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Abstract 

Background:  Pancreatic adenocarcinoma (PAAD) is one of the most challenging cancers with high morbidity and 
mortality. KRAS mutations could occur as an early event in PAAD. The present study aimed to identify the differentially 
expressed lncRNAs (DE-lncRNAs) and differentially expressed mRNAs (DE-mRNAs) in KRAS-mutant PAAD to explore 
the pathogenesis and the underlying molecular mechanism of PAAD development.

Methods:  Clinical data of TCGA–PAAD patients were downloaded from the TCGA database and subjected to survival 
analysis along with the KRAS mutation information data. Weighted gene correlation network analysis (WGCNA) and 
univariate Cox regression analysis were conducted to construct prognostic risk models to identify the hub DE-mRNAs 
and DE-lncRNAs associated with PAAD prognosis. GO and KEGG enrichment analyses of the identified hub DE-mRNAs 
were performed. Multivariate cox regression analysis was performed to analyze the overall prognosis of age, gender, 
pathologic_T, and KRAS mutations, following which the differences in the clinical characteristics of risk score1 and risk 
score2 were analyzed. Finally, the mRNAs–lncRNA–TFs regulatory network was constructed.

Results:  Functional enrichment analysis was performed after screening 1671 DE-mRNAs and 324 DE-lncRNAs. It was 
observed that the associated pathways were enriched mainly in the modulation of chemical synaptic transmission, 
synaptic membrane, ion-gated channel activity, ligand−receptor interactions that stimulate neural tissue, among 
others. The univariate Cox regression analysis screened 117 mRNAs and 36 lncRNAs, and the risk ratio models of the 
mRNAs and lncRNAs were constructed. LAMA3 (mRNA) and AC245041.2 (lncRNA) exhibited a strong expression cor-
relation in the respective two risk models. The genes in the samples with a high expression of these two genes were 
enriched in several pathways associated with transcription factors (TFs), among which the TFs ATF5, CSHL1, NR1I2, 
SIPA1, HOXC13, HSF2, and HOXA10 were shared by the two groups. The core enrichment genes in the common TF 
pathways were collated, and the mRNAs–lncRNAs–TFs regulatory network was constructed.

Conclusion:  In the present study, novel prognostic mRNAs and lncRNAs were identified, and their respective 
prognostic models and nomograms were constructed to guide clinical practice. An mRNAs–lncRNAs–TFs regulatory 
network was also constructed, which could assist further research in the future.
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Introduction
Pancreatic adenocarcinoma (PAAD) is a malignant 
tumor that occurs in the exocrine glands of the pan-
creas. Pancreatic malignancies may originate from the 
exocrine, endocrine, or non-epithelial tissues of the pan-
creas, among which 95% of malignancies are pancreatic 
adenocarcinoma. PAAD has an extremely poor progno-
sis, with high morbidity and mortality. While the inci-
dence and mortality of other common cancers have been 
decreasing in recent years, the mortality and number of 
deaths caused by pancreatic tumors have been increasing 
(Siegel et al. 2018; Rahib et al. 2014). Early surgery is the 
main treatment for PAAD; however, pancreatic adeno-
carcinoma is difficult to diagnose at an early stage, with 
most of it metastasized by the time of the initial diagnosis 
(DeSantis et al. 2014) and only 9.7% of the cases present-
ing localized PAAD at the time of diagnosis (National 
Cancer Institute 2018). Most deaths in PAAD cases 
occur due to liver, lung, and/or peritoneal metastasis, 
which are the most common sites of spread (Yachida and 
Iacobuzio-Donahue 2009). Moreover, PAAD does not 
respond well to most chemotherapy drugs (Vincent et al. 
2011). Therefore, exploring the molecular mechanisms 
underlying the pathogenesis and development of PAAD 
is imperative.

Molecular biology studies have demonstrated that 
proto-oncogene activation, tumor suppressor gene inac-
tivation, and abnormality in DNA repair genes are closely 
associated with the occurrence of PAAD (Roberts et  al. 
2016). Several important genes were observed to be 
mutated in PAAD, among which the mutation rate of 
P16 in PAAD patients was 95%, KRAS 90%, P53 75%, and 
DPC4 55% (Jones et al. 2008). KRAS is one of the most 
common mutant oncogenes in human cancers. Experi-
ments in cell culture and animal models have confirmed 
that the development of several cancers relies on the 
sustained expression and signal transduction of KRAS 
(Haigis 2017; Hayes et  al. 2016). McCormick F stated 
that KRAS targeting for cancer treatment was effective 
both when directly targeting the protein or using indirect 
approaches to target it, such as siRNA or harnessing the 
immune system (McCormick 2015). In recent years, gene 
profiling and next-generation sequencing technologies 
have become indispensable tools for cancer research as 
these enable the detection of cancer-associated genetic 
and epigenetic changes, such as mutations, copy num-
ber variations, and DNA methylation alterations across 
further extensive genomic regions (Huang et  al. 2019; 
Stark et  al. 2019). Bioinformatics analysis of these data 
might provide valuable information for PAAD research. 
For instance, Cheng synthesized several sets of public 
data and preliminarily elucidated the pathways and func-
tions involved in pancreatic adenocarcinoma. Candidate 

molecular markers for the diagnosis and prognosis pre-
diction of pancreatic adenocarcinoma were identified, 
and candidate proteins attributable to the clonal and 
invasive nature of pancreatic cancer cells were suggested 
(Cheng et  al. 2019). Considering that KRAS mutation 
might occur as an early event in pancreatic adenocar-
cinoma, the present study began with KRAS mutation 
grouping, which was followed by the construction of 
prognostic models based on WGCNA to predict the 
prognosis of PAAD. Furthermore, a line map was con-
structed to guide clinical practice, while the hub lncR-
NAs and mRNAs in the constructed model were further 
analyzed to construct an mRNA–lncRNA–TFs regula-
tory network that would provide clues for subsequent 
research in this area.

Materials and methods
Data download
A workflow chart for the present study is provided in the 
Additional file 1.

PAAD expression data, clinical data, and phenotypic 
data were downloaded from the TCGA database.

Expression data: https://​gdc.​xenah​ubs.​net/​downl​oad/​
TCGA-​PAAD.​htseq_​counts.​tsv.​gz

Clinical data: https://​gdc.​xenah​ubs.​net/​downl​oad/​
TCGA-​PAAD.​survi​val.​tsv.​gz

Phenotypic matrix:
https://​gdc.​xenah​ubs.​net/​downl​oad/​TCGA-​PAAD.​

GDC_​pheno​type.​tsv.​gz
Sample mutation data:
https://​portal.​gdc.​cancer.​gov/​files/​fea33​3b5–78e0–

43c8-​bf76–4c78d​d3fac​92
Human.gtf file from the Ensembl database (Homo_

sapiens.GRCh38.99.gtf.gz), lncRNAs, and symbol 
information:

http://​www.​ensem​bl.​org/​info/​data/​ftp/​index.​html

Survival analysis
KRAS mutation information was extracted from the 
mutation data of PAAD samples. Phenotypic data were 
integrated and grouped based on whether KRAS was 
mutated or not. Next, a KM curve was plotted, and the 
P-value of the curve was determined to be less than 0.05, 
indicating a significant survival difference among the 
groups.

Screening for differentially expressed lncRNAs and mRNAs
R package “edgeR” was employed to identify the differen-
tially expressed genes (DEGs). The expression matrix in 
the database was in the form of log2(count 1); therefore, 
round(2^a-1) was used for obtaining the counts of the 
sample. Subsequently, the low-expression genes were fil-
tered based on the criterion of CPM (count-per million) 

https://gdc.xenahubs.net/download/TCGA-PAAD.htseq_counts.tsv.gz
https://gdc.xenahubs.net/download/TCGA-PAAD.htseq_counts.tsv.gz
https://gdc.xenahubs.net/download/TCGA-PAAD.survival.tsv.gz
https://gdc.xenahubs.net/download/TCGA-PAAD.survival.tsv.gz
https://gdc.xenahubs.net/download/TCGA-PAAD.GDC_phenotype.tsv.gz
https://gdc.xenahubs.net/download/TCGA-PAAD.GDC_phenotype.tsv.gz
https://portal.gdc.cancer.gov/files/fea333b5–78e0–43c8-bf76–4c78dd3fac92
https://portal.gdc.cancer.gov/files/fea333b5–78e0–43c8-bf76–4c78dd3fac92
http://www.ensembl.org/info/data/ftp/index.html
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being greater than 1 in at least 10 samples, and the dif-
ferentially expressed genes were extracted using the 
thresholds of |logFC|> 1 and FDR < 0.05. Next, the stand-
ardized expression matrix was extracted and used as the 
expression spectrum in the subsequent analysis. Finally, 
the genetic information was obtained from the human.gtf 
files, and DE-mRNAs and DE-lncRNAs were extracted 
for subsequent analysis.

Functional enrichment analysis
First, R package “clusterProfiler” was employed to per-
form the functional enrichment analysis of differential 
DE-mRNAs (Yu et  al. 2012; Kanehisa et  al. 2010), with 
P-value < 0.05 and Q-value < 0.2 as the screening thresh-
olds. After obtaining the enrichment pathway, results 
were visualized using the R package “GOplot”.

Weighted gene co‑expression network analysis (WGCNA)
The weighted gene co-expression network analysis 
aimed to identify the co-expression gene modules, 
explore the association between the gene networks and 
the phenotypes of concern, and identify the hub genes 
in the network. The main principle is to use the cor-
relation coefficient of the expression quantity between 
the genes to the power of n, and the direct result is 
the amplification of the difference of the correlation 
between the genes. A specific value β was used as the 
power of the correlation coefficient between each pair 
of genes (i, j) to calculate the correlation among all 
genes, that is, the adjacency matrix: ai, j =|cor (i,j) |β. In 
order to better determine whether two genes have simi-
lar expression profiles, WGCNA adopts a method based 
on the soft threshold. Since the result of adjacency (ai,j) 
relies directly on the value of β, which directly affects 
the construction of the module and division of the adja-
cent genes, WGCNA calculates the β value according 
to the adjacent lowest value of the scale-free network. A 
scale-free network is characterized by a small number 
of nodes, with degrees significantly higher than the gen-
eral points, which are referred to as hubs. A few hubs 
are associated with other nodes and ultimately consti-
tute the entire network. When β value was selected for 
network construction, network construction and mod-
ule identification were conducted in the following four 
steps: the similarity between each gene was calculated 
through topological overlap; the gene cluster tree was 
obtained; genes with the same expression were classi-
fied into the same module by cutting the tree; similar 
modules were merged, and after the module classifica-
tion was completed, the correlation between the dif-
ferent modules and phenotypes was determined, and 
the more relevant modules were used for subsequent 

analysis. The R package “WGCNA” was employed to 
analyze the weighted co-expression network of all the 
differentially expressed genes (Langfelder and Horvath 
2008), and the module with the strongest correlation 
with the prognostic traits was subjected to subsequent 
analysis.

Univariate Cox regression analysis
In order to deeply explore the genes associated with 
prognosis in the differentially expressed genes and sur-
vival data, the R-package “survival” and “survminer” 
tools were employed for conducting batch univariate 
Cox regression analysis. After the regression analysis, 
the significantly correlated genes were screened using 
the P < 0.05 threshold and used for the subsequent 
model construction. Among these genes, the top 6 
genes were selected for Kaplan–Meier analysis.

Construction of the prognostic risk model
The mRNAs and lncRNAs identified in the Cox regres-
sion results were subjected to LASSO regression 
dimensionality reduction, and a risk scoring model 
was constructed, which mainly relied on the R pack-
age “glmnet” tool. In order to construct a further 
accurate regression model, lambda screening was first 
conducted using cross-validation, and then the corre-
sponding model of lamdba.min was selected to extract 
further the expression matrix of the relevant genes in 
the model. The risk score of each sample was calculated 
based on the following formula:

where exp represents the expression level of the cor-
responding gene, βj is the

regression coefficient (coef ) of the corresponding gene 
in the multivariate regression results, RScore equals the 
expression level of the significantly related gene in each 
sample multiplied by the coef of the corresponding gene, 
summed over, i represents the sample, and j represents 
the gene. According to the risk scores, the samples were 
classified into high and low-risk groups by the median of 
the nodes to conduct the subsequent model performance 
evaluation.

After the high and low-risk groups were obtained, 
Kaplan–Meier analysis was conducted on these groups 
and the survival data. Subsequently, the ROC curve was 
drawn using the sample risk scores as the model predic-
tion results. The AUC value was greater than 0.6, indi-
cating that the model exhibited good performance.

RScorei =

n∑

j=1

expji×βj
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Multivariate Cox regression analysis and nomogram 
construction
In order to verify the mRNA and lncRNA prognos-
tic model as an independent prognostic factor for the 
disease, Cox multivariate regression analysis was per-
formed to analyze the overall prognosis of age, gender, 
pathologic_T, and KRAS mutations.

A nomogram was used for visualizing the results of 
Cox regression analysis. Nomogram sets the scoring 
standard according to the regression coefficient of all 
the independent variables, assigns a score to each level 
of value for each independent variable, calculates a total 
score for each patient, and also calculates the probability 
of the outcome time for each patient through the conver-
sion function between the score and the probability of 
the outcome.

The nomogram was constructed using the R package 
“rms” and “survival” tools mainly. First, the scale risk 
regression model was constructed using cph(), followed 
by calculating the survival probability using the sur-
vivalcph() function. Finally, the nomogram object was 
constructed using the nomogramcph() function and dis-
played using plotcph().

The difference analysis of the clinical characteristics of risk 
score1 and risk score2
The clinical indicators, namely, age, gender, 
pathological_M, pathological_N, pathological_T, and 
Tumor_stage, were selected to detect differences between 
risk score1 and risk score2 in these indicators. The 
“ggpubr” package was employed to draw the boxplot rep-
resenting the results. Afterward, the difference in the dis-
tribution within the group was further detected using the 
t-test to verify whether the risk score was consistent with 
the clinical indicators.

Analysis of important regulatory relationships in the risk 
prognostic models
The mRNAs and lncRNAs demonstrating the strongest 
correlation with the prognostic traits were obtained from 
the two models, respectively. The KRAS mutation sam-
ples were extracted and grouped based on the expression 
of hub mRNAs and lncRNAs, respectively. Subsequently, 
the KM curve was drawn to explore the respective rela-
tionships of the expressions of hub mRNAs and lncRNAs 
with the prognostic traits. Afterward, the expression lev-
els of the hub mRNAs and lncRNAs were used for pre-
dicting the prognosis of the samples, and the ROC curve 
was drawn. Finally, multivariate COX regression analysis 
was conducted in combination with the clinical pheno-
types to verify the independent prognostic efficacy of the 
hub mRNAs and lncRNAs.

Furthermore, the GSEA analysis of the hub mRNAs 
and lncRNAs was performed (Subramanian et  al. 2005; 
Mootha et  al. 2003). The nodes were divided into high 
and low expression groups based on the median expres-
sion of the hub mRNAs and lncRNAs, and subse-
quently, the GSEA analysis was conducted. The results 
were filtered using the thresholds of P-value < 0.05 and 
FDR < 0.25.

Construction of the TF regulation network associated 
with the hub mRNA–lncRNA regulatory axis
On the basis of the expression levels of hub mRNAs 
and lncRNAs, the differentially expressed genes were 
extracted using edgeR, and the core genes enriched into 
the TF pathways according to the key single gene GSEA 
were integrated to construct the mRNAs–lncRNAs–TFs 
regulatory network.

Results
Data download
PAAD-related expression data and clinical data were 
downloaded from the UCSC TGCA database. The sam-
ples with missing clinical information were removed, the 
samples with the KRAS mutation phenotype were inte-
grated, and finally, the data for 177 cancer samples were 
obtained, which included 128 KRAS mutation samples 
and 49 non-mutation samples (Table 1).

Survival analysis
According to the presence or absence of KRAS mutation, 
the samples were divided into two groups and then sub-
jected to survival analysis. The KM curve revealed that 
the survival difference between the two groups was sig-
nificant (P = 0.013), and the survival curve of the KRAS 
mutation samples declined faster (Fig. 1). In addition, it 
was confirmed that the survival rate of patients in the 
KRAS-mutant group was significantly lower than that in 
the KRAS-wildtype group.

DE‑mRNAs and DE‑lncRNAs between KRAS‑mutant 
and KRAS‑wildtype PAAD
In order to further explore the KRAS mutation-related 
mRNAs and lncRNAs in PAAD, the differential expres-
sions of lncRNAs and mRNAs between patients of the 
KRAS-mutant group and those of the KRAS-wildtype 
group were analyzed. The DE-mRNAs and DE-lncRNAs 
were obtained from the expression data of the TCGA–
PAAD cancer samples using the screening thresholds 
|logFC|> 1 and FDR < 0.05, which revealed 1671 DE-
mRNAs (368 upregulated and 1302 downregulated) and 
324 DE-lncRNAs (56 upregulated and 171 downregu-
lated) (Fig. 2).
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DE‑mRNA GO and KEGG enrichment analyses
The functional enrichment analysis of the identified 
DE-mRNAs was conducted. The GO enrichment analy-
sis had the following three aspects: Biological Process 
(BP), Cell Components (CC), and Molecular Function 
(MF). The BP enrichment pathway mainly involved the 
modulation of chemical synaptic transmission and the 
regulation of trans-synaptic signaling and signal release. 
The CC enrichment pathway mainly involved synaptic 
membrane, neuronal cell body, etc. The MF enrichment 
pathway mainly involved channel activity, passive trans-
membrane transporter activity, and ions gated channel 
activity, etc. The pathways of KEGG enrichment mainly 
involved neuroactive ligand-receptor interaction, insulin 
secretion, etc. (Fig. 3).

WGCNA and identification of the prognosis‑associated 
module
WGCNA was performed with the DEGs, and prog-
nosis-related modules were identified. First, the soft 

threshold was calculated; R^2 > 0.85 was used as the 
filtering threshold to obtain the power = 6. Subse-
quently, the network was constructed using a one-step 
method with power = 6, and similar modules were 
combined using the threshold of height < 0.25. Finally, 
four modules were obtained, among which the genes 
in the blue module (338) exhibited the highest correla-
tion with the OS_status and OS_time parameters, and 
also with KRAS mutation. Therefore, the genes in this 
module were selected for subsequent analysis (Fig. 4).

Univariate cox regression analysis
The differential expression matrix of 177 cancer sam-
ples was extracted for Cox regression analysis. After the 
screening based on the P-value, 153 genes significantly 
associated with PAAD were obtained, and the KM 
curve was drawn using the top 6 genes among these. 
The survival curves for the high-expression samples 
MYEOV, WNT7A, and FAM83A-AS1 declined rap-
idly, the hazard ratio was greater than 1, and the 95% CI 
was lower than 1, indicating that the high expression of 
these three genes might threaten survival. The survival 
curves for the high-expression samples KATNAL2, 
GLTPD2, and KCNJ2-AS1 declined gradually, the haz-
ard ratio was greater than 1, and the 95% CI was also 
less than 1, indicating that a low expression of these 
three genes might threaten survival (Fig. 5).

Table 1  Phenotype statistics of TCGA–PAAD

Tumor

KRAS

 Yes 128

 No 49

Gender

 Male 97

 Female 80

Age (mean/median = 65 years)

  > 65 84

  ≤ 65 93

Tumor_stage

 Stage I 24

 Stage II 34

 Stage III 35

 Stage IV 17

Pathologic_M

 M0 79

 M1 5

 MX 93

Pathologic_N

 N0 50

 N1 122

 NX 4

Pathologic_T

 T1 7

 T2 24

 T3 141

 T4 3

 TX 1

Fig. 1  Survival analysis of KRAS mutation: A survival curve. B Number 
of individuals at risk (possibility of death) over time in both groups of 
samples. C Number of dead patients at each time point



Page 6 of 17Tian et al. Mol Med           (2021) 27:62 

Construction of the mRNA and lncRNA prognostic risk 
model
Seven mRNAs significantly associated with the prog-
nosis of PAAD were screened out from 117 mRNAs 
using LASSO regression. Subsequently, a risk ratio 
model was constructed based on the expression of 7 
markers and regression coefficients, that is, risk scor
e1 = GLTPD2*(− 0.113) + RP1 × 0.008 + MUC21 × 0
.016 + FAM83A*0.029 + MYEOV*0.035 + ZNF488 × 
0.083 + LAMA3 × 0.153. Eight lncRNAs significantly 
associated with the prognosis of PAAD were screened 

out from 36 lncRNAs using LASSO regression. Sub-
sequently, a risk ratio model was constructed based 
on the expression of 8 markers and regression coeffi-
cients, that is, risk score2 = AC068580.2 × 0.003 + LI
NC01910 × 0.035 + AC245041.2 × 0.044 + AC107959.
3 × 0.058 + CASC8 × 0.100 + UCA1 × 0.102 + LINC00
520 × 0.126 + AL033384.1 × 0.170. Afterward, the risk 
scores of all samples were calculated, and based on the 
median; the samples were divided into high and low-
risk groups; the KM curve for these high and low-risk 
groups was then drawn. The results demonstrated that 

Fig. 2  Statistics on differential expression. Volcano plot for differential gene expression, with the upregulated genes represented by red and the 
downregulated genes represented by blue (A: mRNAs; C: lncRNAs). Heat map for differential gene expression, with the red legend depicting the 
mutated samples, the blue legends depicting the non-mutated samples, and the decrease of expression demonstrated from blue to red (B: mRNAs; 
D: lncRNAs)
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the difference between the high and low-risk groups 
was significant (P < 0.0001) and that the AUC values 
for 1 year, 3 years, and 5 years in the ROC curve were 
greater than 0.75, which indicated that the mRNA and 
lncRNA model has good prediction efficiency (Figs. 6 
and 7).

Multivariate cox regression analysis and nomogram 
construction
In combination with age, gender, pathologic_T, and 
KRAS mutations, Cox multivariate regression was used 
for verifying the mRNA and lncRNA prognostic model. 
Multivariate cox regression results demonstrated that the 

Fig. 3  A–C The results of functional enrichment analysis, which included three types of GO analysis: the enrichment pathways with the highest 
P-value are on the left, and the corresponding genes of the enrichment pathways are on the right. Log FC represents the differential expression 
multiple of these genes. D KEGG analysis: The higher intensity of red represents higher significance. The larger the dot, the more genes enriched in 
that pathway
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Fig. 4  WGCNA analysis results. A Clustering results. Cluster dendrogram and the co-expression network modules identified in average linkage 
hierarchical clustering of DEGs based on topological overlaps. Each branch within the dendrogram represents a single gene. Height represents the 
Euclidean distance. Each color indicates a single module containing weighted co-expressed genes; B Weighted network heat map of all genes; C 
Eigengene adjacency heatmap. The heatmap illustrates the relationship among the distinctive co-expression modules; D Heat map of correlation 
between the modules and the phenotypes. Each row represents a color module, and each column indicates a clinical trait. Each cell contains the 
R2 values of Pearson’s correlations between the modules and the clinical features, and the corresponding P-values are inside the parentheses. The 
gradient color of each cell indicates the R2 values of Pearson’s correlations (red = 1, blue =  − 1). DEGs differentially expressed genes; ME module 
eigengene
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risk score1 (2.597) and risk score2 (3.698) had the high-
est HR, and pathologic_T also had better predictive effi-
cacy. However, the predictive efficacies of age, gender, 
and KRAS mutation were poor. HR was < 1, and P-value 
was not significant in the multivariate regression analysis, 
indicating that the presence or absence of KRAS muta-
tion was not suitable for use as a single factor for prog-
nostic analysis. Therefore, the factor was removed in the 
subsequent construction of the nomogram. In the con-
structed nomogram, the high risk, high age, and high 
pathologic_T grade samples scored higher and presented 
a higher survival risk (Fig. 8).

Difference analysis of the clinical characteristics of risk 
score1 and risk score2
As depicted in Fig.  9, the risk scores of the two models 
were significantly different in different KRAS mutation 
states, with the risk scores of patients with KRAS muta-
tion being generally higher, indicating that our mod-
els exhibited a close association with KRAS mutation. 

Further observation of the difference in the risk scores 
within the Pathological_T group revealed that the small 
number of T1 and T4 patients rendered the statistical 
results meaningless, while the risk score of T2 patients 
was significantly lower than that of T3 patients, indicat-
ing that the prediction results of the two models were 
in good agreement with the diagnosis of patients in 
the Pathological_T group. Finally, the difference in the 
risk score within the tumor stage group was analyzed. 
Since the number of Stage III and Stage IV patients was 
extremely small, the statistical results were rendered 
meaningless, and the analysis was, therefore, focused on 
Stage I and Stage II patients. It was observed that the risk 
score of Stage II patients was significantly higher than 
that of Stage I patients, indicating that risk score and 
tumor stage were consistent with each other. Therefore, it 
was concluded that the risk score predictions of the two 
models were consistent with the clinical diagnosis results 
as well as with the KRAS mutation results, which further 
reinforced the good accuracy of our two models.

Fig. 5  The KM curves of the top 6 genes exhibiting a significant correlation to disease prognosis
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Important regulatory relationships in risk‑prognostic 
models
In the two risk models, Pearson’s correlation was 
adopted to analyze the correlation of each node in the 
two groups. It was observed that LAMA3 (mRNA) and 
AC245041.2 (lncRNA) were located in the two risk 
models, respectively, and the expression correlation of 
these two genes was the highest. The ROC curve was 
drawn to verify whether the expression of these two 
genes exerted independent prognostic effects. It was 
revealed that the AUC values of both genes were greater 

than 0.65, indicating that the expressions of both genes 
could be used as independent prognostic factors. Sub-
sequently, the GSEA analysis of these two genes was 
performed, and the enrichment results were filtered 
using the thresholds of P-value < 0.05 and FDR < 0.25. 
The results revealed that the genes in the high-expres-
sion samples of the two genes were enriched in several 
pathways related to TFs, among which ATF5, CSHL1, 
NR1I2, SIPA1, HOXC13, HSF2, and HOXA10 were 
shared between the two groups (Figs. 10 and 11).

Fig. 6  The mRNA prognostic risk model. A Sample risk score curve; B Scatter plot of sample survival time. Prior to the dotted line is the low-risk 
group sample, while the one after the dotted line is the high-risk group sample; C ROC curves depict the prognostic risk model; D Heat map of 
gene expression in the model. Values are normalized with log10. The right longitudinal axis: the names of mRNAs; the left longitudinal axis: the 
clustering information of the mRNAs. The upregulated and downregulated mRNAs are depicted in red and blue, respectively; E KM curves for high 
and low-risk groups
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Construction of the TF regulatory network associated 
with the hub mRNA–lncRNA regulatory axis
Considering that the high-expression samples of the 
two genes were enriched in several pathways related 
to TFs, a TF regulatory network associated with the 
hub mRNA–lncRNA regulatory axis was constructed 
based on LAMA3 and AC245041.2. According to the 
enrichment results for the genes in the LAMA3 high-
expression samples, the core enrichment genes in the 
common TF-related pathways were screened out, and 
the differently expressed genes in the high and low 
expression groups of LAMA3 and AC245041.2 were 
obtained and integrated. Finally, the mRNA–lncRNA–
TFs regulatory network was constructed (Fig. 12).

Discussion
PAAD is one of the most malignant tumors of the diges-
tive system, with an alarming mortality rate in both east-
ern and western nations (Ferlay et  al. 2015; Ryan et  al. 
2014). Current clinical data demonstrate that surgery 
remains the only treatment option, even though only 
20% of the patients survive 5 years after the pancreatic 
resection, and the benefits of chemotherapy are also lim-
ited (Dreyer et al. 2017; Zhu et al. 2018). Therefore, it is 
important to identify novel molecular biomarkers and 
elucidate the mechanisms underlying the occurrence and 
progression of PAAD. The importance of KRAS activa-
tion in PAAD was demonstrated in previous studies on 
sequencing in PAAD (Bailey et al. 2016). Approximately 
90% of the pancreatic cancer genomes sequenced using 

Fig. 7  The lncRNA prognostic risk model: A Sample risk score curve; B Scatter plot of sample survival time. Prior to the dotted line is the low-risk 
group sample, and the one after the dotted line is the high-risk group sample; C ROC curves presenting the predictive values of the prognostic risk 
model; D Heat map of gene expression in the model. Values are normalized with log10. The right longitudinal axis: the names of lncRNAs; the left 
longitudinal axis: the clustering information of the lncRNAs. The upregulated and downregulated mRNAs are depicted in red and blue, respectively; 
E KM curves for high and low-risk groups
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targeted sequencing, whole-exome sequencing, or whole-
genome sequencing exhibited carcinogenic KRAS. Acti-
vation of oncogenic KRAS in PAAD is associated with 
the occurrence and progression of tumors reportedly in 
several aspects, including the deregulation of key signal 
transduction pathways, metabolic changes, metastasis, 
and drug resistance (Mann et al. 2016).

However, the activation mechanism of mutant KRAS 
in PAAD has not been elucidated so far (Grant et  al. 
2016). Therefore, it is of great significance to identify 
the potential genes associated with KRAS mutation and 
PAAD prognosis. Mining relevant data from the TCGA–
PAAD dataset might assist in identifying prognostic 
factors that could be involved in cancer occurrence and 
progression. In this context, the present study used the 
TCGA–PAAD dataset to identify the DE-lcnRNAs and 
DE-mRNAs between KRAS-mutant and KRAS-wildtype 
PAAD. The results of the enrichment analysis revealed 
that the enrichment mainly included the pathways for the 
modulation of chemical synaptic transmission, regula-
tion of trans-synaptic signaling, signal release, synaptic 
membrane, neuronal cell body, channel activity, passive 

transmembrane transporter activity, and ion-gated chan-
nel activity, etc. Weighted co-expression network analysis 
of all the differentially expressed genes revealed the mod-
ule with the strongest correlation with the prognostic 
traits. Multivariate Cox regression analysis enabled the 
construction of the prognostic risk models for lncRNAs 
and mRNAs to identify the hub differentially expressed 
genes associated with PAAD prognosis. Moreover, the 
analysis of the differences in the clinical characteristics 
between risk score1 and risk score2 revealed that the dis-
tribution of these differentially expressed genes was asso-
ciated with the development of PAAD.

The following mRNAs were screened out with sig-
nificant prognostic correlation: GLTPD2; RP1; MUC21; 
FAM83A; MYEOV; ZNF488; LAMA3 and LncRNA: 
AC068580.2; LINC01910; AC245041.2; AC107959.3; 
CASC8; UCA1; LINC00520; AL033384.1. A few of these 
genes have been identified previously in recent studies, 
among which the most reported one is UCA1, which is 
highly expressed in pancreatic cancer and is associated 
with the prognosis of this disease. UCA1 functions as a 
competing endogenous RNA (ceRNA) to increase the 

Fig. 8  (A mRNA, B lncRNA) Results of multivariate Cox regression analysis. Forest plot of the multivariable Cox regression analysis. The squares 
on the transverse lines present the hazard ratio (HR), and the transverse lines represent the 95% confidence interval (CI); (C mRNA, D lncRNA) 
nomogram of the overall survival prediction in PAAD
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expression of KRAS via sponging miR-590–3p in pancre-
atic ductal adenocarcinoma; KRAS, in turn, promotes the 
UCA1 expression (Liu et al. 2019). Zhou et al. have sug-
gested that UCA1 promotes proliferation, invasion, and 
migration, as well as the inhibition of apoptosis, in pan-
creatic cancer cells, through the downregulation of miR-
96 and upregulation of FoxO3 (Zhou et al. 2018). Certain 
scholars have reported that UCA1 is highly expressed in 

the exosomes derived from hypoxic pancreatic cancer 
cells and could be transferred to human umbilical vein 
endothelial cells via these exosomes, which suggests that 
hypoxic exosomal UCA1 might promote angiogenesis 
and tumor growth through the miR-96–5p/AMOTL2/
ERK1/2 axis (Guo et  al. 2020). Recent studies have 
reported that MYEOV could be a potential prognostic 
biomarker and therapeutic target of pancreatic ductal 

Fig. 9  A–G Distribution of risk score1 in the clinical phenotypes. H–N Distribution of risk score2 in the clinical phenotypes
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adenocarcinoma. For instance, Liang et al. believed that 
MYEOV promoted the expression of hairy/enhancer of 
split homolog–1, a SOX9 target gene, by enhancing the 
SOX9 DNA-binding ability of the HES1 enhancer and 
that HES1 knockdown partially abrogated the onco-
genic effect of MYEOV (Liang et  al. 2020). Tang et  al. 
reported that the high expression of MYEOV promoted 
glycolysis in the tumor cells in pancreatic ductal adeno-
carcinoma, which was validated in cellular assays (Tang 
et al. 2020). In addition, the FAM83A gene was reported 
to be amplified in several human cancers, while silenc-
ing FAM83A in related cancer cell lines inhibited the 
activation of the WNT/β-catenin and TGF-β signaling 
pathways besides reducing tumorigenicity (Zhang et  al. 
2019; Liu et al. 2020). Chen demonstrated that FAM83A 
overexpression significantly promoted the cancer stem 
cell-like characteristics and chemotherapy resistance 
of tumor cells in  vitro as well as in  vivo in the mouse 
models of pancreatic cancer, while FAM83A inhibition 

reduced the drug resistance of tumor cells (Chen et  al. 
2017). Kim analyzed the differential expression of genes 
between normal pancreas tissues and PAAD tissues 
using LASSO regression analysis to construct the prog-
nostic gene expression model, which revealed LAMA3, 
E2F7, IFI44, SLC12A2, and LRIG1 as the potential drug 
targets in PAAD treatment (Kim et al. 2019). Yang used 
an online public database to evaluate the mRNA expres-
sion and the prognostic value of the laminin subunits in 
pancreatic ductal adenocarcinoma tissues; the author 
reported that LAMA3 and LAMC2 were positively cor-
related with the amount of pancreatic ductal adenocar-
cinoma blood and were, therefore, considered potential 
therapeutic targets and prognostic markers for pancre-
atic ductal adenocarcinoma (Yang et al. 2019). In the pre-
sent study, LAMA3 (mRNA) and AC245041.2 (lncRNA), 
the genes that demonstrated the highest correlation, were 
identified in the two risk models, and both the genes 
were highly expressed in KRAS-mutant PAAD and could, 

Fig. 10  A Distribution of LAMA3 expression in KRAS mutation groups. B KM curves to compare the overall survival between high-LAMA3 and 
low-LAMA3 samples. C ROC curve for prognosis based on LAMA3 expression. D Multivariate Cox regression analysis based on LAMA3 expression. 
E–G GSEA-identified gene sets enriched in LAMA3 expression phenotype



Page 15 of 17Tian et al. Mol Med           (2021) 27:62 	

therefore, be used as independent prognostic factors. The 
genes in the samples with high expression of LAMA3 
were enriched in several pathways related to transcrip-
tion factors. The core enrichment genes in the common 
TF-related pathways were collated, and the mRNA–
lncRNA–TFs regulatory network was constructed, which 
might be closely associated with the prognosis of PAAD.

Conclusion
In the present study, hub lncRNAs and mRNAs asso-
ciated with KRAS mutation and PAAD prognosis were 
identified through comprehensive bioinformatics anal-
ysis. In addition, an mRNA–lncRNA–TFs regulatory 
network was constructed. The findings of the present 
study would deepen the understanding of the patho-
genesis of KRAS-mutant PAAD and provide clues and 
novel insights for further research in this regard.

Fig. 11  A Distribution of AC245041.2 expression in KRAS mutation groups. B KM curves to compare the overall survival between high-AC245041.2 
and low-AC245041.2 samples. C ROC curve for prognosis based on AC245041.2 expression. D Multivariate Cox regression analysis based on 
AC245041.2 expression. E–G GSEA-identified gene sets enriched in LAMA3 expression phenotype

Fig. 12  The mRNAs–lncRNA–TFs regulatory network
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