids, or esters. We extended
the Yeast8 consensus model incorporating missing reactions and metabolites. A similar
curation process has been recently applied to the iMM904 reconstruction (32). The
authors fitted the model to data from the literature, concluding that further curation
and adaptations were necessary to successfully predict metabolism and biomass dy-
namics. We experienced such difficulties in our first iterations in the modeling process
and introduced several new features to obtain more accurate simulations of carbon
and nitrogen metabolism throughout time.

A critical aspect for an improved accuracy was the multiphase multiobjective
dynamic FBA scheme. Previous works focused on ATP consumption to explain the me-
tabolism after depletion of the limiting nutrient (15, 33, 34); we incorporated the pro-
duction of protein as a cellular objective (together with protein degradation) with
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accurate results. Also, we modeled protein turnover to account for the uptake of amino
acids and inorganic nitrogen in the stationary phase. To the best of our knowledge,
this is the first dynamic genome-scale metabolic model describing nitrogen homeosta-
sis during the stationary phase. Finally, we introduced a dynamic biomass equation
which further improved the model accuracy. This result agrees with observations in
previous studies (35–37) pointing out the relevance of detailing biomass composition
in a context-specific manner.

The second question in this research was to decipher the differences in the metabo-
lism of three strains of two different species, S. cerevisiae and S. uvarum, in rich medium
(grape must) fermentation. Recently, it was hypothesized that S. cerevisiae and S. uva-
rum species might have different redox balance strategies (38). Notably, the model
confirmed this hypothesis and brought novel insights into the specific routes used by
the two species.

Our predictions suggest alternative pathways for cryotolerant species to produce
succinate and consume acetate. In principle, yeasts might form succinate via four main
pathways, all based on the reactions of the TCA cycle (39). The selected pathway
depends on the environmental conditions and strain. Our model predicted that ScT73
and SuBMW58 produced overall the most succinate via the TCA reductive branch, in
agreement with previous findings (40). However, our results also suggest an important
role for the TCA oxidative branch until 2-oxoglutarate for the S. uvarum strains during
the stationary phase. This result is consistent with the recent intracellular data
obtained by Minebois et al. (25), who observed a noticeable intracellular accumulation
of 2-oxoglutarate in SuBMV58.

One somewhat unexpected finding of the model was the extent to which the GABA
shunt would contribute to succinate formation during the stationary phase, an effect
particularly evident in the case of S. uvarum strains. The role of this pathway in yeast is
not fully understood (41–43). Bach et al. (41) observed that glutamate decarboxylase
(encoded by GAD1) was poorly expressed when succinate was produced in S. cerevisiae
and that the GABA shunt played a minor role in redox metabolism. In contrast,
Coleman et al. (44) showed that GAD1 expression is required for oxidative stress toler-
ance in S. cerevisiae. Similarly, Cao et al. (42) showed that GAD1 confers resistance to a
heat stress effect that might be related to NADPH production. Additionally, GAD1 was
upregulated during the stationary phase under nitrogen starvation (41, 43, 45), and
López-Malo et al. (29) observed high intracellular GABA levels in the cryotolerant spe-
cies S. uvarum.

Recently, Liu et al. (46) found clear indication that the GABA shunt may be involved
in supplying NADPH for lipid synthesis in the oleaginous yeast Yarrowia lipolytica. Also,
Bach et al. (41) showed that S. cerevisiae can degrade GABA into succinate org-hydrox-
ybutyric acid (GHB) and that GHB was used to form the polymer polyhydroxybutyrate
(PHB). Also noteworthy is that PHBs are synthesized by numerous bacteria as carbon
and energy storage compounds (47). PHBs are also strongly associated with bacterial
cold tolerance (48), suggesting a similar function in yeast.

Another important finding is that S. uvarum strains consume acetate once nitrogen
sources are depleted, coinciding with the extracellular accumulation of succinate. This
finding was also reported by Kelly et al. (49), who showed that an S. uvarum yeast iso-
late can metabolize acetate, resulting in lower acetic acid, ethyl acetate, and acetalde-
hyde concentrations in wine. The model predicted that some of the acetate carbon
was directed toward mevalonate, which is in line with recent experimental work by
Minebois et al. (25). According to Bach et al. (41), a route for acetyl-CoA incorporation
into PHB polyester through 3-hydroxybutyrate-CoA seems plausible. However, this hy-
pothesis is not taken into account by the genome-scale reconstructions.

The fact that López-Malo et al. (29) found high intracellular GABA and GHB in cryo-
tolerant strains grown in synthetic must (without GABA) at low temperature, and the
flux predicted in the present work, suggests that S. uvarum stores lipids or polyesters
(i.e., PHBs) as reducing equivalents to withstand oxidative stress induced by low
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temperatures. The role of the GABA shunt and the production of reducing equivalents
in the metabolism of cryotolerant species may be plausible routes worth exploring.

Our model also predicted that the carbon skeletons of higher alcohols (e.g., isobuta-
nol and isoamyl alcohol) were mainly synthesized de novo rather than from the incor-
poration and catabolism of amino acids (e.g., leucine and valine). This result agrees
with the findings of Crépin et al. (50), who explored the fate of the carbon backbones
of aroma-related exogenous amino acids using 13C isotopic tracer experiments.
Similarly, our results indicate that 2-phenylethanol was mostly synthesized de novo.
We hypothesize that a positive contribution in glycerol content may also explain why
the production of 2-phenylethanol and isoamyl alcohol is a conserved evolutionary
trait in yeasts.

Noticeably, most of NADPH consumption was associated with higher-alcohol syn-
thesis. The increased flux through cytosolic isocitrate dehydrogenase associated with
isoamyl alcohol is compatible with reports associating high expression of IDP2 with
nitrogen deficiency (51) and stationary phase (52). Furthermore, the prediction that
during the stationary phase, PEA is produced through the chorismate synthesis path-
way (downstream of the nonoxidative PPP), thus regenerating some NADPH associated
with the conversion of succinic semialdehyde into succinate, provides a counterintui-
tive rationale for understanding the correlation between the observed differences in
higher-alcohol and succinate production between S. cerevisiae and S. uvarum.

Interestingly, the model predicts that most other higher alcohols (tyrosol, methio-
nol, etc.) accumulate in small amounts due to perturbations in the amino acid pool.
These results confirm the hypothesis raised by Shopska et al. (53), who suggested that
the two schemes to produce higher alcohols—the Ehrlich pathway and de novo syn-
thesis—are not in contradiction but two extremes of a common mechanism.
Incidentally, Yuan et al. (54) showed that the assembled leucine biosynthetic pathway
coupled with the Ehrlich degradation pathway results in high-level production of iso-
amyl alcohol.

Our bootstrap-based identifiability analysis of the proposed model and the fact that
model predictions are consistent with numerous previous findings lead us to conclude
that the present model (along with the provided code) can simulate yeast metabolism
in batch culture in a general chemically characterized medium; the only requirement
would be to update the metabolic reconstruction if required for the specific yeast spe-
cies. The model can also be used to explore and engineer novel metabolic pathways
toward specific bioproducts.

MATERIALS ANDMETHODS
Yeast strains. In this study, three yeast strains belonging to S. cerevisiae and S. uvarum were used:

the commercial strain T73 (Lalvin T73 from Lallemand Montreal, Canada), originally isolated from wine
in Alicante, Spain (55), was selected as our wine S. cerevisiae (ScT73) representative; the commercial
strain BMV58 (SuBMV58, Velluto BMV58 from Lallemand Montreal, Canada), originally isolated from wine
in Utiel-Requena (Spain), and the noncommercial CECT12600 strain, isolated from a nonfermentative
environment (SuCECT12600, Alicante, Spain), represented S. uvarum.

Fermentation experiments. Fermentation assays were performed with grape must obtained from
Merseguera white grapes, collected in the 2015 vintage in Titaguas (Spain) and stored in several small
frozen volumes (4 liters at 20°C). Before its use, the must was clarified by sedimentation for 24 h at 4°C
and sterilized by adding dimethyl dicarbonate at 1 ml liter21. All fermentations were performed in 3 in-
dependent biological replicates in 500-ml controlled bioreactors (MiniBio; Applikon, The Netherlands)
filled with 470ml of natural grape must. Each bioreactor was inoculated using an overnight starter cul-
ture cultivated in Erlenmeyer flasks containing 25ml of YPD medium (2% glucose, 0:5% peptone, 0:5%
yeast extract) at 25°C and 120 rpm in an agitated incubator (Selecta, Barcelona, Spain). Strain inoculation
was done at an optical density at 600 nm (OD600) of 0.100. The dynamics of the fermentation was regis-
tered using different probes and detectors to control and measure temperature, pH, dissolved oxygen
(Applikon, The Netherlands), and effluent carbon dioxide level (INNOVA 1316 multigas monitors;
LumaSense Technologies). Data were integrated into the BioExpert software tools (Applikon, The
Netherlands). The fermentation was complete when a constant sugar content was reached as measured
by high-performance liquid chromatography (HPLC).

Sampling and quantification of extracellular metabolites. Extracellular metabolites, including
sugars, organic acids, main fermentative by-products, and yeast assimilable nitrogen (YAN), were deter-
mined at 10 sampling times during the fermentation. Residual sugars (glucose and fructose), organic
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acids (acetate, succinate, citrate, malate, and tartrate), and the main fermentative by-products (ethanol,
glycerol, and 2,3-butanediol) were quantified using HPLC (Thermo Fisher Scientific, Waltham, MA)
coupled with refraction index and UV-visible (UV-Vis) (210-nm) detectors. Metabolites were separated
through a HyperREZ XP Carbohydrate H1 8-mm column coupled with a HyperREZ XP carbohydrate
guard (Thermo Fisher Scientific). The analysis conditions were as follows: eluent, 1.5 mM; flux, 0.6 ml
min21; and oven temperature, 50°C. For sucrose determination, the same HPLC was equipped with a Hi-
Plex Pb, 300- by 7.7-mm column (Agilent Technologies, CA), and the following analysis conditions were
used: eluent, Milli-Q water; flux, 0.6 ml min21; and oven temperature, 50°C. The retention times of the
eluted peaks were compared to those of commercial analytical standards (Sigma-Aldrich, Madrid, Spain).
Metabolite concentrations were quantified by the calibration graphs (R2 value. 0.99) of the previously
obtained standards from a linear curve fit of the peak areas using 10 standard mixtures.

Determination of yeast assimilable nitrogen in the form of amino acids and ammonia was carried
out following the same protocol as described previously (56). A volume of supernatant was removed
from the fermentor, and amino acids and ammonia were separated with an ultraperformance liquid
chromatograph (UPLC; Dionex Ultimate 3000; Thermo Fisher Scientific, Waltham, MA) equipped with a
Kinetex 2.6-mm C18 100A column (Phenomenex, Torrance, CA) and Accucore C18 10- by 4.6-mm, 2.6-mm
Defender guards (Thermo Fisher Scientific, Waltham, MA). For derivatization, 400 ml of the sample was
mixed with 430 ml of borate buffer (1 M, pH 10.2), 300 ml of absolute methanol, and 12 ml of diethyl
ethoxymethylenemalonate (DEEMM) and ultrasonicated for 30min at 20°C. The ultrasonicated sample
was incubated up at 80°C for 2 h to allow the complete degradation of excess DEEMM. Once the derivati-
zation finished, the sample was filtered with a 0.22-mm filter before injection. The target compounds in
the sample were then identified and quantified according to the retention times, UV-Vis spectral charac-
teristics, and calibration curves (R2 value. 0.99) of the derivatives of the corresponding standards.
Amino acid standard (reference no. AAS18), asparagine, and glutamine purchased from Sigma-Aldrich
were used for calibration.

Higher alcohols and esters. We also determined the concentrations of higher alcohols and esters
for each sampling time. Volatile-compound extraction and gas chromatography (GC) were performed
following the protocol described in reference 71. Extraction was performed using headspace solid-
phase-microextraction sampling (SPME) with polydimethylsiloxane (PDMS) fibers (Supelco; Sigma-
Aldrich, Barcelona, Spain). Aroma compounds were separated by GC in a Thermo TRACE GC Ultra chro-
matograph (Thermo Fisher Scientific, Waltham, MA) equipped with a flame ionization detector (FID),
using an HP-INNOWAX 30-m by 0.25-mm capillary column coated with a 0.25-mm layer of cross-linked
polyethylene glycol (Agilent Technologies, CA). Helium was the carrier gas used (flow, 1 ml min21). The
oven temperature program was as follows: 5min at 60°C, 5°C min21 to 190°C, 20°C min21 to 250°C, and
2min at 250°C. The detector temperature was 280°C, and the injector temperature was 220°C under
splitless conditions. The internal standard was 2-heptanone (0.05% [wt/vol]). Volatile compounds were
identified by the retention time for reference compounds. The quantification of the volatile compounds
was determined using the calibration graphs of the corresponding standard volatile compounds.

Physiological and biomass parameters. Physiological and biomass parameters, including OD600,
dry weight (DW), CFU, and average cell diameter (ACD), were determined at each sample time, provided
that the cell sample was sufficient to perform the corresponding measure. DW determination was per-
formed by centrifuging 2ml of the fresh sample placed in a preweighed Eppendorf tube in a MiniSpin
centrifuge (Eppendorf, Spain) at maximum speed (13,200 rpm) for 3min. After centrifugation, the super-
natant was carefully removed, and the pellet was washed with 70% (vol/vol) ethanol and centrifuged
under the same conditions. After washing, the aqueous supernatant was removed carefully and the
tube placed in a 65°C oven for 72 h. DW was finally obtained by measuring the mass weight difference
of the tube with a BP121S analytical balance (Sartorius, Goettingen, Germany). OD600 was measured at
each sampling time using a diluted volume of sample and a BioPhotometer spectrophotometer
(Eppendorf, Germany). CFU were determined using 100 to 200 ml of a diluted volume of samples plated
in YPD solid medium (2% glucose, 2% agar, 0:5% peptone, 0:5% yeast extract) and incubated for 2 days
at 25°C. The resulting colonies were counted with a Comecta S.A. colony counter. Only plates with a CFU
count between 30 and 300 were used to calculate the CFU of the original sample. For ACD determina-
tion, a volume of cell sample was diluted into a phosphate-buffered saline solution and cell diameter
measured using a Scepter handheld automated cell counter equipped with a 40-mm sensor (Millipore,
Billerica, MA).

Orthology analysis and genome-scale metabolic reconstruction. Genomes of ScT73 (57) and
SuBMV58 and SuCECT12600 (PRJNA471597; M. Morard, L. G. Macías, A. C. Adam, M. Lairón-Peris, R.
Pérez-Torrado, C. Toft, and E. Barrio, unpublished data) were sequenced and assembled previously.
Genome assemblies were annotated by homology and gene synteny using RATT (58). This approach let
us transfer the systematic gene names of S. cerevisiae S288c annotation (59) to our assemblies and,
therefore, to select only those syntenic orthologous genes in the T73, CECT12600, and BMV58 genomes
for subsequent analyses.

We added to the consensus genome-scale reconstruction of Saccharomyces cerevisiae S288C (v.8.3.2)
metabolites and reactions related to amino acid degradation and higher-alcohol and ester formation.
This refined model was then used as a template for reconstructing strain-specific genome-scale models
for SuBMV58, SuCECT12600, and ScT73. MetaDraft, AuReMe and the results from the orthology analysis
were used to create the strain-specific models.

Flux balance analysis. Flux balance analysis (FBA) (60, 61) is a modeling framework based on knowl-
edge of reaction stoichiometry and mass/charge balances. The framework relies on the pseudo steady-
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state assumption (no intracellular accumulation of metabolites occurs). This is captured by the well-
known expression

S � v ¼ 0 (15)

where S is stoichiometric matrix of (n metabolites by m reactions) and v is a vector of metabolic fluxes.
The number of unknown fluxes is higher than the number of equations, and thus, the system is undeter-
mined. Still, it is possible to find a unique solution under the assumption that cell metabolism evolves to
pursue a predetermined goal which is defined as the maximization (or minimization) of a certain objec-
tive function (J):

max J
s:t: :

S � v ¼ 0
LB, v, UB

(16, 17, 18, 19)

where LB and UB correspond to the lower and upper bounds on the estimated fluxes. Examples
of objective functions J include growth rate, ATP, and the negative of nutrient consumption,
etc.

Typically, multiple optimal solutions exist for a given FBA problem. In parsimonious FBA (pFBA), the
result is the most parsimonious of optimal solutions, i.e., the solution that achieves the specific objective
with the minimal use of gene products and the minimization of the total flux load (62).

Parameter estimation. The aim of parameter estimation is to compute the unknown parameters—
growth-related constants and kinetic parameters—that minimize some measure of the distance
between the data and the model predictions. The maximum likelihood principle yields an appropriate
measure of such distance (63):

Jmc uð Þ ¼
Xnexp
k¼1

Xnobs
j¼1

Xnst
i¼1

yk;j;i uð Þ2 ymk;j;i
s k;j;i

 !2

(20)

where nexp, nobs, and nst are, respectively, the number of experiments, observables (measured quanti-
ties), and sampling times, while s k;j;i represents the standard deviation of the measured data as
obtained from the experimental replicates. yjm represents each of the measured quantities, Xm and Cm in
our case, and yj uð Þ corresponds to model predicted values, X and C. Observation functions were
included for CFU and OD600 in order to scale viable cell mass (Xv) and active cell mass (XA), respectively.

Parameters are estimated by solving a nonlinear optimization problem where the aim is to find the
unknown parameter values (u ) to minimize Jmc uð Þ, subject to the system dynamics—the model—and
parameter bounds (64).

Uncertainty analysis. In practice, the value of the parameters u compatible with noisy experimental
data is not unique; i.e., parameters are affected by some uncertainty (64). The consequence of significant
parametric uncertainty is that it may impact the accuracy of model predictions.

To account for model uncertainty, we used an ensemble approach. To derive the ensemble, we
apply the bootstrap smoothing technique, also known as bootstrap aggregation (the bagging
method) (65, 66). The bagging method is a well-established and effective ensemble model/model
averaging device that reduces the variability of unstable estimators or classifiers (66). The underly-
ing idea is to consider a family of models with different parameter values H ¼ u 1 . . . u N½ �T compat-
ible with the data ym, when using the model to predict untested experimental setups. The matrix
of parameter values H consistent with the data is obtained using N realizations of the data
obtained by bootstrap (67). Each data realization has the same size as the complete data set, but it
is constructed by sampling uniformly from all replicates (3 biological replicates per sampling
time). Within each iteration, each replicate has an approximate chance of 37% of being left out,
while others might appear several times. The family of solutions, H, is then used to make N pre-
dictions (dynamic simulations) about a given experimental scenario. The median of the simulated
trajectories regards the model prediction, while the distribution of the individual solutions at a
given sampling time provides a measure of the uncertainty of the model.

Analysis of dynamic metabolic fluxes. We selected the most relevant metabolic pathways using
a flux ratio, which provides a measure of the net flux over time during growth and stationary phases.
In particular, we computed the integral of each flux multiplied by the biomass (millimoles per hour)
over time and normalized its value with the accumulated flux of consumed hexoses (glucose and
fructose):

Si;G ¼ 100�

ð tS

tL

vi tð Þ � DW tð Þð tS

tL

vGlx tð Þ � DW tð Þ 1
ð tS

tL

vFr tð Þ � DW tð Þ
(21)
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Si;S ¼ 100�

ð tD

tS

vi tð Þ � DW tð Þð tD

tS

vGlx tð Þ � DW tð Þ 1
ð tD

tS

vFr tð Þ � DW tð Þ
(22)

Si;O ¼ 100�

ð tF

t0

vi tð Þ � DW tð Þð tF

t0

vGlx tð Þ � DW tð Þ 1
ð tF

t0

vFr tð Þ � DW tð Þ
(23)

where Si;G corresponds to the score of the flux i during growth, Si;S corresponds to the score during the
stationary phase, Si;D corresponds to the score during the decay phase, vi tð Þ (millimoles per hour per
gram [dry weight]) is the flux under scrutiny, vGlx tð Þ (millimoles per hour per gram [dry weight]) is the
flux of glucose, vFr tð Þ (millimoles per hour per gram [dry weight]) is the flux of fructose, and DW is the
predicted dry weight biomass (grams). Results correspond to millimoles of produced compound per
millimole of consumed hexose � 100 (mmolH). Score values indicate the overall impact of each reaction
in the net oxidation or reduction of electron carriers during the given phase of the fermentation.

Numerical tools. To automate the modeling pipeline, we used the AMIGO2 toolbox (68). To solve
the dynamic flux balance analysis (dFBA) problem, we used a variable-step, variable-order Adams-
Bashforth-Moulton method to solve the system of ordinary differential equations that describe the dy-
namics of the extracellular metabolites. At each time step, the pFBA problem was solved using the
COBRA Toolbox (69). The global optimizer Enhanced Scatter Search (eSS [70]) was used to find the opti-
mal parameter values in reasonable computational time.

The ensemble model generation procedure is computationally intensive. However, since each pa-
rameter estimation instance in the ensemble is an entirely independent task, we were able to solve this
problem in less than a day using 60 CPU cores on a Linux cluster. These tasks were automated with the
help of bash scripts and the Open Grid Scheduler. All the scripts necessary to reproduce the results are
distributed (https://sites.google.com/site/amigo2toolbox/examples).
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