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Glioma is a life-threatening malignant tumor. Resistance to traditional treatments and
tumor recurrence present major challenges in treating and managing this disease,
consequently, new therapeutic strategies must be developed. Crossing the blood-brain
barrier (BBB) is another challenge for most drug vectors and therapy medications.
Filamentous bacteriophage can enter the brain across the BBB. Compared to
traditional drug vectors, phage-based drugs offer thermodynamic stability,
biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and
low toxicity. Tumor-targeting peptides from phage library and phages displaying
targeting peptides are ideal drug delivery agents. This review summarized recent
studies on phage-based glioma therapy and shed light on the developing therapeutics
phage in the personalized treatment of glioma.
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INTRODUCTION

Glioma is the most common cerebral malignancy with high morbidity and mortality. Despite the
current treatment measures such as surgery, radiation, and chemotherapy, the prognosis and
mortality of patients has not improved significantly (1–3). The annual death rate in China is as high
as 30,000. Currently, the adverse reactions to glioma drugs are more prominent, and drug resistance
is readily developed (1, 4, 5). To overcome the limits of existing therapies, there is a pressing need for
a treatment strategy that can selectively target cancer tissues and avoid non-target tissues.

In addition, the blood-brain barrier (BBB) is a formidable obstacle for the transport of most
administered therapeutics to the brain (6, 7), and most anti-tumor drugs have difficulty passing the
BBB and the blood-brain tumor barrier (BBTB), it is a major hurdle in the development of targeted
drugs for glioma (8–10). Therefore, choosing a carrier that can pass through the BBB is very
important for glioma treatment.

Filamentous bacteriophages (Ff phage) are nano-scale viruses that infect bacteria and are not
harmful to humans (11–13). Ff phage fd, M13, and f1 are stable under harsh conditions and can be
manufactured with uniform specifications and low cost (14–17). As well, Ff phage has genetic
flexibility. In 1985, Smith et al. reported phage display technology to display a variety of proteins,
antibodies, and peptides on the phage coat proteins. Subsequently, phage display libraries were
injected intravenously into laboratory animals to screen the targeting peptides (18). Moreover, Ff
phage could enter the central nervous system (CNS) without visible toxic effects (19, 20), it can pass
through the BBB as a drug carrier, when administered intranasally or through convection-enhanced
delivery (CED), and has great research potential for the treatment of brain diseases (21–24).
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Furthermore, the phage display library is used quickly and
directly to screen peptides targeting tumor and anti-tumor
antibodies. To date, there are numerous studies by the phage
library screening tumor targeting peptides for target therapy and
immunotherapy (25–27), and it has established the method for
screening glioma targeting peptides across the BBB, guiding the
immunotherapy in patients. These phages and peptides targeting
glioma cells could avoid or reduce the toxic effects of anti-cancer
drugs (28–31). At the same time, phages, carrying targeted
peptides and antibodies, stimulate the immune response and
play an immunotherapy role (28, 32–35).

In summary, this review will clarify the strategy for applying
Ff phage nanoparticles to glioma treatment. It can be used to
direct clinical treatment of tumors and provide new ideas for
personalized disease therapy.
BIOPANNING THE TUMOR-TARGETED
PEPTIDE

Ff phage is a biological nanomaterial with a length of about 1 um
and a diameter of about 7 nm (14, 36). It could specifically infect
bacteria and is present in the human body and harmless to
humans. Ff phage is made of single-stranded circular DNA and
coat proteins. The main coat protein pVIII is located on the
phage side and minor coat proteins (pIII, pV I, pVII, and pIX)
are located at both tips (Figure 1).

Phage display is to insert the DNA sequence of the exogenous
peptide into the phage coat protein gene and express the peptide
on the surface of the phage along with the expression of the coat
protein. The phage displaying peptide still has protein
assembly and infection activity (37–39). Based on phage
display technology, phage libraries were built and used to
select targeting phages, such as tumor-targeted peptides, which
improved research efficiency and reduced costs. In addition,
these targeted peptides developed functions of cell-targeting,
tumor-homing, and cell-penetrating (40–42). Phage libraries
were usually screened by using molecules, cells, and tissues
in vitro or in animals and human patients (38, 43, 44).

Traditional chemotherapeutics have poor accuracy on tumor
cells and are prone to adverse reactions. Therefore, the targeted
therapy is particularly important for tumor therapy (45–47).
Peptides specifically binding to tumor tissues, as carriers to direct
drugs to tumor tissues, significantly improved the accuracy of
Frontiers in Immunology | www.frontiersin.org 2
drug targeting (48–51). Although monoclonal antibodies as
vectors were successfully applied to anti-tumor, the high
molecular weight of antibodies might reduce efficiency (52–55),
while the phage peptide library has the benefits of screening for
small molecular weight peptides, which can compensate for
antibody deficiencies that are widely used in the diagnosis and
treatment of glioma.

The screened peptides could combine with markers for
imaging. Wang et al. developed an HO-8910 ovarian cancer
cell targeting peptide (NPMIRRQ) from the phage library, which
demonstrated the ability to selectively bind ovarian cancer cells
using immunofluorescence and immunohistochemical
assays (56).

The screened pept ides cou ld a l so coup le wi th
chemotherapeutic drugs or some gene, and then be used in the
tumor-targeted treatment or gene treatment; Du et al. obtained
the A54 peptide (AGKGTPSLETTP) by in vivo phage display for
hepatocarcinoma and conjugated it with doxorubicin for in vivo
targeted therapy. The study showed the A54-doxorubicin
reduced the tumor size and prolongated the long-term survival
rate (57).

Furthermore, some specific binding peptides that inhibit
tumor growth, invasion, and metastasis, could be used to treat
tumors directly. Zhou et al. isolated the peptide, SWQIGGN,
from a Ph.D.-C7C phage library with the ovarian cancer cell HO-
8910 (58). They found that the peptide controlled cancer cell
migration, viability, adhesion capacity, invasion, and tumor
growth in vivo.

Currently, the screening of tumor-targeted peptides is widely
used in targeting the treatment of tumors, such as lung cancer,
stomach cancer, liver cancer, colon cancer, and prostate cancer.
FF PHAGE, A TARGETED THERAPY
VECTOR

Poor permeability of the cellular plasma membrane to a drug or
gene is the main barrier for targeted delivery, while the nature of
vectors affects the efficiency of drug delivery in tumors and
tumor-affected tissues. Therefore, construction and selection of
drug vectors is one of the most important steps of tumor therapy.
Ff phage could deliver genes and peptides to mammalian cells,
and the structure of Ff phage results in more efficient cellular
attachment and ensuing membrane penetration. It has been
FIGURE 1 | Schematic of Ff phage. Phage consists of a tubular protein coat surrounding a single-stranded circular DNA. Proteins III and VII are the minor coat
proteins, present in 3-5 copies. Protein VIII is the major phage coat protein and presents in 2700 copy numbers.
September 2021 | Volume 12 | Article 729336

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Phage for Glioma Therapy
successfully used in treatment under the U.S. Food and Drug
Administration (FDA) process (www.fda.gov), and methods for
isolating, storing, and producing phages are now becoming more
available and better developed under the ATCC (www.atcc.org)
and PHE (www.gov.uk/government/organisations/public-
health-england) collections.

Ff phage might be an ideal carrier for drug therapy and
immunotherapy. First, an exogenous gene could be inserted into
the Ff phage genome. Meanwhile, the peptide displayed on the Ff
phage presents its natural conformation and the phage has a
strong resistance to physical and chemical factors (59–61).
Second, the phage displayed exogenous peptides or chemical
modifications, which could combine with inorganic
nanomaterials/drugs, to form phage-nanocomplexes and drug-
loaded phages. It is well utilized in photodynamic cancer therapy
(62–64). Some researchers used the Fd phage to display a cancer-
targeting peptide on pVIII major coat protein, and then
conjugated photosensitizer at the N-terminal end of the
targeting peptides, and demonstrated that the complex of
phage-photosensitizers was able to selectively target and kill
SKBR3 tumor cells in vitro (65). Third, the displayed Ff phage
triggers every arm of the immune response. Berardinis et al.
engineered fd to target mouse dendritic cells (DCs), and
activated the innate and adaptive responses without the need
of exogenous adjuvants (66). The study has also shown that
phage could induce the IL-2 and IFN-g cytokines, which were
useful in tumor immunotherapy (67). Fourth, drug conjugated
phage increases the half-life in the blood steam (68), while the
toxicity and side effects of hazardous drugs are reduced in
combination with the Ff phage.

In a word, Ff phage, as a carrier of therapeutic reagents, has
more advantages in targeted therapy, with high specificity, high
sensitivity, and reproducibility.
THE APPLICATION OF PHAGE
NANOMATERIALS TO GLIOMA THERAPY

Gliomas are aggressive brain tumors and challenging therapeutic
cancers that have high mortality (69). The 5-year survival rate of
glioma is very low (70), and the prognosis of glioblastoma
patients is poor with a median survival of less than 1 year.
Recently, cancer research in the U.K. showed that 40% of brain
tumor patients survive their cancer for 1 year and more than 10%
survive their cancer for 5 years or more.

At present, the clinical therapies for gliomas are surgical
therapy, radiation therapy, chemotherapy, gene therapy, and
other comprehensives (1, 71–74). However, it is easy to relapse
after these treatments, and the patients’ survival rates are not
significantly improved. Immunotherapy is useful for treating
tumors, the mAbs bevacizumab, rituximab, and trastuzumab
were already widely used against tumors outside the brain (75–
79). But the current immunotherapy for medical glioma is costly
and inefficient.

BBB is another significant barrier to the delivery of targeted
treatments for brain tumors. Indeed, more than 98% of low-
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molecular-weight candidate drugs and almost 100% of large
therapeutic candidate drugs cannot cross the BBB (80). There
is an urgent need for a carrier that carries drugs across the BBB.
Phage display technology can be used for the construction of
peptide libraries to screen for glioma tumor-targeting peptides
and peptides across the BBB. Surface functionalization with these
peptides is a sophisticated way to develop drug delivery
platforms that cross the BBB and target glioma.

Identification of Targeting Peptide and
Antibody
About 30% of all human antibody therapies are derived from
phage antibody libraries. In addition, the screening of phage
display libraries is an effective tool to obtain peptides that target
glioma tumors both in vitro and in vivo (43, 49, 81, 82).

In Vitro Panning
In vitro panning was used to identify peptides that specifically
bind to glioma cells and proteins. Ho et al. isolated GL1 peptide
that specifically interacts with primary glioma cells obtained
from human biopsy specimens using a phage library and injected
the GL1-bearing phages into a mouse (83). They found that the
phage targeted the mouse brain tumor and this peptide had the
potential to be used for therapeutics to glioma cells.

Glioma stem cells (GSCs) are the major drivers of brain
tumors. Beck et al. screened the peptides binding to GSCs from
the phage display library, and the administration of GSC-homing
peptide into the glioma mice model resulted in penetration into
the brain and specific accumulation in glioma. CD133 is a cell
surface antigen allowing identification of GBMs. Yoon et al.
screened the peptides targeted CD133 from U373 glioma cells,
using the phage library, and conjugated the targeting peptide
(CBP4) to GNPs. They found that the targeting peptide was
effective for passage into the brain extracellular space (84). The
protein kinase C (PKC) family plays an important role in glioma,
is a potential biomarker to disturb the expression of CD133 on
glioma cells, and may have a therapeutic effect on GSCs. Yoon
et al. also identified 12-amino-acid peptide-binding toward the
PKCd catalytic domain through a phage display library and
certificated that the peptide could target and inhibit PKC,
provided a novel peptide sequence for a therapeutic strategy to
target GSCs. To identify novel peptides targeting malignant
gliomas, Wang et al. used a 12-mer peptide phage display
library and obtained the peptide (VTWTPQAWFQWV)
bound to U87MG cells. In addition, the VTW phage is bound
strongly to other human glioma cell lines, including H4,
SW1088, and SW1783 (85–87).

The discovery and isolation of antibodies are important for
the treatment of glioblastoma (GBM). Insulin-like growth factor
binding protein 2 (IGFBP2) is highly upregulated in GBM tissues
and plays a crucial role in the invasion of glioma cells. Kondaiah
et al. screened scFv phage display libraries using recombinant
IGFBP2 and identified that scFv B7J could bind to IGFBP2 and
inhibit the migration and invasion of glioma cells (88). Tumor
sphere cells more closely resemble the phenotype of primary
tumors than do serum-cultured cell lines. Liu et al. derived GBM
September 2021 | Volume 12 | Article 729336
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tumorspheres from human brain tumor specimens, biopanning
the scFvs that bind to CD133 positive GBM tumorsphere cells
from scFvs phage library and indicated one scFvs could inhibit
the growth of the GBM tumorsphere cells in vitro.

Overall, peptides targeting glioma were identified using phage
display library in vitro. It is useful for further development of novel
therapies that target glioma cells and provide novel diagnostic and
therapeutic modalities for human brain malignancies.

In Vivo Pannings
In vivo pannings were successful in obtaining organ-specific
targeting peptides in the animal model. Peptides and
antibodies may be isolated, which recognize subsets of glioma
tumors via in vivo biopanning of phage display libraries in
glioma xenografts.

GBM displays cellular hierarchies with self-renewing glioma-
initiating cells (GICs) at the apex. To discover new GIC targets
Rich et al. delivered a phage peptide library intravenously to a
GBM xenograft in vivo, then derived GICs, and then identified
the peptides targeting VAV3 and CD97. These peptides could be
used for identifying and targeting of GICs (89),

Additional destruction of existing tumor vasculature
effectively deprives tumors from blood. With the need to
identify novel tumor vascular targeting agents, Lith et al.
identified a nanobody C-C7 in vivo biopanning of phage
display library in an orthotopic mouse model of diffuse glioma,
which showed that C-C7 recognized a subpopulation of tumor
blood vessels in glioma xenografts and clinical glioma samples
(90). Leenders et al. cloned a nanobody phage library from
lymphocytes of a llama, which had been immunized with
cl inical gl ioma tissue and isolated the nanobodies
discriminated incorporated pre-existent vessels in highly
infiltrative cerebral E434 xenografts from normal brain vessels
via biopanning in vivo with this library in the orthotopic glioma
xenograft models (91).

In vivo biopanning, in appropriate animal models, is a very
promising approach for future identifying novel molecular tools
for targeting glioma tumors and oncogenic pathways
preferentially activated within the tumor hierarchy, which
could offer a new strategy for the development of glioma therapy.

Development of Carriers for Targeted
Drug Delivery
The BBB and BBTB restrict the entry of drugs given routinely
with glioma (92, 93). Thus, effective glioma treatment requires
therapeutic agents to penetrate both BBB and BBTB. An
emerging solution consists of identifying the peptide vectors
that penetrate the BBB/BBTB.

In recent years, numerous studies have focused on modifying
the pharmacokinetics of chemotherapeutic drugs by using a
delivery vector or by adding targeting properties. Langel et al.
developed a tumor-targeted delivery vector gHoPe2 that is based
on a cell-penetrating peptide pVEC and a novel glioma-targeting
peptide sequence gHo (NHQQQNPHQPPM), which was
identified using phage display technology. The vector could be
efficiently absorbed into glioma cells and xenograft glioma
Frontiers in Immunology | www.frontiersin.org 4
tumors in a mouse model. In addition, vectored doxorubicin
was more effective than free drug in a mouse glioma xenograft
model (94). The study demonstrated the general feasibility of the
current approach for constructing targeted delivery systems
based on the cell-penetrating peptides.

The BBTB is formed by brain tumor capillaries and comprises
a barrier that is variably distinct from the BBB, forming an
additional hurdle toward treatment. Lin et al. identified a novel
BBB/BBTB-penetrating peptide M1 (TFYGGRPKRNNFLRGIR)
from the phage displayed peptide library in vivo and modified the
M1 peptide with a tumor-targeting named M1-RGD
(TFYGGRPKRNNFLRGIRRGD), then they conjugated the MI-
RGD with drug and applied PDC M1-RGD-PTX to treat glioma
and found that it suppressed glioma proliferation and thus
extended mouse survival in a glioma xenograft model (95).
The study suggested that the peptide M1 could serve as a
vector through the BBB and BBTB.

Therefore, the targeting peptides screening from the phage
library are effective drug carriers across the BBB and BBTB, and
phage display technology has wide applications for treating
brain tumors.
FF PHAGE: A POTENTIAL THERAPEUTIC
VEHICLE FOR GLIOMAS

The rod-shaped nanoparticles have higher avidity and selectivity
for endothelial cells and increase the specificity and vascular
targeting for brain endothelium (96). Increasing the length-to-
diameter ratio of Ff phage results in more effective cellular
attachment and ensuing membrane penetration. The phage
maintains the biological activity of the peptide displayed on
the phage vector, these properties make Ff phage suitable for use
as a vector in the treatment of central nervous diseases (97), and
research proved that phages carrying antibodies effectively label
Ab plaques is an efficient and nontoxic delivery vector to the
brain and is useful for the treatment of Alzheimer’s disease
in vivo (68).

Ff Phage Could Deliver the Drug to the
CNS
The function of BBB is under normal in low-grade glioma (98),
Ff phage can pass the BBB and deliver therapeutics directly to the
CNS when administered intranasally. It has been applied on
protein-based treatments for other drug abuse syndromes. Janda
et al. demonstrated that Ff phage displaying cocaine-binding
proteins sequester cocaine in the brain and blocked the
psychoactive effects of cocaine administered intranasally (23).
Additionally, Ff phages have been reported to possess anti-
tumorigenic properties. The researchers found that Ff phages
could even inhibit the growth of subcutaneous GBM tumors in
mice and this activity was mediated in part by lipopolysaccharide
molecules attached to virion using the intranasal route.

Convection-enhanced delivery (CED) is a novel approach for
administering chemotherapy in patients with brain tumors (99,
100). Additionally, CED is also an effective and safe method for
September 2021 | Volume 12 | Article 729336
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distributing M13 phage to the brain (97). It reminds us that Ff
phage could deliver the medicine to glioma via CED.

Normal vascular function is disturbed in high-grade glioma
and Ff phage has more capacity to cross the BBB through various
routes. Based on Ff phage, a functional dual vector could target
and treat glioma intravenously. Hajitou et al. have designed a
hybrid AAV/phage with a recombinant adeno-associated virus
genome (rAAV) and the capsid of M13 phage as a vector for dual
targeting of therapeutic genes to glioblastoma. The phage capsid
displayed the RGD4C ligand that binds the avb3 integrin
receptor and the recombinant rAAV genes expressed from a
tumor-activated and temozolomide (TMZ)-induced promoter of
the glucose-regulated protein, Grp78 (101). The recombinant
vector targeted intracranial tumors in mice following
intravenous administration and the gene delivered was
expressed in human GBM cells. The construction of a double
display Ff phage system was also reported. Sandlie and his team
also developed a P III/P VII phage-genome double display
system that could simultaneously carry two different exogenous
peptides to perform different biological functions (102), and we
can infer that the double display phage displayed targeting
peptide and antibody could apply for treating glioma.

Taken together, Ff phages have the anti-tumor capability and
could be genetically modified to display tumor homing motifs
and conjugated to cytotoxic drugs. These phages are harmless
when administered intranasally, CED, or intravenously and may
present route anti-tumorigenic. Using them as vectors could be
useful in the treatment of glioma.

Future Prospects for Personalized Therapy
Glioma is a highly heterogeneous disease with major molecular
differences in the expression of tumor cell surface markers in
Frontiers in Immunology | www.frontiersin.org 5
patients with the same grade of cancer (103). Currently, drugs
used for glioma are often toxic to normal cells, resulting in
serious side effects (104–106), and the broad range of drugs
should be improved, as glioma cells are also prone to drug
resistance (107, 108) Therefore, personalized therapy is very
critical for gliomas.

Extensive research has used the phage display library to
identify tumor-specific ligands by panning established tumor
cell lines in vitro or by panning in an animal model. However,
the material derived from the patient has more advantages of
clinical relevance. It is tolerable in the human body, several
groups have injected Ff phage library into patients without
obvious side effects, and it is highly successful to develop a
protocol for selecting phage displayed ligands in patients (109,
110). Shukla et al. conducted the toxicity profiles of different
doses and phage displayed library formats for cancer patients
(111). Then, they obtained and evaluated the tumor-homing
phage-antibodies and derived soluble scFv antibodies to
patients’ tumors and found that these antibodies were
cancer-specific (112). Moreover, Ff phages are stable. They
retain infectivity after IV injection and circulation in the
human body. These studies remind us that phage display
technology can be used to identify tumor-specific ligands to
develop personalized therapy.

Therefore, in theory, phage display strategies can achieve
success when applied to target glioma cells for personalized
treatments. Because of the specificity of biomarkers, glioma
patients could be administered using phage display libraries
and profiled for the presence of cancer targets before
treatment. Such cancer-specific peptides can also be obtained
from individual cancer patients in vitro and then be designed to
target cancer treatment for personalized treatments (Figure 2).
FIGURE 2 | Schematic of affinity-selection of targets-binding phages from a phage library for personalized therapy of glioma. An antibody phage library is administered in
glioma patients. After incubation, get the tumor from the patient. The unbound phages are washed and the bound phages are collected and amplified. After 3-5 rounds,
the affinitive phages are enriched and sequenced.
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CONCLUSION

Gliomas are the most common primary brain tumors. Effective
treatment of glioma is hampered by the presence of both BBB
and BBTB. In this review, we presented an Ff phage approach to
enhance the permeability of drugs through BBB and BBTB.

Although Ff phages have the problem of further optimization
and improvement in separation and purification, they also have a
number of advantages. Ff phage has a greater level of safety, it is
not reproduce naturally in mammalian hosts, and it expresses a
wide range of peptides on coat proteins using genetic engineering
techniques to attach targeting peptides and antibodies.

Phage display is a high throughput screening strategy to
construct peptide libraries that are used to screen glioma
targeting peptides. These peptides might cross the BBB/BBTB
and target tumors. It can also be used as a drug or drug carrier
after being modified. Furthermore, Ff phage is an ideal transport
carrier to CNS across the BBB, it has the anti-tumor ability and
could be genetically modified to display glioma homing motifs
and conjugated to cytotoxic drugs. Moreover, Ff phage
displaying targeting peptide has stronger tumor penetrating
ability, a higher load of drug delivery ability, and lower toxicity.

Developing carrier-based Ff phage as a drug delivery system
can solve the problem of going through the BBB and BBTB.
Frontiers in Immunology | www.frontiersin.org 6
In short, Ff phage display technology is a powerful method of
developing highly effective target drug delivery carriers. In
addition, it opens the door to the development of personalized
therapy agents in the future.
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