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Background. Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in the world, with low
survival and poor quality of life. Autophagy-associated genes (ATGs) have been reported to be involved in the initiation and
progression of malignancies. Here, we aimed to investigate the association between autophagy-associated genes and the
outcomes in HNSCC patients. Methods. We obtained ATGs with prognostic values by analyzing the datasets from The Cancer
Genome Atlas (TCGA) and Human Autophagy Database (HADb). The enrichment functions of autophagy differential genes
were analyzed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The Kaplan-Meier
method was applied to the survival curve analysis. A prognostic autophagy-related gene signature was established, and its
independence was verified. Results. We acquired a total of 529 samples and 232 ATGs; further, we identified 45 genes associated
with prognosis and built a prognosis autophagy signature based on risk score of 15 genes. Patients were divided into two groups
based on risk scores. The Kaplan-Meier curve illustrated that the survival rate of the high-risk group was significantly lower
than that of the low-risk group in both the training group and validation group. The ROC curve revealed that the risk score had
the highest AUC value in the 3rd and 5th years, reaching 0.703 and 0.724, which are higher than other risk factors such as
gender, age, and TNM stage. The nomogram further confirmed its weight in the prognosis of HNSCC patients. Through KEGG
and GO enrichment analyses, we observed that ATGs were involved in the tumorigenesis and invasion of tumor by various
mediating pathways. We gained 3 hub genes (MAP1LC3B, FADD, and LAMP1) and further analyzed the survival curves,
mutations, differential expressions, and their roles in tumors on the online websites. Conclusion. We identified a novel
autophagy-related signature that may provide promising biomarker genes for the treatment and prognosis of HNSCC. We need
to validate its prognostic value by applying it to the clinic.

1. Introduction

Head and neck tumors are common malignancies, of which
more than 90% are head and neck squamous cell carcinoma
(HNSCC). It mainly occurs in the lips, mouth, pharynx,
throat, paranasal sinuses, and other head and neck areas
[1]. The patients may present with nasal congestion, sore
throat, oral ulcers, hoarseness, and local nodules. Some
patients have metastases due to hidden lesions and incon-

spicuous symptoms. It is well known that smoking and
alcohol abuse are typical high-risk factors for HNSCC.
As people continue to research, we find that human pap-
illomavirus (HPV) infection is also playing an increasingly
important role in HNSCC [2]. The prevalence of HPV-
related oropharyngeal cancer is rising especially in western
countries [3, 4]. As the sixth most common tumor, HNSCC
has an increasing annual incidence and a mortality rate of
40-50% [5]. Despite considerable progress in the treatment
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of HNSCC in recent years, its prognosis remains poor due to
the lack of early diagnostic and predictive biomarkers [6, 7].
Thus, it is necessary to explore effective biomarkers for
HNSCC treatment. At present, lncRNAs and miRNAs are
believed to play an important role in tumorigenesis and have
been identified as potential prognostic markers for HNSCC.
Yang et al. [8] established an 8-lncRNA signature associated
with the prognosis of HNSCC, and Hess et al. [9] identified
prognostic 5-miRNA signature to independently predict dis-
ease control and survival in HNSCC patients. However,
autophagy, as a crucial mechanism in tumorigenesis and pro-
gression, has not been studied on the effect of autophagy-
associated genes on the prognosis of HNSCC.

Autophagy is the process of self-degrading damaged or
degenerate proteins and organelles. Autophagy is thought
to be related to malignant tumors [10], neurodegenerative
diseases [11], immune diseases [12], infection [13], aging
[14], and other diseases. Especially in tumors, it is a double-
edged sword. Under physiological conditions, autophagy
can prevent the accumulation of damaged substances and
inhibit tumorigenesis. However, once a tumor has formed,
cell autophagy can promote tumor growth. Autophagy pro-
motes tumor growth, invasion, and metastasis in some cases
[15, 16]. The formation and initiation of autophagosomes are
complex processes, mainly the result of the coordination of
three protein complexes. Activation of the ULK1 complex
triggers autophagy initiation [17–19] and regulates recruit-
ment of a second kinase complex, the VPS34 complex. The
third protein complex is composed of ATG16L1-ATG5-
ATG12 conjugation machinery [20]. There are accumulating
evidences that autophagy-mediated cell survival plays a role
in the etiology and progression of HNSCC. Cigarette smoke
exposure resulted in induction of autophagy by SIRT-1-
PARP-1-dependent mechanism, leading to oncogenic muta-
tions [21]. Inhibition of autophagy can dramatically enhance
the infectivity of HPV-16 [22]. In addition, tobacco and
alcohol have also been found to exert carcinogenicity by
enhancing autophagy. Radiation resistance and chemoresis-
tance result in poor therapeutic effect for many patients.
Kuwahara et al. suggested that enhancement of autophagy
is a potential modality for tumor refractory to radiotherapy
[23]. Liu et al. found that autophagy inhibitor can enhance
cisplatin-induced apoptosis in EC9706 cells, and it could be
a promising strategy for the esophageal cancer [24].

Although some studies have explored the role of autoph-
agy in the development of HNSCC, focusing on a single gene,
however, little research has been done on the relationship
between autophagy and the prognosis of HNSCC. In this
study, we used the transcriptome data and corresponding
clinical follow-up information to identify autophagy genes
with significant prognostic value. Subsequently, we con-
structed a survival model to predict the prognosis of HNSCC.

2. Methods

2.1. Data Collection. TGGA, the largest cancer database with
comprehensive cancer types and abundant clinical data, pro-
vides a fully shared interface for users to choose the required
data. The RNA sequencing data for HNSCC patients were

obtained from The Cancer Genome Atlas (TCGA; https://
cancergenome.nih.gov); the clinical characteristics and sur-
vival information were also downloaded from here. After
obtaining the data, we integrated the mRNA data with clini-
cal information. The samples for which the gene expression
was “zero” were excluded from the analysis. The list of ATGs
got from Human Autophagy Database (HADb; http://www
.autophagy.lu/), a web-based resource, provided a compre-
hensive and up-to-date list of human genes and proteins
related to autophagy.

2.2. Identification of Differentially Expressed ARGS.We iden-
tified the differential genes in R package “limma”with the cri-
teria of P < 0:05 and ∣logFC ∣ >1. Then, the expression levels
in multiple samples and the differentially expressed ARGS
were visualized by volcano plot and heat map.

2.3. Pathway Analysis. To analyze the potential function of
differentially expressed ATGs, we used the “clusterProfiler”
R package to perform the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses
[25]. It was the process of classifying genes according to their
functions. GO enrichment was carried out mainly from the
following three levels: cellular components (CC), biological
processes (BP), and molecular functions (MF), while KEGG
analysis focused on metabolic pathways and molecular
mechanisms.

2.4. Signature Establishment.Univariate Cox regression anal-
ysis and Lasso Cox regression analyses were carried out to
evaluate the prognostic value of autophagy-related genes
and establish the risk score [26]. Data with P value < 0.05 in
univariate regression analysis will be further subjected to
multivariate regression analysis. The prognostic gene signature
was demonstrated as risk score =∑ n

i=1exprgenei ∗ coefficientgenei.
The data would exclude the entire sample from the survey if
any single value is missing to ensure data integrity and
readability.

2.5. Statistical Analysis. The Kaplan-Meier curve was per-
formed to describe the relationship between survival time
and survival probability for high-risk group and low-risk
group. The risk-related information is visualized through
charts, including the following: the distribution of risk scores,
risk-related survival status, and heat maps of prognostic
ATGs. And the area under the curve (AUC) was created to
predict prognostic value of the autophagy-related risk signa-
ture under the package of “survivalROC” [27]. And we use
the “rms” R package to perform the nomogram [28]. The
univariate and multivariate Cox regression analyses were car-
ried out to verify the independence of signature; furthermore,
we assessed the association between the signature and clinical
parameters. We used Perl language for data matrix. All the
statistical analyses of this research were conducted using
the R software (version 3.6.3). Data with P < 0:05 were con-
sidered statistically significant.

2.6. Online Database Analysis. The PPI network information
of prognostic-related autophagy genes was obtained from the
STRING (https://string-db.org/) online database. Then, the
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most significant modules in the PPI networks were identified
from the plug-inMolecular Complex Detection (MCODE) of
Cytoscape (version 3.6.0). After screening the hub genes, we
explored their relevant information and functions, including
genome mutations, tumor immune microenvironments, and
survival status from the online website. Genomic mutations
were analyzed from cBioPortal for Cancer Genomics
(http://www.cbioportal.org/), a web resource for exploring,
visualizing, and analyzing multidimensional cancer genome
data. Tumor Immune Estimation Resource (TIMER; http://
cistrome.shinyapps.io/timer), a user-friendly web interface,
provided us for comprehensively investigating molecular
characterization of tumor-immune interactions. We used
the Kaplan-Meier plotter online tool to plot survival curves
and perform the survival analysis.

3. Results

3.1. Construction and Assessment of the ATG Prognostic
Signature. A total of 529 samples containing transcriptome
and clinical data were obtained from the TCGA-HNSC
database, including 487 HNSCC samples and 42 normal
samples. 232 autophagy-related genes were downloaded
from the HADb database. Subsequently, a total of 45
prognostic-related autophagy genes were selected for fur-
ther evaluation based on P < 0:05. Then, we utilized the
LASSO Cox regression model to screen out 15 autophagy
genes with the most prognostic value. The risk score was
calculated based on their expression level and associated
Cox regression coefficient. The risk score = ðexpr EEF2K
∗ −0:290Þ + ðexpr LAMP1 ∗ 0:187Þ + ðexpr GABARAPL2
∗ 0:317Þ + ðexpr MAP1LC3A ∗ −0:239Þ + ðexpr WIPI2 ∗
0:590Þ + ðexpr IKBKB ∗ −0:309Þ + ðexpr ST13 ∗ 0:380Þ +
ðexprNAMPT ∗ 0:123Þ + ðexprMAP2K7 ∗ −0:575Þ + ðexpr
GAPDH ∗ 0:270Þ + ðexpr ATIC ∗ 0:248Þ + ðexpr VAMP7 ∗
0:370Þ + ðexpr SAR1A ∗ 0:493Þ + ðexprNKX2 − 3 ∗ −0:278Þ
+ ðexpr TSC2 ∗ 0:307Þ.

Patients were divided into high-risk and low-risk groups
with the median risk score as cutoff value (Figure 1(a)). The
Kaplan-Meier log-rank test revealed a significant difference
in the overall survival (OS) rate between two groups, that is,
the prognosis of the high-risk group is significantly worse
than that of the low-risk group in both the training group
(Figure 1(c)) and validation group (Figure 1(d)). The distri-
bution of risk score, survival time, and gene expression in
patients at different risk was visually shown in Figure 1(a).
As the patient’s risk increased, the survival time decreased
and the deaths increased. The ROC curve revealed that the
risk score had the highest AUC value in the 3rd and 5th years,
reaching 0.703 and 0.724, which were higher than other risk
factors such as gender, age, and TNM stage (Figure 1(b)). The
univariate and multivariate Cox regression analyses con-
firmed the independence of the model (Table 1). The rela-
tionship between risk model and clinical parameters was
also shown in the plot (Figure 2).

3.2. Constructing a Predictive Nomogram. On the basis of
LASSO logistic regression algorithm, nomogram indicated
the survival rate of HNSCC individually, that was, using the

prognostic model and multiple clinical indicators to predict
certain clinical outcomes. The nomogram ultimately included
7 clinical variables: age, gender, grade, stage, T, M, and N
(Figure 3). We may get more beneficial prognostic value
through integrating our signature with clinical characteristics.

3.3. Function Enrichment Analysis. We discussed potential
signaling pathways’ 37 differential ATGs. Gene Ontology
made simple annotations on gene functions, participating
biological pathways, and localization in cells (Figure 4(a)).
The biological processes were mainly involved in the autoph-
agic mechanism, apoptosis, regulation of protein localization
to membrane, cytokine activity, tumor necrosis factor, and
ubiquitin protein ligase. Gene products were mainly localized
in autophagosome, autophagosome membrane, integrin
complex, and protein complex involved in cell adhesion.
Their functions mainly included the following: receptor
ligand activity, cytokine activity, and cytokine receptor
binding. KEGG analysis indicated that ATGs were mainly
related to the following pathways, such as EGFR tyrosine
kinase inhibitor resistance, human cytomegalovirus infec-
tion, PD-1 checkpoint pathway in cancer, and HIF-1 signal-
ing pathway (Figure 4(a)). The heat map intuitively shows
the expression levels of differential autophagy genes in differ-
ent samples (Figure 4(b), A). The logFC and -log10 of FDR
were visualized in the volcano plot (Figure 4(b), B).

3.4. Online Database Analysis. 45 prognostic-related autoph-
agy genes were linked and formed a tight protein-protein
interaction network (Figure 5). And a total of 3 genes
(MAP1LC3B, FADD, and LAMP1) were identified as hub
genes by the module of MCODE of Cytoscape. Subsequently,
we used multidimensional survey ways to explore the hub
genes based on Online database analysis. The mutations of
the hub genes were shown in Figure 6(a). We concluded that
the three genes showed significant differential expression in a
variety of tumors, including HNSCC tumors (Figure 6(b)).
Kaplan-Meier survival curves of 3 hub genes indicated the
significant differences in survival (Figure 6(c)). The single
KM curves of 15 prognostic autophagy-related genes were
also obtained from Kaplan-Meier plotter, as shown in
Figure 7. We can see that almost all genes except WIPI2,
ATIC, and NKX2-3 are significant for the prognosis of
HNSCC (P < 0:05).

4. Discussion

As is known to all, the treatment of HNSCC is mainly com-
bined surgery, chemotherapy, and radiotherapy. Early stage
tumors (stages I and II) may achieve satisfactory results by
surgery, while for advanced tumors (stages III and IV) or
recurrent tumors, chemotherapy or radiotherapy is mainly
adopted. Although current treatment technologies are con-
stantly improving, therapeutic resistance, such as radioresis-
tance and chemoresistance are still the key factors for poor
prognosis of HNSCC. Current research suggests that the
autophagy genes may contribute to the carcinogenicity of
smoking, drinking, and HPV infection, as well as to the pro-
cess of chemoresistance and radiation resistance [29]. We
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deem that the autophagy genes may be important in opening
up potential clinical applications and in the proper assess-
ment of prognosis. Therefore, we here studied the pathway

function of autophagy gene, screened the prognostic autoph-
agy gene in combination with clinicopathological conditions,
and established a reliable prognostic signature.
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Figure 1: (a) The risk score increased from green to red; green and red scatter represent alive and dead, respectively, in the survival time plot;
heat map of the 15 autophagy-related genes. (b) The ROC curves of OS for autophagy-related signature score, age, gender, grade, stage, T, M,
and N in the 1st, 3rd, 5th, 10th years. (c, d) The Kaplan-Meier curve of OS: HNSCC patients in the high-risk group had worse outcomes than
those in the low-risk group in both the training group (P < 0:01) (c) and validation group (P = 0:03224) (d).
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In this study, we conducted GO and KEGG enrichment
analysis of 37 autophagy-related differential genes to further
analyze their functions and pathways in tumors. In this
result, a variety of tumor-related signals were presented, such
as regulation of autophagy, apoptosis, regulation of protein
localization to membrane, cytokine activity, tumor necrosis
factor, and ubiquitin protein ligase. The formation of autoph-
agy is a process involving multiple genes and related proteins.
Autophagy is critical in maintaining cell homeostasis to play
a tumor suppressive role, but can also promote tumor pro-
gression in tumor cells. Autophagy is involved in removing
dysfunctional mitochondria [30] and can also mediate anti-
inflammatory effects [31], which are associated to some
extent with malignant transformation. The dysregulation of
ubiquitin ligases is related to a variety of cellular processes,
directly involved in humanmalignancies [32, 33]. Membrane

proteins, as anchors on cell surface, play a key role in signal
transduction. Some studies have observed elevated levels of
some cytokines in HNSCC patients, as well as decreased
levels of others [34]. The pathway analysis of autophagy gene
concluding EGFR tyrosine kinase inhibitor resistance,
human cytomegalovirus infection, PD-1 checkpoint pathway
in cancer, and HIF-1 signaling pathway further confirmed
the correlation between autophagy gene and malignant
tumor. EGFR, also known as ErB1, is one of the epidermal
growth factor receptors (HER). The overexpression of EFGR
is considered to be the pivotal transforming events of the
HNSCC [35]. Inhibition of EFGR expression as a means of
disease treatment, however, resistance to EGFR tyrosine
kinase inhibitors often bring about unsatisfactory results.
There has been evidence that CMV may induce salivary
gland tumors in addition to being closely related to the

Table 1: Univariate and multivariate analyses of overall survival.

Items
UniCox MultiCox

HR HR 95L HR 95H P value HR HR 95L HR 95H P value

Age 1.013 0.987 1.040 0.325 1.016 0.987 1.047 0.276

Gender 0.784 0.405 1.517 0.469 0.721 0.348 1.493 0.379

Grade 1.183 0.731 1.915 0.494 1.074 0.623 1.852 0.798

Stage 1.812 1.110 2.959 0.017 1.152 0.552 2.405 0.706

T 1.377 0.990 1.916 0.058 1.178 0.739 1.876 0.491

M 144.458 9.034 2309.987 <0.001 191.648 10.634 3454.067 <0.001
N 1.593 1.162 2.185 0.004 1.378 0.918 2.070 0.122

Risk score 1.445 1.223 1.707 <0.001 1.445 1.203 1.735 <0.001
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Figure 2: Association between the autophagy-related signature and clinical parameters.
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Figure 4: (a) Gene functional enrichment of differentially expressed ATGs: GO analysis (A) and KEGG pathways analysis (B). (b) Differential
expression of autophagy-related genes was visualized in the heat map (A) and the volcano plot (B).
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Figure 3: A nomogram for predicting 1-, 2-, 3-, 5-, and 10-year survival rate of HNSCC patients was established.
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genitourinary and nervous systems [36]. Philip et al. found
that activation of HIF-1 could induce autophagy and block
apoptosis, so that malignant cells could continue to survive
and maintain the invasion characteristics [37]. At the same
time, the expression of HPV-16 protein can increase the
accumulation of HIF-1 [38]. In addition, other pathways
such as PD-L1 expression and PD-1 checkpoint pathway,
the IL-17 signaling pathway, platinum drug resistance, and
the mediation of multiple viral infections have also been
found to be involved in the growth, invasion, and metastasis
of tumor cells [39–41].

A total of 45 autophagy genes with prognostic values
were screened out. These genes were made into PPI network
diagram and further screened out 3 hub genes with high
connectivity degree, namely, MAP1LC3B, FADD, and
LAMP1. Microtubule-associated protein-1 light chain 3 beta
(MAP1LC3B) is significantly associated with adverse clinico-
pathological outcomes in some cancer types. Liu et al. found
that the expression levels of MAP1LC3B and SQSTM1 in
tumor tissues were higher than those in adjacent normal tis-
sues, suggesting that MAP1LC3B promoted the tumorigene-
sis and drug resistance of oral squamous cell carcinoma [42].
However, contrary to the above, high LC3 expression appears
to be associated with reduced non-small-cell lung cancer
invasiveness [43]. Fas-associated death domain (FADD)
mediates multiple death receptor-induced apoptotic signal-
ing pathways and also plays a role in T cell proliferation
and embryonic development. Its effect on tumor prognosis
depends on the tumor type and cell environment, for
example, it is a poor prognostic marker in head and neck

tumor, lung cancer, and cervical cancer, while it is beneficial
for thyroid cancer [44]. Lysosome-associated membrane
protein-1 (LAMP1) is a member of the lysosomal membrane
protein involved in the induction of cell death. Data showed
that LAMP1was highly expressed in a variety of tumors, such
as laryngeal cancer [45], ovarian cancer [46], and breast
cancer [47].

The OncoPrint tab summarized genomic changes in
three genes in the sample set, whose distributions in the
sample were almost mutually exclusive. FADDmutation rate
was the highest, up to 26%, mainly manifested by amplifica-
tion. Major amplification and a small amount of missense
mutation were found to occur in LAMP, and MAP1LC3B
mutation was the least (0.8%), with deep deletion and ampli-
fication. The results of Kaplan-Meier curves for the 3 hub
genes were statistically significant. As the results showed, in
patients with HNSCC tumors, high FADD and LAMP
expression levels had lower survival rates, while high
MAP1LC3B levels were associated with favorable prognosis.
We obtained the data of gene differential expression from
the TIMER website. The three genes showed significant dif-
ferential expression in a variety of tumors, and they were
highly expressed in HNSCC patients and poorly expressed
in normal samples. In any case, three autophagy genes were
differentially expressed in a variety of tumors, which has been
reported in previous studies. However, whether they have
prognostic value in HNSCC requires further study.

In some cases, the prognostic accuracy of gene markers is
better than TNM staging. We obtained 15 genes with prog-
nostic value by optimizing models and calculated the risk
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Figure 5: Network of prognostic autophagy genes is visualized by the Cytoscape 3.6.0 software.
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Figure 7: The single prognostic KM curves of 15 autophagy-related genes have been obtained, which were significant for the prognosis of
HNSCC (P < 0:05) except WIPI2, ATIC, and NKX2-3.
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score based on the gene expression and risk coefficient of
each gene, so as to accomplish risk stratification. The
Kaplan-Meier curve displayed the survival rate of the high-
risk group was significantly better than that of the low-risk
group, especially in the 3rd, 5th, and 10th years. Just as
shown in the ROC curve, the AUC of risk score in the third
and fifth years was greater than that of age, gender, and
traditional TNM staging under the same conditions, which
confirmed the stability and applicability of risk signature in
the survival prognostic ability of HNSCC. And multivariate
analysis showed that risk score was an independent prognos-
tic factor for HNSCC patients. We further developed the
nomogram which integrated risk score with various clinical
parameters to more intuitively highlight their weight in the
prognosis. Risk score was more weighted than clinical traits
other than M staging. It also indicated the significance of
our prognostic model. In addition, clinical correlation analy-
sis revealed that risk increased significantly as tumor stage
increased. The expression levels of ATIC, GAPDH and
MAP1LC3A, MAP2K7, and NAMPT are associated with
TNM staging, while NAMPT and NKX2-3 may be relevant
to the gender.

5. Conclusions

In summary, although there have been previous studies on
the relationship between autophagy genes and tumors, to
our knowledge, this is the first study to explore the correla-
tion between autophagy genes and the outcomes of HNSCC
patients. However, this study still has some limitations.
Firstly, our data was retrospective, which should be verified
in the future. Secondly, we only focused on autophagy genes,
and the result could not represent all gene spectrum. In this
study, we got the 15 autophagy genes with significant prog-
nostic values. Further, we established the autophagy-related
prognostic signature and confirmed its independence. At
the same time, we performed the functional analyses of
autophagy genes. Our signature may provide promising bio-
marker genes for the treatment and prognosis of HNSCC.
We need to apply the autophagy-related signature to clinical
practice in order to validate its prognostic value.
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