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Abstract: Trimethylamine N-oxide (TMAO) is a gut-derived uremic toxin involved in cardiovascular
diseases (CVD). Peripheral arterial stiffness (PAS), measured by the brachial-ankle pulse wave velocity
(baPWV) is a valuable indicator of the existence of CVD alongside other diseases. The study recruited
157 patients with chronic kidney disease (CKD) stages 3 to 5, and aimed to determine the correlation
between serum TMAO and PAS, defined as a baPWV of >18.0 m/s. Patients with CKD who were
diagnosed with PAS (68 patients, 43.3%) were older, had a higher percentage of hypertension or
diabetes mellitus, higher systolic blood pressure, and higher fasting glucose, C-reactive protein, and
TMAO levels. Furthermore, besides old age and SBP, patients with CKD who had higher serum
TMAO were more likely to have PAS, with an odds ratio of 1.016 (95% confidence interval = 1.002–
1.029, p = 0.021) by multivariate logistic regression analysis. Correlation analysis demonstrated that
serum TMAO was positively correlated with C-reactive protein level and either left or right baPWV.
Thus, we supposed that serum TMAO levels were associated with PAS in patients with advanced
non-dialysis CKD.

Keywords: brachial-ankle pulse wave velocity; chronic kidney disease; peripheral artery stiffness;
trimethylamine N-oxide

Key Contribution: Serum TMAO was positively associated with baPWV and was indicative of a
biomarker for the PAS occurrence in patients with stage 3–5 CKD.

1. Introduction

Patients with chronic kidney disease (CKD) were found to accumulate all kinds of
waste products, including noxious metabolic by-products absorbed via the intestines as the
kidneys lost their excretion abilities [1]. Existing evidence demonstrated that gut-derived
metabolic harmful products could induce adverse effects such as cardiovascular diseases
(CVD) and even CKD progression. Indoxyl sulfate and p-cresol sulfate, two well-known
protein-bound uremic toxins, were produced from the intestinal bacterial flora, and could
be associated with CKD progression and future CVD development in non-dialytic or
dialytic CKD [2–4]. Similarly, trimethylamine N-oxide (TMAO), also known as another
kind of gut microbiota-derived metabolite, originated from trimethylamine [1]. Over the
past decade, TMAO had been implicated to have an important role in the occurrence of
various diseases, including diabetes mellitus, hypertension, heart failure, inflammation,
and most importantly, CKD development [5–8]. Previous studies reported that TMAO is
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physiologically filtrated and secreted unchanged by the kidneys and would accumulate
as renal function worsened. The high TMAO concentration could, in turn, accelerate
kidney dysfunction progression by modulating the progress of tubule-interstitial fibrosis
and collagen deposition [9–12]. An animal study demonstrated that the TMAO of rats
that underwent 5/6 nephrectomy could induce vascular oxidative stress and inflamma-
tion, resulting in endothelial dysfunction and further CVD [13]. Furthermore, evidence
from meta-analysis and systemic review had shown that TMAO correlated with a higher
risk of hypertension [14] and all-cause and adverse CV-associated events in the general
population [15], geriatric population [16], and patients with CKD [17].

Previous studies have shown that vascular stiffening, as measured by pulse wave
velocity (PWV), was correlated with CVD, which was long recognized as the main cause
of long-term adverse outcomes in CKD through the possible mechanisms of oxidative
stress, low-grade inflammation, or disordered mineral metabolism [18–20]. In this study,
we measured peripheral arterial stiffness (PAS) by applying a noninvasive modality as
brachial-ankle PWV (baPWV), which could be an indicator of CKD progression or mortality,
to assess the association with the serum TMAO in patients with non-dialysis advanced
CKD [21]. As we had reported, the gut-derived uremic toxins, indoxyl sulfate, and p-
cresol sulfate, were correlated with endothelial dysfunction and arterial stiffness [22–24],
we hypothesized that TMAO could have a potential role in the occurrence of peripheral
arterial stiffness.

2. Results

A total of 68 (43.3%) and 89 (56.7%) patients were categorized in the PAS and control
groups (Table 1). Compared to the control group, patients in the PAS group were older,
had higher fasting glucose, systolic blood pressure (SBP), percentage of DM and HTN, and
serum C-reactive protein (CRP) and TMAO levels. Patients with CKD in the PAS group had
a lower estimated glomerular filtration rate (eGFR) compared to those in the control group
(p = 0.001); however, when classifying patients into CKD stages, no significant difference
was observed between those in the PAS and control groups (p = 0.019). Viewed more closely,
a trend could be observed showing a higher percentage of CKD stages 4 and 5 in patients
belonging to the PAS group compared to the control group (chi-squared test for trend,
p = 0.044, data not shown).

Table 1. Baseline characteristics of the 157 chronic kidney disease patients in the control and periph-
eral arterial stiffness group.

Characteristics All Patients
(n = 157)

Control group
(n = 89)

PAS Group
(n = 68)

p Value

Age (years) 67.90 ± 13.00 63.35 ± 12.04 73.85 ± 11.81 <0.001 *
Body mass index (kg/m2) 26.12 ± 3.95 26.27 ± 4.39 25.92 ± 3.30 0.587

Female, n (%) 76 (48.4) 41 (46.1) 35 (51.5) 0.502
TMAO (µg/L) 27.43 (16.68–49.54) 25.28 (15.56–42.47) 35.83 (17.95–77.79) 0.006 *

Left baPWV (m/s) 17.30 ± 3.46 14.93 ± 1.54 20.40 ± 2.74 <0.001 *
Right baPWV (m/s) 17.26 ± 3.39 14.97 ± 1.80 20.26 ± 2.54 <0.001 *

Diabetes mellitus, n (%) 52 (33.1) 23 (25.8) 29 (42.6) 0.027 *
Hypertension, n (%) 97 (61.8) 49 (55.1) 48 (70.6) 0.047 *

Hyperlipidemia, n (%) 93 (59.2) 55 (61.8) 38 (55.9) 0.555
Smoking, n (%) 16 (10.2) 10 (11.2) 6 (8.8) 0.244
SBP (mmHg) 144.31 ± 17.84 140.53 ± 19.49 149.25 ± 14.09 0.002 *
DBP (mmHg) 82.14 ± 10.21 82.06 ± 10.31 82.25 ± 10.15 0.907

Total cholesterol (mg/dL) 163.01 ± 43.75 165.22 ± 47.37 160.12 ± 38.64 0.470
Triglyceride (mg/dL) 121.0 (87.5–165.0) 116.0 (88.5–166.5) 128.50 (86.25–163.0) 0.430

LDL–C (mg/dL) 92.63 ± 36.28 95.93 ± 39.41 88.31 ± 31.50 0.193
Fasting glucose (mg/dL) 104.0 (98.0–134.0) 100.0 (97.0–118.5) 110.0 (100.0–141.75) 0.010 *

Blood urea nitrogen (mg/dL) 33.00 (24.00–45.00) 31.00 (24.50–44.00) 35.50 (24.00–49.50) 0.562
Creatinine (mg/dL) 1.90 (1.40–2.70) 1.80 (1.40–2.60) 2.05 (1.60–3.00) 0.163

eGFR (mL/min) 31.37 ± 15.33 34.06 ± 15.42 27.84 ± 14.58 0.011 *
CKD stage 3, n (%) 79 (50.3) 51 (57.3) 28 (41.2) 0.119
CKD stage 4, n (%) 45 (28.7) 23 (25.8) 22 (32.4)
CKD stage 5, n (%) 33 (21.0) 15 (16.9) 18 (26.4)

Albumin (g/dL) 4.07 ± 0.32 4.10 ± 0.33 4.04 ± 0.29 0.256
Hemoglobin (g/dL) 11.68 ± 2.58 11.71 ± 2.03 11.64 ± 3.17 0.870

CRP (mg/dL) 0.13 (0.05–1.20) 0.06 (0.05–1.12) 0.34 (0.08–163) 0.012 *
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Table 1. Cont.

Characteristics All Patients
(n = 157)

Control group
(n = 89)

PAS Group
(n = 68)

p Value

ARB use, n (%) 88 (56.1) 46 (51.7) 42 (61.8) 0.207
β–blocker use, n (%) 50 (31.8) 25 (28.1) 25 (36.8) 0.248

CCB use, n (%) 60 (38.2) 31 (34.8) 29 (42.6) 0.318
α–adrenergic blocker use, n (%) 21 (13.4) 10 (11.2) 11 (16.2) 0.368

Statin use, n (%) 73 (46.5) 41 (46.1) 32 (47.1) 0.902
Fibrate use, n (%) 25 (15.9) 15 (16.9) 10 (14.7) 0.715

Values for continuous variables are given as mean ± standard deviation or median and interquartile range and
tested by Student’s t-test or Mann–Whitney U test according to normal distribution; values are presented as
number (%) and analysis was done using the chi-square test. PAS, peripheral arterial stiffness; baPWV, brachial-
ankle pulse wave velocity; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low-density
lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; TMAO, Trimethylamine N-oxide; CRP, C-
reactive protein; ARB, angiotensin-receptor blocker; CCB, calcium-channel blocker; CKD, chronic kidney disease.
* p < 0.05 was considered statistically significant.

We applied multivariate logistic regression analysis on age, HTN, DM, SBP, fast-
ing glucose, eGFR, CRP, and TMAO to analyze possible factors indicative of PAS occur-
rence. It showed that patients with CKD who were older had higher SBP and serum
TMAO, with a 1.081-fold (95% confidence interval [CI] = 1.043–1.121, p < 0.001), 1.042-fold
(95% CI = 1.004–1.081, p = 0.031), and 1.016-fold (95% CI = 1.002–1.029, p = 0.021) increased
risk of PAS occurrence (Table 2).

Table 2. Factors correlated with peripheral arterial stiffness of chronic kidney disease patients.

Variables Odds Ratio 95% CI p Value

Trimethylamine N-oxide, 1 µg/L 1.016 1.002–1.029 0.021 *
Age, 1 year 1.081 1.043–1.121 <0.001 *

systolic blood pressure, 1 mmHg 1.042 1.004–1.081 0.031 *
Hypertension, present 0.596 0.171–2.072 0.415

Diabetes mellitus, present 3.062 0.970–9.660 0.056
Fasting glucose, 1 mg/dL 0.998 0.987–1.009 0.710

Estimated glomerular filtration
rate, 1 mL/min 0.991 0.962–1.020 0.538

C-reactive protein, 1 mg/dL 1.085 0.889–1.325 0.422
Data analysis was performed using multivariate logistic regression analysis (adopted factors: diabetes mellitus,
hypertension, age, systolic blood pressure, fasting glucose, estimated glomerular filtration rate, C-reactive protein
and trimethylamine N-oxide). CI, confidence interval. * p < 0.05 was considered statistically significant.

To determine the serum TMAO level relative to PAS occurrence, a receiver operating
characteristic curve analysis was applied, which showed an optimal serum cut-off level of
46.78 µg/L with 39.71% and 84.27% in sensitivity and specificity, individually. The area
under the curve was 0.629 (95% CI = 0.548–0.705, p = 0.0052, Figure 1).
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Table 3 shows the correlation between clinical variables and baPWV [left and right]
and serum TMAO by Spearman correlation analysis. First, left baPWV was strongly
correlated with right baPWV (r = 0.913, p < 0.001). Second, both left and right baPWV were
significantly positively correlated with aging, SBP, and serum TMAO. Third, in addition
to the positive association with baPWV, serum TMAO level was found to be positively
correlated with aging (r = 0.219, p = 0.006) and CRP (r = 0.261, p = 0.001), but negatively
associated with eGFR (r = −0.442, p < 0.001).

Table 3. Correlation between TMAO, left baPWV, and right baPWV, with clinical variables of chronic
kidney disease stage 3–5 patients.

Variables TMAO Left
PWV

Right
PWV Age BMI eGFR CRP Glucose LDL–C TG SBP DBP

TMAO r
p

0.256
0.001 *

0.267
0.001 *

0.219
0.006 *

−0.098
0.222

−0.442
<0.001 *

0.261
0.001 *

−0.015
0.856

−0.082
0.305

−0.079
0.325

0.029
0.716

−0.049
0.546

Left
PWV

r
p

0.256
0.001 *

0.913
<0.001 *

0.453
<0.001 *

−0.013
0.870

−0.147
0.066

0.182
0.022 *

0.132
0.100

0.038
0.637

0.035
0.666

0.328
<0.001 *

0.103
0.200

Right
PWV

r
p

0.267
0.001 *

0.913
<0.001 *

0.411
<0.001 *

−0.036
0.650

−0.151
0.060

0.157
0.050

0.126
0.117

0.039
0.629

0.059
0.459

0.291
< 0.001 *

0.084
0.294

Age r
p

0.219
0.006 *

0.453
<0.001 *

0.411
<0.001 *

−0.006
0.941

−0.110
0.171

0.147
0.066

0.013
0.867

−0.024
0.767

−0.129
0.109

0.041
0.611

−0.346
<0.001 *

BMI r
p

−0.098
0.222

−0.013
0.870

−0.036
0.650

−0.006
0.941

0.166
0.038

−0.072
0.373

0.125
0.118

0.028
0.724

0.128
0.109

0.221
0.006 *

0.127
0.113

eGFR r
p

−0.442
<0.001 *

−0.147
0.066

−0.151
0.060

−0.110
0.171

0.166
0.038 *

−0.185
0.021 *

0.126
0.116

0.088
0.270

−0.033
0.680

−0.184
0.021 *

−0.058
0.472

CRP r
p

0.261
0.001 *

0.182
0.022 *

0.157
0.050

0.147
0.066

−0.072
0.373

−0.185
0.021 *

−0.034
0.673

−0.088
0.272

−0.006
0.937

0.050
0.537

−0.072
0.370

Glucose r
p

−0.015
0.856

0.132
0.100

0.126
0.117

0.013
0.867

0.125
0.118

0.126
0.116

−0.034
0.673

−0.106
0.185

0.167
0.036 *

0.028
0.729

0.031
0.697

LDL–C r
p

−0.082
0.305

0.038
0.637

0.039
0.629

−0.024
0.767

0.028
0.724

0.088
0.270

−0.088
0.272

−0.106
0.185

0.196
0.014 *

−0.028
0.730

0.120
0.133

TG r
p

−0.079
0.325

0.035
0.666

0.059
0.459

−0.129
0.109

0.128
0.109

−0.033
0.680

−0.006
0.937

0.167
0.036 *

0.196
0.014 *

−0.075
0.352

0.043
0.592

SBP r
p

0.029
0.716

0.328
<0.001 *

0.291
<0.001 *

0.041
0.611

0.221
0.006 *

−0.184
0.021 *

0.050
0.537

0.028
0.729

−0.028
0.730

−0.075
0.352

0.566
<0.001 *

DBP r
p

−0.049
0.546

0.103
0.200

0.084
0.294

−0.346
<0.001 *

0.127
0.113

−0.058
0.472

−0.072
0.370

0.031
0.697

0.120
0.133

0.043
0.592

0.566
<0.001 *

Analysis of data was performed using Spearman correlation analysis. BMI, body mass index; eGFR, estimated
glomerular filtration rate; CRP, C-reactive protein; TG, triglyceride; DBP, diastolic blood pressure; SBP, systolic
blood pressure; LDL-C, low-density lipoprotein cholesterol; PWV, pulse wave velocity; TMAO, trimethylamine
N-oxide. * p < 0.05 was considered statistically significant.

To examine the potential risk of TAMO related with PAS in CKD patients, a subgroup
analysis was performed by dividing patients into groups with or without DM, HTN, and
hyperlipidemia (Table 4). The analysis revealed that a higher TMAO value significantly
correlated with the occurrence of PAS specifically in CKD patients who were without DM,
and those with or without HTN or hyperlipidemia. TMAO in CKD stage 4 and 5 patients
had an increasingly independently 1.025-fold (p = 0.046), and 1.036-fold (p = 0.021) higher
risk of developing PAS, respectively. It indicated that there was increased possibility of
TMAO in relation to the occurrence of PAS in advanced CKD.

Table 4. Correlation between peripheral arterial stiffness and TMAO of CKD patients by subgroup
analysis.

Peripheral arterial stiffness Odds ratio 95% CI p Value

Diabetes mellitus, yes 1.007 0.995–1.020 0.249
Diabetes mellitus, no 1.035 1.016–1.054 <0.001 *

Hypertension, yes 1.016 1.004–1.028 0.011 *
Hypertension, no 1.032 1.008–1.056 0.008 *

Hyperlipidemia, yes 1.014 1.003–1.025 0.017 *
Hyperlipidemia, no 1.038 1.011–1.066 0.006 *

Chronic kidney disease
Stage 3 1.006 0.992–1.019 0.432
Stage 4 1.025 1.004–1.050 0.046 *
Stage 5 1.036 1.006–1.068 0.021 *

Analysis data was done using the univariate logistic regression analysis. CI, confidence interval. * p < 0.05 was
considered statistically significant.
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3. Discussion

In this study, TMAO associated with aging and high SBP could be a useful marker
for the occurrence of PAS in patients with advanced CKD. Furthermore, serum TMAO
increased as patients got older, exhibited a greater inflammatory status, or exhibited a
decline of renal function.

CVD has been known to be the leading cause of long-term morbidity or mortality in
patients with dialytic or non-dialytic CKD [18]. In this study, aging and high SBP were
found to be associated with PAS, as indicated by baPWV. As is already known, many
traditional and uremia-specific risk factors could lead to irreversible vascular damage with
results in high vascular smooth muscle tone and BP, as manifested in arterial stiffness [19,20].
Previous studies had shown that old age and high BP contributed to AS [25,26], which could,
in turn, promote further CVD development, renal dysfunction, and even mortality [19,20].
Furthermore, a recent study showed that with old age and SBP, TMAO was also associated
with increased PWV in mice as well as in healthy young- to old-aged adults [27].

In addition to the traditional risk factors, such as old age or high BP (SBP or DBP),
gut-derived uremic toxins, such as indoxyl sulfate, p-cresol sulfate, and TMAO, were
demonstrated to play important roles in CVD pathogenesis [2–4]. Through oxidative stress
modulation and inflammatory and cytokine responses, which then induced endothelium
and smooth muscle cell dysfunctions, these gut-derived uremic toxins were found to have
detrimental effects on vascular health [28,29]. Our previous studies also showed that
indoxyl sulfate and p-cresol sulfate were related to the occurrence of arterial stiffness in pa-
tients with CKD, which highlighted the important pathogenetic role of gut-derived uremic
toxins on AS [22–24]. Furthermore, TMA, produced from dietary choline, phosphatidyl-
choline, L-carnitine, and betaine by intestinal bacteria, and then converted to TMAO in the
liver, was accumulated in patients with CKD [1]. Besides, serum TMAO was significantly
elevated in association with DM, age, and BMI [6], and was positively dose-dependently
associated with HTN, as increased levels of per-5 mµmol/L or 10-mµmol/L would increase
the risk of HTN by 9% and 20%, respectively [30]. In animal studies, increased dietary
TMAO would induce tubule-interstitial fibrosis, collagen deposition, and Smad3 phospho-
rylation, and then renal function indicated increased serum cystatin C [9]. Another animal
study also showed that TMAO-activated inflammasomes release interleukin-1 beta and
interleukin-18 to accelerate renal inflammation and fibrosis [10]. Conversely, after targeting
TAMO inhibition, it attenuated serum cystatin C levels as well as renal tubule-interstitial
fibrosis severity and collagen deposition [11]. In a meta-analysis, patients with advanced
CKD had a 67.9 mµmol/L increase in TMAO concentration, whereas patients with CKD
had the highest TMAO level of 12.9 mmol/L decreases in eGFR [12]. In regard to renal
function, elevated TMAO could only return to normal range after receiving renal transplan-
tation without receiving dialysis [31]. Farhangi et al. found a positively dose-dependent
nonlinear relationship between serum TMAO and CRP (the highest category had a 0.27
mg/L increase in CRP compared to the lowest) [8]. Because TMAO was a metabolite
derived from gut microbial metabolism and dietary intake, Mishima et al. found that
TMAO could originate from both microbiota and dietary components [32]; Costabile et al.
found that marine derived diets induce higher TMAO in a healthy population [33]; in a
randomized crossover designed study comparing plant-based alternative meat to animal
meat, a significant lower level of TMAO was observed in a healthy population on plant-
based alternative meat [34]; another study showed a 2-month vegan diet could significantly
reduce plasma TMAO in obese or hyperglycemic adults [35]; but a meta-analysis comparing
microbiota-driven therapy, including prebiotics, probiotics or synbiotics, with placebo did
not reveal a reduction in circulating TMAO [36]. Although we did not record the dietary
contents of CKD patients in this study, we still found that, as already shown, there was an
inverse relationship between serum TMAO and kidney function and a positive correlation
between TMAO and CRP.

Aside from the harmful effects on renal function, many studies reported the TMAO
effects on CV and long-term adverse outcomes. Evidence had shown an association be-
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tween TMAO and severity and mortality in patients with heart failure [5]. Tarng et al.
conducted a cohort study on patients with stage 3 to 5 CKD, with a prognostic value of
TMAO in predicting 5-year mortality risk [9]. Several meta-analyses showed that TMAO
had a dose-dependent effect relationship with increased risk of HTN (the highest cate-
gory had a 2.36 mmHg increase in SBP compared to the lowest) [14], an increased risk
of all-cause mortality and CV events in the general and elderly population [15]. In pa-
tients with CKD with the highest TMAO group, a 1.29-fold and 1.45-fold increased risk
was observed of all-cause and CV mortality; besides, a 3% higher all-cause mortality per
1 unit increases the TMAO level [17]. Studies have proven that TMAO plays a role in the
atherosclerosis process through mediating immune response by recruiting macrophages to
aortic lesions with increased CD36, tumor necrotic factor α, and interleukin-6 expressions
through the p38 MAPK and JNK 1/2 pathways [37], or activation of NLRP3 inflamma-
some to cause endothelial dysfunction and inflammation through redox regulation and
lysosomal dysfunction [38]. Furthermore, endothelial and smooth muscle cells exposed
to TMAO enhanced the recruitment of leukocytes and induced various inflammatory
cytokines by activating nuclear factor-kappa β [39]. In 5/6 nephrectomy rats, TMAO
with superoxide and proinflammatory cytokines were found to be significantly elevated
but with reduced production of endothelial nitric oxide, which together contributed to
endothelial dysfunction [13]. Most importantly, TMAO was recently found to modulate
the vascular calcification process [40]. Zhang et al. found that TMAO could upregulate
osteoblast-specific protein expression, such as Runt-related transcription factor 2 and bone
morphogenetic protein-2, to induce calcification by activating nuclear factor-kappa β and
NLRP3 inflammasomes [40]. Brunt et al. conducted a study and showed plasma TMAO
with aging positively correlated with aortic PWV and SBP in humans and mice; in vitro
study additionally revealed the adverse effects of TMAO on intrinsic mechanical stiffness
by modulating the formation of advanced glycation end-products and reactive oxygen
species [27]. Additionally, this study showed interesting findings that TMAO levels for
those CKD patients who did not have DM, regardless of HTN or hyperlipidemia, showed a
significantly higher risk for the occurrence of PAS. However, the TMAO of diabetic CKD
patients did not correlate with the occurrence of PAS by multivariate logistic regression
analysis. This result showed the possible role of DM for influencing the role of TMAO on
PAS. Taken together, we reported a positive correlation between serum TMAO level and
baPWV in patients with advanced CKD, with a possible mechanism from inflammatory
activations and DM influencing the pathogenesis of TMAO on PAS.

This study had several limitations. First, it was a cross-sectional and single-center
design with a limited sample size of patients with CKD. Furthermore, patients with stage
1–2 CKD and on dialysis were excluded. Therefore, the results could not be extrapolated
to other populations, except for advanced CKD. Second, gut microbiota was not assessed
in this study, and the mechanism by which TMAO affects PAS remains unclear. Third,
the association between TMAO and PAS (baPWV) was not stronger than age and SBP.
Nevertheless, we thought that there could be a role of TMAO in the development of PAS,
probably through the activation of inflammatory responses. Fourth, we did not record the
dietary contents of these CKD patients. Indeed, plasma TMAO still presents in animals
without microbiota [32], and the level directly correlates with the intake of fish, vegetables,
and whole-grain products, but not meat, processed meat, and dairy products in humans
with high cardiometabolic risk [33]. Therefore, further longitudinal studies with large
samples and cells as well as animal studies are needed to clarify these findings.

4. Conclusions

In addition to older age and elevated SBP, increased serum TMAO was independently
indicative of PAS in patients with stage 3–5 CKD. Besides the positive correlation with
baPWV, serum TMAO was also positively associated with serum CRP levels. These findings
suggested that TMAO may be an important upstream modulator of the PAS development
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process among patients with advanced CKD who are diagnosed with stage 3–5 CKD, but
the detailed mechanism remains to be investigated.

5. Materials and Methods
5.1. Patients

From January to December 2016, patients with CKD who were diagnosed with stage
3 to 5 CKD and were old than 18 years with regular follow-up were recruited. CKD
was defined using the eGFR by the Chronic Kidney Disease Epidemiology Collaboration
equation [18]. Patients were separated into stages 3, 4, and 5 based on their calculated
eGFRs of 30–59 mL/min/1.73 m2, 15–29 mL/min/1.73 m2, and <15 mL/min/1.73 m2 [18].
Patients with acute kidney injury, malignancies, acute infectious diseases, congestive heart
failure at the time of blood sampling, or who refused to participate in this study were
excluded. This study was approved by the Research Ethics Committee of Hualien Tzu Chi
Hospital, Buddhist Tzu Chi Medical Foundation (IRB108-96-B).

The demographic and baseline characteristics regarding the smoking status, DM, HTN,
and use of medications were recorded by medical record review.

5.2. Anthropometric and Biochemical Examination

Body height and weight were examined to the nearest 0.5 cm and 0.5 kg and BMI was
calculated as weight (kg) divided by height squared (m2). The serum fasting glucose, blood
urea nitrogen, creatinine, albumin, total cholesterol, triglyceride, low-density lipoprotein
cholesterol, blood urea nitrogen, creatinine, and CRP levels were determined using an auto-
analyzer (Siemens Advia 1800; Siemens Healthcare GmbH, Henkestr, Erlangen, Germany)
after overnight fasting for at least 8 h.

5.3. Determination of Serum TMAO Levels by High-Performance Liquid
Chromatography–Mass Spectrometry

We used a Waters e2695 high-performance liquid chromatography system containing a
mass spectrometer (ACQUITY QDa, Waters Corporation, Milford, MA, USA) to determine
serum TMAO levels according to a previous study [41]. Mass spectrometry was performed
in full scan ranges of 50–450 m/z for positive-ion modes and 100–350 m/z for negative-ion
modes, respectively, to monitor the participants’ compounds (TMAO: 76.0 m/z; d9-TMAO:
85.1 m/z). The retention time for TMAO and d9-TMAO was 2.54 min. The procurement
and analysis of all examinations were performed using the Empower® 3.0 software (New
York, NY, USA).

5.4. Examination of Left and Right Brachial-Ankle PWV

Using this apparatus for volume plethysmography (VaSera VS-1000, Fukuda Denshi
Co. Ltd., Tokyo, Japan), patients lay in a supine position with four pneumatic cuffs wrapped
around both upper arms and ankles, connected to both plethysmographic and oscillometric
sensors to assess baPWV after blood sampling, and rested for 10 min [25,26]. We used
baPWV of >18 m/s (either left or right) as a cut-off value to diagnose PAS [25,26].

5.5. Statistical Analysis

The Kolmogorov–Smirnov test was used to examine the normality of continuous
variables. The results indicated that these continuous data were expressed as the mean
± standard deviation or median with an interquartile range. To compare the difference
of continuous variables between the control and PAS groups, the Student’s independent
t-test or Mann–Whitney µ-test were used for the Kolmogorov–Smirnov test, as appropriate.
Numbers with percentages and compared between categorical variables were calculated
using the chi-squared test. Factors showing significant differences in Table 1 were adopted
for multivariate logistic regression analysis, including DM, HTN, age, SBP, fasting glucose,
eGFR, CRP, and TMAO, to determine possible factors associated with the occurrence
of PAS (which is defined as baPWV as >18.0 m/s). A receiver operating characteristic
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curve analysis was used to determine the optimal serum TMAO levels indicative of PAS
occurrence. The Spearman rank correlation coefficient was used to analyze the correlation
between clinical variables and baPWV (left and right) and TMAO. Subgroup analysis by
univariate logistic regression analysis was applied to analyze the relation between the
occurrence of PAS and risk factors of CKD, including CKD stage, and underlying diseases
such as DM, HTN, and hyperlipidemia. The SPSS software for Windows (version 19.0;
SPSS, Chicago, IL, USA) was used for all statistical analyses. A p < 0.05 was indicative of
statistical significance.
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