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ABSTRACT

Coronary artery disease (CAD) is the single leading cause of death worldwide. Advances in treat-
ment and management have significantly improved patient outcomes. On the other hand,
although mortality rates have decreased, more people are left with sequelae that require addi-
tional treatment and hospitalization. Moreover, patients with severe nonrevascularizable CAD
remain with the only option of heart transplantation, which is limited by the shortage of suit-
able donors. In recent years, cell-based regenerative therapy has emerged as a possible alterna-
tive treatment, with several regenerative medicinal products already in the clinical phase of
development and other emerging as competitive preclinical solutions. Recent evidence indicates
that pericytes, the mural cells of blood microvessels, represent a promising therapeutic candi-
date. Pericytes are abundant in the human body, play an active role in angiogenesis, vessel sta-
bilization and blood flow regulation, and possess the capacity to differentiate into multiple cells
of the mesenchymal lineage. Moreover, early studies suggest a robustness to hypoxic insult,
making them uniquely equipped to withstand the ischemic microenvironment. This review sum-
marizes the rationale behind pericyte-based cell therapy and the progress that has been made
toward its clinical application. We present the different sources of pericytes and the case for
harvesting them from tissue leftovers of cardiovascular surgery. We also discuss the healing
potential of pericytes in preclinical animal models of myocardial ischemia (MI) and current prac-
tices to upgrade the production protocol for translation to the clinic. Standardization of these
procedures is of utmost importance, as lack of uniformity in cell manufacturing may influence
clinical outcome. STEM CELLS 2018; 00:000–000

SIGNIFICANCE STATEMENT

Pericytes show great promise for the treatment of coronary artery disease, however despite
recent progress, there is a lack of research within this field that has been translated to the
clinic. This review summarizes the journey of pericytes from bench to bedside, evaluating the
progress and potential that has been demonstrated so far, and the considerations that will
need to be taken on board before clinical translation becomes a reality.

INTRODUCTION

Coronary artery disease (CAD) is the leading
cause of death worldwide and in the U.K.
alone is responsible for approximately 70,000
deaths each year [1]. Of those that survive,
many go on to develop heart failure (HF) as
myocardial performance continues to decline.
A particular problem is posed by those
patients presenting with ST-elevation myocar-
diaI infarction (STEMI) who are not amenable
to revascularization or receive revascularization
later than recommended. This results in larger
infarcts and an increased risk of HF. There is
no viable treatment for post-ischemic end-
stage HF patients, apart from heart transplan-
tation. However, these are of limited supply

and pose additional complications [2]. In addi-
tion, there is growing number of patients who
manifest angina attacks that cannot be con-
trolled by optimal medical treatment or revas-
cularization. These patients may have a
preserved cardiac contractility but suffer a
severe limitation in physical activities, which
compromises their quality of life and produc-
tivity, thereby translating into increased social
costs. In the United States, there are
�850,000 people who suffer refractory angina,
with this figure being mirrored in Europe by
the occurrence of 100,000 new cases per year
[3]. It is now well recognized that these
patients have coronary microvascular disease,
with impaired endothelium-mediated vasore-
laxation and reduced blood flow reserve. New
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Pericytes show great promise for the treatment of coronary artery disease; however, despite
recent progress, research that has been translated to the clinic is lacking. This review summa-
rizes the journey of pericytes from bench to bedside, evaluating the progress and potential that
has been demonstrated so far, and the considerations that will need to be taken on board
before clinical translation becomes a reality.
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and improved treatments that go beyond reducing cardiovas-
cular risk factors and toward true cardiovascular repair are
clearly needed.

In recent years, advancement in our understanding of
stem cells and their regenerative capacity has presented an
alternative treatment strategy with the potential for recover-
ing lost heart function. However, the clinical application of
such treatment has so far yielded a success inferior to the ini-
tial promises [4–7]. The majority of trials to date have
involved the delivery of bone marrow-derived cell popula-
tions, however, the use of alternative cardiovascular-derived
cell sources that perhaps hold greater applicability for myocar-
dial repair are now coming to the forefront. Pericytes repre-
sent a new entry in the growing list of medicinal cell
products. These cells, found within the perivascular region of
blood vessels in close contact with the endothelium, are prin-
cipally thought to take up a supportive role to the aligning
endothelium, acting to stabilize the vessel, regulate microvas-
cular blood flow and facilitate angiogenesis [8].

This review will discuss the potential of autologous peri-
cytes as a model of a bench-to-bedside cell therapy approach
for the treatment for CAD. Particular emphasis will be placed
on the identification of pericytes regenerative potential, the
protocols for pericyte isolation, expansion and prospective
delivery to patients, and the progress that has been made
toward clinical translation.

WHAT CONSTITUTES A PERICYTE?

Pericytes were initially defined by their anatomical location,
encircling the endothelium of microvascular capillaries, terminal
arterioles, and post-capillary venules [9]. They can be found
within most tissues of the body; however, their morphology, biol-
ogy, and density vary between organs depending on the strin-
gency of the endothelial barrier properties. For example, the
pericyte to endothelial cell ratio can be as great as 1:100 within
the skeletal muscle through to 1:3 and 1:1 in the central nervous
system and retina, respectively, regions where vessel integrity
and trans-endothelial movement is tightly regulated [10].

Phenotypically, pericytes express a range of antigenic
markers that help with their identification. No single antigen
can be regarded as being pericyte-specific, meaning their
identification is based on a combination of markers. Com-
monly, these include neural/glial antigen 2 (NG2) proteogly-
can, platelet-derived growth factor receptor-b (PDGFRb), and
CD146 (Table 1), together with mesenchymal markers, such as
CD90 and CD105, but absence of CD56, a surface antigen
expressed in neurons, glia and skeletal muscle, and hemato-
poietic and endothelial markers, such as CD45 and CD31,
respectively. It is worth keeping in mind, however, that due to
the heterogeneity of these cells and lack of an agreed pheno-
type, different research groups have reported the presence of
pericytes within the same tissue but with conflicting antigenic
profiles [11, 12].

More recently, cells with pericyte-like properties have also
been described within the wall of larger vessels, thereby chal-
lenging the original concept of pericytes localizing only to the
microvasculature. For example, we were the first to describe
such cells present around the adventitial vasa vasorum of the
human saphenous vein [22]. These cells are CD34 positive but

CD31, CD146 and CD45 negative. At the same time, they also
co-express typical pericyte markers including NG2, PDGFRb,
CD105 and CD90. Corselli et al. have also demonstrated the
presence of CD341/CD146–/CD31– cells around larger blood
vessels of multiple organs that co-express pericyte markers in
culture following exposure to vascular growth factors [38].

Due to the absence of a unique marker, tracking pericyte
lineage has traditionally proven difficult. So far, studies have
suggested pericytes develop from either the ectoderm or
mesoderm, depending on their anatomical location. More
specifically, through use of neural crest fate mapping models,
it has been shown that pericytes in the CNS, thymus, retina,
and choroid have developed from differentiated neural crest-
derived cells [39, 40]. On the other hand, as summarized by
Armulik et al, pericytes found in coelomic organs, such as the
lungs, liver, or coronary vessels, have been identified as meso-
thelium derived [18]. Here it has been suggested that meso-
thelial cells undergo an epithelial-to-mesenchymal transition,
followed by a migration to a specific organ and differentiation
into pericytes [18]. To further add to the complexity of these
cells, recent publications have suggested that pericytes from
the same tissue can have a heterogenous origin [41, 42]. For
example, Chen et al demonstrated coronary pericytes also
arise from endocardial cells undergoing endothelial-to-
mesenchymal transition, and some retinal pericytes have
been shown to be bone-marrow derived in addition to some
originating in the neural crest [43]. It is clear there is still a
lack of understanding regarding pericyte ontogeny and devel-
opment. More work to identify the origin of a type of peri-
cyte could help identify their regenerative potential for
particular pathologies. For example, ensuring pericytes used
for treatment are derived from the same germ layer as the
transplant site could improve beneficial effects.

EXPLORING THE REGENERATIVE POTENTIAL OF PERICYTES

Pericytes are a multifunctional cell type that play a commanding
role in maintaining homeostasis. Previous studies have identi-
fied their involvement in many physiologic processes, including
modulation of immune response, vascular development, regula-
tion of blood flow, stabilization of vessels, and contribution to
the endothelial barrier integrity [9, 44, 45]. Below we summa-
rize the role of pericytes in some of these processes that are of
particular importance to regenerative medicine.

Angiogenesis

The stimulation of angiogenesis, for example, the formation
of new vessels from the pre-existing vasculature, is an essen-
tial yet challenging requirement for tissue repair [46, 47]. It is
important, therefore, that the chosen stem cell population
targeted for use in the treatment of ischemic disease can
actively engage with the angiogenic process in order to stimu-
late the outgrowth of mature and functional neo-vessels. Peri-
cytes address this requirement by playing an active role
during both the vessel sprouting and stabilization phases of
angiogenesis.

Neovascular formation is initiated by the activation of
quiescent vessels in response to angiogenic signals, such as
vascular endothelial growth factor (VEGF), angiopoietin 2
(ANG-2), or chemokines. ANG-2, which is almost exclusively
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Table 1. Antigenic markers commonly used to identify pericytes from different organs and anatomical locations

Marker Function Expression
Possible explanation

for expression References

NG2 (Neural/glial
antigen 2)

Membrane proteoglycan
that mediates cell-cell and
cell-extracellular matrix
interactions.

Positive in pericytes of arte-
rioles and capillaries as
well as vasa vasorum,
however, negative in
venule pericytes.

NG2 contributes to trans-
membrane signaling and
has been linked to promo-
tion of cell proliferation
and motility. It is, there-
fore, not surprising that
this is expressed in peri-
cytes, a highly mobile and
proliferative cell type.
NG2 has also been sug-
gested to play a role in
vascular network homeo-
stasis, with its absence in
venous vessels contribut-
ing to regulation of arte-
rial/venous anastomoses.

[13–17]

PDGFRb (Platelet-derived
growth factor receptor-
beta)

Tyrosine-protein kinase
receptor that mediates
the differentiation of peri-
cyte progenitor cells.

Ubiquitous marker of micro
vessel and adventitial
pericytes

During angiogenesis, vessel
stabilization is achieved
via pericyte recruitment.
This is achieved via PDGF-
b signaling and, therefore,
it is essential for pericytes
to express the receptor
for this, PDGFR-b.

[15, 18–20]

CD146 (Melanoma cell
adhesion molecule or
MCAM)

Membrane glycoprotein
involved in heterophilic
cell-cell interactions.

Marker of brain, bone mar-
row, myocardial and skele-
tal muscle pericytes.
Negative in adventitial
pericytes.

CD146 has been shown to
regulate PDGFRb pericyte
endothelial signaling in
the blood-brain barrier
development. CD146 has
also been suggested as a
marker for multipotency
which explains its pres-
ence in pericytes. The
absence of this marker in
adventitial pericytes has
not been explored.

[12, 13, 15, 21–25]

CD13 (Aminopeptidase N) Aminopeptidase N is a mem-
brane type II metallopro-
tease. It is implicated in
cell migration, cell survival
and angiogenesis.

Marker of cerebral pericytes
associated with the
blood—brain barrier

It is thought that pericytic
aminopeptidase N is
involved in metabolism of
neurotransmitter in the
blood brain barrier and is
therefore restricted to
cerebral pericytes.

[18, 26, 27]

aSMA (Alpha-smooth
muscle actin)

Highly conserved contractile
protein involved in cell
motility, structure, integ-
rity, and intercellular
signaling.

Pericytes express aSMA at a
concentration of one
tenth of smooth muscle
cells expression, but six-
fold higher than endothe-
lial cells. They can
increase their expression
in response to stress or
vascular remodeling.

aSMA is a crucial contractile
protein involved in vaso-
constriction. Pericytes con-
trol blood flow in
capillaries via an active
response which requires
expression of contractile
proteins. This expression
is most likely lower than
smooth muscle cells as
pressure in capillaries is
lower than the arterial
system which require
greater contraction.

[15, 28–30]

Nestin Intermediate filament of the
cytoskeleton involved in
the remodeling of the
cell.

Markers of a subpopulation
of pericytes in brain, bone
marrow, liver, and skeletal
muscle that shows multi-
potential regenerative
ability.

Nestin was originally
described as a neural pro-
genitor marker, however,
studies have suggested a
link between nestin
expression and neovascu-
larization providing a pos-
sible explantation for
pericytic expression.

[13, 31–34]
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expressed by endothelial cells (ECs), promotes detachment
and migration of pericytes from the endothelial layer. This
action is carried out via the inhibition of Tie2 receptors. His-
torically, ANG-2 was thought to be an autocrine modulator of
the ANG/Tie signaling pathway. However, recent studies have
demonstrated Tie2 receptor expression on pericytes as well as
ECs [48]. The identification of these Tie2 receptors highlights
the importance of pericytes for angiogenesis and vessel stabi-
lization. Pericyte expression of ANG-1, in the absence of ANG-
2, activates both pericyte and EC Tie2 receptors, triggering
downstream pathways that contribute to vascular maturation.
However, in the presence of ANG-2, the Tie2 receptors are
inhibited, promoting cell migration and new angiogenic activi-
ties. This is also evidenced in the recent study by Augustin
and coworkers, who demonstrated pronounced activation of
angiogenesis following the silencing of pericyte Tie2 [48].

To aid detachment of pericytes and EC migration, both
cell types secrete matrix metalloproteases (MMPs) which
degrade the basement membrane [49]. After detachment,
pericytes change their quiescent phenotype, shorten their
processes, increase in volume and begin to proliferate [8].
Meanwhile, ECs loosen their junctions, which, in combination
with the action of VEGF, increases the permeability of the
endothelial layer and allows passage of plasma proteins which
lay down extracellular matrix (ECM) [49]. ECs migrate outward
into the new ECM in response to angiogenic factors. They are
led by a single EC with high migration and low proliferation
rates, known as a “tip cell,” which migrates toward a VEGF gra-
dient [50]. This VEGF signaling is spatially restricted via pericyte
expression of VEGF receptor 1 (VEGFR1) [51]. Neighboring ECs,
called “stalk cells,” fall in behind the tip cell and form the
lumen as the growing sprout extends into the avascular area
[49]. Eventually the sprouting branch fuses with a neighboring
branch to form a primitive vessel. In order to stabilize these
primitive vessels, pericytes are recruited via signals such as
PDGF-b and PDGF-B [19, 20]. Both the newly recruited peri-
cytes and ECs facilitate the maturation process via secretion of
paracrine factors, such as transforming growth factor-beta
(TGFb) and ANG-1, which promote pericyte re-attachment and
endothelial barrier formation, while at the same time suppress-
ing EC proliferation and migration [18, 52].

Differentiation

Pericytes are a multipotent cell type that share part of their ori-
gin with mesenchymal stromal cells (MSCs) [53]. They can trans-
differentiate into typical cells of the mesenchymal lineage, such
as adipocytes, chondrocytes, osteocytes, myocytes, and neural
cells [54]. It is thought that this ability to differentiate into multi-
ple cell types may contribute to regenerative mechanisms fol-
lowing tissue injury or disease [44]. For example, several studies
show the ability of pericytes to differentiate into immune cells,
such as dendritic cells and macrophage-like cells, which play an
important role in mediating inflammation under pathological
conditions [55, 56]. It is also known that pericytes demonstrate
a strong activated response to ischemia/hypoxia. Following an
ischemic stroke, cerebral pericytes may differentiate into neural
cells, vascular cells, and microglia, producing all the components
of the neurovascular unit (NVU) [57].

Pericytes from different muscular tissues also show a wide
differentiation potential in vitro and in vivo, while still retaining
some specificity relating to their tissue of origin. For example,
pericytes resident in skeletal muscle can contribute to myofiber
regeneration [58]. Dellavalle et al. showed that human skeletal
muscle pericytes transplanted into dystrophic immunodeficient
mice could generate myofibers expressing human mini-
dystrophin [59]. In addition, microvascular pericytes within the
human myocardium exhibit angiogenic behavior in response to
hypoxia and seemly have a discernible, though modest, cardio-
myogenic potential in vivo [11]. However, data from our group
indicate a more restricted fate of pericytes from the human
heart and vasculature, with specific commitment to the vascu-
lar smooth muscle cell (VSMC) lineage [12, 22].

More recently, a study using gene tracking in developing
mice has documented the potential of epicardial pericytes
being the source of coronary mural cells [60]. This opens new
and exciting horizons for either pharmacologically activating
resident pericytes, or transplanting autologous pericytes
within the infarcted heart, in order to induce reparative activ-
ity, including that of arteriogenesis. It should be noted,
however, that a recent study using lineage tracing of cells
expressing the transcription factor Tbx18, which labels most
pericytes more specifically than PDGFRb, has questioned the
current view of endogenous pericytes as tissue-resident

Table 1. Continued

Marker Function Expression
Possible explanation

for expression References

ALP (Alkaline-phosphatase) Enzyme found in the blood
that plays an integral role
in metabolism in the liver.

In vivo marker expressed
across different pericyte
subsets, with notable
expression in skeletal
pericytes.

The physiological function of
ALP remains obscure with
little description in the lit-
erature. Pericyte expres-
sion and locality to blood
vessels could indicate a
role in the release of ALP
into the bloodstream.

[23, 35, 36]

CD34 Transmembrane phosphogly-
coprotein thought to play
a role in cytoadhesion,
and regulation of differen-
tiation and proliferation

In the absence of CD31, a
marker for endothelial
cells, which also express
CD34, expression of this
antigen acts as a marker
for a subpopulation of
adventitial pericytes.

The function of CD34 as a
surface antigen is still
unknown, however, it is
linked to stem cell and
progenitor activity, and
pronounced differentiation
capacity, which may
account for expression in
certain pericytes.

[12, 22, 37]
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progenitors. It is instead suggested that the plasticity
observed in vitro or following transplantation in vivo arises
from artificial cell manipulations ex vivo [61]. It cannot be
excluded that the progenitor cell property is restricted to a
limited number of early pericytes which do not express
Tbx18.

Regulation of Blood Flow

Similar to VSMCs, pericytes express contractile-related pro-
teins such as alpha smooth muscle actin (a-SMA), myosin,
tropomyosin, and vimentin [62]. It is thought that because of
these contractile proteins, together with their location around
capillaries, pericytes are able to control blood flow in the
microvasculature. In the retina, cerebellum, and cerebral cor-
tex, pericytes have been shown to modify capillary diameter
in reaction to depolarization, neurotransmitter action or neu-
ronal activity [63]. This was shown to be an active response
as capillary contraction was observed before arteriole contrac-
tion [64]. Contrary to this, however, Hill et al. described
VSMCs as being responsible for the control of blood flow
[65]. In a recent review [63], it was acknowledged that the
same cells were described in both studies but with different
methods to classify cells as either pericytes or VSMCs. Regard-
less of the issue of classification, it must be noted that evi-
dence for pericyte regulation of blood flow is mainly limited
to pericytes in the brain. To fully determine their regulatory
function, pericytes from other anatomical sites should be
studied.

Immunomodulation

The ability of pericytes to regulate the immune response is an
important property for a regenerative cell type as it opens up
the possibility of allogenic cell therapy. The major reason for
transplant rejection is the response of the adaptive immune
system to alloantigens through activation of T cells [66]. Acti-
vation of T cells is regulated via three signals: antigen presen-
tation via cell surface major histocompatibility complex (MHC)
class I or II stimulatory molecules, costimulation with costimu-
latory molecules, and secretion of cytokines [66]. With regard
to T cell activation pathways, pericytes from various sources
have been reported to be poorly immunogenic [66, 67]. The
pericytes did not basely express MHC class II molecules, such
as HLA-DR, nor costimulatory molecules CD80/CD86 [67].
Instead pericytes were found to mediate the formation of
suppressive allogeneic CD41 CD25highFoxP31 CD1272 Tregs,
regulatory T cells that maintain immunologic self-tolerance, in
a TGF-b-dependent and PD-L1-dependent manner [66]. In
addition, even after induction of class I and II MHC molecules,
pericytes were unable to stimulate allogeneic CD4 T cell prolif-
eration or cytokine release, and in fact rendered the T cells
unresponsive to endothelial cells of the same donor [67]. This
behavior indicates the possibility of using pericytes in allo-
genic stem cell therapy.

T cell inhibition has also been identified in retinal peri-
cytes [68]. Here it was demonstrated that retinal pericytes
were able to significantly inhibit active T cell proliferation and
inflammatory cytokine production. This inhibition was acti-
vated through both cell-cell contact and release of factors
such as PD-L1 and IL-10. In addition to this, the retinal peri-
cytes were able to reduce inflammation induced apoptosis in
neighboring endothelial cells [68].

PERICYTE METABOLISM AND THE ISCHEMIC ENVIRONMENT

To obtain optimal functional activity from transplanted peri-
cytes, their behavior under ischemia needs to be better
understood. At the center of the ischemic microenvironment
is a severe disturbance in metabolic homeostasis, character-
ized by a limited availability in nutrients and oxygen (hypoxia).
Any cell transplanted into this region must, therefore, demon-
strate a level of metabolic flexibility that allows the cell to
survive and remain capable of eliciting a functional response.
Early indications suggest that pericytes may offer a sufficient
degree of metabolic resistance that may add to their thera-
peutic potential [22, 69–73].

Phenotypic characterization of pericyte metabolism is lim-
ited, and to date, has principally focused on those of the reti-
nal and neurovascular regions [70, 74, 75]. Similar to ECs,
pericytes predominantly express the non-insulin dependent
glucose transporter, GLUT1, and show preference for utilizing
glycolysis to support their basal metabolic needs rather than
mitochondrial oxidative phosphorylation (OXPHOS) [74–76].
This is in line with an oxygen consumption rate being far
lower than that measured for many other cell types [77].
Additionally, pericytes show a relatively modest response to
the ATP synthase inhibitor, oligomycin, suggesting limited reli-
ance on mitochondrial ATP production, although the relatively
high mitochondrial reserve capacity observed in these cells
suggests that they are only working at a fraction of their
capacity [75]. Whether this is true for all pericytes or, more-
over, whether this is altered following their activation has not
been determined.

An advantage of having a low oxidative rate is that it
would allow pericytes to carry out their pro-angiogenic func-
tion within tissue regions, including low perfused areas of the
heart, where oxygen is limiting. In parallel, this would pre-
serve oxygen availability to underlying and more energy-
demanding cells, such as cardiomyocytes, and limit local
OXPHOS-induced ROS production. Such a metabolic pheno-
type may also explain why pericytes from a range of tissue
sources appear to be conferred with the ability to withstand
hypoxic insult in vitro, and survive transplantation in rodent
models of myocardial and peripheral ischemia [22, 69–72, 78].
Moreover, we have shown that adventitial pericytes (APCs)
isolated from the saphenous vein have substantial levels of
the anti-oxidant enzymes superoxide dismutase (SOD) and
catalase, whilst at the same time containing less ROS-
generating NADPH oxidase 4 (NOX4), particularly when com-
pared with ECs [73]. When this is disrupted, through silencing
of SOD3, APCs lose their ability to restore blood flow upon
transplantation into the ischemic hindlimb [73]. This not only
suggests that APCs have an enhanced resistance to oxidative
stress, but moreover, that the ability to preserve a low level
of intracellular ROS is essential to maintaining their functional,
and thereby therapeutic, ability. Whether such characteristics
are conserved across pericytes from various tissues has yet to
be fully investigated.

Not only can pericytes withstand hypoxia but they also
appear to positively respond to such an environment by upre-
gulating the expression and secretion of angiogenic factors
[70–72, 79]. For example, we have shown that APCs release
VEGF-A, ANG-1, and the microRNA-132 (miR-132) upon expo-
sure to hypoxia, all of which act on ECs to facilitate pro-
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angiogenic behavior [72]. Indeed, preventing the upregulation
and secretion of miR-132, by pre-treating APCs with anti-miR-
132 silencing sequences prior to transplantation, significantly
reduces the capacity of APCs to improve cardiac contractility,
reparative angiogenesis and interstitial fibrosis in the infarcted
rodent heart [72]. A similar hypoxic response has also been
described in microvascular pericytes (CD1461/CD34–/CD45–/
CD56–) isolated from human skeletal muscle [71]. In response
to hypoxia in vitro, these cells significantly increase the expres-
sion and secretion of angiogenic factors (VEGF-A, PDGF-b, and
TGF-b1) and exert an anti-proliferative action on cardiac fibro-
blasts. Furthermore, the transplantation of these skeletal mus-
cle microvascular pericytes into the infarcted mouse heart was
associated with an angiogenic and anti-fibrotic response, lead-
ing to improvements in cardiac function [71]. In both instances,
the precise mechanisms by which hypoxia induced such positive
effects have yet to be identified but is likely to involve oxygen-
sensitive pathways, such as the hypoxia-inducible transcription
factor, HIF1a, as indicated by others [69, 80].

Overall, despite a limited number of studies conducted to
date, pericytes appear reliant on a metabolic co-ordination to
facilitate their functional, and thereby therapeutic, activity.
Early indications suggest that pericytes offer an advantage for
use in cardiac cell therapy in terms of their robustness to
hypoxic insult, making them more equipped to withstand the
ischemic microenvironment. However, a much clearer under-
standing of how pericyte metabolism differs between regions
and how metabolism reciprocally interacts with key signaling
pathways will undoubtedly provide novel clues as to how we
better take full advantage of their therapeutic potential.

UTILIZING PERICYTES FOR REGENERATIVE THERAPY

Having established the qualities of pericytes in the ischemic
environment, the next challenge is utilizing this potential for a
regenerative treatment. This can be approached via two distinct
methods: targeting endogenous pericytes by pharmacologic or
genetic maneuvers or delivering exogenous pericytes to the
damaged tissue. Targeting of endogenous pericytes presents a
less invasive option, however, until pharmacological com-
pounds or gene therapy methods specifically targeting pericytes
are developed, the approach remains empiric. For example, it is
known from the work of Attwell and colleagues that pericyte
constriction in the no-reflow phenomenon can be antagonized
with adenosine, calcium antagonists, or endothelin antagonists
[81]. Unfortunately, these compounds are not pericyte specific
and therefore administration can produce undesirable effects in
other cell types. While high-throughput small molecule screen-
ing may help to deliver clinically valuable drugs to modulate
specific pericyte functions, until this is realized, delivery of exog-
enous pericytes remains the optimal method of treatment and,
therefore, is the focus of the following sections.

Selecting an Exogenous Pericyte Source

Pericytes have been isolated from several human tissues [22,
59, 82–87], however, not all of these methods or cell popula-
tions are of a clinical grade. For clinical viability, it is impor-
tant that there is a standardized isolation protocol in place
that is minimally invasive for the patient and results in a well-
characterized and highly-pure cell population. Although a

recent phase II clinical trial has demonstrated the safety and
feasibility of allogeneic cell therapy in patients with chronic
HF [88], autologous cells remain the optimal choice.

Once isolation has been accomplished, pericyte popula-
tions are cultured and expanded in vitro until clinically viable
numbers have been generated. The process of culturing differs
between groups, with many varieties of growth medium and
surface coatings used to provide a suitable environment for
the pericyte populations [89]. Microscopy, flow cytometry,
and immunocytochemistry can all be used to achieve a strin-
gent phenotypic characterization of the cell population [12,
13, 15, 22, 89–91]. However, due to the absence of a unique
pericyte marker, this alone is not sufficient to distinguish peri-
cytes from similar cells, such as VMSCs. It is therefore crucial
to perform a functional characterization of the cells to supple-
ment the antigenic screening as angiogenic assays can identify
pericytes from other mesenchymal cells, such as fibroblasts or
bone marrow-derived MSCs, by their enhanced ability to sta-
bilize endothelial networks [92]. Table 2 provides a summary
of common pericyte populations that have been studied in
vitro, however, here we limit the discussion to the pericyte
populations that have been explored for potential treatment
of CAD, namely pericytes within the heart, vasculature and
skeletal muscle, and present the positives and pitfalls of each.

Cardiac Pericytes. Cardiac pericytes (CPs) have been tar-
geted for ischemic heart repair due to their native role in
maintaining homeostasis via regulation of microvascular func-
tion and angiogenesis [100]. Distinct pericyte populations
have been isolated from the heart, via selection of conflicting
arrays of markers (CD1461/CD34–/CD45–/CD56–/CD117211,
CD31–/CD34112), using fluorescent activated cell sorting
(FACS) or magnetic activated cell sorting (MACS). From just
100 mg of human heart tissue, approximately 20 million cells
can be generated within 6 weeks [12].

Flow cytometry and immunocytochemistry confirm that CPs
display a typical array of pericyte markers [11, 12], although
contrary to the isolation protocol, the phenotypic characteriza-
tion of the CD31–/CD341 pericyte population showed them to
be CD34– in culture. Functional characterization by Avolio et al.
[12] revealed that 10% of CPs were able to form colonies after
being seeded into individual wells of a 96 well plate. Further-
more, CPs demonstrated potential for differentiation into a
VSMC fate when exposed to inductive medium containing
PDGF-BB. RT-qPCR demonstrated a respective 18-fold and 157-
fold increase in expression of a-SMA and smooth muscle calpo-
nin, suggesting a contractile phenotype. Similarly, mature VSMC
markers, smooth muscle-myosin heavy chain and smoothelin,
were upregulated by 5.5-fold and 4.2-fold, respectively. The CPs
were also able to enhance network formation with ECs on a
Matrigel substrate, demonstrating their angiogenic ability. In
addition, Chen et al. demonstrated the osteogenic, chondro-
genic, and adipogenic differentiation potential of CPs [11]. This
cell population was also able to support EC network formation,
stimulate an angiogenic response under hypoxic conditions and
demonstrated a limited cardiomyocyte differentiation capacity.

Although phenotypical and functional assays indicate CPs
to be a credible candidate for regenerative medicine, the
invasive nature of acquiring a biopsy has meant that limited
pericyte isolations have been successfully completed. This is
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Table 2. Summary of commonly explored pericytes with emphasis on their respective identification markers, differentiation potential,
and scale up results in vitro

Pericyte subset Anatomical location Identification markersa Differentiation potential In vitro scale up results References

Saphenous vein
pericytes

Adventitial vasa vaso-
rum in the great
saphenous vein.

Adventitial pericytes in
the saphenous vein
can be identified by
their expression of
CD341/31–.

Differentiation into
osteoblasts, adipo-
cytes, myocytes, and
neuron-like cells. No
chondrocyte, endo-
thelial or hepatocytic
differentiation
observed.

Expansion with a dou-
bling time of 45
hours. Potential to
reach 50 million cells
within 10 weeks.
Decelerated prolifera-
tion after P10. Peri-
cytes are clonogenic,
enhance endothelial
networks and release
proangiogenic factors
in culture. No
adverse effects
on functionality
from cryopreserva-
tion or passaging up
to P10.

[22, 72, 93, 94]

Cardiac
pericytes

Perivascular region
around blood vessels
in atrial and ventricu-
lar myocardium.

Adventitial cardiac peri-
cytes are identified
by CD341/31–/146–
expression, while
microvascular cardiac
pericytes express
CD1461/34–/56–/
117–. CD117 is a
marker of cardiac
progenitors, negative
gating of this marker
allows distinction of
microvascular peri-
cytes from cardiac
precursors. Cardiac
pericytes have also
been shown to
express cardiac
transcription factor
GATA-4.

Induced contractile
VSMC phenotype.
Partial cardiomyocyte
differentiation. Chon-
drogenic, adipogenic,
and osteogenic differ-
entiation potential.
Inability for endothe-
lial differentiation or
skeletal myogenesis.

Explored in vitro. 20
million cells gener-
ated by P5 after 4 to
6-weeks. Cells remain
highly clonogenic
with no significant
decrease in function-
ality or phenotypical
expression by P5.
Functionally they
demonstrate angio-
genic potential,
enhancing endothelial
tube networks,
recruiting cardiovas-
cular stem cells and
producing growth
factors and chemo-
kines. No adverse
effects on functional-
ity from
cryopreservation.

[11, 12, 83]

Skeletal muscle
pericytes

Muscle biopsy. Specific
location unknown

Microvascular pericytes
identified via expres-
sion of CD1461/34–/
45–/56– and alkaline
phosphatase.

Myogenic, adipogenic
and neuronal differ-
entiation potential.
Minor fraction of
skeletal pericytes
capable of cardio-
myogenic
differentiation.

In vitro expansion
up to 35 doublings
with no alteration of
morphology or anti-
genic profile. Func-
tional characteriza-
tion in vitro reveals
direct and paracrine
angiogenic proper-
ties. A paracrine
antifibrotic effect
under hypoxic condi-
tions was also
observed.

[23, 59, 71, 95]

Cerebral
pericytes

Ventricular zone and
temporal neocortex

Pericytes identified
using FACS purification
of CD131/CD1051/
CD45–/CD31–. This peri-
cyte population also
express nestin.
Other cerebral
pericyte subsets have
been isolated based on
a co expression of
CD731/CD45– with
either high or low CD90
expression.

Capable of typical
mesodermal lineage
differentiation into
osteoblasts, chondro-
cytes and adipocytes
but also harbor neu-
roectodermal differ-
entiation capacity
with differentiation
along the glial and
neuronal lineages
observed.

Highly proliferative in
culture with different
subsets displaying
varied proliferation
rates. Cells can be
freeze-stored and
thawed without los-
ing proliferation
capacity or potency.

[86, 96]
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because samples can only feasibly be obtained from post-
mortem donors [11, 83], aborted fetuses [11], or discarded
tissue from corrective cardiac surgery [12].

Saphenous Vein-Derived Adventitial Pericytes. During coro-
nary bypass surgery, a section of saphenous vein is extracted
and transplanted into the patient to relieve the occluded
artery. Frequently, there is saphenous vein leftover from sur-
gery that is normally discarded. Importantly, we have shown
that this leftover tissue can be used for isolating pericyte-like
cells from the adventitia, referred to as adventitial pericytes
(APCs), that possess clonogenic, multipotent, and pro-
angiogenic properties [22]. Using either MACS or FACS,
CD341/CD31- APCs can be separated from the tissue digest
with 70% and 99% purity, respectively. We have worked out
that the isolation protocol is compliant with standard GMP pro-
cedure (Fig. 1). Importantly, the APC population demonstrated
a durability to cryo-preservation and high expansion capacity,
up to passage 10, with a doubling time of 45 hours, allowing
generation of 30–50 million cells from a small sample of tissue.

Flow cytometry and immunofluorescent analyses revealed
a typical pericyte array of antigenic markers. Intriguingly, the

native CD34 expression is downregulated during the culture
period, as was also seen in CPs [12]. The cells demonstrate a
strong clonogenic potential (7%) and differentiation capability
into osteoblasts, adipocytes, myocytes and neuronal like cells
[22]. As expected, these pericytes support capillary network
formation when cocultured with ECs on Matrigel. Secretome
analysis revealed they support EC proliferation via paracrine
mechanisms, particularly through secretion of ANG-1 [22, 72].
APCs also secrete pro-angiogenic microRNA-132, which is
taken up by ECs in coculture and is essential to the ability of
APCs to support endothelial network formation [72].

A study by Gubernator et al. evaluated the feasibility of
APC expansion for production of a consistent therapeutic cell
product [94]. APCs demonstrating proangiogenic activities
were successful expanded to clinically relevant numbers. The
APCs showed a tolerance to extended culture, with antigenic
profile and functional properties conserved throughout pas-
saging, and were able to improve blood flow in a model of
peripheral ischemia [94]. Another important aspect of this
study consisted of assessing the association between the APC
epigenetic profile, characteristics of the cell donor, and thera-
peutic outcome. Interestingly, APCs from smoker donors were

Table 2. Continued

Pericyte subset Anatomical location Identification markersa Differentiation potential In vitro scale up results References

Umbilical cord
pericytes

Umbilical cord arteries
and vein.

Umbilical cord pericytes
are typically identified
via CD146 expression,
along with CD1051/
CD34–/CD45–.
A alternative population
have also been isolated
using an unusual
marker array of CD45–/
CD34–/SH21/SH31/
Thy-11/CD441.

Adipogenic, osteogenic,
and chondrogenic
potential. Osteogenic
differentiation capac-
ity lower than similar
perivascular cells.

CD45–/CD34–/SH21/
SH31/Thy-11/
CD441 pericytes
demonstrate very
high expansion
potential in culture
with a doubling time
of 20 hours at pas-
sage 2 and 1010 cells
after 30 days. Con-
cerns over aging of
cells and loss of
potency in long-term
culture have been
reported. Interest-
ingly hypoxic condi-
tions are able to
address this aging
effect by promoting
colony forming effi-
ciency and prolifera-
tion, whilst also
inhibiting osteogenic
differentiation. Cells
retain potency fol-
lowing
cryopreservation.

[21, 85, 97, 98]

Bone marrow
pericytes

Bone marrow cavity of
tibia and femurs.

CD146 is used to iden-
tify perivascular cells
with a pivotal role in
vascular niche main-
tenance. Nestin and
a-SMA expression
have also been used
for isolation of differ-
ent bone marrow
pericyte populations.

Adipogenic, osteogenic,
chondrogenic, and
vascular smooth mus-
cle differentiation
potential.

Demonstrate the ability
to enhance vascular
networks in vitro via
direct contact and
paracrine effects. Dis-
play a doubling time
of between 3 and 4
days, however, issues
regarding limited
expansion and senes-
cence in culture have
been reported.

[29, 99]

aIdentification markers indicate differing markers expressed by particular subsets of pericytes. Unless otherwise mentioned there is an assump-
tion that subsets also express a typical array of pericyte markers (NG2/PDGFR-B/aSMA/CD44/CD105/CD90/CD731, CD31/CD45–).
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less effective in improving blood flow recovery compared with
cells from nonsmokers. Furthermore, there was a significant
inverse correlation between age of the donor and capillary
density outcome. It was also shown that the methylation sta-
tus of a network of genes centered on the VEGFR1 was asso-
ciated with the effect of APC therapy on microvascular
density and blood flow recovery. This suggests that clinical
and epigenetic screening may help predict therapeutic
response of pericyte therapy. Such an approach would inform
the decisions on personalized treatments, that is, the selec-
tion of patients who would mostly benefit from the specific
cell therapy method.

Skeletal Muscle Pericytes. Pericytes of the skeletal muscle
present another suitable alternative to the invasive procedure
of CP acquisition. These cells can be easily obtained via skele-
tal muscle biopsies and expanded in culture [13, 59]. Using
FACS, Chen et al. isolated a CD1461/34–/45–/56–

homogenous pericyte population capable of expansion in vitro
up to 35 cell doublings [71]. When cocultured with ECs on a
Matrigel substrate, skeletal muscle pericytes demonstrate the
ability to enhance the formation of microvascular networks.
In addition, their conditioned medium collected under hypoxic
conditions was able to reduce cardiac and muscle fibroblast
proliferation, indicating an anti-fibrotic activity of the secre-
tome [71].

Vono et al. also isolated muscle pericytes using plastic
adherence and colony selection based on positive expression
of ALP, NG2, and CD146 [23]. The authors examined the dif-
ference between normal muscle pericytes and diabetic muscle
pericytes. Although both the diabetic and normal muscle peri-
cytes were able to form networks when cocultured with ECs
on Matrigel, the diabetic pericytes formed a less reticulated
structure [23]. Furthermore, diabetic pericytes possessed a
reduced myogenic ability, decreased proliferation rate, and
antiangiogenic properties, all resulting from an increased

Figure 1. GMP-compliant isolation protocol. Finely mince saphenous vein biopsy and digest with Liberase II, at 378C for up to 2 hours.
Filter tissue digest sequentially through a 70 lm, 40 lm, and 30 lm mesh to attain a single cell suspension. Centrifuge cell suspension
to separate the cell pellet and then resuspended in column buffer. Incubate suspension with CD31 beads for 30 minutes on ice and fil-
ter through magnetic column, keeping the CD31– cell population. Repeat incubation and separation with CD34 beads, retaining the
CD31–/CD341 pericyte population. Culture pericytes in EGM-2 media on culture plastic coated with gelatin and fibronectin.
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oxidative state. Therefore, risk factors can detrimentally affect
the reparative capacity of these cells.

Pericyte Delivery

As seen with other cell types, the accuracy of delivery and
long-term cell retention remain considerable obstacles for
pericyte transplantation. Methods of delivery can fall into two
broad categories; direct cell therapy and tissue engineering.
For the scope of this review, we limit our discussion to the
most promising or widely adopted delivery techniques for
pericyte-based therapy.

Direct Cell Therapy. Multiple techniques exist for the direct
delivery of cells to the damaged heart, with intramyocardial
and intracoronary injection among the most commonly used
methods [101, 102]. Intramyocardial injection is a surgical
procedure whereby cells are directly injected into the myocar-
dial tissue. The assistance of image-guiding technologies and
use of NOGA catheters, allowing left ventricular electrome-
chanical mapping for precise identification of sites of injury,
has made this a very accurate procedure, while reducing its
invasiveness. However, complications, such as arrhythmias or
ventricular perforation at injection sites, still represent a
matter of concern [103]. It has also been shown, through
real-time visualization, that immediate wash out and venous
drainage results in low cell retention, with more cells identi-
fied in the lungs than the heart [104]. In addition, the
increased stiffness associated with the fibrotic heart [105,
106] could negatively affect cell proliferation and differentia-
tion of successfully delivered pericytes, thereby hindering any
therapeutic benefit. Despite this, intramyocardial injection
remains the most commonly used technique for delivery of
pericytes in ischemic animal models [11, 71, 72].

Intracoronary administration of cells is the most clinically
practiced of general stem cell delivery techniques [107]. Cells
are delivered to the damaged myocardial tissue through a
catheter inserted into the coronary artery. This technique has
the potential to deliver a homogenous distribution of cells to
the target tissue [108]. However, it is reliant on sufficient per-
fusion, which is often limited in the ischemic heart, and on
efficient homing signals capable of driving cell migration
toward the damaged region. As such, several pre-clinical stud-
ies have demonstrated poor cell retention using this tech-
nique [109]. Furthermore, clinical trials have shown mixed
results [110, 111], with at best, only modest levels of clinical
benefit being achieved.

An additional consideration for cell therapy is the sugges-
tion that a single dose may not be sufficient for long-term
recovery of chronic CAD [112]. In a recent study by Guo et al,
repeated dosage of cardiac mesenchymal cells demonstrated
a significant increase in cardiac function compared with
single dosage [113]. A clinical trial (REPEAT—clinicaltrials.gov
NCT01693042) is now underway to explore this observation in
more detail. If the results of this trial agree with the men-
tioned study, then the feasibility of repeated pericytes injec-
tions will need to be assessed.

Tissue Engineering. To overcome some of the issues associ-
ated with direct cell delivery, focus has shifted to exploiting
the benefits of bioengineering. The growing number of

biomaterials suitable for use in the heart, and advancements
in additive manufacturing and electrospinning technology, has
led to tissue engineering becoming a rapidly developing area.

The typical tissue engineering approach uses a biomaterial
scaffold seeded with cells and bioactive factors. By optimizing
properties of the scaffold such biocompatibility, biodegradabil-
ity, porosity, mechanical properties, topography, and biochem-
ical signaling, an extracellular environment can be created
that mimics in vivo tissue and positively influences cell prolif-
eration, differentiation, migration, and long-term engraftment
[114–116]. Studies have already demonstrated the feasibility
of pericyte-based tissue engineered vascular grafts for treat-
ment of limb ischemia [117, 118], and animal models using
similar cell sources have shown promising results for cardiac
repair using scaffold-based cell delivery [119, 120]. That said,
there are still some hurdles and challenges to overcome, such
as regulations and upscale costs, before this becomes a viable
method of cell delivery in the clinic [121, 122].

Hydrogels present an alternative delivery option that capi-
talizes on the benefits of tissue engineering approaches, in
terms of cell retention and engraftment, while remaining less
invasive due to their ability to be delivered via injection. Cells
are incorporated into a gel which closely resembles natural
extracellular matrix, such as collagen, alginate or Matrigel,
before being injected into damaged tissue. Studies using ani-
mal models have demonstrated the feasibility of hydrogels to
deliver stem cells to the infarcted heart [123, 124]. Moreover,
recent developments toward GMP-compliant protocols point
toward this becoming a possible option for clinical delivery of
pericytes in the near future [101, 125].

Overall direct cell delivery methods are still most com-
monly used for stem cell-based therapies, however, they are
severely limited by poor cell retention and cell survival [126].
Studies have shown that after delivery of 100 million cells,
usually less than 5% are retained after 24 hours and 99% of
these will not survive past the 4–6 week mark [127]. While
some groups may now be isolating GMP compliant pericyte
populations, suitable for therapeutic clinical use, the benefits
of these cells will not be fully realized until a more efficient
delivery method is established [128]. Tissue engineering
approaches present a possible solution to this. Even with the
relatively new field exploring pericytes as a regenerative cell
source, there have been various in vitro and in vivo studies
showing the benefits of tissue engineered cell delivery [12,
118, 129, 130].

PERICYTES IN PRECLINICAL MODELS OF ISCHEMIC HEART DISEASE

AND TRANSLATION TO CLINIC

Although use of pericytes has yet to reach clinical trials, there
has been early success reported in studies of animal models.

Small Animal Models

In 2013, Chen et al. carried out a study on immunodeficient
mice with induced MI [71]. Mice were injected with either a
suspension of skeletal muscle pericytes or a PBS control.
Pericyte-transplantation groups demonstrated significantly bet-
ter left ventricular contractility, and a 45% reduction in car-
diac fibrosis when compared with the control. In addition,
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pericytes were able to differentiate into cardiac cells and pro-
mote angiogenesis. The same group was involved in a study
using CPs in the mouse MI model [11]. Results showed that a
fraction of CPs have cardiomyocytic differentiation capacities,
however recovery parameters were not analyzed.

The success of the in vivo studies presented above are
hindered by the reliance on immunodeficient mouse models,
with no clear objective to progress into large animal models
as part of a transition toward human trials [131, 132]. To this
purpose, our group have used a strategic plan supporting the
translation of saphenous vein APCs from bench-to-bedside,
through a succession of in vivo studies toward more complex
models (Fig. 2).

First, small animal models of limb ischemia have been
used to give early identification of APCs in vivo angiogenic
capacity and epigenetic predictors of therapeutic efficacy [22].
In 2011, we evaluated the therapeutic effects of APCs via
intra-myocardial injection into both immunodeficient and
immunocompetent mouse MI models [72]. A long-lasting
improvement of cardiac function and increased coronary
blood flow was observed with similar beneficial effects
reported independently of the immune competence state of
the animals. This suggested that APCs are able to modulate
the immune response of the recipient thereby opening up the
option of using allogeneic or even xenogeneic pericyte popu-
lations. In addition, we observed a distinct lack of heart calci-
fication from APCs, in contrast to the 50% calcification seen
following BM-MSC delivery.

Following these results, our group looked at combinatory
cell therapy to evaluate whether c-Kit1 cardiac stem cells
(CSCs) could aid the effects seen with APCs alone [78]. This
was one of the few studies that evaluated the advantage of
combining different sub-populations of cells to treat cardiac
ischemia, and the only one including pericytes. Echocardiogra-
phy demonstrated that both cell types individually led to
improved contractility, with reduced infarct size and intersti-
tial fibrosis. APCs had a greater angiogenic potential, however
CSCs were superior at promoting cardiomyocyte proliferation
and endogenous stem cell recruitment. Although combinatory
therapy additively reduced infarct size and promoted arterio-
genesis, contractile improvement did not improve beyond
single cell therapy. Intriguingly, combination therapy also
induced modification of the paracrine properties of the stud-
ied cells. Interestingly, secretome analysis following in vitro
coculture suggested a complex interaction of the paracrine
signaling, which resulted in attenuated secretion of VEGF,
ANG-1, ANG-2, FGF, and miR-132, but synergic release of

SDF1 [78]. Understanding these interactions between para-
crine signals maybe the key to utilizing a cell free regenerative
therapy approach. An additional conclusion to draw from this
study is the limitation of intramyocardial delivery. Following
combined injection, the two cell populations engrafted distant
to one another, likely limiting any communication between
the two cell types and, therefore, potential synergic actions.

Upgrading to Large Animal Models

Comparing results across different models can help achieve a
deeper understanding of the findings and enhance the trans-
latability of regenerative medicine. Nevertheless, neither the
Food and Drug Administration nor the European Medicine
Agency have yet provided clear guidelines on whether cell
therapy should be tested in one or more animal species, or
how data from different models should be evaluated to justify
a clinical trial in humans. Furthermore, an interesting and yet
unresolved controversy surrounds the preclinical choice of
using human cells or the corresponding animal products,
which may better simulate the current allogeneic/autologous
approach of clinical cell therapy. To begin responding to this
question in relation to pericytes, we recently performed the
first study of human and swine APC therapy in a large animal
model of acute reperfused MI [93]. In vitro cytotoxicity
experiments and in vivo engraftment studies indicate rejection
of human APCs, due to xenogeneic antigen recognition by
swine T cells. This new data contrasts with the apparent toler-
ance of human APCs by the murine immune system [22, 72].
Therefore, we decided to opt for the use of swine cells. An
adaptation of the standard operating protocol allowed us to
obtain swine cells that showed close similarities with human
APCs, as assessed by immunocytochemistry, flow cytometry,
and functional assays. Transplantation of swine APCs in a
swine model of reperfused MI improved microvascular angio-
genesis and interstitial fibrosis, as shown previously in mice
with MI induced by permanent occlusion of the main coro-
nary artery, but did not result in improvement in contractility
and perfusion. Several factors may account for this discrep-
ancy between studies in mice and swine, with the main fac-
tors being the model of infarction (nonreperfused vs.
reperfused) and the cell dose, which was scaled up from mice
to swine but possibly not enough considering the difference
in the heart size between the two species. In summary, the
results from pre-clinical studies support the feasibility and
safety of APCs for the treatment of MI. In the large animal
model, efficacy appears to be reduced to an improvement of
vascularization and reduction of fibrosis, which was still not

Figure 2. Long-term strategic plan for clinical translation of adventitial pericytes (APCs). 1. SOP for isolation, expansion, and characteri-
zation of highly pure human APCs. 2. Mouse LI model. 3. Identification of epigenetic predictors. 4. Immunodeficient and immunocompe-
tent Mice MI model. 5. Mouse MI model using APCs in combination with cardiac stem cells (CSCs). 6. Identification and study of APCs
in vivo angiogenic and therapeutic mechanisms. 7. Upgrade of SOP according to acquired data. 8. Swine MI model. Abbreviations: LI,
limb ischemia; MI, Myocardial Ischemia; SOP, standard operating protocol.
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enough to improve contractile indices. Considering that APC
therapy improved contractility in the non-reperfused model of
MI, we speculate that pericyte therapy might be especially
amenable to CAD patients not suitable for revascularization.

FUTURE CONSIDERATIONS

A significant barrier to progress within the field of pericyte
based medicine is the lack of standardization. There is still dis-
agreement with what constitutes a pericytes due to the lack
of an exclusive and specific marker. This discrepancy has
resulted in diverse nomenclature being used to describe the
same cell population and variable methodologies of isolations,
making it difficult to compare results between research
groups [22, 38, 93]. We suggest that until a specific marker is
identified, a defined nomenclature, marker array and function-
ality test should be established for pericyte subpopulations.
There is also a need for standardization regarding the process
of pericyte expansion and purification for clinical use.
Although isolation via FACS or MACS often yields a pure cell
population, for clinical translation it is essential that there is
no contamination and cells behave as predicted. We recom-
mend the use of a phenotypic characterization at an early
passage, using immunocytochemistry or flow cytometry, to
assess purity. Once a clinically viable passage is reached, the
cells should be assessed again phenotypically, but also func-
tionally to evaluate clonogenic, angiogenic, and differentiation
potential and ensure culture has not reduced potency or
modified expression profiles. It should be noted that since
most clinical applications will use frozen stocks of cells, peri-
cyte populations should be assessed from both fresh and fro-
zen sources to check for adverse effects of cryopreservation.

As previously described, some pericyte populations are sus-
ceptible to phenotypic changes in culture [12, 22]. This instabil-
ity seems be limited to phenotypic expression, as no genetic
instability has been found through several passaging of human
APCs [93] and downregulation of CD34 has also been reported
in various other cell types as a common artefact of cell culture
[133, 134]. Nonetheless, before transplanting a cell population
into a patient, the effects of mutations must be fully explored
to ensure they are not harmful or a factor in tumor formation
[135, 136]. These in vitro induced phenotypic changes also indi-
cate a pressing need to advance current cell culture practices,
which have remained relatively basic over the last decade.
Optimization of culture systems to simulate the in vivo stem
cell niche may be able to address the phenotypic changes
occurring during standard culture practices [37, 137].

In certain environments, pericytes have been identified to
play a role in pathogenesis of cardiovascular disease
[138–140]. This might counteract the benefit of pericyte-
based therapy. Although authors have attempted to explain
the mechanisms behind pericytes role in pathologies, such as
fibrosis and calcification [141], there is still a lack of consen-
sus on this important issue [140]. Initiation of fibrosis is
caused by a cascade of events that result in the activation
of collagen producing myofibroblasts. These myofibroblasts
deposit pathological ECM resulting in the production of
fibrotic tissue. Using genetic fate mapping, pericytes have
been identified as a potential myofibroblast progenitor [18,
142]. It is hypothesized that signaling cascades, such as TGF-B
and PDGF, cause the detachment of pericytes from vessel

walls and subsequent migration and acquisition of a
fibroblast-like phenotype [143, 144]. In a rat model of athero-
sclerosis, it has been demonstrated that pericytes show abun-
dant lipidic vacuoles [144]. In addition, the ability of pericytes
to differentiate into osteoblasts and chondrocytes, and
deposit matrix found in calcified blood vessels suggests that
at least some pericyte subpopulations may play a role in vas-
cular calcification [139]. Recently, it has also been suggested
that pericytes contribute to coronary no-reflow [81]. No-
reflow is a phenomenon whereby microvascular constriction
results in ongoing ischemic conditions. In the brain, no-reflow
has been shown to be caused by microvascular pericytes irre-
versibly contracting the capillaries in response to ischemia
[64, 81]. A similar mechanism has been proposed for no-
reflow of the heart through the contraction of endogenous
CPs. Although there is no direct evidence for transplanted
pericytes causing this effect, such a possibility does warrant
further investigation. It may be possible that paracrine factors
interacting with, or released from, pericytes are responsible
for vasoconstriction of coronary capillaries. If this is proven
true, the phenomenon may have been responsible for the
lack of increased contractility seen in the recent swine MI
model reported by us [93]. This would also indicate the
potential of pericytes as a drug target for the treatment of
ischemia as well as chronic hypertension.

It is evident from pericyte-based animal models of CAD
that there is a strong reliance on traditional injection-based
methods for delivery of cells, but these methods are subject
to low retention rates and are most probably hindering the
therapeutic potential of pericytes as well as other cell types
for treatment of CAD. In vivo models would benefit from an
evaluation of cell retention and cell endpoints to ensure this
is not affecting therapeutic effects. Transition to tissue engi-
neering delivery methods, such as seeding cells in grafts
before injecting, may provide the path to realizing pericytes
full regenerative potential.

Finally, the use of pericytes for regenerative medicine is
still a relatively new area of research and novel therapeutic
scenarios are continually emerging. One such scenario is the
idea that pericyte secreted exosomes and vesicles could pre-
sent a possible cell-free strategy to treat patients with CAD.
More studies, particularly in large animals, should be per-
formed to further develop our understanding of pericytes
regenerative potential.

CONCLUSION

Knowledge of pericyte behavior in both healthy and patholog-
ical environments has expanded rapidly in recent years, such
that pericytes now present as a promising candidate for treat-
ment of CAD. Pericytes have been isolated from several tis-
sues, with groups beginning to develop and use GMP-
compliant procedures for these purposes [22]. Recent studies
have also seen research groups’ advance from in vitro models
to in vivo large animal models. Although tissue repair seems
to be mainly related to the ability of pericytes to support
reparative angiogenesis, the progress achieved in such a short
time is indicative of the exciting potential of pericyte-based
therapies. Nevertheless, before human clinical trials and com-
mercially available treatments can be fully exploited, further
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considerations should be addressed, with particular emphasis
on establishing more large animal studies, developing our
understanding of pericytes role in pathologies such as coro-
nary no-reflow, and advancing our cell culture and patient
delivery technology. Initially conceived as a therapeutic
approach that would fit in all instances requiring recovery
from an injury, cell therapy is recently evolving toward per-
sonalized medicine. In this respect, pericytes represent an
obvious candidate product for improving vascular growth and
perfusion of ischemic tissues, including alleviating the condi-
tion of refractory angina patients.
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